JP4741788B2 - Reinforcing bar arrangement method - Google Patents

Reinforcing bar arrangement method Download PDF

Info

Publication number
JP4741788B2
JP4741788B2 JP2003348266A JP2003348266A JP4741788B2 JP 4741788 B2 JP4741788 B2 JP 4741788B2 JP 2003348266 A JP2003348266 A JP 2003348266A JP 2003348266 A JP2003348266 A JP 2003348266A JP 4741788 B2 JP4741788 B2 JP 4741788B2
Authority
JP
Japan
Prior art keywords
beam member
reinforcement
column
reinforcing
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003348266A
Other languages
Japanese (ja)
Other versions
JP2005113482A (en
Inventor
宏彰 江戸
安彦 増田
公一 杉山
健次 米沢
訓祥 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2003348266A priority Critical patent/JP4741788B2/en
Publication of JP2005113482A publication Critical patent/JP2005113482A/en
Application granted granted Critical
Publication of JP4741788B2 publication Critical patent/JP4741788B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Reinforcement Elements For Buildings (AREA)

Description

本発明は、補強筋の配筋方法に関する。 The present invention relates to a reinforcing bar arrangement method .

RC造構造物における配筋に着目した各種補強工法が提案されている。例えば、鉄筋コンクリート造の短スパンの梁に於いて、剪断補強筋を二重に配置してなることを特徴とする短スパン梁の剪断補強構造(特許文献1参照)などが提案されている。   Various reinforcing methods have been proposed that focus on the reinforcement in RC structures. For example, in a reinforced concrete short span beam, a shear reinforcement structure of a short span beam (refer to Patent Document 1), in which shear reinforcement bars are arranged in double, has been proposed.

また、柱・梁接合部において柱主筋または梁主筋に、添筋を溶接添加して主筋との間にバイパス状に閉鎖ループを作ることを特徴とする主筋の定着力増強法(特許文献2参照)なども提案されている。   In addition, a method for enhancing the fixing strength of the main bars, characterized in that a reinforcing bar is welded to the column main bar or beam main bar at the column / beam joint to form a closed loop in a bypass shape with the main bar (see Patent Document 2) ) Etc. are also proposed.

更に、鉄筋コンクリート構造の梁における主鉄筋を、梁内法スパン間において主鉄筋に固定した定着具によってコンクリート中に定着してなることを特徴とする鉄筋の定着構造(特許文献3参照)なども提案されている。
特開平7−34595号公報 特開平1−36833号公報 特開平1−271555号公報
In addition, a reinforcing bar fixing structure is proposed in which the main reinforcing bar in a reinforced concrete beam is fixed in the concrete with a fixing tool fixed to the main reinforcing bar between the spans in the beam (see Patent Document 3). Has been.
JP-A-7-34595 JP-A-1-36833 JP-A-1-271555

従来のRC造梁部材の付着設計において、付着割裂長さ算定時の梁幅は、当該RC造梁部材における矩形断面の幅のみしか考慮されていなかった。そこで例えば、昨今のRC建物の高層化、使用材料の高強度化、使用鉄筋の大断面化などの状況に対応して前記付着設計を行う場合、所望の付着強度確保のために、コンクリートの高強度化、せん断補強筋の過密配置・高強度化を図る手当が必要となっていた。しかしながら、このような手当を実行すれば、コストアップや作業効率の低下につながりやすいという課題が残されていた。   In the conventional adhesion design of RC beam members, only the width of the rectangular cross section of the RC beam member is considered as the beam width when calculating the adhesion split length. Therefore, for example, when performing the adhesion design corresponding to the situation such as the recent rise in the height of RC buildings, the strength of the materials used, and the increase in the cross section of the reinforcing bars used, in order to ensure the desired adhesion strength, There was a need for measures to increase the strength and density of the shear reinforcement bars and increase the strength. However, if such an allowance is executed, there remains a problem that it tends to lead to an increase in cost and a decrease in work efficiency.

そこで本発明はこのような課題に着目してなされたもので、付着設計における余裕度を向上させ、低コストで効率的な付着割裂の抑制を可能とする補強筋の配筋方法を提供する。 Accordingly, the present invention has been made paying attention to such a problem, and provides a reinforcing bar arrangement method that improves the margin in adhesion design and enables effective suppression of adhesion splitting at low cost.

