JP4743532B2 - Neutron absorber and manufacturing method thereof - Google Patents

Neutron absorber and manufacturing method thereof Download PDF

Info

Publication number
JP4743532B2
JP4743532B2 JP2006215044A JP2006215044A JP4743532B2 JP 4743532 B2 JP4743532 B2 JP 4743532B2 JP 2006215044 A JP2006215044 A JP 2006215044A JP 2006215044 A JP2006215044 A JP 2006215044A JP 4743532 B2 JP4743532 B2 JP 4743532B2
Authority
JP
Japan
Prior art keywords
boron
fine particles
neutron absorber
neutron
solidified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006215044A
Other languages
Japanese (ja)
Other versions
JP2008039617A (en
Inventor
正裕 古谷
崇洋 新井
守泰 常磐井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2006215044A priority Critical patent/JP4743532B2/en
Publication of JP2008039617A publication Critical patent/JP2008039617A/en
Application granted granted Critical
Publication of JP4743532B2 publication Critical patent/JP4743532B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、ステンレス合金にホウ素を均質な状態で添加して所定形状に成形した中性子吸収材及びその製造方法に関し、ホウ素をより多く且つ均質に添加できるように工夫したものである。   The present invention relates to a neutron absorbing material in which boron is added to a stainless alloy in a homogeneous state and formed into a predetermined shape, and a method for manufacturing the neutron absorber, and is devised so that more boron can be added more uniformly.

従来より、質量数10のホウ素B10を添加したステンレスからなる中性子吸収材が知られている。このような材料ではホウ素B10が中性子を吸収するからできるだけ多くのホウ素B10を添加するのが好ましいが、ステンレス中に均質にホウ素を添加する限界は2.2重量%程度である。よって、従来においては、質量数11のホウ素B11を80%程度含有する天然のホウ素からホウ素B10を濃縮した後、ステンレスに添加してホウ素B10が2.2重量%以下の中性子吸収材が用いられており、これが限界とされている。 Conventionally, a neutron absorber made of stainless steel to which boron B10 having a mass number of 10 is added is known. Preferably added as much boron B 10 from the boron B 10 absorbs neutrons in such materials, limit homogeneously adding boron in stainless steel is about 2.2% by weight. Therefore, conventionally, after concentration of boron B 10 boron B 11 having a mass number of 11 from natural boron containing about 80% of boron B 10 2.2% by weight of the neutron absorbing material is added to a stainless Is used, and this is the limit.

ここで、中性子吸収材を、例えば、使用済み核燃料のプールのラックに用いる場合、耐震などの強度特性を有することは勿論、中性子吸収性能が高ければ高いほど安全性が向上し、また、同じ安全性を確保することを条件とすると、中性子吸収性能が高い材料を用いれば小型化、薄肉化が可能となるので、中性子吸収性能が向上した中性子吸収材が望まれている。なお、従来技術においてホウ素を限界以上に添加しても、偏析してしまうので、脆くなり圧延などの加工が困難で、且つホウ素B10が偏在するため部材中で均一な中性子吸収性能が得られず、安全性が低下する。 Here, when the neutron absorber is used, for example, in a rack of a pool of spent nuclear fuel, it has strength characteristics such as earthquake resistance, and of course, the higher the neutron absorption performance, the higher the safety and the same safety. Assuming that the neutron absorption performance is ensured, a material having high neutron absorption performance can be used to reduce the size and wall thickness. Therefore, a neutron absorber with improved neutron absorption performance is desired. Even with the addition of boron in the prior art above the limit, so resulting in segregation, processing such as brittle becomes rolling difficult, uniform neutron absorbing performance can not be obtained and in members for boron B 10 is unevenly distributed Therefore, safety is reduced.

上述した事情に鑑み、さらに中性子吸収性能が向上した中性子吸収材及びその製造方法を提供することを課題とする。   In view of the above-described circumstances, it is an object to provide a neutron absorber having improved neutron absorption performance and a method for manufacturing the same.

前記課題を解決するために検討を重ねた結果、本出願人が先に出願した微粒子の製造方法を所定の条件下で用いれば、母材に機能性添加剤を所望の添加量で含有させることができることを知見し、本発明を完成させた。   As a result of repeated studies to solve the above problems, if the method for producing fine particles previously filed by the present applicant is used under predetermined conditions, a functional additive is contained in the base material in a desired addition amount. As a result, the present invention has been completed.

