JP2007319533A - Medical microcatheter - Google Patents

Medical microcatheter Download PDF

Info

Publication number
JP2007319533A
JP2007319533A JP2006154941A JP2006154941A JP2007319533A JP 2007319533 A JP2007319533 A JP 2007319533A JP 2006154941 A JP2006154941 A JP 2006154941A JP 2006154941 A JP2006154941 A JP 2006154941A JP 2007319533 A JP2007319533 A JP 2007319533A
Authority
JP
Japan
Prior art keywords
catheter
resin
microcatheter
layer
medical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006154941A
Other languages
Japanese (ja)
Inventor
Mitsuharu Korogi
光治 興梠
Junichi Ikeda
順一 池田
Takyo Tsukumo
多挙 九十九
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2006154941A priority Critical patent/JP2007319533A/en
Publication of JP2007319533A publication Critical patent/JP2007319533A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microcatheter having a guide wire with a favorable following property and exerting a favorable reaching property to an affected part. <P>SOLUTION: This medical microcatheter is characterized in that, when the short diameter of the cross section of the catheter subjected to a bending deformation at its distal end becomes 98.0% or less of the catheter initial external diameter, a curvature radius ratio (the curvature radius ratio is a ratio of a curvature radius to a catheter external radius) of an inside bending deformation curve is 9.0 or less. This medical microcatheter is characterized in consisting of a resin inner layer extending over the whole length of the catheter, a reinforcing layer existing on the resin inner layer and formed of a linear reinforcing material, and a resin outer layer covering the outside of the reinforcing layer. This medical microcatheter is characterized in that the number of reinforcing material wires per 1mm along the longitudinal direction of the catheter is 10 or more. This medical microcatheter is characterized in that the resin inner layer is composed of a fluorinated resin and the resin outer layer includes a polyamide elastomer. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、脳、心臓、腹部などの血管や臓器の診断あるいは治療のために細い末梢血管に挿入される医療用マイクロカテーテルに関する。   The present invention relates to a medical microcatheter inserted into a thin peripheral blood vessel for diagnosis or treatment of blood vessels and organs such as brain, heart, and abdomen.

経皮的に血管内に挿入したカテーテルを脳や心臓、腹部などの臓器に導き、治療薬、側線物質、造影剤などを投与、注入する医療行為は従来から行われている。近年、医学の進歩により、さらに細い末梢血管に挿入できるマイクロカテーテルの開発が要望されている。マイクロカテーテルは曲がりくねった細い末梢血管を術者の操作により確実に進んでいく必要があるため、様々な操作性が要求される。この操作性には、術者の押込み力をマイクロカテーテルの先端まで確実に伝達するトルク伝達性(プッシャビリティー)、マイクロカテーテルの内腔を通っているガイドワイヤーに沿って、曲がりくねった血管内を進むガイドワイヤー追随性、そして血管の屈曲部や湾曲部でもマイクロカテーテルが折れ曲がりを生じない耐キンク性などがあげられる。これらの操作性を実現するためにマイクロカテーテルの先端部を柔軟な材料、手元側を硬質な材料で構成することがよく知られている。また耐キンク性やプッシャビリティーを確保するために、編組構造やコイル構造をとった補強層を構成することも多くのマイクロカテーテルで行われている。   Conventionally, a medical practice of percutaneously inserting a catheter inserted into a blood vessel into an organ such as the brain, heart, or abdomen, and administering and injecting a therapeutic agent, a lateral substance, a contrast agent, or the like has been performed. In recent years, there has been a demand for the development of a microcatheter that can be inserted into thinner peripheral blood vessels due to advances in medicine. A microcatheter is required to be advanced through an operator's operation through a narrow and narrow peripheral blood vessel, and thus various operability is required. This operability includes torque transferability (pushability) that reliably transmits the operator's pushing force to the tip of the microcatheter, and the inside of the tortuous blood vessel along the guide wire passing through the lumen of the microcatheter. The followability of the guide wire to be advanced and the kink resistance in which the microcatheter does not bend even at the bent portion or curved portion of the blood vessel can be mentioned. In order to realize these operability, it is well known that the tip of the microcatheter is made of a flexible material and the proximal side is made of a hard material. In order to secure kink resistance and pushability, a reinforcing layer having a braided structure or a coil structure is also used in many microcatheters.

マイクロカテーテル操作性能で最も重要なものは患部への到達性であり、到達性を良好にするために種々の工夫がなされている。ガイドワイヤーを患部まで到達させた後にガイドワイヤーに沿わせてマイクロカテーテルを進ませる方法が一般的である。この場合、マイクロカテーテルの重要な性能のひとつにガイドワイヤーへの追従性能がある。そのためには柔軟であるだけでは不十分であり、屈曲させたときの断面形状が変形しにくいことが重要である。   The most important microcatheter operation performance is reachability to the affected area, and various devices have been made to improve reachability. In general, the microcatheter is advanced along the guide wire after the guide wire reaches the affected part. In this case, one of the important performances of the microcatheter is the ability to follow the guide wire. For this purpose, it is not sufficient to be flexible, and it is important that the cross-sectional shape when bent is difficult to deform.

これまでマイクロカテーテルのガイドワイヤー追従性を高めるために幾多の方法が開示されている。特許文献1には、3.5mmを越えない臨界屈曲直径を有するカテーテルが開示されている。臨界屈曲直径とはカテーテルをループ状に曲げたときにカテーテル断面の短径に対する長径の比が1.5以上になるときのループの直径である。明細書に記述されている測定方法では、ループの形状を決める方法が開示されていないため、追従性の指標としては不明確である。さらに、臨界屈曲直径が絶対値で示されているために、小径のカテーテルに対してはどのようなものでも臨界屈曲直径が3.5mmを越えない値になってしまうという、評価基準自体の不適切さがある。
特許第2672714号公報
A number of methods have been disclosed so far to improve the guidewire followability of microcatheter. Patent Document 1 discloses a catheter having a critical bending diameter not exceeding 3.5 mm. The critical bending diameter is the diameter of the loop when the ratio of the major axis to the minor axis of the catheter cross section becomes 1.5 or more when the catheter is bent in a loop shape. In the measurement method described in the specification, a method for determining the shape of the loop is not disclosed, so that it is unclear as an indicator of followability. Furthermore, since the critical bend diameter is indicated by an absolute value, any criterion for the small-diameter catheter has a critical bend diameter that does not exceed 3.5 mm. There is appropriateness.
Japanese Patent No. 2672714

本発明の目的は、ガイドワイヤー追従性が良く、患部への到達性が良好な医療用マイクロカテーテルを提供することにある。   An object of the present invention is to provide a medical microcatheter having good guide wire followability and good reachability to an affected area.

