JP4743365B2 - Wall structure - Google Patents

Wall structure Download PDF

Info

Publication number
JP4743365B2
JP4743365B2 JP2001087614A JP2001087614A JP4743365B2 JP 4743365 B2 JP4743365 B2 JP 4743365B2 JP 2001087614 A JP2001087614 A JP 2001087614A JP 2001087614 A JP2001087614 A JP 2001087614A JP 4743365 B2 JP4743365 B2 JP 4743365B2
Authority
JP
Japan
Prior art keywords
heat
insulating layer
heat insulating
wall structure
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001087614A
Other languages
Japanese (ja)
Other versions
JP2002285649A (en
Inventor
裕義 露口
学 足立
万里江 大石
真人 田澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001087614A priority Critical patent/JP4743365B2/en
Publication of JP2002285649A publication Critical patent/JP2002285649A/en
Application granted granted Critical
Publication of JP4743365B2 publication Critical patent/JP4743365B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Building Environments (AREA)
  • Finishing Walls (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、壁構造に関し、更に詳しくは、太陽光反射率が高く且つ赤外線放射率が高い断熱層を備えている壁構造に関する。
【0002】
【従来の技術】
この種の壁構造は、例えば住居やマンションや小屋や倉庫等の建物、そして低温タンクや車や電車や人工衛星等の構造物などにおいて採用されるものであり、従来は、図4の説明断面図に示すような、壁材11の上に単に断熱層12を設けてある構造が採用されている。
【0003】
そして前記断熱層12は、次のような機能1)乃至3)を備えている白色塗料や断熱塗料等から形成され、建物や構造物の外側からの熱エネルギーがそれらの内部へ侵入するのを防ぐことができるように構成されている。
【0004】
1)太陽光反射率が高いことから、外気からの太陽光を反射することで建物や構造物の外壁表面の温度上昇を抑制して、太陽光の熱エネルギーが建物や構造物の内部へ侵入するのを防ぐ。
2)熱伝導率が低いことから、外気の雰囲気温度が建物や構造物の内部へ伝導し難くして、外気の熱エネルギーが熱伝導により建物や構造物の内部へ侵入するのを防ぐ。
3)赤外線放射率が高いことから、放射冷却現象により外壁の極表面側の温度を冷却して、外気の熱エネルギーが赤外線放射により建物や構造物の内部へ侵入するのを削減する。尚、前記放射冷却現象とは、次のようなものである。つまり大気には、8〜13μmの波長範囲に非常に透過率の高い領域(いわゆる「大気の窓」)が存在するので、かかる波長範囲において大気中の物体から放射される赤外線は大気を通過して、高層大気または宇宙にまで達することとなる。よって、かかる波長範囲において物体から放射される赤外線量が多く、他の物体或いは低層大気からの放射により流入する総赤外線放射熱量よりも前記物体から放出される総赤外線放射熱量の方が上回る場合には、前記物体は放射冷却されることとなり、このことを放射冷却現象という。
【0005】
【発明が解決しようとする課題】
上述した従来の壁構造によれば、断熱層12の表面が直接外気に接することから、次のような不具合があった。
つまり、前述した断熱層12の機能3)によりその極表面側12aは、放射冷却現象によって温度が低下するものの、直接接する外気つまり空気中からの熱伝達作用により打ち消され、短時間で温度が上昇してしまい易いという不具合があった。
このため、放射冷却現象を有効に利用することができず、結果として、建物や構造物の外側からの熱エネルギーがそれらの内部へ侵入するのを十分には防ぐことができず、まだ改善の余地が残されていた。
【0006】
本発明は、上記実情に鑑みてなされたものであって、その目的は、建物や構造物の外側からの熱エネルギーがそれらの内部へより侵入し難くすることができる壁構造を提供するところにある。
【0007】
【課題を解決するための手段】
請求項1記載の発明の特徴構成は、図1に例示するごとく、壁材の表面側に、太陽光反射率が高く且つ8〜13μmの波長範囲における赤外線放射率が高い白色のアクリル系樹脂材から形成した第一断熱層を設け、その第一断熱層の上に、熱伝導率が低く且つ8〜13μmの波長範囲における赤外線透過率が高いポリエチレンフォームから成る第二断熱層を設けてあるところにある。
【0008】
尚、本発明において、壁構造とは、建物や構造物の構造部分のうち外気に接する部分を全て意味し、その側壁部分は勿論のこと、上壁部分すなわち屋根部分や天井部分の構造をも含むものである。
【0009】
〔作用効果〕
第一断熱層は、太陽光反射率が高いので、外気からの太陽光を反射することで建物や構造物の外壁表面の温度上昇を抑制して、太陽光の熱エネルギーが建物や構造物の内部へ侵入するのを防ぐことができる。
そして、その第一断熱層の上に設けられる第二断熱層の表面が外気に露出することとなるが、その第二断熱層は熱伝導率が低いので、外気の雰囲気温度が建物や構造物の内部へ伝導し難くして、外気の熱エネルギーが熱伝導により建物や構造物の内部へ侵入するのを防ぐことができる。
【0010】
さらに、前記第一断熱層は8〜13μmの波長範囲の赤外線放射率が高いので、その内側つまり建物や構造物内部からの熱エネルギーを赤外線として放射することができ、その放射された赤外線は8〜13μmの波長範囲における赤外線透過率の高い第二断熱層を透過して外気側に放射されるため、第一断熱層の極表面側は放射冷却現象により冷却される。しかも、その冷却される第一断熱層の極表面側は外気ではなく第二断熱層と接しており、その第二断熱層は熱伝導率が低いので、第一断熱層の放射冷却された極表面が熱伝達により温度上昇し難くなり、その放射冷却状態を比較的長期間保持して、放射冷却現象を有効に利用することができるようになる。
尚、第一断熱層の赤外線放射率は、殊に8〜13μmの波長範囲における赤外線の放射率が高いほど、放射冷却現象が促進されるため好ましく、同様の理由から、第二断熱層の赤外線透過率は、殊に8〜13μmの波長範囲における赤外線の透過率が高いほど、より好ましい。
【0011】
従って、結果として、建物や構造物の外側からの熱エネルギーがそれらの内部へより侵入し難くすることができ、例えば建物や構造物の内部を一定温度に保つ必要がある場合(例えば低温タンクの場合等)には、建物や構造物の内部への熱エネルギーの流入量を低減することにより、その内部の温度制御のために必要となる消費電力を削減することができるのである。
【0012】
【0013】
【0014】
尚、上述のように、図面との対照を便利にするために符号を記したが、該記入により本発明は添付図面の構成に限定されるものではない。
【0015】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。本発明に係る壁構造の一実施形態の説明断面図を図1に示す。
【0016】
図1に示すように、前記壁構造は、壁材1の表面側に、太陽光反射率が高く且つ赤外線放射率が高い第一断熱層2を設け、その第一断熱層2の上に、熱伝導率が低く且つ赤外線透過率が高い第二断熱層3を設けてある。
【0017】
前記壁材1は、建物や構造物の外壁材であり、例えばその外壁自体や外壁に取り付ける外装材(例えば断熱材等)に相当するものである。
【0018】