かかる本発明の第1の態様は、ステンレス合金に質量数10のホウ素B10を含むホウ素を添加してなる中性子吸収材であって、前記ホウ素及び前記ステンレス合金を含む原料を溶融した溶融材料を液体冷媒の中に供給して蒸気爆発により微粒化すると共に冷却固化することにより得た均質な微粒子を原料とし、固化してなるものであり、前記ホウ素が非晶質状態で含有されていることを特徴とする中性子吸収材にある。 A first aspect of such invention, a neutron absorber obtained by adding boron containing boron B 10 having a mass number of 10 in a stainless steel alloy, the molten material obtained by melting a raw material containing the boron and the stainless steel alloy It is obtained by solidifying, using raw fine particles obtained by supplying into liquid refrigerant and atomizing by vapor explosion and solidifying by cooling, and contains boron in an amorphous state. The neutron absorber is characterized by

かかる第1の態様では、ホウ素とステンレス合金とを含む原料の溶融材料を液体冷媒中に供給して蒸気爆発により微粒化することにより、ステンレス合金中にホウ素が非晶質状態で含有されているので、均質に存在し、中性子吸収能力の均質性が確保される。 In such a first aspect, boron is contained in the stainless alloy in an amorphous state by supplying the molten material of the raw material containing boron and the stainless alloy into the liquid refrigerant and atomizing by vapor explosion . Therefore, it exists homogeneously and the homogeneity of neutron absorption ability is ensured.

本発明の第の態様は、第の態様に記載の中性子吸収材において、前記均質な微粒子と共に、前記ステンレス合金の微粒子を原料として用いて圧縮成形や焼結などで固化してなるものであることを特徴とする中性子吸収材にある。 According to a second aspect of the present invention, in the neutron absorbing material according to the first aspect, together with the homogeneous fine particles, the stainless alloy fine particles are used as a raw material to solidify by compression molding or sintering. It exists in the neutron absorber characterized by being.

かかる第の態様は、非晶質状態で均質にホウ素を含有する微粒子を圧縮成形や焼結などで固化することにより、ホウ素を非晶質状態で均質に含有する中性子吸収材を得ることができる。 In the second aspect, a neutron absorber containing boron in an amorphous state can be obtained by solidifying the fine particles containing boron in an amorphous state uniformly by compression molding or sintering. it can.

本発明の第の態様は、第1又は2の態様に記載の中性子吸収材において、前記ホウ素B10が2.2重量%を越えて含有されていることを特徴とする中性子吸収材にある。 A third aspect of the present invention, the neutron absorbing material according to the first or second aspect, in the neutron absorbing material, characterized in that the boron B 10 is content exceeds 2.2 wt% .

かかる第の態様では、通常の溶解法ではステンレス鋼の2.2重量%を越えると圧延などの加工が困難であるが、非晶質のホウ素B10であるので2.2重量%を越えて含有させることができる。 In the third aspect, in the conventional melting method is difficult to process, such as rolling and exceeds 2.2% by weight of stainless steel, exceed 2.2 wt% because boron B 10 amorphous Can be contained.

本発明の第の態様は、第1〜の何れかの態様に記載の中性子吸収材において、前記ホウ素として天然ホウ素又はホウ素B 10 を濃縮してホウ素B 10 の濃度を高めた濃縮ホウ素が含有されていることを特徴とする中性子吸収材にある。 A fourth aspect of the present invention, the neutron absorbing material according to any one of the aspects of the first through 3 enriched boron with increased concentration of boron B 10 was concentrated natural boron or boron B 10 as the boron It exists in the neutron absorber characterized by containing.

かかる第の態様では、例えば、天然に存在するホウ素を原料とすると、ホウ素B10が18〜19重量%含有されているので、これを10〜11重量%含有させると、ホウ素B10は2.2重量%を越えて含有させることができる。 In such a fourth aspect, for example, when the boron naturally occurring raw material, since boron B 10 is contained 18 to 19 wt%, the inclusion of this 10-11% by weight, boron B 10 is 2 More than 2% by weight can be contained.

本発明の第の態様は、第1〜の何れかの態様に記載の中性子吸収材において、前記ホウ素が4重量%以上含有されていることを特徴とする中性子吸収材にある。 According to a fifth aspect of the present invention, there is provided the neutron absorber according to any one of the first to fourth aspects, wherein the boron is contained in an amount of 4% by weight or more.

かかる第の態様では、従来には均質には含有させることができなかった4重量%以上のホウ素が含有された中性子吸収材となる。 In the fifth aspect, the neutron absorbing material contains 4% by weight or more of boron that could not be contained homogeneously in the prior art.

本発明の第の態様は、ホウ素及びステンレス合金を含む原料を溶融した溶融材料を液体冷媒の中に供給し、蒸気爆発により微粒化すると共に冷却固化することにより均質な微粒子とし、これを原料として用いて圧縮成形や焼結などで固化して中性子吸収材とすることを特徴とする中性子吸収材の製造方法にある。 According to a sixth aspect of the present invention, a molten material obtained by melting a raw material containing boron and a stainless alloy is supplied into a liquid refrigerant, and atomized by vapor explosion and cooled and solidified to form uniform fine particles, which are used as a raw material. It is used as a neutron absorber by solidifying by compression molding or sintering, and is in a method for producing a neutron absorber.