本発明は、上記課題を解決するために鋭意研究した結果、医療用マイクロカテーテルの先端部に曲げ変形を与えたときのカテーテルチューブの断面の物性である、曲げ変形曲率半径比に着目し、この比率を特定の範囲に調整することで、ガイドワイヤー追従性が良好になるという新規な現象を見出し完成させた。
即ち、本発明の要旨は、カテーテルの先端部に曲げ変形を与えたときの断面の短径が該カテーテル初期外径の98.0%以下となるときの内側曲げ変形曲線の曲率半径比(曲率半径比は曲率半径のカテーテル外半径に対する比)が9.0以下であることを特徴とする医療用マイクロカテーテルに関する。
As a result of earnest research to solve the above-mentioned problems, the present invention pays attention to the bending deformation radius ratio, which is the physical property of the cross section of the catheter tube when bending the distal end portion of the medical microcatheter. By adjusting the ratio to a specific range, the inventors have found and completed a new phenomenon that guide wire followability is improved.
That is, the gist of the present invention is that the radius-of-curvature ratio (curvature) of the inner bending deformation curve when the minor axis of the cross section when bending the distal end portion of the catheter is 98.0% or less of the initial outer diameter of the catheter. The radius ratio relates to a medical microcatheter characterized in that the ratio of the radius of curvature to the outer radius of the catheter is 9.0 or less.

本発明によれば、ガイドワイヤーに沿って円滑に慴動し、滞りなく患部に到達し得る医療用マイクロカテーテルが提供される。   ADVANTAGE OF THE INVENTION According to this invention, the medical microcatheter which can be smoothly perturbed along a guide wire and can reach an affected part without a stagnation is provided.

本発明は、医療用マイクロカテーテルであって、該カテーテルの先端部に曲げ変形を与えたときの断面の短径が該カテーテル初期外径の98.0%以下となるときの内側曲げ変形曲線の曲率半径比(曲率半径比は曲率半径のカテーテル外半径に対する比)が9.0以下であることを特徴とする。   The present invention relates to a medical microcatheter having an inner bending deformation curve when the minor axis of the cross section when the distal end portion of the catheter is bent is 98.0% or less of the initial outer diameter of the catheter. A curvature radius ratio (a curvature radius ratio is a ratio of a curvature radius to a radius outside a catheter) is 9.0 or less.

本発明において、医療用マイクロカテーテル(以下、単にカテーテルともいう)の先端部とは、カテーテルチューブの先端部の端部から約10〜100mm付近を示す。
本発明では、前記カテーテルの先端部を、後述のような所定の直径を有するピンゲージの頂点に巻きつけることで、前記先端部に曲げ変形を与える。この場合、ピンゲージの直径が小さくなるにつれて、ピンゲージに巻きつけた先端部の断面形状の変形が大きくなる。そして、本発明の医療用マイクロカテーテルは、前記先端部の断面の短径が初期外径の98.0%以下となるときの内側曲げ変形曲線の曲率半径比が9.0以下のものである。
In the present invention, the distal end portion of a medical microcatheter (hereinafter also simply referred to as “catheter”) indicates the vicinity of about 10 to 100 mm from the end portion of the distal end portion of the catheter tube.
In the present invention, the distal end portion of the catheter is bent around the apex of a pin gauge having a predetermined diameter as described later, thereby bending the distal end portion. In this case, as the diameter of the pin gauge decreases, the deformation of the cross-sectional shape of the tip portion wound around the pin gauge increases. In the medical microcatheter of the present invention, the curvature radius ratio of the inner bending deformation curve when the minor axis of the cross section of the distal end portion is 98.0% or less of the initial outer diameter is 9.0 or less. .

カテーテルの先端部に曲げ変形を与えたときの断面の短径は以下の方法で測定することができる。まずカテーテルの先端部の初期外径をレーザー外径測定器によって測定しておく。次に、図1に示すようにカテーテル1の先端部をピンゲージ2に巻きつけることによって曲げ変形を与える。このときの曲げ変形の内側曲げ変形曲線の曲率半径はピンゲージの半径に等しい。このときのカテーテル断面の短径はレーザー式の3次元形状測定器によって測定することができる。具体的には、ピンゲージの頂点と巻きつけたカテーテルの頂点との高さの差がカテーテル断面の短径である。   The minor axis of the cross section when the distal end portion of the catheter is bent can be measured by the following method. First, the initial outer diameter of the distal end portion of the catheter is measured with a laser outer diameter measuring device. Next, as shown in FIG. 1, the distal end portion of the catheter 1 is wound around the pin gauge 2 to bend and deform. The curvature radius of the inner bending deformation curve of the bending deformation at this time is equal to the radius of the pin gauge. The minor axis of the catheter cross section at this time can be measured by a laser type three-dimensional shape measuring instrument. Specifically, the difference in height between the apex of the pin gauge and the apex of the wound catheter is the minor diameter of the catheter cross section.

巻きつけるピンゲージの直径を小さいものに変えていくと、カテーテル断面の短径は初期外径に比べて小さくなっていく。初期外径の98.0%以下となるときの内側曲げ変形曲線の曲率半径は、そのときのカテーテルを巻きつけたピンゲージの半径である。このピンゲージの半径をカテーテル初期外半径で割って曲率半径比を算出する。カテーテルの先端部に曲げ変形を与えたときの断面の短径が該カテーテル初期外径の98.0%以下となるときの内側曲げ変形曲線の曲率半径比(曲率半径比は曲率半径の初期カテーテル外半径に対する比)は9.0以下であり、好ましくは8.5以下、より好ましくは8.0以下である。   When the diameter of the pin gauge to be wound is changed to a smaller one, the minor axis of the catheter cross section becomes smaller than the initial outer diameter. The radius of curvature of the inner bending deformation curve when it is 98.0% or less of the initial outer diameter is the radius of the pin gauge around which the catheter is wound. The radius of curvature is calculated by dividing the radius of the pin gauge by the initial outer radius of the catheter. Curvature radius ratio of the inner bending deformation curve when the minor axis of the cross section when the distal end of the catheter is bent is 98.0% or less of the initial outer diameter of the catheter (the curvature radius ratio is the initial catheter of the radius of curvature) The ratio to the outer radius is 9.0 or less, preferably 8.5 or less, and more preferably 8.0 or less.