前記第一断熱層2は、太陽光反射率が高く且つ赤外線放射率が高くなるように設けてあれば、如何なる材料から形成してあっても良いが、例えば、白色のアクリル系樹脂材(アクリル樹脂エマルジョン塗料等)から形成すれば、塗布などにより容易に第一断熱層2を設けることができるので、簡便である。尚、第一断熱層2を設けるにあたっては、少なくとも一定厚さの層(或いは膜)を形成することができれば、塗布に限らず、その他の如何なる方法を採用しても良いのはいうまでもなく、例えばシート状の材料を壁材1上に貼着しても良く、粉末上の材料を壁材1上に付着させても良い。
尚、太陽光反射率とは主に0.3μm〜2.5μmの波長範囲にある太陽光線の反射率を意味する。
【0019】
因みに、この第一断熱層2の熱伝導率は如何なるものでも良いが、先述したように第一断熱層2の極表面側2aは放射冷却現象により冷却されることから、熱伝導率が高いほど、その冷却作用が壁材1側へより効率的に働くようになり、結果として、外気から壁材1側への熱エネルギーの流入量を一層低減することができるようになるため、好適である。そして、第一断熱層2の厚さも同様の理由から、薄いほどより好ましい。
【0020】
前記第二断熱層3は、熱伝導率が低く且つ赤外線透過率が高くなるように設けてあれば、如何なる材料から形成してあっても良いが、例えば、ポリエチレン樹脂又はポリメチルペンテン樹脂又は臭化カリウムから形成すれば、十分な赤外線放射率及び熱伝導率を備える第二断熱層を設けることができ、好適である。そして、第二断熱層3を設けるにあたっては、少なくとも一定厚さの層(或いは膜)を形成することができれば、如何なる方法を採用しても良く、例えばスラリー状の材料を第一断熱層2上に塗布しても良く、シート状の材料を第一断熱層2上に貼着しても良く、粉末上の材料を第一断熱層2上に付着させても良い。そして、第二断熱層3にも太陽光を反射させる機能を備えさせても、勿論良い。
【0021】
以上のような構成を備えた本発明に係る壁構造によれば、建物や構造物の外側からの熱エネルギーがそれらの内部へより侵入し難くすることができ、例えば建物や構造物の内部を一定温度に保つ必要がある場合(例えば低温タンクの場合等)には、建物や構造物の内部への熱エネルギーの流入量を低減することにより、その内部の温度制御のために必要となる消費電力を削減することができるのである。
【0022】
【実施例】
以下に本発明の効果を確認するための具体的な実施例、比較例を示すが、本発明はこれに限定されるものではない。
【0023】
実施例1
図1に示すような本発明に係る壁構造を有する低温タンクを想定し、計算機シミュレーションを行った。この際、前記低温タンクの内部の保持温度をTb(K
)、その外側の大気の温度をTa(K)、壁構造の表面側すなわち第二断熱層3
の表面の温度をTs(K)とする。
【0024】
すると、前記Tsは、風速に依存する大気からの熱伝達及び低温タンクの表面1aの温度Tbとの間の熱勾配によって決定される。すなわち、前記第二断熱層3はポリエチレンフォームより形成してあると想定し、そのポリエチレンフォームの熱伝導率の測定値0.036(W/mK)を用い、大気からの熱伝達をマックアダムスによる実験式(種村栄、太陽エネルギー利用ハンドブック、日本太陽エネルギー学会、1985,p.180)で与えられるとすると、次式(1) h(Ta−Ts)=α(Ts−Tb)/t (1)
からTsを導出することができる。ただし、αは第二断熱層の熱伝導率(0.036(W/mK))であり、tは壁構造の厚さ(つまり第一断熱層と第二断熱層の総厚)であり、本実施例では第一断熱層の厚さは十分薄いものを想定して第二断熱層の厚さを総厚とし、t=1cmとした。そして、hはマックアダムスによる実験式で与えられる大気からの熱伝達率であり、次式(2)
h=5.7+3.8v (2)
から導出される。ただし、v(m/s)は壁構造の表面側における風速であり、本実施例では大気の風速とした。
【0025】
以上の条件を用いて、Ta=300K、Tb=250Kの場合の低温タンク表面1aへの流入熱量を計算した。
前記流入熱量は、1)大気からの赤外線放射、2)壁構造を介する低温タンク表面への熱伝導、3)低温タンク表面から壁構造を介しての赤外線放射 のバランスから求めることができる。
1)大気からの赤外線放射は、300Kの黒体放射に大気の放射率(または吸収率)(R.M.GoodyandY.L.Yung,AtmosphericRadiation,OxfordUniversity
Press,1989,p.4)を乗じて得られる。
2)壁構造を介する低温タンク表面への熱伝導は、α(Ts−Tb)/tで与えられる。
3)低温タンク表面から壁構造を介しての赤外線放射は、250Kの黒体放射で近似した。
尚、第一断熱層の太陽光反射率は1と近似し、太陽光による壁構造の熱上昇はないものと仮定した。
風速vが0m/s〜10m/sまで変化した場合の流入熱量の計算結果を、図2の点線に示す。
【0026】
実施例2
低温タンクの内部の保持温度Tb=200(K)としたこと以外は、上記実施例1と同様にして計算機シュミレーションを行った。その計算結果を図3の点線に示す。
【0027】
比較例1
従来の技術の欄において詳述した図4に示すような壁構造を有する低温タンクを想定し、計算機シュミレーションを行った。この際、前記低温タンクの内部の保持温度をTb(K)、その外側の大気の温度をTa(K)、壁構造の表面側すなわち断熱層12の表面12aの温度をTs(K)とする。
【0028】
本比較例1では、断熱層12の赤外線放射によるその表面12aの放射冷却現象を考慮する必要があるため、前記Tsは、風速に依存する大気からの熱伝達及び低温タンクの表面11aの温度Tbとの間の熱勾配とともに、大気からの赤外線放射と断熱層12からの赤外線放射とのバランスによって決定される。上述の実施例1と比較できるように、前記断熱層12の熱伝導率としては0.036(W/mK)を用い、そして、大気からの熱伝達をマックアダムスによる実験式(種村栄、太陽エネルギー利用ハンドブック、日本太陽エネルギー学会、1985,p.180)で与えられるとすると、次式(3)
h(Ta−Ts)+Eatmosphere=α(Ts−Tb)/t+Esurface(3)からTsを導出することができる。ただし、αは断熱層12の熱伝導率(0.036(W/mK))であり、tは壁構造の厚さ(つまり断熱層12の厚さ)であり、本比較例では1cmとした。そして、Eatmosphereは大気からの赤外線放射、Esurfaceは断熱層12の表面12aからの赤外線放射である。尚、hは実施例1と同様に前記(2)式から与えられる。
【0029】
以上の条件を用いて、Ta=300K、Tb=250Kの場合の低温タンク表面11aへの流入熱量を計算した。
前記流入熱量は、1)壁構造を介する低温タンク表面への熱伝導、2)壁構造(断熱層)の表面からの赤外線放射 のバランスから求めることができる。
1)壁構造を介する低温タンク表面への熱伝導は、α(Ts−Tb)/tで与えられる。
2)壁構造の表面からの赤外線放射は、250Kの黒体放射で近似した。
尚、断熱層の太陽光反射率は1と近似し、太陽光による壁構造の熱上昇はないものと仮定した。
風速vが0m/s〜10m/sまで変化した場合の流入熱量の計算結果を、図2の実線に示す。
【0030】
比較例2
低温タンクの内部の保持温度Tb=200(K)としたこと以外は、上記比較例1と同様にして計算機シュミレーションを行った。その計算結果を図3の実線に示す。
【0031】
図2に示した結果からは、低温タンクの内部の保持温度Tb=250(K)のときには、実施例1と比較例1はいずれも、風速と共に低温タンク表面への流入熱量も単調に増大するが、実施例1は、比較例1よりも常に低い流入熱量値となっており、殊に風速v=2(m/s)以上では、比較例1よりも1/3〜1/2の値となっていることがわかる。
また、図3に示した結果からも、低温タンクの内部の保持温度Tb=200(K)のときには、実施例2は、風速v=2.7(m/s)以上では比較例2よりも低い流入熱量値となっていることがわかる。
従って、本発明に係る壁構造によれば、確かに、建物や構造物の外側からの熱エネルギーがそれらの内部へより侵入し難くできることを確認できた。
【図面の簡単な説明】
【図1】 本発明に係る壁構造の説明断面図
【図2】 本発明に係る壁構造の効果を示す説明図
【図3】 本発明に係る壁構造の効果を示す説明図
【図4】 従来の壁構造の説明断面図
【符号の説明】
1 壁材
1a 壁材の表面
2 第一断熱層
2a 第一断熱層の表面
3 第二断熱層
3a 第二断熱層の表面
11 壁材
11a壁材の表面
12 断熱層
12a断熱層の表面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wall structure, and more particularly to a wall structure including a heat insulating layer having high sunlight reflectance and high infrared emissivity.
