JP4739653B2 - High strength cold-rolled steel sheet - Google Patents
High strength cold-rolled steel sheet Download PDFInfo
- Publication number
- JP4739653B2 JP4739653B2 JP2003037611A JP2003037611A JP4739653B2 JP 4739653 B2 JP4739653 B2 JP 4739653B2 JP 2003037611 A JP2003037611 A JP 2003037611A JP 2003037611 A JP2003037611 A JP 2003037611A JP 4739653 B2 JP4739653 B2 JP 4739653B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- cold
- linear compound
- rolled steel
- observed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、Siを含有する高強度冷延鋼板に関するものであり、より詳細には、高強度で表面外観が良好な耐食性に優れた冷延鋼板に関するものである。
【0002】
【従来の技術】
自動車等に使用される鋼板は、安全性向上や軽量化による燃費向上等の観点から高強度化が求められている。鋼板の強度を高める手段としては、NiやCr,Mo等の元素を含有させることによって焼入れ性を高める方法がある。しかし、これらの焼入れ性向上元素を含有させると、鋼板の強度は高くなるものの延性が低下して加工性が劣化するという別の問題を生じる。
【0003】
これに対しSiは、鋼材に含有させることによって強度を高める元素であるが、延性は大きく低下させない元素として知られている。これは、鋼材にSiを含有させるとフェライトの形成が促進され、該フェライトにSiが固溶することによって固溶強化が起こり鋼材の強度が向上することによると考えられている。
【0004】
ところが、Si含量を高めた高強度鋼板については次の様な問題が指摘されている。
【0005】
例えば、特許文献1には、Si含量を高めた従来の高強度鋼板は、疲労特性や化成処理性が不充分であるという問題を指摘し、これらの原因が、鋼板表面に元の結晶粒界に沿って腐食された粒界腐食層や、該粒界腐食層に残留した圧延油や防錆油等の炭素分にあることを明らかにしている。そして、この技術では、熱間圧延における仕上げ圧延後の巻取り温度を規定することによって、鋼板表面に生成する粒界腐食層の深さを低減し、鋼板の疲労特性および化成処理性を向上させている。しかし、本発明者らが冷延鋼板について検討したところ、熱間圧延における仕上げ圧延後の巻取り温度を規定するだけでは、冷延鋼板表面に外観不良を起こしたり、化成処理性不良となって耐食性に劣る場合があった。
【0006】
これに対し、特許文献2には、高張力冷延鋼板を製造する際に、熱間圧延前の加熱状態を規定することによって、鋼板表面におけるSi−Fe−O系粒界酸化物の生成を抑え、外観不良や割れなどの不具合を改善すると共に、冷延後の焼鈍条件を規定することによって、2相組織を発現させて所望の機械的特性を確保し、更にSiやMn酸化物の生成を抑制することより機械的性質やスポット溶接性を高める方法が開示されている。しかし、本発明者らが検討したところ、特許文献2の条件で生成する粒界酸化物の線幅は300nmを超える粗大なものであり、外観不良や耐食性不足になる場合もあった。
【0007】
また、本件出願人自身も、高強度冷延鋼板の粒界酸化防止対策として、先に特許文献3や4等の技術を提案している。これらの技術では、熱間圧延条件を規定することによって熱間圧延中に鋼板の変態を促進させ、巻取り後の変態復熱を小さくすることで粒界酸化を防止し、冷延時に粒界酸化部の剥離によって生じる押し疵の発生等を低減している。しかし、本発明者らが冷延鋼板の外観や耐食性についてその後更なる検討を重ねたところ、熱延条件を規定するだけでは、冷延鋼板表面が外観不良となったり、耐食性不足になる場合もあった。
【0008】
【特許文献1】
特開平13-107185号公報([特許請求の範囲]、段落[0003]〜[0005]参照)
【特許文献2】
特開昭60-187625号公報([特許請求の範囲]、第1頁右下欄〜第2頁左上欄参照)
【特許文献3】
特開平2-50908号公報([特許請求の範囲]参照)
【特許文献4】
特開平3-20407号公報([特許請求の範囲]参照)
【0009】
【発明が解決しようとする課題】
本発明は、この様な状況に鑑みてなされたものであり、その目的は、鋼板表面に微細な凹部が発生していない良好な外観を呈し、耐食性に優れた高Si含量の高強度冷延鋼板を提供することにある。
【0010】
【課題を解決するための手段】
上記課題を解決することのできた本発明に係る高強度冷延鋼板とは、Siを0.2〜3%(「質量%」の意味。以下同じ)含有する冷延鋼板において、鋼板断面を電界放出型走査型電子顕微鏡を用いて5000倍で観察したときに、SiとOを含む線状化合物の存在領域が、鋼板表面からの深さで10μm以内であり、且つ、該鋼板表面からの深さが1〜10μmの領域に観察される前記線状化合物の線幅が300nm以下である点に要旨を有する。本発明の冷延鋼板の基本成分としては、C:0.01〜0.25%、および、Mn:0.1〜3%、を夫々含むものが好ましい。
【0011】
【発明の実施の形態】
前述した如くSi含量を高めた従来の高強度冷延鋼板は、外観不良であったり、化成処理性不良等で耐食性不足になり得ることが指摘されていた。そこで本発明者らは、Siを含有する高強度冷延鋼板に外観不良や耐食性不足が生じる原因を研究すると共に、その改善策を確立すべく様々な角度から検討を重ねた。その結果、冷延鋼板の表面に存在するSiとO由来の線状化合物の存在領域と形態を厳密に制御すれば、上記課題が見事に解決されることを見出し、本発明を完成した。以下、本発明の作用効果について説明する。
【0012】
本発明で対象とする冷延鋼板は、成分組成としてSiを0.2〜3%含有するものであり、この様な範囲に規定した理由は、次の通りである。
【0013】
Si: 0.2 〜 3 %
Siは、鋼板の強度と延性を確保するうえで重要な元素であり、その効果を発揮させるには0.2%以上含有させる必要がある。より好ましくは、1.0%以上である。しかし、Si含量が3%を超えると、鋼板の強度が高くなり過ぎて加工性が劣悪となるので、上限は3%とする必要がある。より好ましくは、2.5%以下とするのが望ましい。
【0014】
本発明の鋼板は、Si以外の基本元素として、Cを0.01〜0.25%、および、Mnを0.1〜3%、を夫々含有するものが好ましい。
【0015】
C: 0.01 〜 0.25 %