かかる第の態様では、ホウ素とステンレス合金とを含む原料の溶融材料を液体冷媒中に供給して蒸気爆発により微粒化することにより、ステンレス合金中にホウ素が非晶質状態で存在し、ホウ素は各微粒子中に均質に存在する中性子吸収材とすることができる。 In such a sixth aspect, by supplying a raw material molten material containing boron and a stainless alloy into a liquid refrigerant and atomizing by vapor explosion, boron exists in the stainless alloy in an amorphous state, Can be a neutron absorber that is present uniformly in each particle.

本発明の第の態様は、第の態様に記載の中性子吸収材の製造方法において、前記均質な微粒子中に、ホウ素が非晶質状態で含有されていることを特徴とする中性子吸収材の製造方法にある。 According to a seventh aspect of the present invention, there is provided the method for producing a neutron absorber according to the sixth aspect, wherein the homogeneous fine particles contain boron in an amorphous state. It is in the manufacturing method.

かかる第の態様では、微粒子はステンレス合金中にホウ素が非晶質状態で存在するものとなる。 In the seventh aspect, the fine particles are those in which boron is present in an amorphous state in the stainless alloy.

本発明の第の態様は、第6又は7の態様に記載の中性子吸収材の製造方法において、前記均質な微粒子にステンレス合金の微粒子を混合して原料として用いて圧縮成形や焼結などで固化して中性子吸収材とすることを特徴とする中性子吸収材の製造方法にある。 According to an eighth aspect of the present invention, in the method for manufacturing a neutron absorber according to the sixth or seventh aspect, the homogeneous fine particles are mixed with stainless steel alloy fine particles as a raw material, and used for compression molding or sintering. It is in the manufacturing method of the neutron absorber characterized by solidifying into a neutron absorber.

かかる第の態様では、ステンレス合金中に均質にホウ素が含有された微粒子をステンレス合金の微粒子と混合するので、均一に混合され、圧縮成形や焼結などで固化した中性子吸収材はホウ素が均質に存在するものとなる。 In the eighth aspect, since the fine particles containing boron uniformly in the stainless alloy are mixed with the fine particles of the stainless alloy, the neutron absorber that is uniformly mixed and solidified by compression molding or sintering is homogeneous in boron. Will exist.

本発明の第の態様は、第6〜8の何れかの態様に記載の中性子吸収材の製造方法において、前記均質な微粒子を得る際に冷却速度を所定の範囲に制御することを特徴とする中性子吸収材の製造方法にある。 A ninth aspect of the present invention is a method of manufacturing a neutron absorbent material according to the 6-8 one embodiment of the control means controls the cooling rate in a predetermined range in obtaining the homogeneous microparticles There is a method for manufacturing a neutron absorber.

かかる第の態様では、蒸気爆発により微粒子を得る際には冷却速度を適宜制御することにより、ステンレス合金中にホウ素が均質に存在する均質な微粒子を得ることができる。
In the ninth aspect, when fine particles are obtained by vapor explosion, the cooling rate is appropriately controlled to obtain homogeneous fine particles in which boron is uniformly present in the stainless alloy.

本発明の中性子吸収材は、ステンレス合金からなり、ホウ素が非晶質状態で含有されたものである。   The neutron absorber of the present invention is made of a stainless alloy and contains boron in an amorphous state.

ここで、母材としてのステンレス合金は、従来の中性子吸収材として用いられているステンレス合金を用いればよく、例えば、SUS304(L)、SUS316(L)などを挙げることができる。   Here, the stainless steel alloy as the base material may be a stainless steel alloy used as a conventional neutron absorber, and examples thereof include SUS304 (L) and SUS316 (L).

一方、ホウ素は、質量数10のホウ素B10及び質量数11のホウ素B11を含む天然に存在するホウ素でもよいし、天然に存在するホウ素からホウ素B10を濃縮してホウ素B10の濃度を高めたものでもよく、ほとんどがホウ素B10であってもよい。 On the other hand, the boron may be a naturally occurring boron including a boron B 10 having a mass number of 10 and a boron B 11 having a mass number of 11, or the concentration of the boron B 10 may be increased by concentrating the boron B 10 from the naturally existing boron. it may be those raised mostly be a boron B 10.