[0002]
[Prior art]
This type of wall structure is used in, for example, buildings such as residences, condominiums, huts, and warehouses, and structures such as low-temperature tanks, cars, trains, and artificial satellites. As shown in the figure, a structure in which the heat insulating layer 12 is simply provided on the wall material 11 is employed.
[0003]
The heat insulating layer 12 is formed of a white paint or heat insulating paint having the following functions 1) to 3) to prevent heat energy from outside the building or structure from entering the inside. It is configured to prevent it.
[0004]
1) Since the sunlight reflectance is high, the sunlight from the outside air is reflected to suppress the temperature rise on the outer wall surface of the building or structure, and the thermal energy of sunlight enters the building or structure. To prevent.
2) Since the thermal conductivity is low, the ambient temperature of the outside air is difficult to conduct to the inside of the building or structure, and the thermal energy of the outside air is prevented from entering the inside of the building or structure by heat conduction.
3) Since the infrared emissivity is high, the temperature on the extreme surface side of the outer wall is cooled by the radiation cooling phenomenon, and the heat energy of the outside air is prevented from entering the inside of the building or structure by infrared radiation. The radiation cooling phenomenon is as follows. In other words, in the atmosphere, there is a region with a very high transmittance in the wavelength range of 8 to 13 μm (so-called “atmosphere window”), so infrared rays emitted from objects in the atmosphere in such a wavelength range pass through the atmosphere. Will reach the upper atmosphere or the universe. Therefore, when the amount of infrared rays radiated from an object is large in such a wavelength range, and the total infrared radiant heat emitted from the object is higher than the total infrared radiant heat that flows in by radiation from other objects or the lower atmosphere. The object is radiatively cooled, which is called a radiative cooling phenomenon.
[0005]
[Problems to be solved by the invention]
According to the conventional wall structure described above, the surface of the heat insulating layer 12 is in direct contact with the outside air, and thus has the following problems.
In other words, the function 3) of the heat insulating layer 12 described above causes the extreme surface side 12a to have a temperature that rises in a short time because it is counteracted by the heat transfer effect from the outside air that is in direct contact with it, that is, in the air, although the temperature is lowered by the radiation cooling phenomenon. There was a problem that it was easy to do.
For this reason, the radiative cooling phenomenon cannot be used effectively, and as a result, it is not possible to sufficiently prevent the heat energy from the outside of the building or structure from entering the inside of the building or structure. There was room left.
[0006]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a wall structure that can make it difficult for heat energy from the outside of a building or structure to enter the inside thereof. is there.
[0007]
[Means for Solving the Problems]
As illustrated in FIG. 1, the characteristic configuration of the invention according to claim 1 is a white acrylic resin material having high solar reflectance and high infrared emissivity in a wavelength range of 8 to 13 μm on the surface side of the wall material. The first heat insulating layer formed from the above is provided, and the second heat insulating layer made of polyethylene foam having low thermal conductivity and high infrared transmittance in the wavelength range of 8 to 13 μm is provided on the first heat insulating layer. It is in.