Cは、鋼板の強度を確保するために含有させる元素であり、C含量が0.01%を下回ると強度不足となるので、少なくとも0.01%含有させるのがよい。より好ましくは、0.1%以上含有させるのが良い。しかし、C含量が0.25%を超えると、スポット溶接性等が劣化するので、上限は0.25%とした。より好ましくは0.15%以下である。
【0016】
Mn: 0.1 〜 3 %
Mnは、焼入れ性を高めるのに有用な元素であり、その効果を得るには0.1%以上含有させるのが望ましい。より好ましくは0.15%以上である。しかし、Mn含量が3%を超えると、延性が劣化する傾向があるので、上限は3%とするのが望ましい。より好ましくは2.0%以下である。
【0017】
本発明に係る冷延鋼板における基本成分は上述した通りであり、残部は鉄および不可避不純物(PやS,Alなど)であるが、更に他の元素として、TiやNbなどを含有させることも有効である。これらの元素を含有させることによって析出強化させることができる。
【0018】
本発明の冷延鋼板は、上記の様に0.2〜3%のSiを含有するものであるが、先に従来技術の項でも指摘した様に、該Si含量の冷延鋼板では、表面の外観不良や耐食性不足等を生じることがある。そこで、それらの発生原因を究明すべく該冷延鋼板表面の断面を電子顕微鏡で観察したところ、微細な凹部が多数発生しており、この微細凹部が冷延鋼板の外観不良や耐食性不足等の原因になっていることを突き止めた。すなわち、冷延鋼板の表面に微細な凹部が存在することにより、鋼板表面に凹凸を形成して外観不良の原因になると共に、当該微細凹部への化成処理液の侵入が不充分になって化成処理不良となり耐食性を劣化させる要因になっているのである。
【0019】
そこで、本発明者らは、冷延鋼板の表面に微細な凹部が発生する原因を追求したところ、冷延鋼板表面に生成するSi(硅素)とO(酸素)に由来する線状化合物が大きく影響していることが確認された。すなわち、鋼板断面の表層部を電界放出型走査型電子顕微鏡を用いて5000倍で観察すると、該断面にはSiとOに由来する線状の化合物が観察され、この線状化合物が微細凹部の発生原因になっていることを突き止めた。なお、本発明において微細凹部とは、鋼板表面を走査型電子顕微鏡(SEM)で2000倍で観察したときに、アスペクト比が5以上で、且つ短辺の幅が10μm以下の凹部を指す。
【0020】
冷延鋼板表面に生成するSiとOに由来する線状化合物の模式図を図1に示す。図中、1は冷延鋼板、2はSiとOに由来する線状化合物、3は線状化合物の存在領域、4は線状化合物の線幅を夫々示している。本発明者らが鋼板断面の表層部を電界放出型走査型電子顕微鏡を用いて5000倍で観察したところ、図1に示す如く鋼板表面から粒界に沿って線状化合物が認められた。なお、線状化合物の存在領域3と線状化合物の線幅4については後述する。
【0021】
電界放出型走査型電子顕微鏡(FE−SEM)で観察する理由は、走査型電子顕微鏡(SEM)より表層部の断面性状を高分解能で観察できるからであり、この電子顕微鏡を用いて観察することによって、冷延鋼板表面に発生する線状化合物の存在がはじめて明らかとなった。
【0022】
ちなみに前記特許文献1は、熱間圧延後の鋼板表面に粒界酸化物層が生成することを指摘しているが、熱間圧延によって生成する粒界酸化物層は粗大なものであり、通常の光学顕微鏡でも充分に観察できる。しかし、本発明で制御対象となる上記線状化合物は非常に微細であり、通常の光学顕微鏡では殆ど確認できない。また、熱延後の鋼板表面に生成している粒界酸化物層は、熱延後に施される酸洗や冷延によって分断されるため、冷延後には線状化合物として観察されるものではないことを本発明者らは確認している。
【0023】
観察倍率を5000倍としたのは、鋼板断面に生成している線状化合物を厳密に観察するためである。なお、観察視野数は特に限定されないが、線状化合物の存在とそのサイズ確認を厳密にするためにも20視野程度以上観察することが望まれる。
【0024】
ここで、線状化合物とは、粒界に沿って生成しており、鋼中に含まれるSi等の酸化が鋼板表面から粒界に沿って進行することによって線状に延びたものであると考えられる。生成する線状化合物の形態は、粒界に沿って蛇行しつつ生成したものや、粒界に沿って枝分かれして成長したものも含む意味である。
【0025】
また、線状化合物とは、少なくともSiを含む酸化物であり、Si以外の元素としては鋼種によるが、一般的な鋼板に含有されているMnやAl,Crなどの元素をSiと共に含む複合酸化物も包含される。線状化合物の組成は、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)に備えられているエネルギー分散型X線分析(EDX)装置などを用いて分析できる。
【0026】
本発明の冷延鋼板においては、上記線状化合物の存在領域が、鋼板表面からの深さで10μm以内であることを必須とする。
【0027】
鋼板表面からの深さ: 10 μm以内
粒界に沿って成長した上記線状化合物は、外力や酸による洗浄を受けたとき等に微細凹部を発生させる原因となり、該線状化合物が鋼板表面から深部にまで成長していると、鋼板の強度や延性を劣化させる要因となるばかりでなく、特に鋼板表面に存在する微細凹部は、外観不良や耐食性不足等の原因となる。さらに、鋼板の表面から深部まで成長している線状化合物は、粒界に沿った酸化の進行を加速し、粒内へも酸化が進行し易くなるので、その線幅は一層大きくなり、線状化合物は粗大なものとなる。よって、線状化合物の存在領域は、鋼板表面からの深さで10μm以内に抑える必要がある。線状化合物の存在領域はできるだけ浅い方が好ましく、鋼板表面からの深さで5μm以内であることが望ましい。
【0028】
本発明では、鋼板表面からの深さが1〜10μmの領域に観察される前記線状化合物の線幅を300nm以下に抑えることも重要な要件となる。
【0029】
線状化合物の線幅: 300 nm以下
線状化合物の線幅とは、冷延鋼板の断面を電界放出型走査型電子顕微鏡を用いて観察したときに認められる酸化物の幅方向の長さを指し、本発明では鋼板表面からの深さが1〜10μmの領域に観察される線状化合物の線幅を300nm以下に定めている。線状化合物の線幅が300nmを超えると、例えば鋼板に外力が加わったとき等に該線状化合物の部分に微細凹部が発生し、鋼板の外観が損なわれるからである。また、鋼板表面に微細な凹部が生じると、凹部には化成処理液が浸入し難くなり、化成処理不良となって耐食性が劣化するからである。従って、本発明では線状化合物の線幅を300nm以下に抑える。線状化合物の線幅は、できるだけ小さい方が微細凹部の生成を低減できるので、好ましくは100nm以下に抑制するのが望ましい。
【0030】
なお、線状化合物の線幅を測定する領域を、鋼板表面からの深さで1〜10μmの領域とした理由は、前掲の倍率によって観察される鋼板最表面はその全面が酸化や圧延ロール跡等によって凹凸状を呈しており、線状化合物の線幅を測定するのが困難だからである。また、線状化合物の成長は、鋼板表面から粒界に沿って進んでいくので、鋼板表面からの深さが1〜10μmの領域に観察される線状化合物の線幅が300nmを超えている場合は、鋼板表面から1μm以内の領域に生成している線状化合物の線幅も必然的に300nmを超えているからである。