本発明の中性子吸収材は、ホウ素及びステンレス合金を含む原料を溶融した溶融材料を液体冷媒の中に供給して蒸気爆発により微粒化すると共に冷却固化することにより得た均質な微粒子を原料とし、圧縮成形や焼結などで固化してなるものであるから、従来よりも高濃度で、例えば、従来において上限の2.2重量%を越えて、好ましくは4重量%以上、さらに好ましくは5重量%以上のホウ素を含有させることができ、ホウ素として11重量%まで含有させることが可能である。   The neutron absorbing material of the present invention uses homogeneous fine particles obtained by supplying a molten material obtained by melting a raw material containing boron and a stainless alloy into a liquid refrigerant and atomizing by vapor explosion and cooling and solidifying, and Since it is solidified by compression molding or sintering, it has a higher concentration than the conventional one, for example, it exceeds the upper limit of 2.2% by weight, preferably 4% by weight or more, more preferably 5% by weight. % Or more of boron can be contained, and boron can be contained up to 11% by weight.

天然由来のホウ素をそのまま使用したとしても、5重量%含有させると、ホウ素B10を1重量%程度、10重量%含有させると、ホウ素B10を2重量%程度含有させることになり、従来と同程度の中性子吸収性能を有するものとすることができる。この場合、従来と比較すると、ホウ素B10を濃縮する必要がないので、低コスト化を図ることができるという利点がある。 Even if natural-derived boron is used as it is, if 5% by weight is contained, if boron 10 is contained in an amount of about 1% by weight and 10% by weight, boron B 10 is contained in an amount of about 2% by weight. It can have the same neutron absorption performance. In this case, there is an advantage that the cost can be reduced because it is not necessary to concentrate the boron B 10 as compared with the conventional case.

一方、従来と同様にホウ素B10を濃縮したものを使用すると、ホウ素B10を偏析がない状態で高濃度、例えば、2.2重量%〜11重量%程度含有させることができるので、従来にはない中性子吸収性能を有する中性子吸収材とすることができる。この場合、例えば、使用済み核燃料のプールのラックに用いる場合、安全性を著しく向上させることができ、また、同じ安全性を確保することを条件とすると、ラックの小型化、薄肉化が可能となるので著しい省スペース化を図ることができるという利点がある。 On the other hand, the use of conventional ones concentrated boron B 10 Similarly, a high concentration of boron B 10 in the absence of segregation, for example, can be contained about 2.2 wt% to 11 wt%, the prior art There can be no neutron absorber with neutron absorption performance. In this case, for example, when used for a rack of a spent nuclear fuel pool, the safety can be remarkably improved, and if the same safety is ensured, the rack can be made smaller and thinner. Therefore, there is an advantage that significant space saving can be achieved.

本発明の中性子吸収材を製造するためには、まず、ホウ素及びステンレス合金を含む原料を溶融した溶融材料を液体冷媒の中に供給して蒸気爆発により微粒化すると共に冷却固化することにより、均質な微粒子を得る。   In order to produce the neutron absorbing material of the present invention, first, a molten material obtained by melting a raw material containing boron and a stainless alloy is supplied into a liquid refrigerant, atomized by vapor explosion, and cooled and solidified to obtain a homogeneous material. Fine particles are obtained.

かかる工程では、WO01/81033公報、WO01/81032公報及びWO/2004/076050公報に開示された微粒子の製造方法を応用すればよいが、本発明でポイントとなるのは、ステンレス合金とホウ素とを混合した原料を溶融した溶融材料を用い、これらの組み合わせに最適な冷却速度を設定して微粒化することにより、均質な微粒子を得ることである。ここで、均質とは、ホウ素が偏析せず、均一に母材に含有されている状態をいう。なお、このように製造された微粒子において、ホウ素は均質に存在するだけでなく、均質に固溶し、粒子全体が非晶質状態として存在することとなる。   In this process, the fine particle production methods disclosed in WO01 / 81033, WO01 / 81032, and WO / 2004/0776050 may be applied. However, the point in the present invention is that stainless steel and boron are used. It is to obtain uniform fine particles by using a molten material obtained by melting the mixed raw materials and atomizing by setting an optimum cooling rate for these combinations. Here, the term “homogeneous” refers to a state in which boron is not segregated and is uniformly contained in the base material. In the fine particles produced in this way, boron not only exists uniformly, but also dissolves homogeneously and the entire particle exists in an amorphous state.

また、本発明においてこのような偏析のない均質な微粒子を得るためには、ステンレス合金とホウ素との共融点近傍の組成で両者を混合し、所定の冷却速度により微粒化することで、比較的容易に均質な微粒子を得ることができる。   Further, in order to obtain uniform fine particles free from such segregation in the present invention, both are mixed with a composition in the vicinity of the eutectic point of stainless alloy and boron, and are atomized at a predetermined cooling rate. Uniform fine particles can be easily obtained.