[0008]
In the present invention, the wall structure means all parts of the structural part of the building or structure that come into contact with the outside air, and the side wall part as well as the structure of the upper wall part, that is, the roof part and the ceiling part. Is included.
[0009]
[Function and effect]
Since the first heat insulation layer has high solar reflectance, it suppresses the temperature rise of the outer wall surface of the building or structure by reflecting sunlight from the outside air, so that the thermal energy of sunlight can be absorbed by the building or structure. It is possible to prevent intrusion into the inside.
And the surface of the 2nd heat insulation layer provided on the 1st heat insulation layer will be exposed to the outside air, but since the second heat insulation layer has low thermal conductivity, the ambient temperature of the outside air is the building or structure It is possible to prevent the heat energy of the outside air from entering the inside of the building or structure by heat conduction.
[0010]
Further, since the first insulation layer has a high infrared emissivity in the wavelength range of 8~13Myuemu, that can emit inner clogging buildings and structures thermal energy from the inside as an infrared, infrared its emitted 8 Since it transmits through the second heat insulating layer having a high infrared transmittance in the wavelength range of ˜13 μm and is emitted to the outside air side, the extreme surface side of the first heat insulating layer is cooled by the radiation cooling phenomenon. Moreover, the pole surface side of the first heat insulating layer to be cooled is in contact with the second heat insulating layer, not the outside air, and the second heat insulating layer has low thermal conductivity. It becomes difficult for the surface to rise in temperature due to heat transfer, and the radiation cooling state can be maintained for a relatively long period of time so that the radiation cooling phenomenon can be used effectively.
In addition, the infrared emissivity of the first heat insulating layer is preferably as the infrared emissivity in the wavelength range of 8 to 13 μm is higher because the radiation cooling phenomenon is promoted. For the same reason, the infrared emissivity of the second heat insulating layer is preferable. In particular, the higher the transmittance of infrared rays in the wavelength range of 8 to 13 μm, the more preferable the transmittance.
[0011]
Therefore, as a result, the heat energy from the outside of the building or structure can be made harder to enter the inside thereof, for example, when it is necessary to keep the inside of the building or structure at a constant temperature (for example, in a low temperature tank). In some cases, the amount of heat energy flowing into the interior of a building or structure can be reduced to reduce the power consumption required for temperature control inside the building or structure.
[0012]
[0013]
[0014]
In addition, as mentioned above, although the code | symbol was written in order to make contrast with drawing convenient, this invention is not limited to the structure of an accompanying drawing by this entry.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an explanatory cross-sectional view of an embodiment of a wall structure according to the present invention.
[0016]
As shown in FIG. 1, the said wall structure provides the 1st heat insulation layer 2 with a high sunlight reflectance and a high infrared emissivity on the surface side of the wall material 1, and on the 1st heat insulation layer 2, A second heat insulating layer 3 having a low thermal conductivity and a high infrared transmittance is provided.