【0031】
本発明に係る冷延鋼板を製造する方法は特に限定されないが、次に示す製法を採用すれば、本発明の規定要件を満たす冷延鋼板を確実に製造できる。
【0032】
前述した如く、冷延鋼板の表面近傍で上記線状化合物が成長していく原因を考えると、その成長を抑えるには鋼板表面から粒界に沿って進行していく酸化の進行を抑制すれば良いと考えられる。そこで、この粒界に沿って進行する酸化を抑制する方法について更に検討したところ、冷延後に行なわれる焼入れ焼き戻し処理時の雰囲気条件を厳密に制御することによって、鋼板表面における酸化を抑制すれば、粒界に沿って進行する酸化も低減できることが明らかとなった。すなわち、冷延された鋼板に焼き入れ処理を施すに際して、鋼板を加熱炉から水槽へ移動させるときの雰囲気を非酸化性雰囲気とすれば、鋼板表面における酸化を抑制することができ、その結果、粒界に沿って進行する酸化を低減できるのである。
【0033】
つまり、冷延後の鋼板は、加熱炉内で所定の温度に加熱された後、加熱炉の後方に設けられた水槽内へ浸漬させて焼き入れを行なうが、このとき加熱炉から抜き出される鋼板は高温に加熱されているため非常に酸化されやすく、加熱炉から水槽内へ浸漬させるまでの短時間のうちに鋼板表面が酸化されるのである。その結果、鋼板表面から粒界に沿って酸化が進行して線状化合物を生成する原因となるのである。
【0034】
そこで、こうした加熱炉から水槽までの間における酸化を防止するには、例えば水槽をチャンバー内に設置すると共に、該チャンバー内を非酸化性雰囲気とすれば良い。すなわち、加熱炉の後方に設けられる水槽をチャンバーで囲うと共に、該チャンバー内を窒素や、窒素と水素の混合ガスなどの非酸化性ガスで充填することによって、加熱炉で加熱された鋼板は酸化されることなく水槽内へ浸漬されるのである。このとき、加熱炉とチャンバーの間にはシャッターを設けることによって、加熱炉内とチャンバー内の雰囲気を夫々独立して制御できる。
【0035】
加熱炉内の雰囲気は、鋼板の酸化を抑えるために、窒素に例えば水素を1〜20%程度混合した混合ガスを用いることが推奨される。またチャンバー内(すなわち水槽を収容しているチャンバー内)の雰囲気は、鋼板の酸化をできるだけ防止するために純窒素ガスを用い、可能であれば水素ガスを1〜20%程度混合することが好ましい。この際爆発が生じないようにガスの混合比等を管理することが重要である。さらに水槽内で蒸気が発生することによってチャンバー内雰囲気の露点が上昇し、線状化合物が生成しやすくなるので、チャンバー内のガスが入れ代わるようにガスを流入し続けることがなお好ましい。この様に、加熱炉内とチャンバー内の雰囲気を分ける理由は、水素を含むガスの爆発防止や雰囲気の厳格な管理のためである。
【0036】
また、加熱炉から抜き出された鋼板を水槽内へ浸漬するまでの時間も、鋼板表面の酸化を防止して粒界に沿って生成する線状化合物の生成を抑制する観点からできるだけ短くするのが望ましい。即ち、微量の水蒸気によっても鋼板は酸化されやすいからである。従って、鋼板が加熱炉から抜き出された後完全に水中へ浸漬するまでの時間は、好ましくは10秒以下、より好ましくは8秒以下、さらに好ましくは3秒以下とするのが望ましい。
【0037】
なお、本発明では、熱間圧延や冷延、焼き入れ焼き戻し処理の条件は特に限定されず、公知のものを採用すれば良い。
【0038】
【実施例】
以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
【0039】
表1に示す化学成分組成を有する鋼材(鋼種A〜D)を転炉にて溶製し、連続鋳造によってスラブを製造した。このスラブを表2に示す温度(1200℃)に加熱して熱間圧延し、最終スタンドを出てから18秒後に巻取り、厚みが2.5mmの鋼板を得た。巻取温度は500℃または560℃である。得られた鋼板を酸洗し、厚みが1.2mmになるまで冷延を行なった。冷延後の鋼板を70mm×150mmに切断し、表2に示す条件で焼き入れ焼き戻し処理を行なった。焼き入れ焼き戻し処理の詳細な条件は次の通りである。
【0040】
焼き入れ処理は、前記切断された冷延後の鋼板を、炉内雰囲気を制御できる赤外線加熱炉で加熱した後、その下流側に設けた水槽に浸漬させて行なった。赤外線加熱炉における加熱温度と加熱時間、炉内雰囲気を夫々表2に示す。表中「N2−15%H2」とは、N2中にH2を15%混合した混合ガスである。
【0041】
前記水槽は、雰囲気を制御できるチャンバー内に設けられており、赤外線加熱炉と水槽を囲っているチャンバーの間にはシャッターを設けて、赤外線加熱炉内とチャンバー内の雰囲気は夫々個別に制御できる。水槽を囲っているチャンバー内の雰囲気を、水槽の雰囲気として表2に示す。赤外線加熱炉で加熱した鋼板を水槽に浸漬させるときには、赤外線加熱炉とチャンバーとの間に設けられたシャッターを開放して鋼板を赤外線加熱炉から水槽へ移動させる。このときシャッターを開放してから鋼板が水槽内へ完全に浸漬するまでの時間を測定し、浸水までの時間として表2に示す。
【0042】
焼き入れ処理を行なった鋼板を乾燥して表面から水分を除去した後、炉内雰囲気を制御できる赤外線加熱炉で加熱して焼き戻し処理を行なった。このときの加熱温度を過時効温度、加熱時間を過時効時間として夫々表2に示す。なお、炉内雰囲気はN2中にH2を15%混合した混合ガスを用いた。
【0043】
【表1】
【0044】
【表2】
【0045】
焼き入れ焼き戻し処理を行なった鋼板表面の断面を、日立製作所社製電界放出型走査型電子顕微鏡(FE−SEM:装置名「S−4500」)を用いて観察し、線状化合物の存在領域を特定すると共に、鋼板表面からの深さが1〜10μmの領域に観察される線状化合物の線幅を測定した。
【0046】
FE−SEM観察は、鋼板表面の断面組織を反射電子像で、加速電圧10kVで行ない、観察倍率は5000倍とした。観察位置は鋼板表面の断面における任意の位置とし、観察視野数は20箇所とした。この顕微鏡写真から線状化合物の生成領域を測定し、測定結果を鋼板表面からの深さ(存在深さ)として表3に示す。また、この顕微鏡写真から線状化合物の線幅を測定し、上記領域内に観察される線状化合物の線幅の最大値を表3に示す。表3におけるNo.3の鋼板断面を5000倍で撮影した電子顕微鏡写真を図2に示す。
【0047】
線状化合物の組成は、前記電界放出型走査型電子顕微鏡(FE−SEM)に備えられているエネルギー分散X線分析(EDX)装置を用いて分析した。その結果、線状化合物にはSiとOのピークが認められるのに対し、マトリックス(地鉄)にはSiとOのピークは認められなかった。
【0048】
得られた鋼板表面の外観は、表面をSEMで観察することによって評価した。評価結果を表3に示す。なお、評価基準は、任意の観察視野(200μm四方)にアスペクト比が5以上で、且つ短辺の幅が10μm以下の微細凹部が10個以下であれば○、11個以上であれば×とした。
