JP4742791B2 - Method for p-type activation of group III nitride compound semiconductor - Google Patents

Method for p-type activation of group III nitride compound semiconductor Download PDF

Info

Publication number
JP4742791B2
JP4742791B2 JP2005287206A JP2005287206A JP4742791B2 JP 4742791 B2 JP4742791 B2 JP 4742791B2 JP 2005287206 A JP2005287206 A JP 2005287206A JP 2005287206 A JP2005287206 A JP 2005287206A JP 4742791 B2 JP4742791 B2 JP 4742791B2
Authority
JP
Japan
Prior art keywords
compound semiconductor
group iii
nitride compound
iii nitride
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005287206A
Other languages
Japanese (ja)
Other versions
JP2007103396A5 (en
JP2007103396A (en
Inventor
俊也 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2005287206A priority Critical patent/JP4742791B2/en
Publication of JP2007103396A publication Critical patent/JP2007103396A/en
Publication of JP2007103396A5 publication Critical patent/JP2007103396A5/ja
Application granted granted Critical
Publication of JP4742791B2 publication Critical patent/JP4742791B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Description

本発明は、p型不純物が添加されたIII族窒化物系化合物半導体をp型活性化する方法に関する。
この方法は、p型半導体層のp型活性化の促進に基づく、p型半導体層の電気抵抗の低減に大いに有用なものである。
The present invention relates to a method for p-type activation of a group III nitride compound semiconductor to which a p-type impurity is added.
This method is very useful for reducing the electrical resistance of the p-type semiconductor layer based on the promotion of p-type activation of the p-type semiconductor layer.

半導体素子のp型半導体層をp型活性化させる方法としては、従来より専らアニーリングを行う方法が採用されてきている。この様なアニーリングを行う従来技術としては、例えば下記の特許文献1に記載されているもの等が公知である。
特許第2540791号公報
As a method for p-type activation of the p-type semiconductor layer of the semiconductor element, a method of annealing exclusively has been conventionally employed. As a conventional technique for performing such annealing, for example, one described in Patent Document 1 below is known.
Japanese Patent No. 2540791

しかしながら、上記の従来技術だけでは、p型半導体層のキャリヤー濃度を5×1018cm-3以上にすることは困難である。これは、上記の従来技術だけでは、p型半導体層のなかの例えばマグネシウムイオン(Mg-)等のp型の不純物に陽子(H+)が拘束されたまま幾らか残留してしまうためだと考えられる。 However, it is difficult to increase the carrier concentration of the p-type semiconductor layer to 5 × 10 18 cm −3 or more only with the above-described conventional technology. This is because, with the above-described conventional technology alone, some protons (H + ) remain in p-type impurities such as magnesium ions (Mg ) in the p-type semiconductor layer while being constrained. Conceivable.

本発明は、上記の課題を解決するために成されたものであり、その目的は、p型半導体層のキャリヤー濃度を従来よりも高めて、p型半導体層のp型活性化を促進させることである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to promote the p-type activation of the p-type semiconductor layer by increasing the carrier concentration of the p-type semiconductor layer as compared with the prior art. It is.

上記の課題を解決するためには、以下の手段が有効である。
即ち、本発明の第1の手段は、p型不純物が添加されたIII族窒化物系化合物半導体をp型活性化する方法において、III族窒化物系化合物半導体の裏面側に電位を与える第1の電極を設け、III族窒化物系化合物半導体の表面上に薄膜金属層を成膜し、III族窒化物系化合物半導体を電解液の中に入れ、第1の電極が薄膜金属層よりも高電位となる様に電圧を印加することで、このIII族窒化物系化合物半導体の表裏両面間に電圧を印加することによって、このIII族窒化物系化合物半導体の中にある陽子(H+)をこのIII族窒化物系化合物半導体の表面に引き出して電解液中に放出させることである。
In order to solve the above problems, the following means are effective.
That is, the first means of the present invention provides a first method of applying a potential to the back side of a group III nitride compound semiconductor in a method of p-type activation of a group III nitride compound semiconductor to which a p-type impurity is added. The thin film metal layer is formed on the surface of the group III nitride compound semiconductor, the group III nitride compound semiconductor is placed in the electrolytic solution, and the first electrode is higher than the thin film metal layer. By applying a voltage so as to be at a potential, a voltage is applied between the front and back surfaces of the group III nitride compound semiconductor, so that protons (H + ) in the group III nitride compound semiconductor are removed. It is drawn out to the surface of the group III nitride compound semiconductor and released into the electrolytic solution.