本発明において、カテーテルの樹脂成分、先端部の構成、物性(弾性、硬度など)を適宜選択することで、前記曲率半径比を9.0以下の所望の範囲に調整することができる。   In the present invention, the curvature-radius ratio can be adjusted to a desired range of 9.0 or less by appropriately selecting the resin component of the catheter, the configuration of the distal end, and the physical properties (elasticity, hardness, etc.).

前記曲率半径比は、医療用マイクロカテーテルにおける曲げたときの内腔の変形しにくさを示す。内側曲げ変形曲線の曲率半径比が小さいと、医療用カテーテルを曲げたときに内腔が変形しにくいため、ガイドワイヤー追従性が良好になる。
なお、従来の医療用マイクロカテーテルでは、曲げたときの折れにくさに重点が置かれ、比較的ゆるい曲げのときの内腔の変形には着目されていなかったため、前記曲率半径比はいずれも10を超えるものであり、本発明のような程度まで低い曲率半径比を有するものはなかった。
The radius-of-curvature ratio indicates the difficulty of deformation of the lumen when the medical microcatheter is bent. When the curvature radius ratio of the inner bending deformation curve is small, the lumen is difficult to deform when the medical catheter is bent, so that the guide wire followability is improved.
In the conventional medical microcatheter, the emphasis is placed on the difficulty of bending when bent, and attention has not been paid to the deformation of the lumen when bent relatively loosely. There was no one having a low radius of curvature ratio to the extent as in the present invention.

以下、本発明の医療用マイクロカテーテルについてより詳細に説明する。
本発明の医療用マイクロカテーテルは、例えば、カテーテルの全長にわたる樹脂内層と、該樹脂内層上に存在する線状の補強材料によってなる補強層と、該補強層の外側を被覆する樹脂外層とからなる。前記樹脂内層、補強層、樹脂外層からなるカテーテル本体の基端側にはハブが接続されている。
Hereinafter, the medical microcatheter of the present invention will be described in more detail.
The medical microcatheter of the present invention comprises, for example, a resin inner layer covering the entire length of the catheter, a reinforcing layer made of a linear reinforcing material existing on the resin inner layer, and a resin outer layer covering the outside of the reinforcing layer. . A hub is connected to the proximal end side of the catheter body composed of the resin inner layer, the reinforcing layer, and the resin outer layer.

前記カテーテル本体は、カテーテルチューブを示し、樹脂内層は、カテーテルチューブの全長にわたっている。樹脂内層の厚み、弾性、強度などの物性については、従来の医療用マイクロカテーテルと同じであればよく、特に限定はない。   The catheter body represents a catheter tube, and the resin inner layer extends over the entire length of the catheter tube. The physical properties such as thickness, elasticity, and strength of the resin inner layer may be the same as those of a conventional medical microcatheter and are not particularly limited.

樹脂内層の材料として、ポリテトラフルオロエチレン、テトラフルオロエチレン、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、エチレン−テトラフルオロエチレン共重合体などのフッ素系樹脂、ポリプロピレンポリエチレンエチレン酢酸ビニル共重合体などのポリオレフィン、ポリアミド、ポリエチレンテレフタレートなどのポリエステル、ポリウレタン、ポリ塩化ビニル、ポリスチレン系樹脂、ポリイミド等の樹脂、及びその混合物が挙げられる。完成後の製品が内層管を通るガイドワイヤーに対して優れた滑性を呈し、ガイドワイヤー追従性を得る観点からは、ポリテトラフルオロエチレンまたはテトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体などのフッ素系樹脂で構成することが好ましい。   Fluororesin such as polytetrafluoroethylene, tetrafluoroethylene, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer tetrafluoroethylene-hexafluoropropylene copolymer, ethylene-tetrafluoroethylene copolymer as the material of the resin inner layer And polyolefins such as polypropylene polyethylene ethylene vinyl acetate copolymer, polyesters such as polyamide and polyethylene terephthalate, polyurethane, polyvinyl chloride, polystyrene resins, resins such as polyimide, and mixtures thereof. From the viewpoint that the finished product exhibits excellent lubricity with respect to the guide wire passing through the inner layer tube and obtains guide wire followability, fluorine such as polytetrafluoroethylene or tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer is used. It is preferable to comprise with a resin.

前記樹脂内層上には線状の補強材料からなる補強層が構成される。補強層を構成する補強材料は、線状であればよく、補強材料の大きさ、補強層の厚みなどは、前記樹脂内層上に存在させることができる程度であればよく、特に限定はない。
なお、補強層は樹脂内層上を完全に被覆している必要はなく、一部を被覆しているものも含まれる。中でも、良好なガイドワイヤー追従性を実現する観点から、カテーテル長手軸方向に沿って1mmあたりの補強材料の素線の数は10以上であることが好ましく、12以上24以下であることがより好ましい。従来の技術では、カテーテル長手軸方向に沿って1mmあたりの補強材料の素線の数を10以上とする着想がなく、このような構成を採用することは困難であった。具体的には、従来の成形機では、多数の素線を補強層として巻こうとすると断線やもつれが頻繁に生じていた。これに対して、本発明は、「カテーテル長手軸方向に沿って1mmあたりの補強材料の素線の数を10以上」にするという従来技術にはない構成を採用することで、従来のマイクロカテーテルに比べて、ガイドワイヤー追従性を顕著に向上することができる。
A reinforcing layer made of a linear reinforcing material is formed on the resin inner layer. The reinforcing material constituting the reinforcing layer only needs to be linear, and the size of the reinforcing material, the thickness of the reinforcing layer, and the like are not particularly limited as long as they can be present on the inner resin layer.
The reinforcing layer does not need to completely cover the resin inner layer, and includes a layer partially covered. Among these, from the viewpoint of realizing good guide wire followability, the number of strands of reinforcing material per mm along the catheter longitudinal axis direction is preferably 10 or more, and more preferably 12 or more and 24 or less. . In the prior art, there is no idea of setting the number of reinforcing material strands per mm along the catheter longitudinal axis direction to 10 or more, and it has been difficult to adopt such a configuration. Specifically, in the conventional molding machine, when many strands are wound as a reinforcing layer, disconnection and entanglement frequently occur. On the other hand, the present invention adopts a configuration that does not exist in the prior art in which “the number of strands of reinforcing material per mm along the catheter longitudinal axis direction is 10 or more”. Compared to the above, the guide wire followability can be remarkably improved.