本発明は、柱部材の径間に梁部材が設けられ、前記柱部材の他側面と前記梁部材の他側面が一致するように前記梁部材が前記柱部材の他側面側に偏って配置され、前記梁部材の他側面と一側面の両側に広がるスラブを前記梁部材が支持するRC造構造物において、
前記梁部材の延長方向の配筋と直交する補強筋を、前スラブ材中において、前記柱部材の側面幅と略同じ長さ又はこの長さ以上の長さで配筋する補強筋配筋方法であって
前記補強筋の前記梁部材の他側面側の端をL字またはU字となし、当該L字またはU字の屈曲部から先方を、前記梁部材の断面内に配し、
外力が作用した際に、前記スラブが、前記梁部材の一側面に対応する位置ではひび割れが生じず、前記柱部材の側面幅に対応する位置でひび割れが生じるように前記補強筋を配筋することを特徴とする。
また、柱部材の径間に梁部材が設けられ、当該梁部材が前記柱部材の側面幅の中央に配置され、前記梁部材の一側面側のみに広がるスラブを前記梁部材が支持するRC造構造物において、
前記梁部材の延長方向の配筋と直交する補強筋の前記梁部材の一側面側の一端を、前記スラブ材中において、前記柱部材の一側面に対応する位置又はこの位置を越える位置まで配筋する補強筋配筋方法であって、
前記補強筋の前記梁部材の他側面側の一端をL字またはU字となし、当該L字またはU字の屈曲部から先方を、前記梁部材の断面内に配し、
外力が作用した際に、前記スラブが、前記梁部材の一側面に対応する位置ではひび割れが生じず、前記柱部材の一側面に対応する位置又はこの位置を越える位置でひび割れが生じるように前記補強筋を配筋することを特徴とする。
In the present invention , a beam member is provided between the diameters of the column member, and the beam member is arranged to be biased toward the other side surface of the column member so that the other side surface of the column member and the other side surface of the beam member coincide with each other. , Oite the slab extending to both sides of the other side and one side of the beam member of RC structures the beam member is supported,
The reinforcement perpendicular to the reinforcement of the extending direction of said beam member, prior SL in slabstock during, before Symbol substantially the same length or reinforcement distribution to distribution muscle in this length longer than the side width of the pillar member A muscle method ,
The other party an end of another side surface of said beam member of said reinforcement L-or U-and without, from the bent portion of said L-shaped or U-, arranged in the cross section of said beam member,
When the external force is applied, the reinforcing bars are arranged so that the slab does not crack at a position corresponding to one side surface of the beam member, but cracks at a position corresponding to the side surface width of the column member. It is characterized by that.
In addition, an RC structure is provided in which a beam member is provided between the diameters of the column members, the beam member is disposed in the center of the side surface width of the column member, and the beam member supports a slab extending only on one side surface of the beam member. In the structure
One end of one side of the beam member of the reinforcing member orthogonal to the bar arrangement in the extension direction of the beam member is arranged in the slab material to a position corresponding to one side surface of the column member or a position beyond this position. Reinforcing reinforcement reinforcement arrangement method,
One end of the reinforcing member on the other side surface of the beam member is L-shaped or U-shaped, and the tip from the bent portion of the L-shaped or U-shaped is arranged in the cross section of the beam member,
When an external force is applied, the slab does not crack at a position corresponding to one side surface of the beam member, and cracks occur at a position corresponding to one side surface of the column member or a position exceeding this position. It is characterized by arranging reinforcing bars.

本発明によれば、付着設計における余裕度を向上させ、低コストで効率的な付着割裂の抑制を可能とする。   ADVANTAGE OF THE INVENTION According to this invention, the margin in adhesion | attachment design is improved and it becomes possible to suppress adhesion splitting efficiently at low cost.