【0049】
次に、得られた鋼板に化成処理を施し、化成処理後の鋼板について耐食性試験を行なった。耐食性試験は、電着塗装を施した鋼板にクロスカットを入れ、これをサンプルとしてJIS Z2371に記載の塩水噴霧試験を行った。試験条件は、5%中性塩化ナトリウム水溶液(35℃)に168hとした。試験後、クロスカット部にセロハンテープを貼り、テープをはがす際の塗装の最大のはがれ幅がクロスカットの片側2mm以下であれば○、2mmより大きければ×とした。評価結果を表3に示す。
【0050】
【表3】
【0051】
表3から次の様に考察できる。No.1〜10は、本発明の要件を満足する冷延鋼板であり、鋼板表面の外観および耐食性の全てについて良好である。すなわち、図2中に矢印で示した箇所に線状化合物が観察されているが、この図2から明らかな様に、線状化合物の存在領域は鋼板表面からの深さで5μm程度である。線状化合物の線幅は200nm程度である。
【0052】
また、No.1〜2とNo.6〜7,No.3とNo.8,No.4とNo.9,No.5とNo.10を夫々比較すると、鋼板を加熱炉から抜き出してから水槽内へ浸漬させるまでの時間が短い方が、全ての点において優れていることが分かる。これに対し、No.11〜15は、本発明の要件を満足しない冷延鋼板であり、鋼板表面の外観、耐食性が不良である。
【0053】
【発明の効果】
本発明によれば、鋼板表面に微細凹部が発生していない良好な外観を呈する耐食性に優れた高Si含量の高強度冷延鋼板を提供することができた。
【図面の簡単な説明】
【図1】 冷延鋼板表面に生成するSiとOに由来する線状化合物の模式図である。
【図2】 鋼板表面の断面を電界放出型走査型電子顕微鏡を用いて5000倍で撮影した電子顕微鏡写真(図面代用写真)である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength cold-rolled steel sheet containing Si, and more particularly to a cold-rolled steel sheet having high strength and excellent surface appearance and excellent corrosion resistance.
[0002]
[Prior art]
Steel sheets used in automobiles and the like are required to have high strength from the viewpoint of improving safety and improving fuel efficiency by reducing weight. As a means for increasing the strength of the steel sheet, there is a method for increasing the hardenability by containing elements such as Ni, Cr, and Mo. However, when these hardenability improving elements are contained, although the strength of the steel sheet is increased, another problem arises that ductility is reduced and workability is deteriorated.
[0003]
On the other hand, Si is an element that increases the strength by being contained in a steel material, but is known as an element that does not significantly reduce ductility. This is thought to be due to the fact that when Si is contained in the steel material, the formation of ferrite is promoted, and the solid solution strengthening occurs due to the solid solution of Si in the ferrite, thereby improving the strength of the steel material.
[0004]
However, the following problems have been pointed out for high-strength steel sheets with an increased Si content.
[0005]
For example,
[0006]
On the other hand, in Patent Document 2, when producing a high-tensile cold-rolled steel sheet, by defining the heating state before hot rolling, generation of Si—Fe—O-based grain boundary oxides on the steel sheet surface is performed. Suppresses and improves defects such as appearance defects and cracks, and by prescribing the annealing conditions after cold rolling, develops a two-phase structure to ensure desired mechanical properties, and further generates Si and Mn oxides A method is disclosed in which mechanical properties and spot weldability are improved by suppressing the above. However, as a result of investigations by the present inventors, the line width of the grain boundary oxide generated under the conditions of Patent Document 2 is coarser than 300 nm, which may result in poor appearance and insufficient corrosion resistance.