なお、素線の数とは、カテーテルチューブを任意の位置で長手軸方向に沿って1mm幅となるように切断した場合、カテーテルチューブの樹脂内層上に存在している補強材料の素線の数をいう。   The number of strands means the number of strands of reinforcing material present on the resin inner layer of the catheter tube when the catheter tube is cut at an arbitrary position so as to have a width of 1 mm along the longitudinal axis direction. Say.

本発明においては、前記補強素線の数を増やすことで、前記曲率半径比を所望の範囲に低減できる。   In the present invention, the curvature radius ratio can be reduced to a desired range by increasing the number of the reinforcing wires.

補強層の素線の材質としては、樹脂もしくは金属が挙げられる。樹脂の例としては、ポリプロピレン、ポリエチレンなどのポリオレフィン類、ナイロン6、ナイロン66、ナイロン12、ポリアミドエラストマーなどのポリエステル類、ポリウレタン、ポリウレタンエラストマー、アラミド、ポリアリレートなどが挙げられ、金属の例としてはステンレス鋼、または放射線不透過性が高い材料、たとえばタングステン、白金、イリジウム、金などが挙げられ、望ましい機械的特性及び放射線不透過性によってこれらの材料を組み合わせてもよい。   Resin or metal is mentioned as a material of the strand of a reinforcement layer. Examples of the resin include polyolefins such as polypropylene and polyethylene, nylon 6, nylon 66, nylon 12, polyesters such as polyamide elastomer, polyurethane, polyurethane elastomer, aramid, polyarylate and the like, and examples of metal include stainless steel. Steel or highly radiopaque materials such as tungsten, platinum, iridium, gold, etc. may be mentioned, and these materials may be combined depending on the desired mechanical properties and radiopacity.

補強層の構造としては、複数の素線が互いに反対方向に旋回して樹脂内層上を配置され、なおかつ素線の交差点の上下関係が規則性を持って入れ替わる編組構造、単数あるいは複数まとまった素線が一定方向に内層上を旋回して配置されるコイル構造いずれの構造でもよい。
補強層は前記補強材料の素線がカテーテルチューブの厚み方向に多層状に編み込まれたものでもよい。
The structure of the reinforcing layer includes a braided structure in which a plurality of strands are swung in opposite directions and arranged on the resin inner layer, and the vertical relations of the intersections of the strands are switched with regularity. Any structure can be used in which the wire is arranged by turning on the inner layer in a certain direction.
The reinforcing layer may be one in which the strands of the reinforcing material are knitted in multiple layers in the thickness direction of the catheter tube.

前記補強層の外側は、樹脂外層で被覆される。この場合、補強層のない部分は、樹脂内層上に樹脂外層が被覆される。樹脂外層の厚み、弾性、強度などの物性については、特に限定はない。   The outside of the reinforcing layer is covered with a resin outer layer. In this case, the resin outer layer is coated on the resin inner layer in the portion without the reinforcing layer. There are no particular limitations on physical properties such as thickness, elasticity, and strength of the resin outer layer.

樹脂外層は、たとえば、ナイロン6、ナイロン66、ナイロン12、ポリアミドエラストマーなどのポリアミド類、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート、編成ポリオレフィンなどのポリエステル類、ポリウレタン、ポリウレタンエラストマー、あるいはこれらのポリマーブレンド、ポリマーアロイなどが挙げられる。特に先端部の屈曲した患部への良好な到達性を実現するという点で、柔軟性なポリアミドエラストマーが好ましい。   The resin outer layer is made of, for example, nylon 6, nylon 66, nylon 12, polyamide such as polyamide elastomer, polyethylene, polypropylene, polymethyl methacrylate, polyester such as knitted polyolefin, polyurethane, polyurethane elastomer, or a polymer blend or polymer alloy thereof. Etc. In particular, a flexible polyamide elastomer is preferable in that good reachability to the affected part where the tip part is bent is realized.

前記の構成を有する医療用マイクロカテーテルは、例えば、金属芯線上に内層用樹脂組成物を被覆し、次いで該樹脂層上に補強材料を被覆して補強層を形成したのち、外層用樹脂組成物を被覆させることで製造することができる。   The medical microcatheter having the above-described structure is formed, for example, by coating a metal core wire with a resin composition for an inner layer, and then coating a reinforcing material on the resin layer to form a reinforcing layer, and then forming a resin layer for an outer layer. It can manufacture by coating.

樹脂外層の被覆方法について特に限定はなく、例えば、樹脂内層である内層用チューブの上に補強層の編組を施し、次いで外層用チューブをかぶせて熱溶着する方法がある。   The method for coating the resin outer layer is not particularly limited. For example, there is a method in which a braid of a reinforcing layer is applied on an inner layer tube that is a resin inner layer, and then the outer layer tube is covered and heat-welded.

前記のようにして得られる医療用マイクロカテーテルは、脳、心臓、腹部などの血管や臓器の診断あるいは治療に好適に使用される。   The medical microcatheter obtained as described above is suitably used for diagnosis or treatment of blood vessels and organs such as the brain, heart, and abdomen.