以下、本発明の実施形態について図面を用いて詳細に説明する。図1は本発明を適用したRC造梁部材における付着割裂破壊防止方法の実施態様(第1の実施態様)を示す図であり、(a)断面図、(b)平面図を示す。ここでは、鉄筋コンクリート造の構造物を構成するRC造柱部材10の径間をRC造梁部材20が固定し、このRC造梁部材20が床スラブ30を上載し支持している状況を想定する。従来の付着割裂長さ算定時(付着設計時)には、前記RC造梁部材20における矩形断面の幅、つまり梁幅22のみしか考慮しなかったが、本発明においては前記RC造柱部材10における、柱幅11、つまり、RC造梁部材20の端面21と当接するRC造柱部材10の側面幅(またはそれ以上の幅)を考慮の対象とすることができる。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a view showing an embodiment (first embodiment) of an adhesion split fracture preventing method for an RC beam member to which the present invention is applied, and shows (a) a sectional view and (b) a plan view. Here, it is assumed that the RC beam member 20 is fixed between the spans of the RC column members 10 constituting the reinforced concrete structure, and the RC beam member 20 mounts and supports the floor slab 30. . At the time of calculating the conventional bond splitting length (at the time of bond design), only the width of the rectangular cross section of the RC beam member 20, that is, the beam width 22 was considered, but in the present invention, the RC column member 10 is considered. In this case, the column width 11, that is, the side surface width of the RC column member 10 in contact with the end surface 21 of the RC beam member 20 (or a width larger than that) can be taken into consideration.

そのためには、RC造構造物におけるRC造梁部材20の延長方向の主筋22と直交する補強筋50を、前記RC造梁部材20が支持する床スラブ30中において、前記RC造梁部材20の端面21と当接するRC造柱部材10の側面幅11と略同じ長さ又はこの長さ以上の長さで配筋することとなる。これにより、前記柱幅11が、付着割裂長さの算定時におけるスラブ有効幅40となるのである。   For this purpose, a reinforcing bar 50 perpendicular to the main bar 22 in the extending direction of the RC beam member 20 in the RC structure is provided in the floor slab 30 supported by the RC beam member 20. The reinforcing bars are arranged with a length substantially equal to or greater than the side width 11 of the RC column member 10 in contact with the end surface 21. Thereby, the said column width 11 becomes the slab effective width 40 at the time of calculation of adhesion splitting length.

上述した実施形態では、RC造梁部材20が、RC造柱部材10の側面(柱幅)中心に当接固定され、少なくとも前記柱幅11の長さの床スラブ30をそのスラブ長中心で支持している状況を想定した。またこの状況で、前記補強筋50を特に曲げ加工を施していない直線状のものとし、配筋した。一方、このような実施形態の他にも、補強筋50に曲げ加工を施したものを配筋し、補強を行うことも可能である。   In the above-described embodiment, the RC beam member 20 is fixed in contact with the center of the side surface (column width) of the RC column member 10, and supports the floor slab 30 having a length of at least the column width 11 at the center of the slab length. The situation is assumed. Also, in this situation, the reinforcing bars 50 were arranged in a straight line not subjected to bending work. On the other hand, in addition to such an embodiment, it is possible to reinforce the reinforcing bar 50 by bending the reinforcing bar 50.

図2は(a)L字型補強筋による実施態様1、(b)L字型補強筋による実施態様2、(c)U字型補強筋による実施態様1、(d)U字型補強筋による実施態様2を、それぞれ示す図である。例えば、図2(a)に示すごとく、前記補強筋50の一端(または両端)をL字となし、当該L字の屈曲部51から先方52を、前記RC造梁部材20の断面25の内に配することとできる。ここで示す例では、主筋22の外周を周回するあばら筋24の外側に沿って前記屈曲部51および先方52を配置している。また、同図(b)に示すごとく、前記補強筋50の屈曲部55および先方52をあばら筋24より内側に配置することもできる。   FIG. 2 shows (a) Embodiment 1 with an L-shaped reinforcing bar, (b) Embodiment 2 with an L-shaped reinforcing bar, (c) Embodiment 1 with a U-shaped reinforcing bar, and (d) U-shaped reinforcing bar. FIG. 4 is a diagram showing Embodiment 2 according to the present invention. For example, as shown in FIG. 2 (a), one end (or both ends) of the reinforcing bar 50 is L-shaped, and the tip 52 from the bent portion 51 of the L-shape is within the cross section 25 of the RC beam-forming member 20. Can be arranged. In the example shown here, the bent portion 51 and the distal end 52 are disposed along the outer side of the stirrup 24 that goes around the outer periphery of the main muscle 22. Further, as shown in FIG. 5B, the bent portion 55 and the distal end 52 of the reinforcing bar 50 can be arranged on the inner side of the ribbed line 24.