また、このような微粒子は、均質な中性子吸収材を得るためには所定の粒径とするのが好ましく、例えば、平均粒径が、1〜100μmであるのが好ましい。これより大きいと、その後、ステンレス合金微粒子との混合において均一に混合されない虞があり、一方、これより小さいと、取り扱いが困難となるからである。また、ステンレス合金と混合して圧縮成形などにより固化する場合には、両者の粒径が近いのが好ましい。これは両粉末の混合を均一に行うためである。   In addition, such fine particles preferably have a predetermined particle diameter in order to obtain a homogeneous neutron absorber, and for example, the average particle diameter is preferably 1 to 100 μm. If it is larger than this, there is a possibility that it will not be uniformly mixed thereafter with the stainless alloy fine particles, while if it is smaller than this, handling becomes difficult. Moreover, when it mixes with a stainless alloy and solidifies by compression molding etc., it is preferable that the particle size of both is near. This is because both powders are mixed uniformly.

このように得たステンレス合金とホウ素とからなる均質な微粒子とステンレス合金の微粒子とを原料として両者を均一に混合し、圧縮成形や焼結などで固化して中性子吸収材とする。ここで、ステンレス合金中にホウ素が均質に存在する微粒子をステンレス合金の微粒子と混合するので、結果的にホウ素が均質に存在することとなり、偏析状態とはならず、例えば、従来において上限の2.2重量%を越えて、好ましくは4重量%以上、さらに好ましくは5重量%以上のホウ素を含有させることができ、ホウ素として11重量%まで含有させることが可能である。また、粉末状態で圧縮成形、焼結などにより固化するだけなので、ホウ素は非晶質状態のまま中性子吸収材中に存在することとなる。   The homogeneous fine particles made of stainless steel and boron and the fine particles of stainless alloy thus obtained are used as raw materials, and both are uniformly mixed and solidified by compression molding or sintering to obtain a neutron absorber. Here, since the fine particles in which the boron is uniformly present in the stainless alloy are mixed with the fine particles of the stainless alloy, as a result, the boron is present in a uniform manner and does not become a segregated state. More than 2 wt%, preferably 4 wt% or more, more preferably 5 wt% or more boron can be contained, and boron can be contained up to 11 wt%. Moreover, since it is only solidified by compression molding, sintering or the like in a powder state, boron is present in the neutron absorber in an amorphous state.

なお、本発明において固化とは、粉末状体を維持したまま、すなわち、溶解させないで粉末同士を直接密着させ、もしくはバインダーを介して密着させてバルク材を形成することをいい、例えば、圧縮成形、焼結、あるいは圧縮成形して焼結することであり、さらには、メカニカルアロイング、バインダーを用いた固定も含むものである。   In the present invention, solidification refers to forming a bulk material while maintaining a powdered body, that is, without directly dissolving powders, or by closely contacting with a binder, for example, compression molding. , Sintering, or compression molding and sintering, and further includes mechanical alloying and fixing using a binder.

このように本発明によると、天然由来のホウ素をそのまま、又は低濃縮で使用したとしても、10重量%含有させると、ホウ素B10が2.2重量%を越えて含有させることになり、従来と同程度の中性子吸収性能を有するものとすることができる。この場合、従来と比較すると、ホウ素B10を濃縮する必要がないので、低コスト化を図ることができるという利点がある。 Thus, according to the present invention, as the boron naturally occurring, or even used in low concentration, the inclusion of 10 wt%, will be boron B 10 causes the content exceeds 2.2 wt%, prior It is possible to have a neutron absorption performance comparable to In this case, there is an advantage that the cost can be reduced because it is not necessary to concentrate the boron B 10 as compared with the conventional case.

一方、従来と同様にホウ素B10を濃縮したものを使用すると、ホウ素B10を偏析がない状態で高濃度、例えば、2.2重量%〜11重量%程度含有させることができるので、従来にはない中性子吸収性能を有する中性子吸収材とすることができる。この場合、例えば、使用済み核燃料のプールのラックに用いる場合、安全性を著しく向上させることができ、また、同じ安全性を確保することを条件とすると、ラックの小型化、薄肉化が可能となるので著しい省スペース化を図ることができるという利点がある。 On the other hand, the use of conventional ones concentrated boron B 10 Similarly, a high concentration of boron B 10 in the absence of segregation, for example, can be contained about 2.2 wt% to 11 wt%, the prior art There can be no neutron absorber with neutron absorption performance. In this case, for example, when used for a rack of a spent nuclear fuel pool, the safety can be remarkably improved, and if the same safety is ensured, the rack can be made smaller and thinner. Therefore, there is an advantage that significant space saving can be achieved.