(実施例1)
外径0.52mmの金属メッキ銅線にポリテトラフルオロエチレン(以下PTFE)(厚さ0.030mm)で被覆された芯材に、ステンレス剛細線(太さ0.019mm)16組の編組構造で編組による補強層を形成した。このとき、カテーテルの長手方向1mmあたりのステンレス剛細線の数が16になるようにした。あらかじめ押出成形により作製されたポリアミドエラストマー(PEBAX,Arkema製)のチューブショア硬度25、40、70の3本のチューブおよびナイロン12からなるチューブの順番に補強材の上にかぶせ、さらにその上に熱収縮チューブをかぶせ、180℃で加熱して熱収縮チューブの収縮力により外層を熱溶着させた。熱収縮チューブを除去し、金属メッキ銅線を引き抜いてカテーテルを作製した。カテーテル先端部の外径は0.710mmであった。したがってカテーテル先端部の外半径は0.355mmである。図1に示すように、カテーテル1の先端部を直径20mmのピンゲージ2に巻きつけ、3次元形状測定器によってピンゲージ表面に対するカテーテルの高さを測定してカテーテルの短径とした。このときのピンゲージの半径10mmをカテーテル内側曲げ変形曲線の曲率半径とした。このときの短径は0.707mmであり、短径の初期外径に対する比は99.6%であった。同様に19.5mm〜2mm、0.5mm刻みのピンゲージにひとつずつ巻きつけてカテーテルの短径を測定した。ピンゲージの径が小さくなるにつれて短径の値は小さくなっていった。短径が初期外径の98.0%以下となったときのピンゲージの直径は5.5mmであった。このときのカテーテルの内側曲げ変形曲線の曲率半径は2.75mmであり、カテーテルの内側曲げ変形曲線の曲率半径のカテーテル初期外半径に対する比は7.7であった。
Example 1
A core material coated with polytetrafluoroethylene (hereinafter referred to as PTFE) (thickness 0.030 mm) on a metal-plated copper wire with an outer diameter of 0.52 mm and a braided structure of 16 stainless steel fine wires (thickness 0.019 mm) A braided reinforcing layer was formed. At this time, the number of stainless steel fine wires per 1 mm in the longitudinal direction of the catheter was set to 16. Three tubes of polyamide elastomer (PEBAX, made by Arkema) made by extrusion molding in advance and tubes made of nylon 12 in order of 25, 40, 70 are covered on the reinforcing material, and heat is further applied thereon. The shrinkable tube was covered, heated at 180 ° C., and the outer layer was thermally welded by the shrinkage force of the heat shrinkable tube. The heat-shrinkable tube was removed, and the metal plated copper wire was pulled out to produce a catheter. The outer diameter of the catheter tip was 0.710 mm. Therefore, the outer radius of the catheter tip is 0.355 mm. As shown in FIG. 1, the tip of the catheter 1 was wound around a pin gauge 2 having a diameter of 20 mm, and the height of the catheter relative to the pin gauge surface was measured by a three-dimensional shape measuring device to obtain a short diameter of the catheter. The radius of the pin gauge at this time was 10 mm as the radius of curvature of the catheter inner bending deformation curve. The minor axis at this time was 0.707 mm, and the ratio of the minor axis to the initial outer diameter was 99.6%. Similarly, the short diameter of the catheter was measured by winding it one by one on a pin gauge in increments of 19.5 mm to 2 mm and 0.5 mm. As the pin gauge diameter decreased, the minor axis value decreased. The pin gauge had a diameter of 5.5 mm when the minor axis was 98.0% or less of the initial outer diameter. At this time, the radius of curvature of the inner bending curve of the catheter was 2.75 mm, and the ratio of the radius of curvature of the inner bending curve of the catheter to the initial catheter outer radius was 7.7.

このカテーテル中に外径0.46mmのガイドワイヤーを通し、37℃温水中に浸した肝臓動脈を模したアクリル製回路(全長150mm、直径3mm、以下同じ。)にガイドワイヤーを先行させ、ガイドワイヤーに沿ってカテーテルを手動で挿入した。回路入り口から150mm進んだ回路末端までカテーテルを進行させることができた。   A guide wire with an outer diameter of 0.46 mm is passed through this catheter, and the guide wire is preceded by an acrylic circuit (full length 150 mm, diameter 3 mm, the same applies hereinafter) that imitates the liver artery immersed in warm water at 37 ° C. A catheter was manually inserted along the line. The catheter could be advanced to the end of the circuit 150 mm from the circuit entrance.

(実施例2)
外径0.52mmの金属メッキ銅線にPTFE(厚さ0.030mm)で被覆された芯材に、ステンレス剛細線(太さ0.019mm)を巻きつけて補強層を形成した。このとき、カテーテルの長手方向1mmあたりのステンレス剛細線の数が16になるようにした。あらかじめ押出成形により作製されたポリアミドエラストマー(PEBAX,Arkema製)のチューブショア硬度25、40、70の3本のチューブおよびナイロン12からなるチューブを補強材の上にかぶせ、さらにその上に熱収縮チューブをかぶせ、180℃で加熱して熱収縮チューブの収縮力により外層を熱溶着させた。熱収縮チューブを除去し、金属メッキ銅線を引き抜いてカテーテルを作製した。カテーテル先端部の外径は0.71mmであった。カテーテル先端部を直径20mmのピンゲージに巻きつけ、3次元形状測定器によってピンゲージ表面に対するカテーテルの高さを測定してカテーテルの短径とした。同様に19.5mm〜2mm、0.5mm刻みのピンゲージそれぞれに巻きつけたときのカテーテルの短径を測定した。短径が初期短径の98.0%以下となったときのピンゲージの直径は6.0mmであり、このときのカテーテルの内側曲げ変形曲線の曲率半径のカテーテル初期外半径に対する比は8.5であった。
(Example 2)
A reinforcing layer was formed by winding a stainless steel fine wire (thickness: 0.019 mm) around a core material coated with PTFE (thickness: 0.030 mm) on a metal plated copper wire having an outer diameter of 0.52 mm. At this time, the number of stainless steel fine wires per 1 mm in the longitudinal direction of the catheter was set to 16. A tube made of polyamide elastomer (PEBAX, made by Arkema), which has been prepared by extrusion molding in advance, and a tube made of nylon 12 with a tube shore hardness of 25, 40, and 70, is covered on the reinforcing material, and further a heat-shrinkable tube. The outer layer was heat welded by the shrinkage force of the heat shrinkable tube by heating at 180 ° C. The heat-shrinkable tube was removed, and the metal plated copper wire was pulled out to produce a catheter. The outer diameter of the catheter tip was 0.71 mm. The tip of the catheter was wound around a pin gauge having a diameter of 20 mm, and the height of the catheter relative to the surface of the pin gauge was measured with a three-dimensional shape measuring device to obtain a short diameter of the catheter. Similarly, the minor axis of the catheter was measured when it was wound around each pin gauge in increments of 19.5 mm to 2 mm and 0.5 mm. The diameter of the pin gauge when the minor axis becomes 98.0% or less of the initial minor axis is 6.0 mm, and the ratio of the radius of curvature of the inner bending deformation curve of the catheter to the initial catheter outer radius at this time is 8.5. Met.