更に、同図(c)に示すごとく、前記補強筋50の一端(または両端)をU字となし、当該U字の第1屈曲部53から頸部54、第2屈曲部55、鈎部56に至る先方52を、前記RC造梁部材20の断面25の内に配することとできる。ここで示す例では、主筋22の外周を周回するあばら筋24の外周に沿って前記第1屈曲部53、頸部54、および第2屈曲部55を配置し、鈎部56をあばら筋24の内側に配置している。また、同図(d)に示すごとく、前記補強筋50の第1屈曲部53および先方52をあばら筋24より内側に配置することもできる。   Further, as shown in FIG. 5C, one end (or both ends) of the reinforcing bar 50 is formed in a U shape, and the first bent portion 53 to the neck portion 54, the second bent portion 55, and the heel portion 56 of the U shape. The leading end 52 can be disposed in the cross section 25 of the RC beam-forming member 20. In the example shown here, the first bent portion 53, the neck portion 54, and the second bent portion 55 are disposed along the outer periphery of the rib muscle 24 that circulates around the outer periphery of the main muscle 22, and the heel portion 56 is disposed on the rib muscle 24. Arranged inside. Further, as shown in FIG. 4D, the first bent portion 53 and the distal end 52 of the reinforcing bar 50 can be arranged on the inner side of the ribbed line 24.

なお、前記補強筋50は、鉄筋、鉄板、炭素繊維シート、繊維強化プラスチック、ガラス繊維強化プラスチックのいずれかであることとできる。勿論、いずれにしても補強筋50として配筋作業が可能な形状、サイズに加工されているものとする。   The reinforcing bar 50 may be any one of a reinforcing bar, an iron plate, a carbon fiber sheet, a fiber reinforced plastic, and a glass fiber reinforced plastic. Of course, in any case, it is assumed that the reinforcing bar 50 has been processed into a shape and size capable of performing bar arrangement work.

次に、上記した付着設計の技術思想に基づき、補強設計(耐震設計)を行う場合の概念を説明する。図3は本実施形態における補強設計の概要を示す図であり、(a)設計対象の構造、(b)設計における式1、(c)設計における式2、(d)設計における式3、(e)設計における式4をそれぞれ示す。   Next, the concept in the case of performing reinforcement design (seismic design) based on the above-described technical concept of adhesion design will be described. FIG. 3 is a diagram showing an outline of the reinforcement design in this embodiment. (A) Structure to be designed, (b) Formula 1 in design, (c) Formula 2 in design, (d) Formula 3 in design, ( e) Equations 4 in the design are shown respectively.

(a)図に示すように、床スラブ30を支持するRC造梁部材20がRC造柱部材10に当接固定されている構造を想定する。このような構造において、反曲点Cとなる外力に対し、梁部材20の側面位置Aでひび割れが生じず、柱部材10の側面位置Bにおいてひび割れが生じるように補強筋a(補強筋50)を追加する設計を行う。 (A) As shown to a figure, the structure where the RC beam member 20 which supports the floor slab 30 is contact | abutted and fixed to the RC column member 10 is assumed. In such a structure, the reinforcing bars a U (reinforcing bars 50) are formed so that cracks do not occur at the side surface position A of the beam member 20 and cracks occur at the side surface position B of the column member 10 with respect to the external force that becomes the inflection point C. ) Design to add.

補強前の前記側面位置AにおけるモーメントMは、補強後の断面係数Zとコンクリートの曲げひび割れ強度σtbとの積より小さくなり、また、側面位置BにおけるモーメントMは、補強前の断面係数Zとコンクリートの曲げひび割れ強度σtbとの積から求められる。数式の詳細は(b)図に示す通りである。 The moment M 0 at the side surface position A before reinforcement is smaller than the product of the section modulus Z e after reinforcement and the bending crack strength σ tb of the concrete, and the moment M f at the side surface position B is the cross section before reinforcement. It is obtained from the product of the coefficient Z 0 and the bending crack strength σ tb of the concrete. The details of the mathematical formula are as shown in FIG.

そこで補強筋比pから単位幅あたりの補強量断面積合計Σaは、(c)図の数式から求められる。また、集中荷重に簡略化した場合、前記のMとMとの関係は(d)図に示す通りとなる。この式から、(e)図に示す数式が導出されることとなる。必要補強量は、ここにおけるヤング係数比n、および補強筋比pによって求めるのである。 Therefore reinforcing amount sectional area sum Σa per unit width from reinforcement ratio p u is determined from formula (c) and FIG. Further, when simplified to a concentrated load, the relationship between M f and M 0 is as shown in FIG. From this equation, the equation shown in FIG. Required amount of reinforcement is determine by Young's modulus ratio n, and reinforcement ratio p u in here.