[0007]
In addition, the present applicant himself has previously proposed techniques such as
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 13-107185 (see “Claims”, paragraphs [0003] to [0005])
[Patent Document 2]
JP-A-60-187625 (see “Claims”, lower right column on
[Patent Document 3]
Japanese Patent Laid-Open No. 2-50908 (see [Claims])
[Patent Document 4]
Japanese Patent Laid-Open No. 3-20407 (see “Claims”)
[0009]
[Problems to be solved by the invention]
The present invention has been made in view of such a situation, and the object thereof is to provide a high appearance cold rolling with a high Si content that exhibits a good appearance in which fine concave portions are not generated on the surface of the steel sheet and is excellent in corrosion resistance. It is to provide a steel sheet.
[0010]
[Means for Solving the Problems]
The high-strength cold-rolled steel sheet according to the present invention that has solved the above problems is a cold-rolled steel sheet that contains Si in an amount of 0.2 to 3% (meaning “mass%”; the same applies hereinafter). When observed at a magnification of 5000 using an emission scanning electron microscope, the region where the linear compound containing Si and O is within 10 μm in depth from the steel plate surface, and the depth from the steel plate surface is within 10 μm. The gist of the present invention is that the line width of the linear compound observed in a region of 1 to 10 μm is 300 nm or less. As the basic components of the cold-rolled steel sheet of the present invention, those containing C: 0.01 to 0.25% and Mn: 0.1 to 3% are preferable.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
As described above, it has been pointed out that conventional high-strength cold-rolled steel sheets with an increased Si content may have poor appearance or poor corrosion resistance due to poor chemical conversion properties. Accordingly, the present inventors have studied the cause of poor appearance and insufficient corrosion resistance in high-strength cold-rolled steel sheets containing Si, and have studied from various angles in order to establish the improvement measures. As a result, the inventors have found that the above problems can be solved brilliantly by precisely controlling the existence region and form of the linear compound derived from Si and O present on the surface of the cold-rolled steel sheet, and completed the present invention. Hereinafter, the function and effect of the present invention will be described.
[0012]
The cold-rolled steel sheet which is the subject of the present invention contains 0.2 to 3% of Si as a component composition, and the reason why it is defined in such a range is as follows.
[0013]
Si: 0.2 to 3 %
Si is an important element in securing the strength and ductility of the steel sheet, and it is necessary to contain 0.2% or more in order to exert its effect. More preferably, it is 1.0% or more. However, if the Si content exceeds 3%, the strength of the steel sheet becomes too high and the workability becomes poor, so the upper limit needs to be 3%. More preferably, it is 2.5% or less.
[0014]
The steel sheet of the present invention preferably contains 0.01 to 0.25% C and 0.1 to 3% Mn as basic elements other than Si.
[0015]
C: 0.01 to 0.25 %
C is an element to be contained in order to ensure the strength of the steel sheet. If the C content is less than 0.01%, the strength is insufficient, so it is preferable to contain at least 0.01%. More preferably, the content is 0.1% or more. However, if the C content exceeds 0.25%, spot weldability and the like deteriorate, so the upper limit was made 0.25%. More preferably, it is 0.15% or less.
[0016]
Mn: 0.1 to 3 %
Mn is an element useful for improving the hardenability, and it is desirable to contain 0.1% or more in order to obtain the effect. More preferably, it is 0.15% or more. However, if the Mn content exceeds 3%, the ductility tends to deteriorate, so the upper limit is desirably 3%. More preferably, it is 2.0% or less.
[0017]
The basic components in the cold-rolled steel sheet according to the present invention are as described above, and the balance is iron and inevitable impurities (P, S, Al, etc.), but Ti, Nb, etc. can also be contained as other elements. It is valid. By including these elements, precipitation strengthening can be achieved.
[0018]
The cold-rolled steel sheet of the present invention contains 0.2 to 3% of Si as described above. As pointed out in the section of the prior art, the cold-rolled steel sheet having the Si content has a surface appearance. Defects and insufficient corrosion resistance may occur. Therefore, when the cross section of the surface of the cold-rolled steel sheet was observed with an electron microscope in order to investigate the cause of the occurrence, a large number of fine recesses were generated. I found out that it was the cause. In other words, the presence of fine recesses on the surface of the cold-rolled steel sheet causes irregularities on the surface of the steel sheet, leading to poor appearance, and insufficient penetration of the chemical conversion treatment liquid into the fine recesses. It becomes a process defect and becomes a factor which deteriorates corrosion resistance.
[0019]
Therefore, the present inventors sought the cause of the formation of fine recesses on the surface of the cold-rolled steel sheet, and the linear compounds derived from Si (silicon) and O (oxygen) generated on the surface of the cold-rolled steel sheet are large. It was confirmed that it had an effect. That is, when the surface layer portion of the cross section of the steel sheet is observed with a field emission scanning electron microscope at a magnification of 5000, a linear compound derived from Si and O is observed in the cross section, and this linear compound is a fine concave portion. I found out that it was the cause. In the present invention, the fine concave portion refers to a concave portion having an aspect ratio of 5 or more and a short side width of 10 μm or less when the steel sheet surface is observed with a scanning electron microscope (SEM) at a magnification of 2000 times.
[0020]
A schematic diagram of a linear compound derived from Si and O formed on the surface of a cold-rolled steel sheet is shown in FIG. In the figure, 1 is a cold-rolled steel plate, 2 is a linear compound derived from Si and O, 3 is a region where the linear compound is present, and 4 is the line width of the linear compound. When the present inventors observed the surface layer portion of the cross section of the steel sheet at a magnification of 5000 using a field emission scanning electron microscope, a linear compound was observed along the grain boundary from the steel sheet surface as shown in FIG. The linear
[0021]
The reason for observing with a field emission scanning electron microscope (FE-SEM) is that the cross-sectional properties of the surface layer can be observed with high resolution by using a scanning electron microscope (SEM). Thus, the existence of a linear compound generated on the surface of the cold-rolled steel sheet was clarified for the first time.
[0022]
Incidentally, although the said
[0023]
The reason why the observation magnification is set to 5000 is to strictly observe the linear compound generated on the cross section of the steel sheet. The number of viewing fields is not particularly limited, but it is desirable to observe about 20 fields or more in order to strictly confirm the presence of the linear compound and its size.