勿論、ステンレス合金とホウ素とからなる均質な微粒子のみを圧縮成形や焼結などで固化して中性子吸収材としてもよく、この場合には、さらにホウ素B10を偏析がない状態で高濃度に含有させることができる。 Of course, only the homogeneous microparticles consisting of a stainless steel alloy and the boron and solidified, and more at the compression molding and sintering may be a neutron absorber, in this case, it contains a high concentration more boron B 10 in the absence of segregation Can be made.

(実施例)
母材としてのSUS304(Fe74Cr18Ni)とFe−Bとをホウ素が4重量%となるように溶融混合し(Fe77Cr13Ni)、この溶融原料をノズルから、流量0.8kg/minで、水流(水温4℃、流量110L/min)中に滴下し、急冷・微粒化した。
(Example)
SUS304 (Fe 74 Cr 18 Ni 8 ) as a base material and Fe—B are melt-mixed so that boron is 4 wt% (Fe 77 Cr 13 Ni 6 B 4 ), and the molten raw material is flowed from the nozzle. The solution was dropped into a water stream (water temperature 4 ° C., flow rate 110 L / min) at 0.8 kg / min, and rapidly cooled and atomized.

得られた機能性微粒子は異形であるが、日機装社マイクロトラックにて計測した粒径D50は約30μmであった。なお、出湯後の坩堝を確認し、全量出湯していることから、機能性微粒子の組成はFe77Cr13Niとなる。 The obtained functional fine particles were irregular, but the particle size D 50 measured by Nikkiso Microtrack was about 30 μm. In addition, since the crucible after the hot water was confirmed and all the hot water was discharged, the composition of the functional fine particles is Fe 77 Cr 13 Ni 6 B 4 .

また、同様に、SUS304とFe−Bとを、ホウ素がそれぞれ1重量%、2.5重量%、5.5重量%、7重量%となるように混合し、同様に機能性微粒子を得た。   Similarly, SUS304 and Fe-B were mixed so that boron was 1 wt%, 2.5 wt%, 5.5 wt%, and 7 wt%, respectively, and functional fine particles were obtained in the same manner. .

これらの機能性微粒子のX線回折結果を図1に示す。また、図1には、ホウ素を7重量%含有する機能性微粒子を1000℃で2時間アニールした後のX線回折結果を併せて示した。   The results of X-ray diffraction of these functional fine particles are shown in FIG. FIG. 1 also shows the X-ray diffraction results after annealing the functional fine particles containing 7% by weight of boron at 1000 ° C. for 2 hours.

この結果、各機能性微粒子中のホウ素は非晶質状態であることがわかった。なお、1重量%と7重量%の機能性微粒子ではα−Feのピークが多少検出されるが、4重量%では全く検出されないことから、4重量%にて最も非晶質化し易い傾向にあり、1重量%及び7重量%では多少の結晶性が見られるとも判断できる。しなしながら、7重量%の機能性微粒子をアニールした後にはα−Feが大きくなったというX線回折結果と併せて判断すると、1重量%及び7重量%の機能性微粒子でもホウ素は非晶質であることがわかる。また、これらのX線回折結果から粒径が小さいために結晶が非晶質と観測されたものではないことが明らかとなった。   As a result, it was found that boron in each functional fine particle was in an amorphous state. In addition, the α-Fe peak is somewhat detected in the functional fine particles of 1% by weight and 7% by weight, but since it is not detected at all by 4% by weight, it tends to be most amorphous at 4% by weight. It can be judged that some crystallinity is observed at 1 wt% and 7 wt%. However, judging from the X-ray diffraction result that α-Fe increased after annealing 7% by weight of functional fine particles, boron was amorphous even at 1% by weight and 7% by weight of functional fine particles. It turns out that it is quality. In addition, these X-ray diffraction results revealed that the crystals were not observed to be amorphous due to the small particle size.

なお、示唆熱分析とX線回折の結果、α相のFeが初晶として析出し、さらに高温でアニールすると、FeBなどのピークが現れることがわかっており、上述したX線回折結果にはFe−Bのピークが出ていないので、ホウ素は非晶質状態で存在していると判断できる。 As a result of suggested thermal analysis and X-ray diffraction, it is known that α-phase Fe precipitates as an initial crystal and further anneals at a high temperature, and peaks such as Fe 2 B appear. Since no Fe-B peak appears, it can be judged that boron exists in an amorphous state.