[0017]
The wall material 1 is an outer wall material of a building or a structure, and corresponds to, for example, the outer wall itself or an exterior material (for example, a heat insulating material) attached to the outer wall.
[0018]
The first heat insulating layer 2 may be formed of any material as long as it has high solar reflectance and high infrared emissivity. For example, a white acrylic resin material (acrylic) If it is formed from a resin emulsion paint or the like, the first heat insulating layer 2 can be easily provided by coating or the like, which is convenient. Needless to say, the first heat insulating layer 2 is not limited to coating, and any other method may be adopted as long as at least a layer (or film) having a certain thickness can be formed. For example, a sheet-like material may be stuck on the wall material 1, or a material on powder may be adhered on the wall material 1.
Note that the sunlight reflectance mainly means the reflectance of sunlight in the wavelength range of 0.3 μm to 2.5 μm.
[0019]
Incidentally, the thermal conductivity of the first heat insulating layer 2 may be anything, but as described above, the pole surface side 2a of the first heat insulating layer 2 is cooled by the radiation cooling phenomenon, so that the higher the heat conductivity is, The cooling action works more efficiently on the wall material 1 side, and as a result, the amount of heat energy flowing from the outside air to the wall material 1 side can be further reduced, which is preferable. . And the thickness of the 1st heat insulation layer 2 is more preferable, so that it is thin from the same reason.
[0020]
The second heat insulating layer 3 may be formed of any material as long as it has a low thermal conductivity and a high infrared transmittance. For example, the second heat insulating layer 3 may be made of polyethylene resin, polymethylpentene resin, odor, or the like. If it forms from potassium halide, the 2nd heat insulation layer provided with sufficient infrared emissivity and thermal conductivity can be provided, and it is suitable. And in providing the 2nd heat insulation layer 3, as long as a layer (or film | membrane) of at least fixed thickness can be formed, what kind of method may be employ | adopted, for example, a slurry-like material is applied on the 1st heat insulation layer 2. It may be applied to the first heat insulating layer 2, or a material on the powder may be adhered to the first heat insulating layer 2. Of course, the second heat insulating layer 3 may have a function of reflecting sunlight.
[0021]
According to the wall structure according to the present invention having the above-described configuration, it is possible to make it difficult for heat energy from the outside of the building or structure to enter the inside thereof, for example, the inside of the building or structure When it is necessary to maintain a constant temperature (for example, in the case of a low-temperature tank), the consumption required for temperature control inside the building or structure is reduced by reducing the amount of heat energy flowing into the building or structure. Electric power can be reduced.
[0022]
【Example】
Specific examples and comparative examples for confirming the effects of the present invention are shown below, but the present invention is not limited thereto.
[0023]
Example 1
A computer simulation was performed assuming a low-temperature tank having a wall structure according to the present invention as shown in FIG. At this time, the holding temperature inside the low temperature tank is set to T b (K
), And T a (K), the temperature of the outside atmosphere, the surface side of the wall structure, that is, the second heat insulating layer 3