ただし、上記の「III族窒化物系化合物半導体の表裏両面間に電圧を印加すること」には、III族窒化物系化合物半導体の表裏両面に直接的に電極などを設けて電圧を印加することの他にも、上記のIII族窒化物系化合物半導体が挟まれる2つの電圧印加点間にその他の半導体や溶液などを介在させて、上記のIII族窒化物系化合物半導体の表裏両面間に間接的に電圧を印加することなどをも含む。
また、本発明の第2の手段は、上記の第1の手段において、上記の薄膜金属層の材料を金(Au)、白金(Pt)、又は、ロジウム(Rh)にすることである。
However, in the above-mentioned “applying a voltage between the front and back surfaces of a group III nitride compound semiconductor”, an electrode or the like is directly provided on both the front and back surfaces of the group III nitride compound semiconductor and a voltage is applied. In addition, other semiconductors or solutions are interposed between the two voltage application points between which the group III nitride compound semiconductor is sandwiched, so that it is indirectly between the front and back surfaces of the group III nitride compound semiconductor. It also includes applying a voltage.
The second means of the present invention is that, in the first means, the material of the thin film metal layer is gold (Au), platinum (Pt), or rhodium (Rh) .

また、本発明の第3の手段は、基板上にn型不純物が添加されたIII族窒化物系化合物半導体層とp型不純物が添加されたIII族窒化物系化合物半導体層を積層した積層体の、当該p型不純物が添加されたIII族窒化物系化合物半導体層をp型活性化する方法において、p型不純物が添加されたIII族窒化物系化合物半導体層をアニーリング処理してp型活性化させ、p型不純物が添加されたIII族窒化物系化合物半導体層の側から積層体をエッチングして、n型不純物が添加されたIII族窒化物系化合物半導体層を露出させ、その露出面に電位を与える第1の電極を形成し、電解液を介して、p型不純物が添加されたIII族窒化物系化合物半導体層表面に電位を与える対向電極を設け、積層体を電解液の中に入れ、第1の電極が対向電極よりも高電位となる様に電圧を印加することで、p型不純物が添加されたIII族窒化物系化合物半導体の中にある陽子(H+)をIII族窒化物系化合物半導体の表面に引き出して電解液中に放出させることを特徴とするIII族窒化物系化合物半導体のp型活性化方法である。 The third means of the present invention is a laminate in which a group III nitride compound semiconductor layer to which an n-type impurity is added and a group III nitride compound semiconductor layer to which a p-type impurity is added are stacked on a substrate. In the method of activating the group III nitride compound semiconductor layer to which the p-type impurity is added, the group III nitride compound semiconductor layer to which the p-type impurity is added is annealed to obtain p-type activity. And etching the stack from the side of the group III nitride compound semiconductor layer to which the p-type impurity has been added to expose the group III nitride compound semiconductor layer to which the n-type impurity has been added. to form a first electrode for applying a potential, through the electrolytic solution, the opposing electrodes for applying a potential to the p-type impurity is added group III nitride compound semiconductor layer surface provided, the electrolyte laminate And the first electrode has a higher potential than the counter electrode. That by applying a voltage so as, protons are in the p-type impurity is added Group III nitride compound semiconductors (H +) in the electrolyte is pulled out to the surface of the group III nitride compound semiconductor It is a p-type activation method for a group III nitride compound semiconductor characterized in that it is released.

更に、本発明の第4の手段は、上記の第1乃至第3の何れか1つの手段において、参照電極を用いる3電極法に基づいて、電解液の中水素(H2)ガスを発生させる面の電位を最適化することにより、III族窒化物系化合物半導体から陽子(H+)が脱離する反応を促進させることである。
以上の本発明の手段により、前記の課題を効果的、或いは合理的に解決することができる。
Furthermore, a fourth means of the present invention is to generate hydrogen (H 2 ) gas in the electrolytic solution based on the three-electrode method using a reference electrode in any one of the first to third means. By optimizing the potential of the surface to be produced, the reaction of detaching protons (H + ) from the group III nitride compound semiconductor is promoted.
By the above means of the present invention, the above-mentioned problem can be effectively or rationally solved.

以上の本発明の手段によって得られる効果は以下の通りである。
即ち、本発明の第1の手段によれば、p型の不純物などに拘束されてIII族窒化物系化合物半導体の中に残留していた陽子(H+)の少なくとも一部をIII族窒化物系化合物半導体の中から電気力を用いて電解液中に強制的に取り出すことができるので、これにより、このIII族窒化物系化合物半導体のp型活性化を従来よりも効果的に促進させることができる。この際、薄膜金属層と第1の電極との間の電位差を、電解液を介さずに直接設定することができるので、III族窒化物系化合物半導体の中の電界をより効果的に形成することができる。このため、上記の電気力をより効果的に発生させることができる。
また、本発明の第2の手段によれば、陽子等(即ち、2H+と2e-)と水素ガス(:H2)との間の非平衡状態において、上記の薄膜金属層が効果的な触媒作用を奏するので、水素ガスの発生効率をより効果的に高めることができる。
The effects obtained by the above-described means of the present invention are as follows.
That is, according to the first means of the present invention, at least a part of the protons (H + ) remaining in the group III nitride compound semiconductor restrained by the p-type impurity or the like are group III nitride. Since it can be forcibly taken out from an organic compound semiconductor into an electrolytic solution by using electric force, this effectively promotes the p-type activation of this group III nitride compound semiconductor as compared with the prior art. Can do. At this time, since the potential difference between the thin film metal layer and the first electrode can be set directly without using the electrolytic solution, the electric field in the group III nitride compound semiconductor is more effectively formed. be able to. For this reason, said electric force can be generated more effectively.
Further, according to the second means of the present invention, the above-mentioned thin film metal layer is effective in a non-equilibrium state between protons (ie, 2H + and 2e ) and hydrogen gas (: H 2 ). Since it exhibits a catalytic action, the generation efficiency of hydrogen gas can be more effectively increased.