[0024]
Here, the linear compound is generated along the grain boundary, and is linearly extended by oxidation of Si or the like contained in the steel progressing along the grain boundary from the steel sheet surface. Conceivable. The form of the linear compound to be generated is meant to include those generated while meandering along the grain boundary, and those that are branched and grown along the grain boundary.
[0025]
Further, the linear compound is an oxide containing at least Si, and elements other than Si depend on the steel type, but complex oxidation containing elements such as Mn, Al, and Cr contained in a general steel sheet together with Si. Things are also included. The composition of the linear compound can be analyzed using an energy dispersive X-ray analysis (EDX) apparatus provided in a scanning electron microscope (SEM) or a transmission electron microscope (TEM).
[0026]
In the cold-rolled steel sheet of the present invention, it is essential that the region where the linear compound exists is within 10 μm in depth from the steel sheet surface.
[0027]
Depth from the surface of the steel sheet: within 10 μm The above linear compound grown along the grain boundary causes fine recesses when subjected to external force or acid cleaning, and the linear compound When it grows from the steel sheet surface to the deep part, it not only becomes a factor which degrades the strength and ductility of the steel sheet, but also the fine recesses present on the steel sheet surface cause poor appearance and insufficient corrosion resistance. Furthermore, the linear compound growing from the surface of the steel sheet to the deep part accelerates the progress of oxidation along the grain boundary, and the oxidation easily progresses into the grains. The compound becomes coarse. Therefore, it is necessary to suppress the region where the linear compound exists within 10 μm in depth from the steel plate surface. The region where the linear compound exists is preferably as shallow as possible, and is preferably within 5 μm in depth from the steel plate surface.
[0028]
In the present invention, it is also an important requirement to suppress the line width of the linear compound observed in a region having a depth of 1 to 10 μm from the steel sheet surface to 300 nm or less.
[0029]
Line width of the linear compound: 300 nm or less The line width of the linear compound is the width direction of the oxide observed when the cross section of the cold-rolled steel sheet is observed using a field emission scanning electron microscope In the present invention, the line width of the linear compound observed in the region having a depth of 1 to 10 μm from the steel sheet surface is set to 300 nm or less. When the line width of the linear compound exceeds 300 nm, for example, when an external force is applied to the steel sheet, fine concave portions are generated in the linear compound portion, and the appearance of the steel sheet is impaired. Moreover, when a fine recessed part arises in the steel plate surface, it will become difficult for a chemical conversion liquid to penetrate | invade into a recessed part, and it will become a chemical conversion process defect and corrosion resistance will deteriorate. Therefore, in the present invention, the line width of the linear compound is suppressed to 300 nm or less. As the line width of the linear compound is as small as possible, the formation of fine recesses can be reduced. Therefore, the line width is preferably suppressed to 100 nm or less.
[0030]
The reason why the area for measuring the line width of the linear compound is 1 to 10 μm in depth from the steel sheet surface is that the entire surface of the steel sheet outermost surface observed by the magnification is oxidized or traced by rolling rolls. This is because it is difficult to measure the line width of the linear compound. Further, since the growth of the linear compound proceeds along the grain boundary from the steel plate surface, the line width of the linear compound observed in the region having a depth of 1 to 10 μm from the steel plate surface exceeds 300 nm. In this case, the line width of the linear compound generated in the region within 1 μm from the steel sheet surface inevitably exceeds 300 nm.
[0031]
The method for producing the cold-rolled steel sheet according to the present invention is not particularly limited, but if the following production method is adopted, a cold-rolled steel sheet that satisfies the specified requirements of the present invention can be reliably produced.
[0032]
As described above, considering the cause of the growth of the linear compound in the vicinity of the surface of the cold-rolled steel sheet, the growth can be suppressed by suppressing the progress of oxidation that proceeds along the grain boundary from the steel sheet surface. It is considered good. Therefore, when the method for suppressing the oxidation proceeding along the grain boundary was further examined, by strictly controlling the atmospheric conditions during the quenching and tempering process performed after cold rolling, if the oxidation on the steel sheet surface is suppressed, It was also found that the oxidation proceeding along the grain boundary can be reduced. That is, when performing quenching treatment on the cold-rolled steel sheet, if the atmosphere when moving the steel sheet from the heating furnace to the water tank is a non-oxidizing atmosphere, the oxidation on the steel sheet surface can be suppressed, and as a result, The oxidation that proceeds along the grain boundary can be reduced.
[0033]
That is, the cold-rolled steel sheet is heated to a predetermined temperature in the heating furnace and then immersed in a water tank provided at the rear of the heating furnace for quenching. At this time, the steel sheet is extracted from the heating furnace. Since the steel sheet is heated to a high temperature, it is very easily oxidized, and the surface of the steel sheet is oxidized within a short time until it is immersed in the water tank from the heating furnace. As a result, oxidation progresses along the grain boundary from the steel sheet surface, causing a linear compound to be generated.
[0034]
Therefore, in order to prevent oxidation between the heating furnace and the water tank, for example, the water tank may be installed in the chamber and the inside of the chamber may be set to a non-oxidizing atmosphere. That is, a steel tank heated in the heating furnace is oxidized by surrounding a water tank provided behind the heating furnace with a chamber and filling the chamber with a non-oxidizing gas such as nitrogen or a mixed gas of nitrogen and hydrogen. It is immersed in the water tank without being done. At this time, by providing a shutter between the heating furnace and the chamber, the atmosphere in the heating furnace and the chamber can be controlled independently.
[0035]
As the atmosphere in the heating furnace, it is recommended to use a mixed gas in which, for example, hydrogen is mixed with nitrogen at about 1 to 20% in order to suppress oxidation of the steel sheet. The atmosphere in the chamber (that is, the chamber containing the water tank) is preferably pure nitrogen gas to prevent oxidation of the steel plate as much as possible, and preferably, hydrogen gas is mixed with about 1 to 20% if possible. . At this time, it is important to manage the mixing ratio of the gases so that no explosion occurs. Furthermore, since steam is generated in the water tank, the dew point of the atmosphere in the chamber is increased, and a linear compound is easily generated. Therefore, it is more preferable to keep the gas flowing in so that the gas in the chamber is replaced. As described above, the reason why the atmosphere in the heating furnace and the chamber is separated is to prevent explosion of gas containing hydrogen and to strictly control the atmosphere.