Let T s (K) be the surface temperature.
[0024]
Then, T s is determined by the heat gradient from the atmosphere depending on the wind speed and the temperature gradient between the temperature T b of the surface 1 a of the cold tank. That is, the second heat insulating layer 3 is assumed to be formed of polyethylene foam, and the heat conductivity of the polyethylene foam is measured using 0.036 (W / mK) to transfer heat from the atmosphere by Mac Adams. If given by the empirical formula (Sakae Tanemura, Solar Energy Utilization Handbook, Japan Solar Energy Society, 1985, p. 180), the following formula (1) h (T a −T s ) = α (T s −T b ) / T (1)
T s can be derived from Where α is the thermal conductivity of the second heat insulating layer (0.036 (W / mK)), t is the thickness of the wall structure (that is, the total thickness of the first heat insulating layer and the second heat insulating layer), In this embodiment, assuming that the thickness of the first heat insulating layer is sufficiently thin, the thickness of the second heat insulating layer is defined as the total thickness, and t = 1 cm. And h is the heat transfer coefficient from the atmosphere given by the empirical formula by McAdams.
h = 5.7 + 3.8v (2)
Is derived from However, v (m / s) is the wind speed on the surface side of the wall structure, and in this example, it was the wind speed of the atmosphere.
[0025]
Using the above conditions, the amount of heat flowing into the low temperature tank surface 1a when T a = 300K and T b = 250K was calculated.
The inflow heat quantity can be obtained from the balance of 1) infrared radiation from the atmosphere, 2) heat conduction to the surface of the low temperature tank through the wall structure, and 3) infrared radiation from the surface of the low temperature tank through the wall structure.
1) Infrared radiation from the atmosphere is 300K blackbody radiation and atmospheric emissivity (or absorption) (RMGoodyandY.L.Yung, AtmosphericRadiation, OxfordUniversity)
Obtained by multiplying Press, 1989, p.4).
2) Heat conduction to the cryogenic tank surface through the wall structure is given by α (T s −T b ) / t.
3) Infrared radiation from the surface of the cryogenic tank through the wall structure was approximated by 250K blackbody radiation.
In addition, the sunlight reflectance of the first heat insulating layer approximated to 1, and it was assumed that there was no heat rise of the wall structure due to sunlight.
A calculation result of the inflow heat amount when the wind speed v changes from 0 m / s to 10 m / s is shown by a dotted line in FIG.
[0026]
Example 2
Computer simulation was performed in the same manner as in Example 1 except that the holding temperature T b in the low-temperature tank was set to 200 (K). The calculation result is shown by the dotted line in FIG.
[0027]
Comparative Example 1
Computer simulation was performed assuming a cryogenic tank having a wall structure as shown in FIG. 4 described in detail in the section of the prior art. At this time, the holding temperature inside the low-temperature tank is T b (K), the outside air temperature is Ta (K), and the surface side of the wall structure, that is, the temperature of the surface 12a of the heat insulating layer 12 is T s (K ).
[0028]
In this comparative example 1, since it is necessary to consider the radiation cooling phenomenon of the surface 12a due to infrared radiation of the heat insulating layer 12, the T s is the heat transfer from the atmosphere depending on the wind speed and the temperature of the surface 11a of the low temperature tank. the thermal gradient between the T b, is determined by the balance between infrared radiation from the infrared radiation and the heat insulating layer 12 from the atmosphere. As can be compared with Example 1 described above, the thermal conductivity of the heat insulating layer 12 is 0.036 (W / mK), and the heat transfer from the atmosphere is empirically expressed by Mac Adams (Sakae Tanemura, Sun Given in the Energy Utilization Handbook, Japan Solar Energy Society, 1985, p. 180), the following equation (3)