また、本発明の第3の手段によれば、基板上にn型不純物が添加されたIII族窒化物系化合物半導体層とp型不純物が添加されたIII族窒化物系化合物半導体層を積層した積層体の、当該p型不純物が添加されたIII族窒化物系化合物半導体層をp型活性化する方法において、上記の第1の電極と対向電極を用いることによって、p型不純物が添加されたIII族窒化物系化合物半導体の表面上に薄膜金属層を形成しなくてもp型不純物が添加されたIII族窒化物系化合物半導体を効果的にp型活性化させることができるので、III族窒化物系化合物半導体の表面上に薄膜金属層を形成する他の方法よりも、最終的に得られる所望のIII族窒化物系化合物半導体の構造の任意性をより高く確保することができる。   According to the third means of the present invention, the group III nitride compound semiconductor layer to which the n-type impurity is added and the group III nitride compound semiconductor layer to which the p-type impurity is added are stacked on the substrate. In the method of p-type activation of the group III nitride compound semiconductor layer to which the p-type impurity is added, the p-type impurity is added by using the first electrode and the counter electrode. Since a group III nitride compound semiconductor to which a p-type impurity is added can be effectively p-type activated without forming a thin film metal layer on the surface of the group III nitride compound semiconductor, the group III As compared with other methods of forming a thin film metal layer on the surface of a nitride-based compound semiconductor, it is possible to ensure a higher degree of arbitrary structure of the desired group III nitride-based compound semiconductor finally obtained.

また、本発明の第4の手段によれば、水素ガスが発生する面の電解液に対する電位差、または、水素ガスが発生する面の絶対的な電位を所望の値に容易に調整することができるので、その最適化によって、陽子等(即ち、2H+と2e-)と水素ガス(:H2)との間の非平衡状態において、水素ガスの発生効率をより効果的に高めることができる。 According to the fourth means of the present invention, the potential difference with respect to the electrolyte solution on the surface where hydrogen gas is generated or the absolute potential on the surface where hydrogen gas is generated can be easily adjusted to a desired value. Therefore, by the optimization, the generation efficiency of hydrogen gas can be more effectively increased in a non-equilibrium state between protons (ie, 2H + and 2e ) and hydrogen gas (: H 2 ).

以下、本発明を具体的な実施例に基づいて説明する。
ただし、本発明の実施形態は、以下に示す個々の実施例に限定されるものではない。
Hereinafter, the present invention will be described based on specific examples.
However, the embodiments of the present invention are not limited to the following examples.

図1は本実施例1のp型活性化処理方法を示す電気分解の模式的な回路図であり、結晶成長基板101と半導体層102とp型半導体層103などから成る発光ダイオード100は、ダブルヘテロ接合などの周知の構造を有するLEDを模式的に表している。この発光ダイオード100の結晶成長基板101の結晶成長面上(図面右側)には、n型半導体層と発光層等から構成される半導体層102が積層されており、更にその上(図面右側)には、p型不純物が添加されたIII族窒化物系化合物半導体から成るp型半導体層103が積層されている。このp型半導体層103は、単層構造のものでも複層構造のものでもよく、マグネシウム(Mg)を添加することと、従来と同様のアニーリング処理をすることによって、予めp型に従来程度に活性化されている。
ただし、このアニーリング処理は、必ずしも実施しなくても良い。
FIG. 1 is a schematic circuit diagram of electrolysis showing the p-type activation processing method of the first embodiment. A light-emitting diode 100 comprising a crystal growth substrate 101, a semiconductor layer 102, a p-type semiconductor layer 103, etc. An LED having a known structure such as a heterojunction is schematically shown. On the crystal growth surface (right side of the drawing) of the crystal growth substrate 101 of the light emitting diode 100, a semiconductor layer 102 composed of an n-type semiconductor layer, a light emitting layer, and the like is laminated, and further on that (right side of the drawing). The p-type semiconductor layer 103 made of a group III nitride compound semiconductor to which a p-type impurity is added is laminated. The p-type semiconductor layer 103 may have a single-layer structure or a multi-layer structure. By adding magnesium (Mg) and performing an annealing process similar to the conventional one, the p-type semiconductor layer 103 is previously converted to a p-type structure as in the prior art. It has been activated.
However, this annealing process is not necessarily performed.