[0036]
In addition, the time until the steel plate extracted from the heating furnace is immersed in the water tank is also made as short as possible from the viewpoint of preventing the oxidation of the steel plate surface and suppressing the generation of linear compounds generated along the grain boundaries. Is desirable. That is, the steel sheet is easily oxidized by a small amount of water vapor. Therefore, the time until the steel sheet is completely immersed in water after being extracted from the heating furnace is preferably 10 seconds or less, more preferably 8 seconds or less, and even more preferably 3 seconds or less.
[0037]
In the present invention, conditions for hot rolling, cold rolling, and quenching and tempering are not particularly limited, and known ones may be employed.
[0038]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and may be implemented with appropriate modifications within a range that can meet the purpose described above and below. These are all possible and are within the scope of the present invention.
[0039]
Steel materials (steel types A to D) having chemical composition shown in Table 1 were melted in a converter and slabs were produced by continuous casting. This slab was heated to the temperature shown in Table 2 (1200 ° C.) and hot-rolled, and wound up 18 seconds after leaving the final stand to obtain a steel sheet having a thickness of 2.5 mm. The winding temperature is 500 ° C or 560 ° C. The obtained steel plate was pickled and cold-rolled until the thickness became 1.2 mm. The cold-rolled steel sheet was cut into 70 mm × 150 mm and subjected to quenching and tempering treatment under the conditions shown in Table 2. The detailed conditions of the quenching and tempering process are as follows.
[0040]
The quenching treatment was performed by heating the cut cold-rolled steel sheet in an infrared heating furnace capable of controlling the furnace atmosphere and then immersing it in a water tank provided on the downstream side. Table 2 shows the heating temperature, heating time, and furnace atmosphere in the infrared heating furnace. In the table, “N 2 -15% H 2 ” is a mixed gas in which 15% of H 2 is mixed in N 2 .
[0041]
The water tank is provided in a chamber capable of controlling the atmosphere, and a shutter is provided between the infrared heating furnace and the chamber surrounding the water tank, and the atmosphere in the infrared heating furnace and the chamber can be individually controlled. . The atmosphere in the chamber surrounding the water tank is shown in Table 2 as the water tank atmosphere. When the steel plate heated in the infrared heating furnace is immersed in the water tank, the shutter provided between the infrared heating furnace and the chamber is opened to move the steel sheet from the infrared heating furnace to the water tank. At this time, the time from when the shutter was opened until the steel sheet was completely immersed in the water tank was measured, and the time until the water immersion is shown in Table 2.
[0042]
The steel sheet that had been subjected to the quenching treatment was dried to remove moisture from the surface, and then tempered by heating in an infrared heating furnace capable of controlling the furnace atmosphere. Table 2 shows the heating temperature at this time as the overaging temperature and the heating time as the overaging time. As the furnace atmosphere, a mixed gas in which N 2 was mixed with 15% of H 2 was used.
[0043]
[Table 1]
[0044]
[Table 2]
[0045]
The cross-section of the surface of the steel plate subjected to quenching and tempering treatment was observed using a field emission scanning electron microscope (FE-SEM: apparatus name “S-4500”) manufactured by Hitachi, Ltd., and the presence area of the linear compound And the line width of the linear compound observed in the region having a depth of 1 to 10 μm from the steel sheet surface was measured.
[0046]
In the FE-SEM observation, the cross-sectional structure of the steel sheet surface was a reflected electron image at an acceleration voltage of 10 kV, and the observation magnification was 5000 times. The observation position was an arbitrary position in the cross section of the steel sheet surface, and the number of observation fields was 20. The production region of the linear compound was measured from this micrograph, and the measurement results are shown in Table 3 as the depth from the steel sheet surface (existing depth). Moreover, the line width of the linear compound was measured from this micrograph, and the maximum value of the line width of the linear compound observed in the region is shown in Table 3. The electron micrograph which image | photographed the steel plate cross section of No. 3 in Table 3 by 5000 times is shown in FIG.
[0047]
The composition of the linear compound was analyzed using an energy dispersive X-ray analysis (EDX) apparatus provided in the field emission scanning electron microscope (FE-SEM). As a result, Si and O peaks were observed in the linear compound, whereas Si and O peaks were not observed in the matrix (base metal).
[0048]
The appearance of the obtained steel sheet surface was evaluated by observing the surface with SEM. The evaluation results are shown in Table 3. The evaluation criteria are ○ if the aspect ratio is 5 or more and the short side width is 10 μm or less in 10 or less in any observation field (200 μm square), and x if 11 or more. did.
[0049]
Next, the obtained steel sheet was subjected to a chemical conversion treatment, and a corrosion resistance test was performed on the steel sheet after the chemical conversion treatment. In the corrosion resistance test, a cross-cut was put on a steel sheet to which electrodeposition coating was applied, and a salt spray test described in JIS Z2371 was performed using this as a sample. The test conditions were 168 h in a 5% neutral aqueous sodium chloride solution (35 ° C.). After the test, a cellophane tape was affixed to the crosscut portion, and when the maximum peeling width of the coating when peeling the tape was 2 mm or less on one side of the crosscut, it was rated as “◯”. The evaluation results are shown in Table 3.
[0050]
[Table 3]
[0051]
From Table 3, it can be considered as follows. Nos. 1 to 10 are cold-rolled steel sheets that satisfy the requirements of the present invention, and are all good in appearance and corrosion resistance on the steel sheet surface. That is, a linear compound is observed at a position indicated by an arrow in FIG. 2. As is clear from FIG. 2, the region where the linear compound exists is about 5 μm in depth from the steel sheet surface. The line width of the linear compound is about 200 nm.
[0052]
In addition, when comparing No. 1 and 2 and No. 6 to 7, No. 3 and No. 8, No. 4 and No. 9, and No. 5 and No. 10, respectively, It can be seen that the shorter the time required for immersion in the water tank, the better in all respects. On the other hand, Nos. 11 to 15 are cold-rolled steel sheets that do not satisfy the requirements of the present invention, and the appearance and corrosion resistance of the steel sheet surface are poor.