各実施例で得た機能性微粒子はSUS微粒子と類似の性質を有していることから、SUS微粒子と均質に混合することができるので、粉末状態で混合し、圧縮成形や焼結などで固化することにより、非晶質状態のホウ素を均質に含有するSUS合金の中性子吸収材を得ることができる。この際、ホウ素を従来以上高濃度に均質に含有させることができるので、従来と同様に濃縮したホウ素B10を用いると、従来より高濃度にホウ素B10を均質に含有する中性子吸収材を得ることができ、また、天然由来のホウ素をそのまま使用しても、本手法により高濃度に偏析無く固溶させることができる。例えばホウ素B10は天然存在比18〜19重量%として得られるが、10重量%を偏析無く溶解させることにより、B10を2.2重量%存在する材料を製造できるため、濃縮するコストを削減できる利点がある。 Since the functional fine particles obtained in each example have similar properties to SUS fine particles, they can be homogeneously mixed with SUS fine particles, so they are mixed in a powder state and solidified by compression molding or sintering. By doing so, it is possible to obtain a SUS alloy neutron absorber containing homogeneous boron in an amorphous state. Since this time, it is possible to homogeneously incorporated into conventional or high concentration of boron, the use of conventional boron B 10 was similarly concentrated, to obtain a neutron absorbing material homogeneously boron B 10 at a high concentration compared with the conventional In addition, even if natural-origin boron is used as it is, it can be dissolved at a high concentration without segregation by this method. For example, boron B 10 is obtained as a natural abundance 18-19 wt%, but reduced by polarized析無rather dissolving 10 wt%, it is possible to produce materials that are present the B 10 2.2 wt%, the cost of enriched There are advantages you can do.

本発明の実施例のX線回折結果を示す図である。It is a figure which shows the X-ray-diffraction result of the Example of this invention.

Claims (9)

ステンレス合金に質量数10のホウ素B10を含むホウ素を添加してなる中性子吸収材であって、
前記ホウ素及び前記ステンレス合金を含む原料を溶融した溶融材料を液体冷媒の中に供給して蒸気爆発により微粒化すると共に冷却固化することにより得た均質な微粒子を原料とし、固化してなるものであり、前記ホウ素が非晶質状態で含有されていることを特徴とする中性子吸収材。
A neutron absorbing material made by adding a boron containing boron B 10 having a mass number of 10 in a stainless steel alloy,
A material obtained by melting a raw material containing the boron and the stainless steel alloy is supplied into a liquid refrigerant and atomized by vapor explosion and cooled and solidified, and the material is solidified. A neutron absorber , wherein the boron is contained in an amorphous state.
請求項に記載の中性子吸収材において、前記均質な微粒子と共に、前記ステンレス合金の微粒子を原料として用いて固化してなるものであることを特徴とする中性子吸収材。 2. The neutron absorber according to claim 1 , wherein the neutron absorber is solidified by using the fine particles of the stainless alloy as a raw material together with the homogeneous fine particles. 請求項1又は2に記載の中性子吸収材において、前記ホウ素B10が2.2重量%を越えて含有されていることを特徴とする中性子吸収材。 In the neutron absorbing material according to claim 1 or 2, the neutron absorbing material, characterized in that the boron B 10 is content exceeds 2.2 wt%. 請求項1〜の何れかに記載の中性子吸収材において、前記ホウ素として天然ホウ素又はホウ素B 10 を濃縮してホウ素B 10 の濃度を高めた濃縮ホウ素が含有されていることを特徴とする中性子吸収材。 In neutron absorber according to any one of claims 1-3, characterized in that the enriched boron with increased concentration of boron B 10 Natural boron or boron B 10 concentrated is contained as the boron neutron Absorber. 請求項1〜の何れかに記載の中性子吸収材において、前記ホウ素が4重量%以上含有されていることを特徴とする中性子吸収材。 The neutron absorber according to any one of claims 1 to 4 , wherein the boron is contained in an amount of 4% by weight or more. ホウ素及びステンレス合金を含む原料を溶融した溶融材料を液体冷媒の中に供給し、蒸気爆発により微粒化すると共に冷却固化することにより均質な微粒子とし、これを原料として用いて固化して中性子吸収材とすることを特徴とする中性子吸収材の製造方法。 A molten material obtained by melting a raw material containing boron and a stainless alloy is supplied into a liquid refrigerant, atomized by a vapor explosion and cooled and solidified to form uniform fine particles, which are solidified using the raw material, and then a neutron absorber A method for producing a neutron absorbing material. 請求項に記載の中性子吸収材の製造方法において、前記均質な微粒子中に、ホウ素が非晶質状態で含有されていることを特徴とする中性子吸収材の製造方法。 7. The method for producing a neutron absorber according to claim 6 , wherein boron is contained in an amorphous state in the homogeneous fine particles. 請求項6又は7に記載の中性子吸収材の製造方法において、前記均質な微粒子にステンレス合金の微粒子を混合して原料として用いて固化して中性子吸収材とすることを特徴とする中性子吸収材の製造方法。 The method for producing a neutron absorber according to claim 6 or 7 , wherein the homogeneous fine particles are mixed with stainless steel alloy fine particles and solidified as a raw material to obtain a neutron absorber. Production method. 請求項6〜8の何れかに記載の中性子吸収材の製造方法において、前記均質な微粒子を得る際に冷却速度を所定の範囲に制御することを特徴とする中性子吸収材の製造方法。
The method for producing a neutron absorber according to any one of claims 6 to 8 , wherein a cooling rate is controlled within a predetermined range when obtaining the homogeneous fine particles.
JP2006215044A 2006-08-07 2006-08-07 Neutron absorber and manufacturing method thereof Active JP4743532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006215044A JP4743532B2 (en) 2006-08-07 2006-08-07 Neutron absorber and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006215044A JP4743532B2 (en) 2006-08-07 2006-08-07 Neutron absorber and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008039617A JP2008039617A (en) 2008-02-21
JP4743532B2 true JP4743532B2 (en) 2011-08-10

Family

ID=39174792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006215044A Active JP4743532B2 (en) 2006-08-07 2006-08-07 Neutron absorber and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4743532B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062768A (en) * 2012-09-20 2014-04-10 Hitachi Powdered Metals Co Ltd Diffusion-control member for light water reactor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5178705A (en) * 1974-12-28 1976-07-08 Tohoku Daigaku Kinzoku Zairyo
JPS60165598A (en) * 1984-02-09 1985-08-28 株式会社東芝 Neutron-resisting structure
JPS6318157B2 (en) * 1981-09-04 1988-04-16 Hitachi Ltd
JP2002116285A (en) * 2000-10-10 2002-04-19 Toshiba Corp Rack for storing spent fuel
JP2006519099A (en) * 2003-02-28 2006-08-24 財団法人電力中央研究所 Fine particle production method and production apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5178705A (en) * 1974-12-28 1976-07-08 Tohoku Daigaku Kinzoku Zairyo
JPS6318157B2 (en) * 1981-09-04 1988-04-16 Hitachi Ltd
JPS60165598A (en) * 1984-02-09 1985-08-28 株式会社東芝 Neutron-resisting structure
JP2002116285A (en) * 2000-10-10 2002-04-19 Toshiba Corp Rack for storing spent fuel
JP2006519099A (en) * 2003-02-28 2006-08-24 財団法人電力中央研究所 Fine particle production method and production apparatus

Also Published As

Publication number Publication date
JP2008039617A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
CN107043867B (en) A kind of preparation method of porous copper-based shape memory alloy
JP2007533851A (en) Improved neutron absorption efficiency of boron-containing aluminum materials
CN102031405B (en) Preparation method of porous CuAlMn shape memory alloy
JP2000514552A (en) Metal matrix composition applied to neutron shielding
KR101214939B1 (en) Grain refiner of magnesium alloys and method for grain refining, method for manufacturing of magnesium alloys using the same, and magnesium alloys prepared thereby
JP2013519792A5 (en)
CN104525960A (en) Preparation method for Fe-Mn metal powder materials for 3D printing
JP2021508782A (en) Use in additional manufacturing of aluminum-containing alloys
CN108396203A (en) Rare earth er element enhances the special AlSi10Mg Al alloy powders of SLM and its application
JP4784990B2 (en) Method for manufacturing functional members
JP4743532B2 (en) Neutron absorber and manufacturing method thereof
US4865645A (en) Nuclear radiation metallic absorber
JP2006213985A (en) Method for producing magnetostriction element
JP6874126B2 (en) High thermal conductivity iron-copper alloy and its manufacturing method
CN108588524A (en) A kind of metal mold gravity casting magnesium alloy materials and preparation method thereof
CN108677050A (en) A kind of preparation method of porous magnetic memorial alloy
EP3081321A1 (en) Methods of producing dispersoid hardened metallic materials
CN104480425B (en) A kind of elemental lithium mixes high weight of hydrogen vanadium-base alloy and preparation method thereof
JP2021063297A (en) Iron-copper alloy having high thermal conductivity and method for producing the same
KR20180021536A (en) Composition for sintering
JP2005226114A (en) Method of producing hydrogen storage alloy powder, and hydrogen storage alloy powder obtained by the production method
CN113088780A (en) WNb alloy powder for selective laser melting additive manufacturing and preparation method
JP2007247033A (en) Method for manufacturing foamed metal using oxide reducing reaction
KR101065211B1 (en) Manufacturing method of super-fine amorphous powder using mechanical low-energy crushing process
CN113981277B (en) Vanadium-aluminum alloy smelting furnace lining material, manufacturing method and vanadium-aluminum alloy smelting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4743532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250