半導体層102が有する上記のn型半導体層のエッチングされた露出面には、LEDの負電極104が形成されており、この負電極104が本発明の第1の電極に相当している。この負電極104は、シール材105によって局所的に封止されている。発光ダイオード100は、少なくとも上記のp型半導体層103の上面が電解液2に浸されている。以下、このp型半導体層103の上面のことを、後にここに電極が形成される理由からコンタクト面103aと言う。そして、このコンタクト面103aが本発明のIII族窒化物系化合物半導体の表面に相当している。   A negative electrode 104 of the LED is formed on the etched exposed surface of the n-type semiconductor layer of the semiconductor layer 102, and this negative electrode 104 corresponds to the first electrode of the present invention. The negative electrode 104 is locally sealed with a sealing material 105. In the light emitting diode 100, at least the upper surface of the p-type semiconductor layer 103 is immersed in the electrolytic solution 2. Hereinafter, the upper surface of the p-type semiconductor layer 103 is referred to as a contact surface 103a for the reason that an electrode is formed later. The contact surface 103a corresponds to the surface of the group III nitride compound semiconductor of the present invention.

電解液2は、塩酸水溶液から成り、約pH2に希釈されている。ただし、電解液2は、硫酸などのその他の水溶液から構成しても良い。
対向電極3はカーボン又は白金から形成されており、配線4,5によって定電圧電源Eを介して上記の負電極104に接続されている。即ち、負電極104は、定電圧電源Eによって印加される電圧に基づいて対向電極3に対して相対的に正電位になっている。
なお、これらの回路は生産効率上、半導体素子単位ではなく、分離前の半導体ウェハの単位で構成することが望ましい。
The electrolytic solution 2 is made of an aqueous hydrochloric acid solution and is diluted to about pH2. However, the electrolytic solution 2 may be composed of other aqueous solutions such as sulfuric acid.
The counter electrode 3 is made of carbon or platinum, and is connected to the negative electrode 104 via the constant voltage power source E by wires 4 and 5. That is, the negative electrode 104 is at a positive potential relative to the counter electrode 3 based on the voltage applied by the constant voltage power source E.
In view of production efficiency, these circuits are preferably configured not in units of semiconductor elements but in units of semiconductor wafers before separation.

以上の構成により、コンタクト面103aの近傍及び対向電極3の近傍において、それぞれ以下の化学反応が促進される。
(コンタクト面103aの近傍における化学反応)
2H++ 2OH- → 2H2O …(1)
(対向電極3の近傍における化学反応)
2H2O + 2e- → 2OH-+ H2↑ …(2)
With the above configuration, the following chemical reactions are promoted near the contact surface 103a and near the counter electrode 3, respectively.
(Chemical reaction in the vicinity of the contact surface 103a)
2H + + 2OH → 2H 2 O (1)
(Chemical reaction in the vicinity of the counter electrode 3)
2H 2 O + 2e → 2OH + H 2 ↑ (2)

そして、これらの化学反応により、p型半導体層103から多数の陽子(H+)を離脱させることができる。したがって、上記の構成に従えば、p型半導体層103のp型活性化を従来よりも大幅に促進することができる。
このp型活性化処理の後は、当該半導体ウェハを洗浄し、乾燥させ、その後は従来と同様にして、正電極を形成したり、素子単位に分割したりすることなどによって、従来よりも電気抵抗の小さな発光ダイオードを得ることができる。
A large number of protons (H + ) can be released from the p-type semiconductor layer 103 by these chemical reactions. Therefore, according to the above configuration, the p-type activation of the p-type semiconductor layer 103 can be greatly promoted compared to the conventional case.
After this p-type activation process, the semiconductor wafer is washed and dried, and thereafter, the positive electrode is formed or divided into element units in the same manner as in the prior art. A light-emitting diode with low resistance can be obtained.

図2は本実施例2のp型活性化処理方法を示す電気分解の模式的な回路図である。発光ダイオード200の結晶成長基板201の結晶成長面上(図面右側)には、n型半導体層と発光層等から構成される半導体層202が積層されており、更にその上(図面右側)には、p型半導体層203が積層されている。このp型半導体層203は、マグネシウム(Mg)を添加することと、従来と同様のアニーリング処理をすることによって、予めp型に従来程度に活性化されている。
ただし、このアニーリング処理は、必ずしも実施しなくても良い。
FIG. 2 is a schematic circuit diagram of electrolysis showing the p-type activation processing method of the second embodiment. On the crystal growth surface (right side of the drawing) of the crystal growth substrate 201 of the light emitting diode 200, a semiconductor layer 202 composed of an n-type semiconductor layer, a light emitting layer, and the like is laminated, and further (on the right side of the drawing). The p-type semiconductor layer 203 is stacked. This p-type semiconductor layer 203 is activated to a p-type in advance to the conventional level by adding magnesium (Mg) and performing the same annealing treatment as in the past.
However, this annealing process is not necessarily performed.