[0053]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the high strength cold-rolled steel plate with the high Si content excellent in the corrosion resistance which exhibits the favorable external appearance in which the fine recessed part did not generate | occur | produce on the steel plate surface was able to be provided.
[Brief description of the drawings]
FIG. 1 is a schematic view of a linear compound derived from Si and O generated on the surface of a cold-rolled steel sheet.
FIG. 2 is an electron micrograph (drawing substitute photograph) obtained by photographing a cross section of a steel sheet surface at a magnification of 5000 using a field emission scanning electron microscope.
Claims (2)
C を0.01〜0.25%、
Mnを0.1〜3%含有し、
残部が鉄および不可避不純物からなる冷延鋼板において、
該冷延鋼板は、冷間圧延後に水焼入れ焼戻しして得られた鋼板であり、
前記鋼板断面を電界放出型走査型電子顕微鏡を用いて5000倍で観察したときに、SiとOを含む線状化合物の存在領域が、鋼板表面からの深さで10μm以内であり、
該鋼板表面からの深さが1〜10μmの領域に観察される前記線状化合物の線幅が300nm以下であることを特徴とする高強度冷延鋼板。0.2 to 3% of Si (meaning “mass%”; the same applies hereinafter)
C is 0.01 to 0.25%,
Containing 0.1 to 3% of Mn,
In the cold-rolled steel sheet, the balance of which is iron and inevitable impurities,
The cold-rolled steel sheet is a steel sheet obtained by water quenching and tempering after cold rolling,
When the cross section of the steel sheet is observed at a magnification of 5000 using a field emission scanning electron microscope, the existing region of the linear compound containing Si and O is within 10 μm in depth from the steel sheet surface,
A high-strength cold-rolled steel sheet, wherein the line width of the linear compound observed in a region having a depth of 1 to 10 μm from the steel sheet surface is 300 nm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003037611A JP4739653B2 (en) | 2003-02-17 | 2003-02-17 | High strength cold-rolled steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003037611A JP4739653B2 (en) | 2003-02-17 | 2003-02-17 | High strength cold-rolled steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004244698A JP2004244698A (en) | 2004-09-02 |
JP4739653B2 true JP4739653B2 (en) | 2011-08-03 |
Family
ID=33022352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003037611A Expired - Lifetime JP4739653B2 (en) | 2003-02-17 | 2003-02-17 | High strength cold-rolled steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4739653B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5729211B2 (en) | 2010-08-31 | 2015-06-03 | Jfeスチール株式会社 | Cold rolled steel sheet manufacturing method, cold rolled steel sheet and automobile member |
JP5835558B2 (en) | 2010-08-31 | 2015-12-24 | Jfeスチール株式会社 | Cold rolled steel sheet manufacturing method |
US20150013716A1 (en) | 2012-01-18 | 2015-01-15 | Jfe Steel Corporation | Method for prevention of yellowing on surface of steel sheet after pickling |
JP5901738B2 (en) * | 2014-03-27 | 2016-04-13 | 株式会社神戸製鋼所 | Aluminum alloy forging and method for producing the same |
JP6137089B2 (en) | 2014-09-02 | 2017-05-31 | Jfeスチール株式会社 | Cold rolled steel sheet manufacturing method and cold rolled steel sheet manufacturing equipment |
-
2003
- 2003-02-17 JP JP2003037611A patent/JP4739653B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004244698A (en) | 2004-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107532257B (en) | Hot-rolled steel sheet and method for producing same | |
EP3725904A1 (en) | Steel sheet, hot-dip zinc-coated steel sheet, and alloyed hot-dip zinc-coated steel sheet | |
EP2808413B1 (en) | High-strength hot-rolled steel sheet and method for producing same | |
EP2138600B1 (en) | High-strength hot-dip zinc-coated steel sheet | |
JP4943558B2 (en) | High-strength hot-dip galvanized steel sheet and manufacturing method thereof | |
WO2017138384A1 (en) | High-strength galvanized steel sheet and method for producing same | |
JP5233346B2 (en) | High-strength cold-rolled steel sheet excellent in chemical conversion treatment and post-coating corrosion resistance and method for producing the same | |
CN112805395B (en) | Hot-rolled steel sheet and method for producing same | |
JP6274360B2 (en) | High-strength galvanized steel sheet, high-strength member, and method for producing high-strength galvanized steel sheet | |
EP2835440A1 (en) | Galvannealed hot-rolled steel sheet and method for manufacturing same | |
KR20160105402A (en) | Steel sheet hot-dip-coated with zn-al-mg-based system having excellent workability and method for manufacturing same | |
US20130149529A1 (en) | Method of producing cold-rolled steel sheet as well as cold-rolled steel sheet and members for automobile | |
JP7364933B2 (en) | Steel plate and its manufacturing method | |
EP3831971B1 (en) | High-strength hot-rolled plated steel sheet | |
WO2017168958A1 (en) | Thin steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing thin steel sheet, and method for producing plated steel sheet | |
JP5278505B2 (en) | Cold-rolled steel sheet for coating and plated steel sheet for coating | |
JP7276618B2 (en) | High-strength cold-rolled steel sheet and manufacturing method thereof | |
JP7255759B1 (en) | High-strength steel sheets, high-strength galvanized steel sheets, their manufacturing methods, and members | |
JP5194930B2 (en) | High yield ratio high strength cold-rolled steel sheet | |
JP5354147B2 (en) | High yield ratio high strength cold-rolled steel sheet with excellent stretch flangeability | |
JP4739653B2 (en) | High strength cold-rolled steel sheet | |
EP4130326A1 (en) | Steel sheet, member, and methods for manufacturing these | |
EP3330396B1 (en) | Cold rolled steel sheet, plated steel sheet and methods for producing same | |
JP7396507B2 (en) | Steel plate and its manufacturing method | |
WO2021125283A1 (en) | Steel sheet and method for manufacturing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040810 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051121 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070712 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070724 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070912 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071211 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080311 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080507 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080909 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20081107 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090512 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090806 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20090807 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20090908 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20091009 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110428 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4739653 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140513 Year of fee payment: 3 |
|
EXPY | Cancellation because of completion of term |