上述した設計の考え方を具体的に示した例を以下に示す。図4は本実施形態における補強設計の具体例を示す図であり、(a)設計対象の構造例、(b)断面図、(c)算定手順例をそれぞれ示す。ここでは、柱幅11が900mmのRC造柱部材10のスパン(径間)L=6500mm、RC造梁部材20の梁幅22が700mm、柱幅11と梁幅22との差によるギャップW=100mm、床スラブ30の厚さt=200mm、梁の側面位置から反曲点までの距離a’=2900mm、ヤング係数比n=10、とした例を想定している。   An example that specifically illustrates the design concept described above is shown below. FIG. 4 is a diagram showing a specific example of the reinforcement design in the present embodiment, and shows (a) a structural example of a design target, (b) a sectional view, and (c) a calculation procedure example. Here, the span (diameter) L of the RC column member 10 having a column width 11 of 900 mm is 6500 mm, the beam width 22 of the RC beam member 20 is 700 mm, and the gap W due to the difference between the column width 11 and the beam width 22 = An example is assumed in which 100 mm, the thickness t of the floor slab 30 is 200 mm, the distance a ′ from the side surface position of the beam to the inflection point is 2900 mm, and the Young's modulus ratio is n = 10.

ここで(c)図に示す通り、前記図3(e)に示した数式から、補強筋比pは0.00264より大きいものと算定でき、更に、補強筋a(補強筋50)は、528mmと算定できる。従って、幅1000mm内に、例えばD13(断面積127mm)を5本入れることで、前記補強筋の必要量、および補強筋比を満たすことができる。つまり、図5の配筋図に示すように、D13の補強筋50を、RC造梁部材20の主筋22と直交する方向で、なおかつ柱幅11と同様の長さをでもって200mm間隔で配筋すればよい。 As shown here by (c) figure from the formula shown in FIG. 3 (e), reinforcement ratio p u can calculate the larger than 0.00264, further, reinforcement a U (reinforcement 50) It can be calculated as 528 mm 2 . Accordingly, by inserting, for example, five D13 (cross-sectional area 127 mm 2 ) within a width of 1000 mm, the necessary amount of reinforcing bars and the reinforcing bar ratio can be satisfied. That is, as shown in the bar arrangement diagram of FIG. 5, the reinforcing bars 50 of D13 are arranged at intervals of 200 mm in the direction perpendicular to the main bar 22 of the RC beam member 20 and with the same length as the column width 11. Just do it.

ここで、上述までの実施形態において、補強筋50を新たに配置することにより、付着割裂長さ算定時(付着設計時)において、前記RC造柱部材10における、柱幅11、つまり、RC造梁部材20の端面21と当接するRC造柱部材10の側面幅を考慮の対象とした。   Here, in the embodiments described above, the reinforcing bar 50 is newly arranged, so that the column width 11 in the RC column member 10, that is, the RC structure is calculated at the time of bond splitting length calculation (at the time of bond design). The width of the side surface of the RC column member 10 that contacts the end surface 21 of the beam member 20 was taken into consideration.

更にこのような思想を進めて、図6(a)に示すように、RC造梁部材20の延長方向の配筋(主筋)と平行する補強筋60を、前記梁部材20が支持する床スラブ30中において、前記梁部材端面21と当接する柱部材10の側面位置100と略同じ位置で配筋することで、ひび割れ位置を当該側面位置100の付近に限定することも可能となる。   Furthermore, as shown in FIG. 6A, a floor slab in which the beam member 20 supports a reinforcing bar 60 parallel to the reinforcing bar (main bar) in the extending direction of the RC beam member 20 as shown in FIG. 30, the cracking position can be limited to the vicinity of the side surface position 100 by arranging the bars at substantially the same position as the side surface position 100 of the column member 10 in contact with the end surface 21 of the beam member.