このカテーテル中に外径0.46mmのガイドワイヤーを通し、37℃温水中に浸した肝臓動脈を模したアクリル製回路にガイドワイヤーを先行させ、ガイドワイヤーに沿ってカテーテルを手動で挿入した。回路入り口から150mm進んだ回路末端までカテーテルを進行させることができた。   A guide wire having an outer diameter of 0.46 mm was passed through this catheter, and the guide wire was preceded by an acrylic circuit simulating a liver artery immersed in warm water at 37 ° C., and the catheter was manually inserted along the guide wire. The catheter could be advanced to the end of the circuit 150 mm from the circuit entrance.

(実施例3)
外径0.52mmの金属メッキ銅線にPTFE(厚さ0.030mm)で被覆された芯材に、ステンレス剛細線(太さ0.019mm)を巻きつけて補強層を形成した。このとき、カテーテルの長手方向1mmあたりのステンレス剛細線の数が47になるようにした。あらかじめ押出成形により作製されたポリアミドエラストマー(PEBAX,Arkema製)のチューブショア硬度25、40、70の3本のチューブおよびナイロン12からなるチューブを補強材の上にかぶせ、さらにその上に熱収縮チューブをかぶせ、180℃で加熱して熱収縮チューブの収縮力により外層を熱溶着させた。熱収縮チューブを除去し、金属メッキ銅線を引き抜いてカテーテルを作製した。カテーテル先端部の外径は0.68mmであった。カテーテル先端部を直径20mmのピンゲージに巻きつけ、3次元形状測定器によってピンゲージ表面に対するカテーテルの高さを測定してカテーテルの短径とした。同様に19.5mm〜2mm、0.5mm刻みのピンゲージにひとつずつ巻きつけてカテーテルの短径を測定した。短径が初期短径の98.0%となったときのピンゲージの直径は2.5mmであり、このときのカテーテルの内側曲げ変形曲線の曲率半径のカテーテル初期外半径に対する比は3.7であった。
(Example 3)
A reinforcing layer was formed by winding a stainless steel fine wire (thickness: 0.019 mm) around a core material coated with PTFE (thickness: 0.030 mm) on a metal plated copper wire having an outer diameter of 0.52 mm. At this time, the number of stainless steel fine wires per 1 mm in the longitudinal direction of the catheter was set to 47. A tube made of polyamide elastomer (PEBAX, made by Arkema), which has been prepared by extrusion molding in advance, and a tube made of nylon 12 with a tube shore hardness of 25, 40, and 70, is covered on the reinforcing material, and further a heat-shrinkable tube. The outer layer was heat welded by the shrinkage force of the heat shrinkable tube by heating at 180 ° C. The heat-shrinkable tube was removed, and the metal plated copper wire was pulled out to produce a catheter. The outer diameter of the catheter tip was 0.68 mm. The tip of the catheter was wound around a pin gauge having a diameter of 20 mm, and the height of the catheter relative to the surface of the pin gauge was measured with a three-dimensional shape measuring device to obtain a short diameter of the catheter. Similarly, the short diameter of the catheter was measured by winding it one by one on a pin gauge in increments of 19.5 mm to 2 mm and 0.5 mm. The diameter of the pin gauge when the minor axis becomes 98.0% of the initial minor axis is 2.5 mm, and the ratio of the curvature radius of the inner bending deformation curve of the catheter to the initial catheter outer radius at this time is 3.7. there were.

このカテーテル中に外径0.46mmのガイドワイヤーを通し、37℃温水中に浸した肝臓動脈を模したアクリル製回路にガイドワイヤーを先行させ、ガイドワイヤーに沿ってカテーテルを手動で挿入した。回路入り口から150mm進んだ回路末端までカテーテルを進行させることができた。   A guide wire having an outer diameter of 0.46 mm was passed through this catheter, and the guide wire was preceded by an acrylic circuit simulating a liver artery immersed in warm water at 37 ° C., and the catheter was manually inserted along the guide wire. The catheter could be advanced to the end of the circuit 150 mm from the circuit entrance.

(比較例1)
外径0.52mmの金属メッキ銅線にPTFE(厚さ0.030mm)で被覆された芯材に、ステンレス剛細線(太さ0.019mm)16組の編組構造で編組による補強層を形成した。このとき、カテーテルの長手方向1mmあたりのステンレス剛細線の数が8になるようにした。あらかじめ押出成形により作製されたポリアミドエラストマー(PEBAX,Arkema製)のチューブショア硬度25、40、70の3本のチューブおよびナイロン12からなるチューブを補強材の上にかぶせ、さらにその上に熱収縮チューブをかぶせ、180℃で加熱して熱収縮チューブの収縮力により外層を熱溶着させた。熱収縮チューブを除去し、金属メッキ銅線を引き抜いてカテーテルを作製した。カテーテル先端部の外径は0.710mmであった。したがってカテーテル先端部の外半径は0.355mmである。カテーテル先端部を直径20mmのピンゲージに巻きつけ、3次元形状測定器によってピンゲージ表面に対するカテーテルの高さを測定してカテーテルの短径とした。このときのピンゲージの半径10mmをカテーテル内側曲げ変形曲線の曲率半径とした。このときの短径は0.707mmであり、短径の初期外径に対する比は99.6%であった。同様に19.5mm〜2mm、0.5mm刻みのピンゲージにひとつずつ巻きつけてカテーテルの短径を測定した。ピンゲージの径が小さくなるにつれて短径の値は小さくなっていった。短径が初期短径の98.0%以下となったときのピンゲージの直径は8mmであった。このときのカテーテルの内側曲げ変形曲線の曲率半径のカテーテル初期外半径に対する比は11.3であった。
(Comparative Example 1)
A reinforcing layer by braiding was formed on a core material coated with PTFE (thickness: 0.030 mm) on a metal-plated copper wire having an outer diameter of 0.52 mm with a braid structure of 16 stainless steel rigid wires (thickness: 0.019 mm). . At this time, the number of stainless steel fine wires per 1 mm in the longitudinal direction of the catheter was set to 8. A tube made of polyamide elastomer (PEBAX, made by Arkema), which has been prepared by extrusion molding in advance, and a tube made of nylon 12 with a tube shore hardness of 25, 40, and 70, is covered on the reinforcing material, and further a heat-shrinkable tube. The outer layer was heat welded by the shrinkage force of the heat shrinkable tube by heating at 180 ° C. The heat-shrinkable tube was removed, and the metal plated copper wire was pulled out to produce a catheter. The outer diameter of the catheter tip was 0.710 mm. Therefore, the outer radius of the catheter tip is 0.355 mm. The tip of the catheter was wound around a pin gauge having a diameter of 20 mm, and the height of the catheter relative to the surface of the pin gauge was measured with a three-dimensional shape measuring device to obtain a short diameter of the catheter. The radius of the pin gauge at this time was 10 mm as the radius of curvature of the catheter inner bending deformation curve. The minor axis at this time was 0.707 mm, and the ratio of the minor axis to the initial outer diameter was 99.6%. Similarly, the short diameter of the catheter was measured by winding it one by one on a pin gauge in increments of 19.5 mm to 2 mm and 0.5 mm. As the pin gauge diameter decreased, the minor axis value decreased. The diameter of the pin gauge when the minor axis was 98.0% or less of the initial minor axis was 8 mm. At this time, the ratio of the curvature radius of the inner bending deformation curve of the catheter to the initial catheter outer radius was 11.3.

このカテーテル中に外径0.46mmのガイドワイヤーを通し、37℃温水中に浸した肝臓動脈を模したアクリル製回路にガイドワイヤーを先行させ、ガイドワイヤーに沿ってカテーテルを手動で挿入した。回路入り口から70mmまでカテーテルを進行させることができたが、それ以降は極めて挿入抵抗が大きくなり、カテーテルを進めることができなかった。   A guide wire having an outer diameter of 0.46 mm was passed through this catheter, and the guide wire was preceded by an acrylic circuit simulating a liver artery immersed in warm water at 37 ° C., and the catheter was manually inserted along the guide wire. Although the catheter could be advanced from the circuit entrance to 70 mm, the insertion resistance became extremely large after that, and the catheter could not be advanced.

(比較例2)
外径0.52mmの金属メッキ銅線にPTFE(厚さ0.030mm)で被覆された芯材に、ステンレス剛細線(太さ0.019mm)を巻きつけて補強層を形成した。このとき、カテーテルの長手方向1mmあたりのステンレス剛細線の数が4になるようにした。あらかじめ押出成形により作製されたポリアミドエラストマー(PEBAX,Arkema製)のチューブショア硬度25、40、70の3本のチューブおよびナイロン12からなるチューブを補強材の上にかぶせ、さらにその上に熱収縮チューブをかぶせ、180℃で加熱して熱収縮チューブの収縮力により外層を熱溶着させた。熱収縮チューブを除去し、金属メッキ銅線を引き抜いてカテーテルを作製した。カテーテル先端部の外径は0.68mmであった。カテーテル先端部を直径20mmのピンゲージに巻きつけ、3次元形状測定器によってピンゲージ表面に対するカテーテルの高さを測定してカテーテルの短径とした。同様に19.5mm〜2mm、0.5mm刻みのピンゲージにひとつずつ巻きつけてカテーテルの短径を測定した。短径が初期短径の98.0%以下となったときのピンゲージの直径は9.0mmであり、このときのカテーテルの内側曲げ変形曲線の曲率半径のカテーテル初期外半径に対する比は13.2であった。
(Comparative Example 2)
A reinforcing layer was formed by winding a stainless steel fine wire (thickness: 0.019 mm) around a core material coated with PTFE (thickness: 0.030 mm) on a metal plated copper wire having an outer diameter of 0.52 mm. At this time, the number of stainless steel fine wires per 1 mm in the longitudinal direction of the catheter was set to 4. A tube made of polyamide elastomer (PEBAX, made by Arkema), which has been prepared by extrusion molding in advance, and a tube made of nylon 12 with a tube shore hardness of 25, 40, and 70, is covered on the reinforcing material, and further a heat-shrinkable tube. The outer layer was heat welded by the shrinkage force of the heat shrinkable tube by heating at 180 ° C. The heat-shrinkable tube was removed, and the metal plated copper wire was pulled out to produce a catheter. The outer diameter of the catheter tip was 0.68 mm. The tip of the catheter was wound around a pin gauge having a diameter of 20 mm, and the height of the catheter relative to the surface of the pin gauge was measured with a three-dimensional shape measuring device to obtain a short diameter of the catheter. Similarly, the short diameter of the catheter was measured by winding it one by one on a pin gauge in increments of 19.5 mm to 2 mm and 0.5 mm. The diameter of the pin gauge when the minor axis is 98.0% or less of the initial minor axis is 9.0 mm, and the ratio of the curvature radius of the inner bending deformation curve of the catheter to the initial catheter outer radius at this time is 13.2. Met.

このカテーテル中に外径0.46mmのガイドワイヤーを通し、37℃温水中に浸した肝臓動脈を模したアクリル製回路にガイドワイヤーを先行させ、ガイドワイヤーに沿ってカテーテルを手動で挿入した。回路入り口から40mmまでカテーテルを進行させることができたが、それ以降は極めて挿入抵抗が大きくなり、カテーテルを進めることができなかった。
以上の実施例1〜3と比較例1、2の結果をまとめて表1に示す。
A guide wire having an outer diameter of 0.46 mm was passed through this catheter, and the guide wire was preceded by an acrylic circuit simulating a liver artery immersed in warm water at 37 ° C., and the catheter was manually inserted along the guide wire. Although the catheter could be advanced from the circuit entrance to 40 mm, the insertion resistance became extremely large after that, and the catheter could not be advanced.
The results of Examples 1 to 3 and Comparative Examples 1 and 2 are summarized in Table 1.