半導体層202が有する上記のn型半導体層のエッチングされた露出面には、負電極204が形成されており、この負電極204が本発明の第1の電極に相当している。この負電極204は、シール材205によって局所的に封止されている。また、p型半導体層203の上面(コンタクト面203a)には、原子単位で数層の金(Au)から成る薄膜金属層206が成膜されており、その上には正電極207が形成されている。この正電極207もまたシール材208によって局所的に封止されている。   A negative electrode 204 is formed on the etched exposed surface of the n-type semiconductor layer included in the semiconductor layer 202, and the negative electrode 204 corresponds to the first electrode of the present invention. The negative electrode 204 is locally sealed with a sealing material 205. A thin-film metal layer 206 made of several layers of gold (Au) is formed on the upper surface (contact surface 203a) of the p-type semiconductor layer 203, and a positive electrode 207 is formed thereon. ing. The positive electrode 207 is also locally sealed by the sealing material 208.

この発光ダイオード200は、少なくとも上記の薄膜金属層206の露出面が電解液2に浸されている。電解液2は、塩酸水溶液から成り、約pH2に希釈されている。ただし、電解液2は、硫酸などのその他の水溶液から構成しても良い。
正電極207は、配線4,5によって定電圧電源Eを介して上記の負電極104に接続されている。即ち、負電極204は、定電圧電源Eによって印加される電圧に基づいて正電極207に対して相対的に正電位になっている。
なお、これらの回路は生産効率上、半導体素子単位ではなく、分離前の半導体ウェハの単位で構成することが望ましい。
In the light emitting diode 200, at least the exposed surface of the thin film metal layer 206 is immersed in the electrolytic solution 2. The electrolytic solution 2 is made of an aqueous hydrochloric acid solution and is diluted to about pH2. However, the electrolytic solution 2 may be composed of other aqueous solutions such as sulfuric acid.
The positive electrode 207 is connected to the negative electrode 104 via the constant voltage power source E by the wirings 4 and 5. That is, the negative electrode 204 is at a positive potential relative to the positive electrode 207 based on the voltage applied by the constant voltage power source E.
In view of production efficiency, these circuits are preferably configured not in units of semiconductor elements but in units of semiconductor wafers before separation.

以上の構成により、薄膜金属層206と電解液2との界面近傍において、以下の化学反応が促進される。
(薄膜金属層206の近傍における化学反応)
2H++ 2e- → H2↑ …(3)
With the above configuration, the following chemical reaction is promoted near the interface between the thin-film metal layer 206 and the electrolytic solution 2.
(Chemical reaction in the vicinity of the thin metal layer 206)
2H + + 2e → H 2 ↑ (3)

そして、これらの化学反応により、p型半導体層203から多数の陽子(H+)を離脱させることができる。したがって、上記の構成に従えば、p型半導体層203のp型活性化を従来よりも大幅に促進することができる。
このp型活性化処理の後は、当該半導体ウェハを洗浄し、乾燥させ、その後は従来と同様に素子単位に分割するなどの工程を経て、従来よりも電気抵抗の小さな発光ダイオードを得ることができる。
A large number of protons (H + ) can be released from the p-type semiconductor layer 203 by these chemical reactions. Therefore, according to the above configuration, the p-type activation of the p-type semiconductor layer 203 can be greatly promoted as compared with the conventional case.
After this p-type activation treatment, the semiconductor wafer is washed and dried, and thereafter, through a process of dividing into element units as in the past, it is possible to obtain a light emitting diode having a smaller electrical resistance than in the past. it can.

〔その他の変形例〕
本発明の実施形態は、上記の形態に限定されるものではなく、その他にも以下に例示される様な変形を行っても良い。この様な変形や応用によっても、本発明の作用に基づいて本発明の効果を得ることができる。
(変形例1)
例えば、上記の実施例2では、参照電極を用いなかったが、3電極法に従って更に参照電極を導入しても良い(本発明の第4の手段)。これにより、水素ガスが発生する面の絶対的な電位を所望の値に容易に調整することができるので、その最適化によって、水素ガスが発生する面の近傍における陽子等(即ち、2H+と2e-)と水素ガス(H2)との間の非平衡状態(例:式(3))において、水素ガスの発生効率をより効果的に高めることができる。したがって、この場合には、所望のIII族窒化物系化合物半導体を更に効率よく効果的にp型活性化することができる。
[Other variations]
The embodiment of the present invention is not limited to the above-described embodiment, and other modifications as exemplified below may be made. Even with such modifications and applications, the effects of the present invention can be obtained based on the functions of the present invention.
(Modification 1)
For example, although the reference electrode was not used in Example 2 described above, a reference electrode may be further introduced according to the three-electrode method (fourth means of the present invention). As a result, the absolute potential of the surface where the hydrogen gas is generated can be easily adjusted to a desired value. Therefore, by optimizing the proton or the like in the vicinity of the surface where the hydrogen gas is generated (ie, 2H + and 2e ) and hydrogen gas (H 2 ), the generation efficiency of hydrogen gas can be more effectively increased in a non-equilibrium state (eg, formula (3)). Therefore, in this case, the desired group III nitride compound semiconductor can be activated p-type more efficiently and effectively.