一方、同図(b)のように、前記補強筋50だけの場合では、ひび割れ位置が不安定になる懸念も残されるが、他方、同図(c)のように、ひび割れ誘発用の補強筋60が配筋されていると、前記補強筋50(直交方向鉄筋:RC造梁部材の主筋と直交の意)の付着が切れやすくなることや、かぶり厚さが他の場所に比べて小さくなることなどの要因により、ひび割れを所望の位置付近に誘発できるようになる。こうしてひび割れ位置を限定することで有効幅の確保がよりしやすくなる。   On the other hand, in the case of only the reinforcing bar 50 as shown in FIG. 5B, there is a concern that the crack position becomes unstable. On the other hand, as shown in FIG. When the bar 60 is arranged, the reinforcing bar 50 (orthogonal direction reinforcing bar: meaning that it is perpendicular to the main bar of the RC beam member) is easily cut off, and the cover thickness is smaller than that of other places. For example, a crack can be induced near a desired position. By limiting the crack position in this way, it becomes easier to secure the effective width.

更に他にも、図7に示す第2の実施態様のごとく、付着割裂補強に対して同一の補強筋量の場合に、外周補強のみでなく、中子配筋70を行うこともできる。例えば、2−D13@100に対し、4−D13@200の配筋とする。或いは、付着割裂本補強として必要な補強をスパンの危険断面に近い領域のみとすることもできる。例えば、危険断面から1.0D、または1.5Dの距離の領域のみを補強領域とする。こうすることにより、補強筋量の合計を抑制でき、また、配筋ピッチを大きくすることで施工の効率や作業性が向上する。更に、例えば梁部材断面の上端部分を低強度コンクリートとして打ち分けることにより、付着割裂強度が低下する懸念に対し、少量の補強により強度性能、変形性能が改善される。   Furthermore, as in the second embodiment shown in FIG. 7, in the case of the same reinforcing bar amount for the adhesion split reinforcement, not only the outer peripheral reinforcement but also the core reinforcing bar 70 can be performed. For example, it is assumed that 4-D13 @ 200 is arranged for 2-D13 @ 100. Alternatively, the reinforcement necessary as the bond split main reinforcement can be limited to the region close to the dangerous cross section of the span. For example, only the region having a distance of 1.0D or 1.5D from the dangerous cross section is set as the reinforcing region. By doing this, the total amount of reinforcing bars can be suppressed, and the construction efficiency and workability are improved by increasing the bar arrangement pitch. Furthermore, for example, by splitting the upper end portion of the beam member cross section as low-strength concrete, the strength performance and deformation performance are improved by a small amount of reinforcement against the concern that the bond splitting strength will decrease.

本発明によれば、従来と同一断面の梁部材における付着割裂強度を向上させることにより、付着設計時の余裕度を大きくすることができる。従って、RC造梁部材の小断面化、従来より低強度のコンクリート採用、せん断補強筋量の削減などが可能となり、施工コストや施工効率の改善につながる。   According to the present invention, the margin at the time of adhesion design can be increased by improving the adhesion splitting strength in a beam member having the same cross section as that of the conventional one. Therefore, it is possible to reduce the cross-section of the RC beam member, adopt concrete with lower strength than before, reduce the amount of shear reinforcement, etc., leading to improvement in construction cost and construction efficiency.

そこで、付着設計における余裕度を向上させ、低コストで効率的な付着割裂の抑制を可能とするRC造梁部材の付着割裂破壊防止方法、およびこれに基づく構造、並びに前記構造を備える構造物を提供可能となる。   Therefore, an adhesion split fracture prevention method for RC beam members that improves the margin in adhesion design and enables efficient suppression of adhesion splitting at low cost, and a structure based thereon, and a structure including the above structure It can be provided.