h (T a −T s ) + E atmosphere = α (T s −T b ) / t + E surface (3) T s can be derived. However, (alpha) is the heat conductivity (0.036 (W / mK)) of the heat insulation layer 12, t is the thickness of a wall structure (namely, thickness of the heat insulation layer 12), and was set to 1 cm in this comparative example. . E atmosphere is infrared radiation from the atmosphere, and E surface is infrared radiation from the surface 12 a of the heat insulating layer 12. Note that h is given by the above equation (2) as in the first embodiment.
[0029]
Using the above conditions, the amount of heat flowing into the low temperature tank surface 11a when T a = 300K and T b = 250K was calculated.
The inflow heat quantity can be obtained from the balance of 1) heat conduction to the surface of the low temperature tank through the wall structure and 2) infrared radiation from the surface of the wall structure (heat insulation layer).
1) Heat conduction to the cryogenic tank surface through the wall structure is given by α (T s −T b ) / t.
2) Infrared radiation from the surface of the wall structure was approximated by 250K blackbody radiation.
In addition, the solar light reflectance of the heat insulation layer approximated to 1, and it was assumed that there was no heat rise of the wall structure by sunlight.
The calculation result of the inflow heat amount when the wind speed v changes from 0 m / s to 10 m / s is shown by the solid line in FIG.
[0030]
Comparative Example 2
Computer simulation was performed in the same manner as in Comparative Example 1 except that the holding temperature T b in the low temperature tank was set to 200 (K). The calculation result is shown by the solid line in FIG.
[0031]
From the results shown in FIG. 2, when the holding temperature T b = 250 (K) inside the low-temperature tank, both Example 1 and Comparative Example 1 monotonously increase the amount of heat flowing into the low-temperature tank surface along with the wind speed. However, in Example 1, the inflow heat amount value is always lower than that of Comparative Example 1, and is 1/3 to 1/2 of that of Comparative Example 1 especially at wind speed v = 2 (m / s) or more. It turns out that it is a value.
Also from the results shown in FIG. 3, when the holding temperature T b = 200 (K) inside the low temperature tank, the second embodiment is more than the second comparative example when the wind speed v is 2.7 (m / s) or higher. It can be seen that the inflow heat value is also low.
Therefore, according to the wall structure which concerns on this invention, it has confirmed that the heat energy from the outer side of a building or a structure can certainly make it difficult to penetrate | invade those inside.
[Brief description of the drawings]
FIG. 1 is an explanatory sectional view of a wall structure according to the present invention. FIG. 2 is an explanatory view showing the effect of the wall structure according to the present invention. FIG. 3 is an explanatory view showing the effect of the wall structure according to the present invention. Cross-sectional view of conventional wall structure
DESCRIPTION OF SYMBOLS 1 Wall material 1a Surface of wall material 2 First heat insulation layer 2a Surface of first heat insulation layer 3 Second heat insulation layer 3a Surface of second heat insulation layer 11 Wall material 11a Surface of wall material 12 Heat insulation layer 12a Surface of heat insulation layer

Claims (1)

壁材の表面側に、太陽光反射率が高く且つ8〜13μmの波長範囲における赤外線放射率が高い白色のアクリル系樹脂材から形成した第一断熱層を設け、その第一断熱層の上に、熱伝導率が低く且つ8〜13μmの波長範囲における赤外線透過率が高いポリエチレンフォームから成る第二断熱層を設けてある壁構造。On the surface side of the wall material, a first heat insulating layer formed from a white acrylic resin material having a high sunlight reflectance and a high infrared emissivity in a wavelength range of 8 to 13 μm is provided, and on the first heat insulating layer A wall structure provided with a second heat insulating layer made of polyethylene foam having low thermal conductivity and high infrared transmittance in the wavelength range of 8 to 13 μm .
JP2001087614A 2001-03-26 2001-03-26 Wall structure Expired - Lifetime JP4743365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001087614A JP4743365B2 (en) 2001-03-26 2001-03-26 Wall structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001087614A JP4743365B2 (en) 2001-03-26 2001-03-26 Wall structure

Publications (2)

Publication Number Publication Date
JP2002285649A JP2002285649A (en) 2002-10-03
JP4743365B2 true JP4743365B2 (en) 2011-08-10

Family

ID=18942842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001087614A Expired - Lifetime JP4743365B2 (en) 2001-03-26 2001-03-26 Wall structure

Country Status (1)

Country Link
JP (1) JP4743365B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062541A1 (en) * 2016-09-30 2018-04-05 富士フイルム株式会社 Laminate structure
WO2020116111A1 (en) * 2018-12-04 2020-06-11 富士フイルム株式会社 Multilayer structure
US20210123558A1 (en) * 2019-10-29 2021-04-29 Massachusetts Institute Of Technology High-performance sub-ambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4932179B2 (en) * 2004-07-02 2012-05-16 新日本製鐵株式会社 Exterior wall structure, roof structure
WO2011122615A1 (en) * 2010-03-31 2011-10-06 宇部日東化成 株式会社 Laminate structure and laminate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302549A (en) * 1998-04-22 1999-11-02 Origin Electric Co Ltd Infrared-reflective composition and infrared reflector
JP2953576B1 (en) * 1998-09-18 1999-09-27 鹿島建設株式会社 Concrete surface crack prevention method.

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062541A1 (en) * 2016-09-30 2018-04-05 富士フイルム株式会社 Laminate structure
JPWO2018062541A1 (en) * 2016-09-30 2019-02-21 富士フイルム株式会社 Laminated structure
CN109716009A (en) * 2016-09-30 2019-05-03 富士胶片株式会社 Stepped construction
WO2020116111A1 (en) * 2018-12-04 2020-06-11 富士フイルム株式会社 Multilayer structure
JPWO2020116111A1 (en) * 2018-12-04 2021-09-27 富士フイルム株式会社 Multi-layer structure
US11360249B2 (en) 2018-12-04 2022-06-14 Fujifilm Corporation Multilayer structure
US20210123558A1 (en) * 2019-10-29 2021-04-29 Massachusetts Institute Of Technology High-performance sub-ambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel

Also Published As

Publication number Publication date
JP2002285649A (en) 2002-10-03

Similar Documents

Publication Publication Date Title
US11215407B2 (en) Radiative cooling with solar spectrum reflection
Peng et al. An experimental study of the thermal performance of a novel photovoltaic double-skin facade in Hong Kong
Nahar et al. Performance of different passive techniques for cooling of buildings in arid regions
CN107327054A (en) A kind of radiation refrigeration glass curtain wall and its cooling means
KR20100062993A (en) An element for emission of thermal radiation
CN110567188A (en) Winter and summer temperature adjusting device based on radiation cooling and solar energy utilization and construction method
JP4743365B2 (en) Wall structure
Laatioui et al. Zinc monochalcogenide thin films ZnX (X= S, Se, Te) as radiative cooling materials
WO2019118322A1 (en) Active daytime radiative cooling for air conditioning and refrigeration systems
JP4595568B2 (en) Double roof structure
Cui et al. Thermal analysis of radiative cooling coating on the rear surface of photovoltaic tile
Zhao et al. Considerations of passive radiative cooling
Erell et al. A radiative cooling system using water as a heat exchange medium
Aketouane et al. Development of a night-time radiative sky cooling production & storage system: A proposal for a robust sizing and potential estimation methodology
JP2007132024A (en) Heating external wall structure utilizing solar heat
CN207376979U (en) A kind of light-conducting system structure suitable for Passive low-energy building
Nautiyal et al. An Overview of Transparent Insulation Materials and Its Future Developments
CN211345922U (en) Winter and summer temperature adjusting device based on radiation cooling and solar energy utilization
JP2019066101A (en) Sky radiation cooling device
CN114215218A (en) Passive energy-saving external wall system and using method thereof
Kaboré et al. Parametric study of the thermal performance of a sin-gle-family house equipped with an airflow window integrating a heated glazing
Kumar et al. Experimental analysis of glazed windows for green buildings
JPH07139817A (en) Solar heat collector
CN221217671U (en) Building heat insulation film
CN202627878U (en) All-weather energy-saving breathing window with ventilating opening control structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4743365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term