この場合、上記の水素ガスが発生する面の電位(例:薄膜金属層206の電位)は、次式(3)′の電気化学反応の熱力学的な平衡電位(:標準水素電極の電位V0)よりも卑な電位に設定し、かつ、次式(4)の電気化学反応(:水の電気分解)の熱力学的な平衡電位(V0+1.23V)より貴な電位に設定することが望ましい。また、溶液中の溶存酸素を乾燥窒素バブリング等により除去すれば、上記の電位をより卑にできるので、更に効率よく効果的に所望のp型活性化処理を実施することができる。
(電気化学反応の平衡状態を表す式)
2H++ 2e- ⇔ H2 …(3)′
2+ H2O + 2e- ⇔ HO2 - + OH- …(4)
In this case, the potential of the surface where the hydrogen gas is generated (for example, the potential of the thin film metal layer 206) is the thermodynamic equilibrium potential of the electrochemical reaction of the following formula (3) ′ (: the potential V0 of the standard hydrogen electrode). It is desirable to set the potential to be lower than that of the thermodynamic equilibrium potential (V0 + 1.23 V) of the electrochemical reaction (: electrolysis of water) of the following formula (4). . Further, if the dissolved oxygen in the solution is removed by dry nitrogen bubbling or the like, the above-mentioned potential can be made lower, so that the desired p-type activation treatment can be performed more efficiently and effectively.
(Expression of equilibrium state of electrochemical reaction)
2H + + 2e ⇔ H 2 (3) ′
O 2 + H 2 O + 2e - ⇔ HO 2 - + OH - ... (4)

また、上記の各実施例では、発光ダイオード100,200における各p型半導体層(103,203)のp型活性化方法について例示したが、本発明は、p型の不純物が添加された単層又は複層構造の単体のIII族窒化物系化合物半導体に対しても、勿論、略同様にして適用することができる。   In each of the above embodiments, the p-type activation method of each p-type semiconductor layer (103, 203) in the light-emitting diodes 100, 200 has been illustrated. Of course, the present invention can be applied to a single group III nitride compound semiconductor having a multilayer structure in substantially the same manner.

その時、例えば図1と略同様にして対向電極を用いる場合には、その対向電極に対峙させるp型III族窒化物系化合物半導体の面を表面とし、その反対側(裏側)の面を裏面として、このp型III族窒化物系化合物半導体の裏面に、前述の負電極104に対応する本発明の第1の電極を形成すれば良い。
また、図2と略同様にして薄膜金属層(206)を用いる場合には、その反対側(裏側)の面を裏面として、このp型III族窒化物系化合物半導体の裏面に、前述の負電極204に対応する本発明の第1の電極を形成すれば良い。
At this time, for example, when the counter electrode is used in substantially the same manner as in FIG. 1, the surface of the p-type group III nitride compound semiconductor facing the counter electrode is the front surface, and the opposite surface (back surface) is the back surface. The first electrode of the present invention corresponding to the negative electrode 104 may be formed on the back surface of the p-type group III nitride compound semiconductor.
Further, when the thin film metal layer (206) is used in substantially the same manner as in FIG. 2, the opposite side (back side) of the thin film metal layer (206) is used as the back side, and the negative electrode described above is formed on the back side of the p-type group III nitride compound semiconductor. The first electrode of the present invention corresponding to the electrode 204 may be formed.

本発明は、p型不純物が添加されたIII族窒化物系化合物半導体をp型活性化する方法に関するものである。したがって、その利用分野は発光素子、受光素子に限定されるものではなく、本発明は、III族窒化物系化合物半導体を有して成る任意の半導体素子に利用することができる。   The present invention relates to a method for p-type activation of a group III nitride compound semiconductor to which a p-type impurity is added. Therefore, the application field is not limited to the light emitting element and the light receiving element, and the present invention can be used for any semiconductor element having a group III nitride compound semiconductor.

実施例1のp型活性化処理方法を示す電気分解の回路図Electrolytic circuit diagram showing the p-type activation processing method of Example 1 実施例2のp型活性化処理方法を示す電気分解の回路図Electrolytic circuit diagram showing the p-type activation processing method of Example 2

100,200 : 発光ダイオード
101,201 : 結晶成長基板
102,202 : 半導体層(n型半導体層、及び発光層)
103,203 : p型半導体層
104,204 : 負電極
105,205 : シール材
206 : 薄膜金属層
207 : 正電極
2 : 電解液
100, 200: Light emitting diode 101, 201: Crystal growth substrate 102, 202: Semiconductor layer (n-type semiconductor layer and light emitting layer)
103, 203: p-type semiconductor layer 104, 204: negative electrode 105, 205: sealing material
206: Thin metal layer
207: Positive electrode
2: Electrolytic solution

Claims (4)

p型不純物が添加されたIII族窒化物系化合物半導体をp型活性化する方法において、
前記III族窒化物系化合物半導体の裏面側に電位を与える第1の電極を設け、
前記III族窒化物系化合物半導体の表面上に薄膜金属層を成膜し、
前記III族窒化物系化合物半導体を電解液の中に入れ、
前記第1の電極が前記薄膜金属層よりも高電位となる様に電圧を印加することで、前記III族窒化物系化合物半導体の表裏両面間に電圧を印加することによって、前記III族窒化物系化合物半導体の中にある陽子(H+)を前記III族窒化物系化合物半導体の表面に引き出して前記電解液中に放出させることを特徴とするIII族窒化物系化合物半導体のp型活性化方法。
In a method for p-type activation of a group III nitride compound semiconductor to which a p-type impurity is added,
Providing a first electrode for applying a potential to the back side of the group III nitride compound semiconductor;
Forming a thin metal layer on the surface of the group III nitride compound semiconductor;
Put the group III nitride compound semiconductor in the electrolyte,
By applying a voltage between the front and back surfaces of the group III nitride compound semiconductor by applying a voltage so that the first electrode has a higher potential than the thin film metal layer, the group III nitride P-type activation of a group III nitride compound semiconductor, characterized in that protons (H + ) in a group III compound semiconductor are drawn out to the surface of the group III nitride compound semiconductor and released into the electrolytic solution Method.
前記薄膜金属層の材料は、金(Au)、白金(Pt)、又は、ロジウム(Rh)であることを特徴とする請求項1に記載のIII族窒化物系化合物半導体のp型活性化方法。 2. The method of activating a group III nitride compound semiconductor according to claim 1, wherein the material of the thin film metal layer is gold (Au), platinum (Pt), or rhodium (Rh). . 基板上にn型不純物が添加されたIII族窒化物系化合物半導体層とp型不純物が添加されたIII族窒化物系化合物半導体層を積層した積層体の、当該p型不純物が添加されたIII族窒化物系化合物半導体層をp型活性化する方法において、
前記p型不純物が添加されたIII族窒化物系化合物半導体層をアニーリング処理してp型活性化させ、
前記p型不純物が添加されたIII族窒化物系化合物半導体層の側から前記積層体をエッチングして、前記n型不純物が添加されたIII族窒化物系化合物半導体層を露出させ、その露出面に電位を与える第1の電極を形成し、
電解液を介して、前記p型不純物が添加されたIII族窒化物系化合物半導体層表面に電位を与える対向電極を設け、
前記積層体を前記電解液の中に入れ、
前記第1の電極が前記対向電極よりも高電位となる様に電圧を印加することで、前記p型不純物が添加されたIII族窒化物系化合物半導体の中にある陽子(H+)を前記III族窒化物系化合物半導体の表面に引き出して前記電解液中に放出させることを特徴とするIII族窒化物系化合物半導体のp型活性化方法。
A layered product in which a group III nitride compound semiconductor layer to which an n-type impurity is added and a group III nitride compound semiconductor layer to which a p-type impurity is added is laminated on a substrate is added with the p-type impurity III In the method of activating the group nitride compound semiconductor layer by p-type activation,
Annealing the III-nitride compound semiconductor layer to which the p-type impurity is added to perform p-type activation;
Wherein from the side of the p-type impurity is added Group III nitride compound semiconductor layer by etching the laminate, exposing the group III nitride compound semiconductor layer in which the n-type impurity is added, the exposed surface a first electrode for applying a potential is formed on,
Through the electrolytic solution, it provided the opposing electrodes for applying a potential to the p-type impurity is added Group III nitride compound semiconductor layer surface,
Put the laminate into the electrolyte,
By applying a voltage so that the first electrode has a higher potential than the counter electrode, protons (H + ) in the group III nitride compound semiconductor to which the p-type impurity is added are A p-type activation method for a group III nitride compound semiconductor, characterized in that the group III nitride compound semiconductor is drawn to the surface of the group III nitride compound semiconductor and released into the electrolytic solution.
参照電極を用いる3電極法に基づいて、
前記電解液の中水素(H2)ガスを発生させる面の電位を最適化することにより、
前記III族窒化物系化合物半導体から陽子(H+)が脱離する反応を促進させる
ことを特徴とする請求項1乃至請求項3の何れか1項に記載のIII族窒化物系化合物半導体のp型活性化方法。
Based on the three-electrode method using a reference electrode,
By optimizing the potential of the surface that generates hydrogen (H 2 ) gas in the electrolyte,
The group III nitride compound semiconductor according to any one of claims 1 to 3, which promotes a reaction in which protons (H + ) are eliminated from the group III nitride compound semiconductor. p-type activation method.
JP2005287206A 2005-09-30 2005-09-30 Method for p-type activation of group III nitride compound semiconductor Active JP4742791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005287206A JP4742791B2 (en) 2005-09-30 2005-09-30 Method for p-type activation of group III nitride compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005287206A JP4742791B2 (en) 2005-09-30 2005-09-30 Method for p-type activation of group III nitride compound semiconductor

Publications (3)

Publication Number Publication Date
JP2007103396A JP2007103396A (en) 2007-04-19
JP2007103396A5 JP2007103396A5 (en) 2008-01-31
JP4742791B2 true JP4742791B2 (en) 2011-08-10

Family

ID=38030095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005287206A Active JP4742791B2 (en) 2005-09-30 2005-09-30 Method for p-type activation of group III nitride compound semiconductor

Country Status (1)

Country Link
JP (1) JP4742791B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101171817B1 (en) 2010-02-23 2012-08-14 전남대학교산학협력단 METHOD FOR MANUFACTURING P-TYPE GaN-BASED COMPOUND SEMICONDUCTOR, METHOD FOR ACTVATING P-TYPE DOPANT CONTAINED IN GaN-BASED COMPOUND SEMICONDUCTOR, GaN-BASED COMPOUND SEMICONDUCTOR DEVICE, AND GaN-BASED COMPOUND SEMICONDUCTOR LIGHT-EMITTING DEVICE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09162442A (en) * 1995-12-12 1997-06-20 Pioneer Electron Corp Manufacture of group iii nitride semiconductor light emitting element
JP2001351925A (en) * 2000-04-04 2001-12-21 Sony Corp METHOD FOR MANUFACTURING p-TYPE NITRIDE-BASED III-V COMPOUND SEMICONDUCTOR AND METHOD FOR MANUFACTURING SEMICONDUCTOR ELEMENT
JP2002170981A (en) * 2000-12-04 2002-06-14 Fujitsu Ltd Method for controlling impurity concentration of compound semiconductor crystal and optical semiconductor device
JP2004014598A (en) * 2002-06-04 2004-01-15 Mitsubishi Cable Ind Ltd METHOD FOR MANUFACTURING P-TYPE GaN-BASED SEMICONDUCTOR, AND METHOD FOR MANUFACTURING GaN-BASED SEMICONDUCTOR DEVICE
JP2007042898A (en) * 2005-08-03 2007-02-15 Kyocera Corp Manufacturing method of p-type gallium-nitride-based compound semiconductor, and gallium-nitride-based compound semiconductor element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2569871B2 (en) * 1990-03-01 1997-01-08 日本電気株式会社 Reference electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09162442A (en) * 1995-12-12 1997-06-20 Pioneer Electron Corp Manufacture of group iii nitride semiconductor light emitting element
JP2001351925A (en) * 2000-04-04 2001-12-21 Sony Corp METHOD FOR MANUFACTURING p-TYPE NITRIDE-BASED III-V COMPOUND SEMICONDUCTOR AND METHOD FOR MANUFACTURING SEMICONDUCTOR ELEMENT
JP2002170981A (en) * 2000-12-04 2002-06-14 Fujitsu Ltd Method for controlling impurity concentration of compound semiconductor crystal and optical semiconductor device
JP2004014598A (en) * 2002-06-04 2004-01-15 Mitsubishi Cable Ind Ltd METHOD FOR MANUFACTURING P-TYPE GaN-BASED SEMICONDUCTOR, AND METHOD FOR MANUFACTURING GaN-BASED SEMICONDUCTOR DEVICE
JP2007042898A (en) * 2005-08-03 2007-02-15 Kyocera Corp Manufacturing method of p-type gallium-nitride-based compound semiconductor, and gallium-nitride-based compound semiconductor element

Also Published As

Publication number Publication date
JP2007103396A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP6024900B2 (en) How to reduce carbon dioxide
JP4980594B2 (en) Method for producing P-type gallium nitride compound semiconductor
JP6593902B2 (en) Flexible substrate peeling method
US6426235B1 (en) Method of manufacturing semiconductor device
WO2013141232A1 (en) Solar cell and method for manufacturing same
JP5182189B2 (en) Manufacturing method of semiconductor device
US7202510B2 (en) Semiconductor luminescent device and manufacturing method thereof
TWI467057B (en) Cleaning method by electrolytic sulfuric acid and manufacturing method of semiconductor device
US9982360B2 (en) Method for transfering a graphene layer
TW200633247A (en) Method for manufacturing lighe-emitting diode
JP4742791B2 (en) Method for p-type activation of group III nitride compound semiconductor
Jang et al. Free-standing GaN layer by combination of electrochemical and photo-electrochemical etching
Fujii et al. Hydrogen generation from aqueous water using n‐GaN by photoassisted electrolysis
JP5173080B2 (en) How to reduce carbon dioxide
JP2007103396A5 (en)
US20090212276A1 (en) Light-emitting diode device and a fabrication method thereof
JP2007045645A (en) Hydrogen producing apparatus, method for manufacturing hydrogen producing apparatus, and hydrogen producing method
JP2015129343A (en) Formic acid generation apparatus and method
CN112098481B (en) Device for dehydrogenation activation of nitride semiconductor material
JPWO2012150669A1 (en) Method for cleaning silicon substrate and method for manufacturing solar cell
TW201232809A (en) Method for manufacturing light emitting chip
JP4094371B2 (en) HF cleaning method and HF cleaning apparatus for silicon wafer
JP2005244089A (en) Anode forming device, treatment method, and manufacturing method of semiconductor substrate
JP2007157883A (en) Semiconductor device and method of manufacturing same
JP2013074276A (en) Manufacturing method of photoelectric conversion element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4742791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150