本発明を適用したRC造梁部材における付着割裂破壊防止方法の実施態様(第1の実施態様)を示す図であり、(a)断面図、(b)平面図を示す。It is a figure which shows the embodiment (1st embodiment) of the adhesion split fracture prevention method in the RC beam member to which this invention is applied, (a) Sectional drawing, (b) Plan view is shown. (a)L字型補強筋による実施態様1、(b)L字型補強筋による実施態様2、(c)U字型補強筋による実施態様1、(d)U字型補強筋による実施態様2を、それぞれ示す図である。(A) Embodiment 1 with L-shaped reinforcement, (b) Embodiment 2 with L-shaped reinforcement, (c) Embodiment 1 with U-shaped reinforcement, (d) Embodiment with U-shaped reinforcement FIG. 本実施形態における補強設計の概要を示す図であり、(a)設計対象の構造、(b)設計における式1、(c)設計における式2、(d)設計における式3、(e)設計における式4をそれぞれ示す。It is a figure which shows the outline | summary of the reinforcement design in this embodiment, (a) Structure of design object, (b) Formula 1 in design, (c) Formula 2 in design, (d) Formula 3 in design, (e) Design Formula 4 in each is shown. 本実施形態における補強設計の具体例を示す図であり、(a)設計対象の構造例、(b)断面図、(c)算定手順例をそれぞれ示す。It is a figure which shows the specific example of the reinforcement design in this embodiment, (a) Structure example of design object, (b) Sectional drawing, (c) The example of a calculation procedure is each shown. 補強計算の結果例を示す配筋図である。It is a bar arrangement diagram showing an example of the result of reinforcement calculation. (a)ひび割れ誘発を考慮した配筋例、(b)直交方向鉄筋のみの場合のひび割れ位置、(c)ひび割れ誘発用の補強筋が配筋された場合のひび割れ位置をそれぞれ示す図である。(A) Example of bar arrangement considering crack induction, (b) Crack position when only orthogonal reinforcing bars are used, and (c) Crack position when reinforcing bars for crack induction are arranged. 第2の実施態様を示す図である。It is a figure which shows a 2nd embodiment.

符号の説明Explanation of symbols

10 (RC造)柱部材
11 柱幅、柱部材の側面幅
20 (RC造)梁部材
21 梁部材端面
22 主筋、(梁部材の延長方向の)配筋
30 スラブ材、床スラブ
50 補強筋
10 (RC structure) Column member 11 Column width, column member side width 20 (RC structure) Beam member 21 Beam member end surface 22 Main reinforcement, reinforcement (in the direction of extension of the beam member) 30 Slab material, floor slab 50 Reinforcement reinforcement

Claims (2)

柱部材の径間に梁部材が設けられ、前記柱部材の他側面と前記梁部材の他側面が一致するように前記梁部材が前記柱部材の他側面側に偏って配置され、前記梁部材の他側面と一側面の両側に広がるスラブを前記梁部材が支持するRC造構造物において、
前記梁部材の延長方向の配筋と直交する補強筋を、前スラブ材中において、前記柱部材の側面幅と略同じ長さ又はこの長さ以上の長さで配筋する補強筋配筋方法であって
前記補強筋の前記梁部材の他側面側の端をL字またはU字となし、当該L字またはU字の屈曲部から先方を、前記梁部材の断面内に配し、
外力が作用した際に、前記スラブが、前記梁部材の一側面に対応する位置ではひび割れが生じず、前記柱部材の側面幅に対応する位置でひび割れが生じるように前記補強筋を配筋することを特徴とする補強筋配筋方法。
A beam member is provided between the diameters of the column members, and the beam members are arranged so as to be biased toward the other side surface of the column member so that the other side surface of the column member and the other side surface of the beam member coincide with each other. Oite other aspects and slabs extending on both sides of one side of the RC structures structures the beam member is supported,
The reinforcement perpendicular to the reinforcement of the extending direction of said beam member, prior SL in slabstock during, before Symbol substantially the same length or reinforcement distribution to distribution muscle in this length longer than the side width of the pillar member A muscle method ,
The other party an edge of the other side surface side of the beam member said reinforcement L-or U-and without, from the bent portion of the L-shaped or U-, arranged in the cross section of the beam member;
When the external force is applied, the reinforcing bars are arranged so that the slab does not crack at a position corresponding to one side surface of the beam member, but cracks at a position corresponding to the side surface width of the column member. A reinforcing bar arrangement method characterized by the above.
柱部材の径間に梁部材が設けられ、当該梁部材が前記柱部材の側面幅の中央に配置され、前記梁部材の一側面側のみに広がるスラブを前記梁部材が支持するRC造構造物において、
前記梁部材の延長方向の配筋と直交する補強筋の前記梁部材の一側面側の一端を、前記スラブ材中において、前記柱部材の一側面に対応する位置又はこの位置を越える位置まで配筋する補強筋配筋方法であって、
前記補強筋の前記梁部材の他側面側の一端をL字またはU字となし、当該L字またはU字の屈曲部から先方を、前記梁部材の断面内に配し、
外力が作用した際に、前記スラブが、前記梁部材の一側面に対応する位置ではひび割れが生じず、前記柱部材の一側面に対応する位置又はこの位置を越える位置でひび割れが生じるように前記補強筋を配筋することを特徴とする補強筋配筋方法。
RC structure in which a beam member is provided between the diameters of the column member, the beam member is arranged in the center of the side surface width of the column member, and the beam member supports a slab extending only on one side surface of the beam member In
One end of one side of the beam member of the reinforcing member orthogonal to the bar arrangement in the extension direction of the beam member is arranged in the slab material to a position corresponding to one side surface of the column member or a position beyond this position. Reinforcing reinforcement reinforcement arrangement method,
One end of the reinforcing member on the other side surface of the beam member is L-shaped or U-shaped, and the tip from the bent portion of the L-shaped or U-shaped is arranged in the cross section of the beam member,
When an external force is applied, the slab does not crack at a position corresponding to one side surface of the beam member, and cracks occur at a position corresponding to one side surface of the column member or a position exceeding this position. Reinforcing bar arrangement method characterized by arranging reinforcing bars.
JP2003348266A 2003-10-07 2003-10-07 Reinforcing bar arrangement method Expired - Fee Related JP4741788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003348266A JP4741788B2 (en) 2003-10-07 2003-10-07 Reinforcing bar arrangement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003348266A JP4741788B2 (en) 2003-10-07 2003-10-07 Reinforcing bar arrangement method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010048904A Division JP4983942B2 (en) 2010-03-05 2010-03-05 Method for preventing adhesion split fracture of RC beam member, structure based thereon, and structure provided with said structure