Figure 2007319533
Figure 2007319533

なお、表中、回路新入性の評価について、
「良」は回路入り口から回路末端(150mm)までカテーテルを進行させることができたこと、
「悪」は回路末端までカテーテルを進行させることができなかったこと
をそれぞれ示す。
In addition, about evaluation of circuit new entry in table,
“Good” was able to advance the catheter from the circuit entrance to the circuit end (150 mm),
“Evil” indicates that the catheter could not be advanced to the end of the circuit.

図1は、カテーテル内側曲げ変形曲線の曲率半径比を測定する際に、カテーテル先端部をピンゲージに巻きつけたときの模式図である。FIG. 1 is a schematic diagram when a distal end portion of a catheter is wound around a pin gauge when measuring a radius-of-curvature ratio of a catheter inner bending deformation curve.

符号の説明Explanation of symbols

1 カテーテル
2 ピンゲージ

1 Catheter 2 Pin gauge

Claims (4)

カテーテルの先端部に曲げ変形を与えたときの断面の短径が該カテーテル初期外径の98.0%以下となるときの内側曲げ変形曲線の曲率半径比(曲率半径比は曲率半径のカテーテル外半径に対する比)が9.0以下であることを特徴とする医療用マイクロカテーテル。   Curvature radius ratio of the inner bending deformation curve when the minor axis of the cross section when the distal end portion of the catheter is bent is 98.0% or less of the initial outer diameter of the catheter (the curvature radius ratio is the curvature radius outside the catheter) A medical microcatheter having a ratio to a radius of 9.0 or less. カテーテルの全長にわたる樹脂内層と、該樹脂内層上に存在する線状の補強材料によってなる補強層と、該補強層の外側を被覆する樹脂外層とからなることを特徴とする請求項1記載の医療用マイクロカテーテル。   2. The medical device according to claim 1, comprising a resin inner layer extending over the entire length of the catheter, a reinforcing layer made of a linear reinforcing material existing on the resin inner layer, and a resin outer layer covering the outside of the reinforcing layer. Microcatheter. カテーテル長手軸方向に沿って1mmあたりの補強材素線の数が10以上であることを特徴とする請求項2記載の医療用マイクロカテーテル。   The medical microcatheter according to claim 2, wherein the number of reinforcing material wires per mm along the catheter longitudinal axis direction is 10 or more. 該樹脂内層がフッ素系樹脂からなり、かつ該樹脂外層がポリアミドエラストマーを含むことを特徴とする請求項2または3記載の医療用マイクロカテーテル。

The medical microcatheter according to claim 2 or 3, wherein the resin inner layer is made of a fluorine-based resin, and the resin outer layer contains a polyamide elastomer.

JP2006154941A 2006-06-02 2006-06-02 Medical microcatheter Pending JP2007319533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006154941A JP2007319533A (en) 2006-06-02 2006-06-02 Medical microcatheter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006154941A JP2007319533A (en) 2006-06-02 2006-06-02 Medical microcatheter

Publications (1)

Publication Number Publication Date
JP2007319533A true JP2007319533A (en) 2007-12-13

Family

ID=38852808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006154941A Pending JP2007319533A (en) 2006-06-02 2006-06-02 Medical microcatheter

Country Status (1)

Country Link
JP (1) JP2007319533A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61228878A (en) * 1985-04-03 1986-10-13 株式会社クラレ Thin walled catheter
JP2000316964A (en) * 1999-05-12 2000-11-21 Hitachi Cable Ltd Catheter tube
JP2001124250A (en) * 1999-10-27 2001-05-11 Mitsubishi Cable Ind Ltd Flexible pipe, and its manufacturing method
JP2002035132A (en) * 2000-07-21 2002-02-05 Mitsubishi Cable Ind Ltd Method for manufacturing flexible tube having electric wiring and flexible tube having electric wiring
JP2005312952A (en) * 2004-03-31 2005-11-10 Nippon Zeon Co Ltd Catheter tube and catheter
JP2006130004A (en) * 2004-11-04 2006-05-25 Kaneka Corp Method for manufacturing micro-catheter and micro-catheter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61228878A (en) * 1985-04-03 1986-10-13 株式会社クラレ Thin walled catheter
JP2000316964A (en) * 1999-05-12 2000-11-21 Hitachi Cable Ltd Catheter tube
JP2001124250A (en) * 1999-10-27 2001-05-11 Mitsubishi Cable Ind Ltd Flexible pipe, and its manufacturing method
JP2002035132A (en) * 2000-07-21 2002-02-05 Mitsubishi Cable Ind Ltd Method for manufacturing flexible tube having electric wiring and flexible tube having electric wiring
JP2005312952A (en) * 2004-03-31 2005-11-10 Nippon Zeon Co Ltd Catheter tube and catheter
JP2006130004A (en) * 2004-11-04 2006-05-25 Kaneka Corp Method for manufacturing micro-catheter and micro-catheter

Similar Documents

Publication Publication Date Title
US8231551B2 (en) Elongate medical device with continuous reinforcement member
JP2934319B2 (en) Catheter with twist-resistant distal tip
JP4401653B2 (en) Microcatheter with improved tip and transition
US8377035B2 (en) Unbalanced reinforcement members for medical device
JP4489427B2 (en) Microcatheter with improved distal tip and transition
US20060282112A1 (en) Method and apparatus for enhanced electrolytic detachment
JP4790349B2 (en) catheter
JP2008229160A (en) Catheter
JP6679729B2 (en) Polymer catheter shaft with reinforcement
WO2008056625A1 (en) Catheter tube for medical use
WO2017044129A1 (en) Catheter shaft and associated devices, systems, and methods
JP5108560B2 (en) Medical tube
JP2007319594A (en) Medical catheter tube
JP2007082802A (en) Medical catheter tube
JP2007029120A (en) Medical catheter tube and its manufacturing method
JP2006288943A (en) Medical catheter tube, and its manufacturing method
JP5037030B2 (en) Catheter tube
JP2007296030A (en) Medical catheter tube and its manufacturing method
JP2007202979A (en) Medical guiding catheter tube
JP2007319533A (en) Medical microcatheter
US20190015629A1 (en) Multi-Lumen Catheters for Small Body Vessel Applications
JP6372173B2 (en) Medical equipment
JP2020072769A (en) catheter
US11045624B2 (en) Medical elongated body
JP2005270507A (en) Catheter tube and method of manufacturing the same, and catheter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120508