Publications (2)

Publication Number Publication Date
JP2005113482A JP2005113482A (en) 2005-04-28
JP4741788B2 true JP4741788B2 (en) 2011-08-10

Family

ID=34540521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003348266A Expired - Fee Related JP4741788B2 (en) 2003-10-07 2003-10-07 Reinforcing bar arrangement method

Country Status (1)

Country Link
JP (1) JP4741788B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147844U (en) * 1985-03-05 1986-09-11
JP2772624B2 (en) * 1995-01-25 1998-07-02 大成建設株式会社 RC floor slab reinforcement structure

Also Published As

Publication number Publication date
JP2005113482A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
WO2014020938A1 (en) Axially yielding elasto-plastic hysteresis brace and vibration-damping steel-frame structure
JP5383166B2 (en) Corrugated steel earthquake resistant wall, corrugated steel earthquake resistant wall design method, and building
JP4412196B2 (en) Calculation method of shear strength of reinforced concrete beam, design method using this calculation method, reinforced concrete beam designed by this design method and beam / floor structure of reinforced concrete
JP6451476B2 (en) Steel deck
JP2017214803A (en) Arrangement structure of beam in reinforced concrete column and beam frame
JP2008082126A (en) High performance cracking induction joint for earthquake-resisting wall
JP4741788B2 (en) Reinforcing bar arrangement method
JP4983942B2 (en) Method for preventing adhesion split fracture of RC beam member, structure based thereon, and structure provided with said structure
JP2009293289A (en) Reinforced concrete beam
JP6128058B2 (en) Beam end joint structure
JP2018053441A (en) Precast concrete floor slab provided with loop-like joint
JP2007262859A (en) Deck plate
KR102262786B1 (en) Concrete structure with built-in Reinforcement mesh
JP3938718B2 (en) Reinforced concrete beam structure
JP4666851B2 (en) Reinforced concrete corner reinforcement structure
KR102060342B1 (en) Filler-supported Reinforcement Truss Girder apllied to Truss integrated Deck Plate
JP2002115369A (en) Prefabricated reinforcement member
JP5943135B1 (en) Steel panel for synthetic floor slab and synthetic floor slab
JPS6113612Y2 (en)
KR200222515Y1 (en) Structure for arranging a reinforcing rod under-frame of Rahmen bridge
JP2022150402A (en) Deck composite slab and method for designing deck composite slab
KR101104541B1 (en) Shear reinforcement component for a slab-column connection and shear reinforcement structure using the same
JP2895367B2 (en) Reinforcement structure of main reinforcement in reinforced concrete beam
US20110197546A1 (en) Self-reinforced opening
JP6704227B2 (en) Reinforced concrete columns

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100323

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees