JP4739281B2 - Semi creeping spark plug - Google Patents

Semi creeping spark plug Download PDF

Info

Publication number
JP4739281B2
JP4739281B2 JP2007153508A JP2007153508A JP4739281B2 JP 4739281 B2 JP4739281 B2 JP 4739281B2 JP 2007153508 A JP2007153508 A JP 2007153508A JP 2007153508 A JP2007153508 A JP 2007153508A JP 4739281 B2 JP4739281 B2 JP 4739281B2
Authority
JP
Japan
Prior art keywords
insulator
tip
end surface
spark plug
ground electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007153508A
Other languages
Japanese (ja)
Other versions
JP2008021643A (en
Inventor
大伸 水谷
佳弘 松原
巌 國友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2007153508A priority Critical patent/JP4739281B2/en
Publication of JP2008021643A publication Critical patent/JP2008021643A/en
Application granted granted Critical
Publication of JP4739281B2 publication Critical patent/JP4739281B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spark Plugs (AREA)

Description

本発明は、内燃機関に使用されるスパークプラグに係り、特に、常時セミ沿面放電を行いうるスパークプラグに関するものである。   The present invention relates to a spark plug used for an internal combustion engine, and more particularly to a spark plug capable of performing semi-surface discharge at all times.

従来、耐汚損性を改善した内燃機関用のスパークプラグとしてセミ沿面放電型と呼ばれるものが知られている。このようなセミ沿面放電型のスパークプラグは、通常の気中放電型のスパークプラグと同様に、中心電極と、その外周に設けられた絶縁体と、当該絶縁体の外周に設けられた筒状の主体金具と、基端部が前記主体金具の先端部に接合された接地電極とを備える。但し、セミ沿面放電型のスパークプラグにあっては、絶縁体の先端面が中心電極の発火部と接地電極の発火部との間に入り込む位置関係で配置されている。これにより、絶縁体先端面に沿う形で火花放電が起こりうるのである。   Conventionally, what is called a semi-surface discharge type is known as a spark plug for an internal combustion engine with improved fouling resistance. Such a semi-creeping discharge type spark plug is similar to a normal air discharge type spark plug in that a center electrode, an insulator provided on the outer periphery thereof, and a cylindrical shape provided on the outer periphery of the insulator. And a ground electrode having a base end portion joined to a distal end portion of the metal shell. However, in the semi-surface discharge type spark plug, the front end surface of the insulator is arranged in a positional relationship so as to enter between the ignition part of the center electrode and the ignition part of the ground electrode. Thereby, a spark discharge can occur along the insulator front end surface.

一般に、電極温度が例えば450℃以下の低温環境でスパークプラグが長時間使用されると、いわゆる「燻り」や「かぶり」と称される状態となり、絶縁体先端面がカーボンなどの導電性汚損物質で覆われて作動不良が生じやすくなる。この点、上記セミ沿面放電型のスパークプラグによれば、絶縁体先端面を這う形で火花放電が生じうるため、汚損物質が焼き切られることとなり、気中放電型のスパークプラグと比べて耐汚損性の向上が図られる。   In general, when a spark plug is used for a long time in a low-temperature environment where the electrode temperature is, for example, 450 ° C. or less, the so-called “swelling” or “fogging” state occurs, and the insulator front surface is a conductive fouling substance such as carbon. It will be covered with and will likely cause malfunction. In this regard, according to the above-mentioned semi-surface discharge type spark plug, spark discharge can occur in the form of scooping the insulator tip surface, so that the pollutant is burned out, and it is more resistant than the air discharge type spark plug. The fouling property is improved.

しかしながら、沿面放電を行いうるスパークプラグでは、絶縁体の表面を這う火花が頻繁に発生するため、絶縁体の表面が溝状に削られる、いわゆるチャンネリングが生じやすくなることが知られている。チャンネリングが進行すると、スパークプラグの耐熱性が損なわれたり、あるいは信頼性が低下するなどの不具合が生じるおそれがある。   However, it is known that spark plugs that can cause creeping discharge frequently generate sparks that scoop the surface of the insulator, so that the surface of the insulator is easily cut into grooves, so-called channeling is likely to occur. As the channeling progresses, there is a risk that the heat resistance of the spark plug is impaired or the reliability is lowered.

このようなチャンネリングを抑制するための技術として、火花放電に伴い、絶縁体の先端部表面に、絶縁体侵食抑制成分を含有した侵食抑制層が形成されるようにするという技術がある(例えば、特許文献1参照)。
特開2004−165168号公報
As a technique for suppressing such channeling, there is a technique in which an erosion-suppressing layer containing an insulator erosion-suppressing component is formed on the surface of the tip of the insulator along with spark discharge (for example, , See Patent Document 1).
JP 2004-165168 A

ところで、セミ沿面放電を行いうるスパークプラグの中には、通常時には接地電極と中心電極との間で気中放電を行い、ある程度絶縁体表面が汚損されたときに沿面放電を含んで放電経路を形成する間欠放電タイプと、常に沿面放電を含んで放電経路を形成するタイプ(常時沿面放電タイプともいう)とがある。上記の絶縁体の侵食抑制層を形成する技術を採用した場合、ある程度のチャンネリング抑制効果が期待できるものの、前者の間欠放電タイプにあっては、十分な耐汚損性(清浄効果)が発揮されないおそれがある。   By the way, in a spark plug that can perform semi-surface discharge, air discharge is normally performed between the ground electrode and the center electrode, and when the surface of the insulator is contaminated to some extent, the discharge path includes the surface discharge. There are an intermittent discharge type that is formed and a type that always forms a discharge path including creeping discharge (also referred to as a constant creeping discharge type). When the technology for forming the above-described insulating erosion suppressing layer is adopted, a certain degree of channeling suppression effect can be expected, but the former intermittent discharge type does not exhibit sufficient antifouling property (cleaning effect). There is a fear.

一方、常時沿面放電を行うタイプにあっては、間欠放電タイプと比べるとチャンネリングの抑制等が必ずしも十分とはいえず、絶縁体の先端面が削られることによるチャンネリングの懸念は依然として残存する。また、接地電極と導電体との相対位置関係によっては、絶縁体側壁に孔が形成されてしまうことによる「貫通」と呼ばれる不具合が生じるおそれもある。   On the other hand, in a type that constantly performs creeping discharge, channeling suppression and the like are not necessarily sufficient compared to an intermittent discharge type, and channeling concerns due to the fact that the tip surface of the insulator is scraped remain. . Further, depending on the relative positional relationship between the ground electrode and the conductor, there is a possibility that a problem called “penetration” may occur due to the formation of a hole in the insulator side wall.

本発明は上記事情に鑑みてなされたものであり、その目的は、常時セミ沿面放電を行うスパークプラグに関し、耐汚損性を確保しつつ、より一層のチャンネリング等の抑制を図ることのできるセミ沿面スパークプラグを提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention relates to a spark plug that performs semi-surface creeping discharge at all times, and is capable of further suppressing channeling and the like while ensuring antifouling property. The purpose is to provide creeping spark plugs.

以下、上記課題等を解決するのに適した各構成を項分けして説明する。なお、必要に応じて対応する構成に特有の作用効果等を付記する。   Hereinafter, each configuration suitable for solving the above-described problems will be described in terms of items. In addition, the effect etc. peculiar to the structure which respond | corresponds as needed are added.

構成1.本構成のスパークプラグは、
軸線方向に貫通する軸孔を有する筒状の絶縁体と、
前記軸孔に挿設された中心電極と、
前記絶縁体の外周に設けられ、自身の先端より前記絶縁体の先端面が突出するように配置された主体金具と、
基端部が前記主体金具の先端面に固着された複数本の接地電極とを備え、
前記各接地電極の先端面が前記軸線方向と平行に延びており、前記各接地電極の先端と前記中心電極との間の火花放電経路の一部に、前記絶縁体の先端面に沿う沿面放電経路が含まれるセミ沿面スパークプラグであって、
前記各接地電極の先端面と内側側面とのエッジ部分が、
前記絶縁体の先端面を含む仮想平面よりも先端側で、かつ、
前記中心電極の先端面よりも先端側に位置するとともに、
前記絶縁体の先端面外周よりも外側に位置し、
前記各接地電極の先端面と内側側面とのなす角度が鈍角であると共に、
前記接地電極の基端側と先端側から、それぞれ中心を通る軸線を引き、両軸線の交点が、前記絶縁体の先端面よりも基端側に位置することを特徴とする。
Configuration 1. The spark plug of this configuration is
A cylindrical insulator having an axial hole penetrating in the axial direction;
A center electrode inserted in the shaft hole;
A metal shell provided on the outer periphery of the insulator and disposed so that a tip surface of the insulator protrudes from a tip of the insulator;
A plurality of ground electrodes each having a proximal end fixed to the distal end surface of the metal shell,
The front end surface of each ground electrode extends parallel to the axial direction, and creeping discharge along the front end surface of the insulator is part of a spark discharge path between the front end of each ground electrode and the center electrode. A semi-creeping spark plug that includes a route,
The edge portion between the front end surface and the inner side surface of each ground electrode,
On the tip side of a virtual plane including the tip surface of the insulator, and
Located on the tip side of the tip surface of the center electrode,
Located outside the outer periphery of the front end surface of the insulator,
The angle formed between the tip surface and the inner side surface of each ground electrode is an obtuse angle ,
An axis passing through the center is drawn from the base end side and the tip end side of the ground electrode, respectively, and the intersection of both axes is located closer to the base end side than the tip end surface of the insulator .

構成1におけるスパークプラグは、火花放電経路の一部に絶縁体の先端面に沿う沿面放電経路が含まれることを必須の要件としている。特に、構成1のスパークプラグは、いわゆる間欠放電タイプとは異なり、常時沿面放電を行いうるものである。   The spark plug in Configuration 1 has an essential requirement that a creeping discharge path along the tip surface of the insulator is included in a part of the spark discharge path. In particular, unlike the so-called intermittent discharge type, the spark plug of Configuration 1 can always perform creeping discharge.

上記のように構成1によれば、火花放電経路の一部に、絶縁体の先端面に沿う沿面放電経路が含まれるため、絶縁体先端面を這う形で火花放電が生ずる。このため、汚損物質が焼き切られることとなり、耐汚損性の確保が図られる。特に、構成1では、各接地電極の先端面と内側側面とのエッジ部分が、中心電極の先端面よりも先端側に位置している。このため、接地電極の先端面と中心電極の外周面との間で直接火花放電(気中放電)するという事態が起こりにくい。また、構成1では、前記エッジ部分が、絶縁体の先端面外周よりも外側に位置している。このため、接地電極の先端内側面と中心電極の先端面との間で直接火花放電するという事態が起こりにくい。これらのことから、絶縁体の先端面に沿った沿面放電のより確実な実現が図られる。その結果、セミ沿面スパークプラグとしての機能が十分に発揮され、耐汚損性に優れたものとなる。また、エッジ部分が絶縁体の先端面外周よりも外側に位置していることから、十分な燃焼スペースが確保されることとなる。従って、接地電極が火炎の伝播を阻害してしまうことによる着火性の低下を防止することができる。尚、セミ沿面放電を行うものであれば、寸法上の制約が特にあるわけではないが、気中放電と沿面放電との総合的な火花放電間隙(トータルギャップ、つまり中心電極と接地電極との最短距離)が1.8mm以下であることがより望ましい。   As described above, according to the first configuration, since the creeping discharge path along the tip surface of the insulator is included in a part of the spark discharge path, the spark discharge is generated so as to crawl the insulator tip surface. For this reason, the fouling substance is burned out, and the fouling resistance is ensured. In particular, in Configuration 1, the edge portion between the front end surface and the inner side surface of each ground electrode is located closer to the front end side than the front end surface of the center electrode. For this reason, it is unlikely that a spark discharge (air discharge) occurs directly between the front end surface of the ground electrode and the outer peripheral surface of the center electrode. Moreover, in the structure 1, the said edge part is located outside the front end surface outer periphery of an insulator. For this reason, a situation in which a spark discharge directly occurs between the inner surface of the front end of the ground electrode and the front end surface of the center electrode is unlikely to occur. For these reasons, a more reliable realization of creeping discharge along the tip surface of the insulator can be achieved. As a result, the function as a semi-creeping spark plug is sufficiently exhibited, and the antifouling property is excellent. Further, since the edge portion is located outside the outer periphery of the tip end surface of the insulator, a sufficient combustion space is ensured. Therefore, it is possible to prevent a decrease in ignitability due to the ground electrode impeding flame propagation. Note that there is no particular dimensional limitation for semi-surface discharge, but the overall spark discharge gap between the air discharge and surface discharge (total gap, that is, between the center electrode and the ground electrode). The shortest distance) is more preferably 1.8 mm or less.

また、構成1では、各接地電極の先端面と内側側面とのエッジ部分が、絶縁体の先端面を含む仮想平面よりも先端側に位置している。このため、前記エッジ部分が基端側に位置する場合に比べて電界強度が比較的弱いものとなり、火花によって受ける絶縁体のストレスも比較的小さくて済む。結果として、チャンネリングの進行を抑制することができる。また、絶縁体側面に火花が飛ぶことがほとんどなく、チャンネリングはもとより、絶縁体側壁に孔が形成されてしまう「貫通」による不具合をも抑制できる。   In Configuration 1, the edge portion between the front end surface and the inner side surface of each ground electrode is positioned on the front end side with respect to the virtual plane including the front end surface of the insulator. For this reason, the electric field strength is relatively weak as compared with the case where the edge portion is located on the base end side, and the stress of the insulator received by the spark can be relatively small. As a result, the progress of channeling can be suppressed. In addition, there is almost no spark flying on the side surface of the insulator, and it is possible to suppress problems caused by “penetration” in which holes are formed in the insulator side wall as well as channeling.

その上、構成1では、各接地電極の先端面と内側側面とのなす角度が鈍角である。従って、各接地電極の先端面と内側側面とのエッジ部分の電界強度が一層弱くなり、火花によって受ける絶縁体のストレスもより一層小さくて済む。結果として、チャンネリングをより確実に抑制することができる。   In addition, in Configuration 1, the angle formed between the tip surface and the inner side surface of each ground electrode is an obtuse angle. Therefore, the electric field strength at the edge portion between the front end surface and the inner side surface of each ground electrode is further reduced, and the stress of the insulator that is received by the spark can be further reduced. As a result, channeling can be more reliably suppressed.

構成2.本構成のスパークプラグは、上記構成1において、前記各接地電極の先端面と内側側面とのなす角度が110度以上であることを特徴とする。   Configuration 2. The spark plug of this configuration is characterized in that, in the above configuration 1, the angle formed between the front end surface and the inner side surface of each ground electrode is 110 degrees or more.

上記構成2のように、各接地電極の先端面と内側側面とのなす角度を110度以上とすることで、エッジ部分の電界強度をより確実に弱くできる。その結果、より一層確実にチャンネリングを抑制することができる。   As in the configuration 2, the electric field strength at the edge portion can be more reliably reduced by setting the angle formed between the front end surface and the inner side surface of each ground electrode to 110 degrees or more. As a result, channeling can be more reliably suppressed.

構成3.本構成のスパークプラグは、上記構成1又は2のいずれかにおいて、前記絶縁体の先端面に対する前記中心電極の先端面の軸線方向における突出長は、+0.5mm以下であることを特徴とする。   Configuration 3. In the spark plug of this configuration, in any one of the above configurations 1 or 2, a protruding length in the axial direction of the front end surface of the center electrode with respect to the front end surface of the insulator is +0.5 mm or less.

絶縁体の先端面に対する中心電極の先端面の軸線方向における突出長が+0.5mmを超える場合には、接地電極と中心電極との間で沿面放電を介さずに気中放電してしまう頻度が高くなり、汚損物質を焼き切る機会が減少し、耐汚損性が低下してしまうことが懸念される。この点、構成3では、絶縁体の先端面に対する中心電極先端面の突出長が+0.5mm以下となっているため、より確実に絶縁体先端面との間で火花放電が起こりうる。従って、絶縁体の先端面に沿った沿面放電のより確実な実現が図られ、耐汚損性の向上を図ることができる。   When the protrusion length in the axial direction of the tip surface of the center electrode with respect to the tip surface of the insulator exceeds +0.5 mm, the frequency of air discharge between the ground electrode and the center electrode without involving creeping discharge is high. There is a concern that it will become higher, the chance of burning off the pollutant will decrease, and the fouling resistance will decrease. In this regard, in Configuration 3, since the protruding length of the center electrode tip surface with respect to the tip surface of the insulator is +0.5 mm or less, spark discharge can occur more reliably between the insulator tip surface and the insulator. Therefore, the creeping discharge along the tip surface of the insulator can be more reliably realized, and the fouling resistance can be improved.

尚、絶縁体の先端面に対する中心電極先端面の突出長がマイナス、つまり、中心電極が絶縁体に対し没入していても何ら差し支えないが、チャンネリングのより確実な抑制(深いチャンネリングの形成を抑制する)という観点からは、前記突出長を−0.3mm以上とすることが望ましい。   The protrusion length of the center electrode tip surface with respect to the insulator tip surface is negative, that is, there is no problem even if the center electrode is immersed in the insulator, but more reliable suppression of channeling (formation of deep channeling) From the viewpoint of (suppressing), it is desirable that the protrusion length is −0.3 mm or more.

構成4.本構成のスパークプラグは、上記構成1乃至3のいずれかにおいて、前記各接地電極の先端面と内側側面とのエッジ部分が湾曲状又は面取り状をなすことを特徴とする。要するに、各接地電極の先端面と内側側面とのエッジ部分が角張っていないことを要旨とする。   Configuration 4. The spark plug of this configuration is characterized in that, in any one of the above configurations 1 to 3, the edge portion between the tip surface and the inner side surface of each ground electrode is curved or chamfered. In short, the gist is that the edge portion between the tip surface and the inner side surface of each ground electrode is not angular.

すなわち、構成1等のように各接地電極の先端面と内側側面とのなす角度を鈍角とすることで、エッジ部分の電界強度の低減が図られるのであるが、構成4のように、前記エッジ部分を湾曲状又は面取り状とすることで、局所的に電界が集中しなくなることから放電は様々な経路を辿り、より一層チャンネリングの抑制に貢献しうる。   That is, the electric field strength at the edge portion can be reduced by making the angle formed between the front end surface and the inner side surface of each ground electrode an obtuse angle as in Configuration 1 or the like. By making the portion curved or chamfered, the electric field does not concentrate locally, so that the discharge follows various paths and can further contribute to suppression of channeling.

以下、本発明の一実施形態を図面を参照しつつ説明する。図1(a),(b)に示すように、本実施形態のスパークプラグ100は、主体金具1と、絶縁体2と、中心電極3と、2本の接地電極4A,4Bとを備えている。主体金具1は、低炭素鋼等の金属により円筒状に形成されており、スパークプラグ100のハウジングを構成するとともに、その外周面には、スパークプラグ100を図示しないエンジンのシリンダヘッドに取り付けるためのねじ部7が形成されている。主体金具1の内側には、絶縁体2が保持されている。絶縁体2の先端面2aは主体金具1の先端面から先端側に突出している。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. As shown in FIGS. 1A and 1B, the spark plug 100 of this embodiment includes a metal shell 1, an insulator 2, a center electrode 3, and two ground electrodes 4A and 4B. Yes. The metal shell 1 is formed in a cylindrical shape from a metal such as low carbon steel, and constitutes a housing of the spark plug 100. On the outer peripheral surface thereof, the spark plug 100 is attached to a cylinder head of an engine (not shown). A threaded portion 7 is formed. An insulator 2 is held inside the metal shell 1. The front end surface 2 a of the insulator 2 protrudes from the front end surface of the metal shell 1 to the front end side.

絶縁体2は、例えばアルミナ等のセラミック焼結体により構成され、その内部には自身の軸線方向に沿って軸孔6が形成されており、当該軸孔6に前記中心電極3が挿入状態で固定されている。本実施形態においては、中心電極3の先端面3aは、絶縁体2の先端面2aと略面一となっている。   The insulator 2 is made of a ceramic sintered body such as alumina, for example, and an axial hole 6 is formed in the inside along the axial direction of the insulator 2, and the central electrode 3 is inserted in the axial hole 6. It is fixed. In the present embodiment, the front end surface 3 a of the center electrode 3 is substantially flush with the front end surface 2 a of the insulator 2.

さらに、接地電極4A,4Bは、中心電極3を挟んだ対称位置に設けられており、それぞれの基端面が、前記主体金具1の先端面に対し溶接されている。接地電極4A,4Bは、長手方向中間位置において軸線方向へ屈曲(又は湾曲)させられている。   Further, the ground electrodes 4 </ b> A and 4 </ b> B are provided at symmetrical positions with the center electrode 3 interposed therebetween, and the respective base end surfaces are welded to the front end surface of the metal shell 1. The ground electrodes 4A and 4B are bent (or curved) in the axial direction at intermediate positions in the longitudinal direction.

尚、接地電極4A,4Bは、外層及び内層からなる2層構造となっている。外層は、ニッケル合金等で構成されている。これに対し、内層は、ニッケル合金よりも良熱伝導性金属(例えば銅を主体とする金属材料や、前記ニッケル合金よりも熱伝導性に優れる高純度ニッケル等)で構成されている。中心電極3の本体部もまた、外層及び内層の2層構造を具備している。   The ground electrodes 4A and 4B have a two-layer structure including an outer layer and an inner layer. The outer layer is made of a nickel alloy or the like. On the other hand, the inner layer is made of a metal having good thermal conductivity (for example, a metal material mainly composed of copper or high-purity nickel having higher thermal conductivity than the nickel alloy) than the nickel alloy. The main body of the center electrode 3 also has a two-layer structure of an outer layer and an inner layer.

さて、本実施形態では、接地電極4A,4Bの先端面41a,41bが軸線方向と平行に延びており、各接地電極4A,4Bの先端と中心電極3との間に火花放電経路が形成されている。そして、当該火花放電経路の一部に、絶縁体2の先端面2aに沿う沿面放電経路が含まれるように設定されている。すなわち、各接地電極4A,4Bの先端面41a,41bと内側側面42a,42bとのエッジ部分EA,EBと、絶縁体2との間のギャップGA,GBでは気中放電し、絶縁体2と中心電極3との間では絶縁体2の先端面2aを経由した沿面放電する形態で、火花放電が発生するようになっている。   In the present embodiment, the tip surfaces 41a and 41b of the ground electrodes 4A and 4B extend parallel to the axial direction, and a spark discharge path is formed between the tip of each ground electrode 4A and 4B and the center electrode 3. ing. And it is set so that the creeping discharge path along the front end surface 2a of the insulator 2 may be included in a part of the spark discharge path. That is, in the gaps GA and GB between the edge portions EA and EB between the front end surfaces 41a and 41b and the inner side surfaces 42a and 42b of the ground electrodes 4A and 4B and the insulator 2, air discharge occurs. Spark discharge is generated between the central electrode 3 and the central electrode 3 in a form of creeping discharge via the tip surface 2a of the insulator 2.

但し、前記エッジ部分EA,EBは、絶縁体2の先端面2aを含む仮想平面M1よりも先端側で、かつ、中心電極3の先端面3aよりも先端側に位置するとともに、絶縁体2の先端面外周G1よりも外側に位置している(図2(a)で示す領域βに位置している)。   However, the edge portions EA and EB are located on the tip side of the virtual plane M1 including the tip surface 2a of the insulator 2 and on the tip side of the tip surface 3a of the center electrode 3, and It is located outside the front end surface outer periphery G1 (located in the region β shown in FIG. 2A).

また、本実施形態では、各接地電極4A,4Bの先端面41a,41bと内側側面42a,42bとのなす角度(エッジ部分の角度)θが鈍角(例えば、θ=120度)となっている。   Further, in the present embodiment, the angle (edge portion angle) θ formed by the tip surfaces 41a and 41b of the ground electrodes 4A and 4B and the inner side surfaces 42a and 42b is an obtuse angle (for example, θ = 120 degrees). .

本実施形態におけるスパークプラグ100は、いわゆる間欠放電タイプとは異なり、常時沿面放電を行いうるものである。特に、本実施形態では、上記のように絶縁体2の先端面2aからの中心電極3の突出長が0.5mm以下と小さく(本実施形態においては、突出長は0、すなわち絶縁体2の先端面2aと中心電極3の先端面3aとは同一平面上に位置しいている)、かつ前記エッジ部分EA,EBが、中心電極3の先端面3aよりも先端側に位置していることから、接地電極4A,4Bの先端面41a,41bと中心電極3の外周面との間で沿面放電を介さずに直接火花放電(気中放電)するという事態が起こりにくい。また、前記エッジ部分EA,EBが、絶縁体2の先端面外周G1よりも外側に位置していることから、接地電極4A,4B先端の内側側面42a,42bと中心電極3の先端面3aとの間で直接火花放電するという事態が起こりにくい。これらのことから、絶縁体2の先端面2aに沿った沿面放電のより確実な実現が図られる。特に、エッジ部分EA,EBを、絶縁体2の先端面外周G1よりも外側に位置させることで、絶縁体2の先端面2aの端縁から清浄することができる。その結果、セミ沿面スパークプラグとしての機能が十分に発揮され、耐汚損性に優れたものとなる。   Unlike the so-called intermittent discharge type, the spark plug 100 according to the present embodiment can always perform creeping discharge. In particular, in the present embodiment, the protrusion length of the center electrode 3 from the distal end surface 2a of the insulator 2 is as small as 0.5 mm or less as described above (in this embodiment, the protrusion length is 0, that is, the insulator 2 The tip surface 2a and the tip surface 3a of the center electrode 3 are located on the same plane), and the edge portions EA and EB are located on the tip side of the tip surface 3a of the center electrode 3. In addition, it is unlikely that a direct spark discharge (air discharge) occurs between the front end surfaces 41a and 41b of the ground electrodes 4A and 4B and the outer peripheral surface of the center electrode 3 without a creeping discharge. Further, since the edge portions EA, EB are located outside the outer peripheral surface G1 of the insulator 2, the inner side surfaces 42a, 42b of the tips of the ground electrodes 4A, 4B and the end surface 3a of the center electrode 3 It is unlikely that a direct spark discharge will occur. For these reasons, a more reliable realization of creeping discharge along the tip surface 2a of the insulator 2 can be achieved. In particular, the edge portions EA and EB can be cleaned from the edge of the tip surface 2a of the insulator 2 by positioning the edge portions EA and EB outside the tip surface outer periphery G1 of the insulator 2. As a result, the function as a semi-creeping spark plug is sufficiently exhibited, and the antifouling property is excellent.

次に、チャンネリングの抑制等に関する本実施形態の作用効果を確認するべく、各種条件を変更することで種々のサンプルを作製し、種々の評価を試みた。その実験結果を以下に記す。   Next, in order to confirm the effect of this embodiment regarding suppression of channeling, various samples were produced by changing various conditions, and various evaluations were tried. The experimental results are described below.

先ず第1に、前記エッジ部分の絶縁体先端面に対する高さを種々異ならせたサンプル(スパークプラグ)を用意し、各サンプルについて電界強度のシミュレーション実験を行った。エッジ部分の絶縁体表面に対する高さに対する電界強度の関係を図3に示す。尚、グラフでは、エッジ部分と絶縁体先端面とが同一高さであるときに、横軸の値が0となっている。   First, samples (spark plugs) were prepared in which the height of the edge portion relative to the insulator tip surface was varied, and a field strength simulation experiment was performed on each sample. FIG. 3 shows the relationship of the electric field strength with respect to the height of the edge portion relative to the insulator surface. In the graph, the value on the horizontal axis is 0 when the edge portion and the insulator front end surface have the same height.

図3に示すように、エッジ部分が絶縁体の先端面よりも先端側に位置している方が、電界強度が弱くなる傾向にある。従って、本実施形態のように、エッジ部分EA(EB)を絶縁体2の先端面2aよりも先端側に位置させることで、電界強度を弱くでき、もってチャンネリングの抑制に寄与しうるといえる。   As shown in FIG. 3, the electric field strength tends to be weaker when the edge portion is located on the tip side than the tip surface of the insulator. Therefore, as in the present embodiment, by positioning the edge portion EA (EB) closer to the front end side than the front end surface 2a of the insulator 2, it can be said that the electric field strength can be weakened, thereby contributing to the suppression of channeling. .

次に、エッジ部分EA(EB)が絶縁体2の先端面2aよりも先端側、かつ、先端面外周G1よりも外側の領域βに位置するサンプル(図2(a)参照)であって、各接地電極の先端面と内側側面とのなす角度(エッジ部分の角度)を種々異ならせたサンプル(スパークプラグ)を用意し、各サンプルについて耐久試験を行い、チャンネリングの深さを計測した。尚、耐久試験及び計測に関しては、各サンプル(スパークプラグ)をDOHC直列6気筒、排気量2000ccのエンジンに取付け、一定回転数(ここでは5000rpm)でエンジンを回転させ、500時間経過時点での最も深いチャンネリング部分の深さを求めた。当該深さと従来品(図2(b)のように、エッジ部分E2の角度θ2が直角で、かつ、エッジ部分E2が絶縁体22の先端面22aよりも基端側に位置するサンプル)のチャンネリングの深さとの比率を演算した。その結果を図4に示す。   Next, the edge portion EA (EB) is a sample (see FIG. 2A) in which the edge portion EA (EB) is located in the region β on the tip side of the insulator 2 and on the outer side of the tip surface outer periphery G1. Samples (spark plugs) with different angles (angles of the edge portions) between the front end surface and the inner side surface of each ground electrode were prepared, durability tests were performed on each sample, and the channeling depth was measured. For the durability test and measurement, each sample (spark plug) was attached to a DOHC inline 6 cylinder engine with a displacement of 2000 cc, and the engine was rotated at a fixed rotational speed (5000 rpm in this case). The depth of the deep channeling part was calculated. The depth and the channel of the conventional product (as shown in FIG. 2B), the angle θ2 of the edge portion E2 is a right angle and the edge portion E2 is located on the proximal side of the distal end surface 22a of the insulator 22. The ratio with the depth of the ring was calculated. The result is shown in FIG.

図4に示すように、エッジ部分の角度が鈍角である場合には、直角である場合に比べてチャンネリング深さが小さくて済み、チャンネリングをより確実に抑制することができることがわかる。特に、前記角度が110度以上(特に120度以上)である場合には、より一層確実にチャンネリングを抑制することができるといえる。   As shown in FIG. 4, when the angle of the edge portion is an obtuse angle, the channeling depth is smaller than when it is a right angle, and it can be seen that channeling can be more reliably suppressed. In particular, when the angle is 110 degrees or more (particularly 120 degrees or more), it can be said that channeling can be more reliably suppressed.

次に、絶縁体の先端面に対する中心電極の先端面の軸線方向における突出長を種々異ならせたサンプル(スパークプラグ)を用意し、絶縁体の先端面への飛火確率を計測した。尚、当該計測にあたっては、点火装置に組み付けた評価試験対象の各サンプル(スパークプラグ)を試験用チャンバに取り付け、この試験用チャンバ内を大気とプロパンとを混合してなる評価混合気で充満し、スパークプラグを放電させ、絶縁体の先端面への飛火の有無を撮影画像に基づき判定し、所定回数(ここでは100回)の判定を行った上で、飛火確率を計数した。中心電極の突出長に対する絶縁体先端面への飛火確率の関係を図5のグラフに示す。   Next, samples (spark plugs) were prepared in which the protrusion length in the axial direction of the tip surface of the center electrode with respect to the tip surface of the insulator was varied, and the probability of a spark to the tip surface of the insulator was measured. In this measurement, each sample to be evaluated (spark plug) assembled in the ignition device is attached to the test chamber, and the test chamber is filled with an evaluation mixture obtained by mixing air and propane. Then, the spark plug was discharged, the presence or absence of a spark on the tip surface of the insulator was determined based on the photographed image, the determination was performed a predetermined number of times (here, 100 times), and the probability of a spark was counted. FIG. 5 is a graph showing the relationship between the protrusion length of the center electrode and the probability of a spark to the insulator tip surface.

図5に示すように、前記突出長が+0.5mmを超える場合には、接地電極と中心電極との間で気中放電してしまう頻度が10%を超えてしまい、耐汚損性の低下が懸念される。これに対し、前記突出長が+0.5mm以下の場合には、より確実に絶縁体先端面に火花が飛ぶことがわかる。従って、突出長を+0.5mm以下とすることで、絶縁体2の先端面2aに沿った沿面放電のより確実な実現が図られ、耐汚損性の向上を図ることができるといえる。   As shown in FIG. 5, when the protrusion length exceeds +0.5 mm, the frequency of air discharge between the ground electrode and the center electrode exceeds 10%, and the stain resistance is reduced. Concerned. On the other hand, when the protrusion length is +0.5 mm or less, it can be seen that a spark is more reliably scattered on the insulator front end surface. Accordingly, it can be said that the creeping discharge along the tip surface 2a of the insulator 2 can be more surely realized and the antifouling property can be improved by setting the protrusion length to +0.5 mm or less.

続いて、図2(a)に示すように、エッジ部分EA(EB)の位置をそれぞれ3つの領域α,β,γに位置させたサンプル(スパークプラグ)を用意し、各サンプルに関し、着火性、耐熱劣化、及び、貫通の発生についての評価を行った。尚、領域αは、絶縁体2の先端面2aを含む仮想平面M1よりも先端側で、かつ、絶縁体2の先端面外周G1よりも内側の領域を指し、領域βは、前記仮想平面M1よりも先端側で、かつ、先端面外周G1よりも外側の領域を指し、領域γは、絶縁体2の先端面2aを含む仮想平面M1よりも基端側で、かつ、先端面外周G1よりも外側の領域を指す。   Subsequently, as shown in FIG. 2A, samples (spark plugs) in which the positions of the edge portions EA (EB) are respectively positioned in the three regions α, β, γ are prepared. Evaluation was made on heat resistance deterioration and penetration. The region α indicates a region on the tip side of the virtual plane M1 including the tip surface 2a of the insulator 2 and on the inner side of the tip surface outer periphery G1 of the insulator 2, and the region β indicates the virtual plane M1. The region γ is a region closer to the distal end than the outer periphery G1 of the distal end surface, and the region γ is closer to the proximal end than the virtual plane M1 including the distal end surface 2a of the insulator 2 and from the outer periphery G1 of the distal end surface. Also refers to the outer region.

着火性の評価については、各サンプル(スパークプラグ)をDOHC直列6気筒、排気量2000ccのエンジンに取付け、空燃比リーン側での所定条件下において一定回転数でエンジンを回転させ、単位時間あたりの失火数を測定した。そして、従来品(図2(b)のように、エッジ部分E2の角度θ2が直角で、かつ、エッジ部分E2が絶縁体22の先端面22aよりも基端側に位置するサンプル)よりも失火数の多いものについては×、少ないものについては○とした。その結果を表1に示す。   For the evaluation of ignitability, each sample (spark plug) is attached to an DOHC inline 6 cylinder engine having a displacement of 2000 cc, and the engine is rotated at a constant rotational speed under predetermined conditions on the air-fuel ratio lean side. The number of misfires was measured. Further, the misfire is caused more than the conventional product (a sample in which the angle θ2 of the edge portion E2 is a right angle and the edge portion E2 is located on the proximal side of the distal end surface 22a of the insulator 22 as shown in FIG. 2B). For those with a large number, ×, and for those with a small number, ○. The results are shown in Table 1.

Figure 0004739281
表1に示すように、エッジ部分が領域αに位置する場合には、従来よりも着火性が低下してしまった。これに対し、エッジ部分が領域β,γに位置する場合には、従来に比べて着火性が低下しなかった。このことから、エッジ部分EA,EBが、絶縁体2の先端面外周G1よりも内側の領域に位置すると、着火性が低下してしまうのに対し、エッジ部分EA,EBを絶縁体2の先端面外周G1よりも外側の領域に位置させることで着火性の低下を防止できることがわかる。
Figure 0004739281
As shown in Table 1, when the edge portion is located in the region α, the ignitability is lower than in the prior art. On the other hand, in the case where the edge portion is located in the regions β and γ, the ignitability did not deteriorate compared to the conventional case. For this reason, when the edge portions EA and EB are located in a region inside the tip end outer periphery G1 of the insulator 2, the ignitability deteriorates, whereas the edge portions EA and EB are changed to the tip of the insulator 2. It can be seen that the ignitability can be prevented from being lowered by being positioned in a region outside the outer periphery G1.

また、耐熱劣化の評価については、各サンプル(スパークプラグ)をDOHC直列6気筒、排気量2000ccのエンジンに取付け、一定回転数(ここでは5000rpm)でエンジンを回転させ、500時間経過時点での耐熱劣化の有無を判定した。そして、耐熱劣化がない場合には、○と評価し、耐熱劣化があった(認められた)場合には×と評価した。尚、耐熱劣化がある場合、プレイグニッション発生進角が遅角側になる傾向にある。このため、ここでは、耐熱劣化の1つの指標として、プレイグニッション発生進角が5゜以上遅れた場合に耐熱劣化あり(×)、そうでない場合に耐熱劣化なし(○)と判定することとした。   For evaluation of heat resistance deterioration, each sample (spark plug) was attached to a DOHC in-line 6 cylinder engine with a displacement of 2000 cc, the engine was rotated at a constant rotation speed (5000 rpm in this case), and the heat resistance after 500 hours had elapsed. The presence or absence of deterioration was determined. And when there was no heat deterioration, it evaluated as (circle), and when there was heat deterioration (it recognized), it evaluated as x. If there is heat deterioration, the pre-ignition occurrence advance angle tends to be on the retard side. Therefore, here, as one index of heat deterioration, it is determined that there is heat deterioration (×) when the pre-ignition occurrence advance angle is delayed by 5 ° or more, and that there is no heat deterioration (○) otherwise. .

さらに、貫通の評価については、各サンプル(スパークプラグ)をDOHC直列6気筒、排気量2000ccのエンジンに取付け、一定回転数でエンジンを回転させ、500時間経過時点での絶縁体貫通の有無を判定した。そして、貫通がない場合には、○と評価し、貫通が認められた場合には×と評価した。各評価結果について表2に示す。   Furthermore, for evaluation of penetration, each sample (spark plug) was attached to a DOHC in-line 6 cylinder engine with a displacement of 2000 cc, and the engine was rotated at a constant rotational speed to determine the presence or absence of insulation penetration after 500 hours. did. And when there was no penetration, it evaluated as (circle), and when penetration was recognized, it evaluated as x. It shows in Table 2 about each evaluation result.

Figure 0004739281
表2に示すように、エッジ部分が領域γに位置する場合には、チャンネリング及び貫通が発生してしまった。これに対し、エッジ部分が領域α,βに位置する場合には、耐熱劣化及び貫通のいずれについても満足のいくものであった(軽度のチャンネリングで耐熱劣化、貫通はほとんど生じなかった)。このことから、エッジ部分EA,EBが、絶縁体2の先端面2aを含む仮想平面M1よりも基端側に位置すると、チャンネリングや貫通が発生してしまうのに対し、エッジ部分EA,EBを絶縁体2の先端面2aを含む仮想平面M1よりも先端側の領域に位置させることで耐熱劣化を抑制でき、チャンネリング及び貫通の発生を防止できることがわかる。
Figure 0004739281
As shown in Table 2, when the edge portion is located in the region γ, channeling and penetration have occurred. On the other hand, when the edge portion is located in the regions α and β, both the heat resistance deterioration and the penetration were satisfactory (the heat resistance deterioration and the penetration were hardly caused by mild channeling). For this reason, when the edge portions EA and EB are located on the base end side with respect to the virtual plane M1 including the distal end surface 2a of the insulator 2, channeling and penetration occur, whereas the edge portions EA and EB are generated. It can be seen that the heat resistance deterioration can be suppressed and the occurrence of channeling and penetration can be prevented by locating in the region closer to the tip side than the virtual plane M1 including the tip surface 2a of the insulator 2.

なお、上述した実施形態の記載内容に限定されず、例えば次のように実施してもよい。   In addition, it is not limited to the description content of embodiment mentioned above, For example, you may implement as follows.

(a)上記実施形態では、各接地電極4A,4Bの先端面41a,41bと内側側面42a,42bとのエッジ部分EA,EBが角張った形状をなしているが、角張っていない構成することも可能である。例えば、図6(a)に示すように、接地電極4A,4Bが湾曲状(R面を有する)のエッジ部分EA1(EB1)を備えることとしてもよいし、図6(b)に示すように、接地電極4A,4Bが面取り形状(C面を有する)のエッジ部分EA2(EB2)を備えることとしてもよい。上記実施形態のように、エッジ部分EA,EBの角度θを鈍角とすることで、エッジ部分の電界強度の低減が図られるのであるが、当該変形例のように、湾曲状又は面取り形状のエッジ部分EA1(EB1),EA2(EB2)とすることで、発火ポイントの分散が図られ、電界強度のさらなる低減が図られる。従って、より一層チャンネリングの抑制に貢献しうる。   (A) In the embodiment described above, the edge portions EA and EB between the tip surfaces 41a and 41b and the inner side surfaces 42a and 42b of the ground electrodes 4A and 4B have an angular shape. Is possible. For example, as shown in FIG. 6 (a), the ground electrodes 4A and 4B may be provided with curved edge portions (having an R surface) EA1 (EB1), or as shown in FIG. 6 (b). The ground electrodes 4A and 4B may be provided with edge portions EA2 (EB2) having a chamfered shape (having a C surface). As in the above embodiment, the electric field strength of the edge portion can be reduced by setting the angle θ of the edge portions EA and EB to an obtuse angle. However, as in the modification example, the edge having a curved shape or a chamfered shape is used. By setting the portions EA1 (EB1) and EA2 (EB2), the firing points are dispersed, and the electric field strength is further reduced. Therefore, it can contribute to further suppression of channeling.

(b)上記実施形態では特に言及しなかったが、少なくとも前記エッジ部分EA,EBに貴金属チップ(図示略)を接合することとしてもよい。このように貴金属チップを設けることで、耐久性の向上を図ることができる。   (B) Although not particularly mentioned in the above embodiment, a noble metal tip (not shown) may be bonded to at least the edge portions EA and EB. Thus, durability can be improved by providing a noble metal tip.

(c)絶縁体2の形状は必ずしも上記実施形態のものに限定されるものではない。従って、例えば段部のない絶縁体としてもよいし、緩やかなテーパ面を有し、先端側ほど先細り形状をなす絶縁体を採用してもよい。   (C) The shape of the insulator 2 is not necessarily limited to that of the above embodiment. Therefore, for example, an insulator without a stepped portion may be used, or an insulator having a gently tapered surface and tapering toward the tip end side may be employed.

(d)上記実施形態では、絶縁体2の先端面2aと中心電極3の先端面3aとが略面一であったが、中心電極3の先端面3aが幾分突出していてもよい。但し、上記実験結果を踏まえると、絶縁体2の先端面2aに対する中心電極3の先端面3aの軸線方向における突出長は、+0.5mm以下であることが望ましい。一方、絶縁体2の先端面2aに対する中心電極3の先端面3aの突出長がマイナス、つまり、中心電極3が絶縁体2に対し没入していても何ら差し支えないが、チャンネリングのより確実な抑制(深いチャンネリングの形成を抑制する)という観点からは、突出長を−0.3mm以上とすることが望ましい。   (D) In the above embodiment, the distal end surface 2a of the insulator 2 and the distal end surface 3a of the center electrode 3 are substantially flush, but the distal end surface 3a of the center electrode 3 may protrude somewhat. However, based on the experimental results, it is desirable that the protruding length in the axial direction of the tip surface 3a of the center electrode 3 with respect to the tip surface 2a of the insulator 2 is +0.5 mm or less. On the other hand, the protrusion length of the tip surface 3a of the center electrode 3 with respect to the tip surface 2a of the insulator 2 is negative, that is, there is no problem even if the center electrode 3 is immersed in the insulator 2, but channeling is more reliable. From the viewpoint of suppression (suppressing formation of deep channeling), it is desirable that the protrusion length be −0.3 mm or more.

(e)上記実施形態では、2本の接地電極4A,4Bが中心電極3を挟んだ対称位置に設けられた構成となっている。これに対し、3本以上の接地電極が設けられていてもよい。   (E) In the embodiment described above, the two ground electrodes 4A and 4B are provided at symmetrical positions with the center electrode 3 interposed therebetween. On the other hand, three or more ground electrodes may be provided.

(f)さらに、図7に示すように、接地電極4A(4B)の基端側と先端側から、それぞれ中心を通る軸線L1,L2を引き、両軸線L1,L2の交点Zが、絶縁体2の先端面2aよりも基端側に位置することとする
(F) Further, as shown in FIG. 7, axes L1 and L2 passing through the centers are drawn from the base end side and the tip end side of the ground electrode 4A (4B), respectively, and the intersection Z of both axis lines L1 and L2 is an insulator. than 2 of the distal end surface 2a is to be positioned on the proximal side.

(a)は本実施形態のスパークプラグの構成を示す一部破断正面図であり、(b)はその要部の拡大図である。(A) is a partially broken front view which shows the structure of the spark plug of this embodiment, (b) is an enlarged view of the principal part. (a)はエッジ部の位置する領域を説明するための模式図であり、(b)は従来品の要部を拡大して示す模式図である。(A) is a schematic diagram for demonstrating the area | region in which an edge part is located, (b) is a schematic diagram which expands and shows the principal part of a conventional product. エッジ部分の絶縁体表面に対する高さに対する電界強度の関係を示すグラフである。It is a graph which shows the relationship of the electric field strength with respect to the height with respect to the insulator surface of an edge part. エッジ部分の角度に対するチャンネリングの深さの従来品との比率の関係を示すグラフである。It is a graph which shows the relationship of the ratio with the conventional product of the depth of channeling with respect to the angle of an edge part. 中心電極の突出長に対する絶縁体先端面への飛火確率の関係を示すグラフである。It is a graph which shows the relationship of the flying probability to the insulator front end surface with respect to the protrusion length of a center electrode. (a),(b)は、別の実施形態における接地電極を示す模式図である。(A), (b) is a schematic diagram which shows the ground electrode in another embodiment. 別の実施形態における接地電極を示す模式図である。It is a schematic diagram which shows the ground electrode in another embodiment.

符号の説明Explanation of symbols

1…主体金具、2…絶縁体、2a…先端面、3…中心電極、3a…先端面、4A,4B…接地電極、41a,41b…先端面、42a,42b…内側側面、EA,EB,EA1,EB1,EA2,EB2…エッジ部分。   DESCRIPTION OF SYMBOLS 1 ... Metal fitting, 2 ... Insulator, 2a ... Tip surface, 3 ... Center electrode, 3a ... Tip surface, 4A, 4B ... Ground electrode, 41a, 41b ... Tip surface, 42a, 42b ... Inner side surface, EA, EB, EA1, EB1, EA2, EB2... Edge portion.

Claims (4)

軸線方向に貫通する軸孔を有する筒状の絶縁体と、
前記軸孔に挿設された中心電極と、
前記絶縁体の外周に設けられ、自身の先端より前記絶縁体の先端面が突出するように配置された主体金具と、
基端部が前記主体金具の先端面に固着された複数本の接地電極とを備え、
前記各接地電極の先端面が前記軸線方向と平行に延びており、前記各接地電極の先端と前記中心電極との間の火花放電経路の一部に、前記絶縁体の先端面に沿う沿面放電経路が含まれるセミ沿面スパークプラグであって、
前記各接地電極の先端面と内側側面とのエッジ部分が、
前記絶縁体の先端面を含む仮想平面よりも先端側で、かつ、
前記中心電極の先端面よりも先端側に位置するとともに、
前記絶縁体の先端面外周よりも外側に位置し、
前記各接地電極の先端面と内側側面とのなす角度が鈍角であると共に、
前記接地電極の基端側と先端側から、それぞれ中心を通る軸線を引き、両軸線の交点が、前記絶縁体の先端面よりも基端側に位置することを特徴とするセミ沿面スパークプラグ。
A cylindrical insulator having an axial hole penetrating in the axial direction;
A center electrode inserted in the shaft hole;
A metal shell provided on the outer periphery of the insulator and disposed so that a tip surface of the insulator protrudes from a tip of the insulator;
A plurality of ground electrodes each having a proximal end fixed to the distal end surface of the metal shell,
The front end surface of each ground electrode extends parallel to the axial direction, and creeping discharge along the front end surface of the insulator is part of a spark discharge path between the front end of each ground electrode and the center electrode. A semi-creeping spark plug that includes a route,
The edge portion between the front end surface and the inner side surface of each ground electrode,
On the tip side of a virtual plane including the tip surface of the insulator, and
Located on the tip side of the tip surface of the center electrode,
Located outside the outer periphery of the front end surface of the insulator,
The angle formed between the tip surface and the inner side surface of each ground electrode is an obtuse angle ,
A semi-creeping spark plug characterized in that an axis passing through the center is drawn from the proximal end side and the distal end side of the ground electrode, and the intersection of both axes is located on the proximal end side with respect to the distal end surface of the insulator .
前記各接地電極の先端面と内側側面とのなす角度が110度以上であることを特徴とする請求項1に記載のセミ沿面スパークプラグ。   2. The semi-creeping spark plug according to claim 1, wherein an angle formed between a front end surface and an inner side surface of each ground electrode is 110 degrees or more. 前記絶縁体の先端面に対する前記中心電極の先端面の軸線方向における突出長は、+0.5mm以下であることを特徴とする請求項1又は2に記載のセミ沿面スパークプラグ。   3. The semi-creeping spark plug according to claim 1, wherein a protruding length of the tip surface of the center electrode in the axial direction with respect to the tip surface of the insulator is +0.5 mm or less. 前記各接地電極の先端面と内側側面とのエッジ部分が湾曲状又は面取り状をなすことを特徴とする請求項1乃至3のいずれかに記載のセミ沿面スパークプラグ。   4. The semi-creeping spark plug according to claim 1, wherein an edge portion between the front end surface and the inner side surface of each ground electrode is curved or chamfered. 5.
JP2007153508A 2006-06-14 2007-06-11 Semi creeping spark plug Expired - Fee Related JP4739281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007153508A JP4739281B2 (en) 2006-06-14 2007-06-11 Semi creeping spark plug

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006164131 2006-06-14
JP2006164131 2006-06-14
JP2007153508A JP4739281B2 (en) 2006-06-14 2007-06-11 Semi creeping spark plug

Publications (2)

Publication Number Publication Date
JP2008021643A JP2008021643A (en) 2008-01-31
JP4739281B2 true JP4739281B2 (en) 2011-08-03

Family

ID=39077441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007153508A Expired - Fee Related JP4739281B2 (en) 2006-06-14 2007-06-11 Semi creeping spark plug

Country Status (1)

Country Link
JP (1) JP4739281B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4908549B2 (en) * 2008-06-12 2012-04-04 日本特殊陶業株式会社 Spark plug
EP2807711A4 (en) * 2012-01-27 2015-10-07 Enerpulse Inc High power semi-surface gap plug

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612681B2 (en) * 1986-11-22 1994-02-16 日本特殊陶業株式会社 Creepage discharge plug
JPH01251574A (en) * 1988-03-31 1989-10-06 Ngk Spark Plug Co Ltd Spark plug
JPH01251575A (en) * 1988-03-31 1989-10-06 Ngk Spark Plug Co Ltd Spark plug for internal combustion engine
JP3269032B2 (en) * 1997-09-01 2002-03-25 日本特殊陶業株式会社 Spark plug and ignition system for internal combustion engine using the same
JP4187343B2 (en) * 1999-03-26 2008-11-26 日本特殊陶業株式会社 Spark plug for semi-surface discharge type internal combustion engine
JP4469489B2 (en) * 1999-12-13 2010-05-26 日本特殊陶業株式会社 Spark plug

Also Published As

Publication number Publication date
JP2008021643A (en) 2008-01-31

Similar Documents

Publication Publication Date Title
JP4965692B2 (en) Spark plug
US6724133B2 (en) Spark plug with nickel alloy electrode base material
US7615915B2 (en) Spark plug
EP1841028B1 (en) Spark plug for internal combustion engine
WO2009125724A1 (en) Spark plug for internal combustion engine
JP4739281B2 (en) Semi creeping spark plug
EP1517417A2 (en) Spark plug having enhanced capability to ignite air-fuel mixture
JP2009087925A (en) Spark plug
JP5032556B2 (en) Spark plug
JP2008171646A (en) Spark plug for internal combustion engine
JP5291789B2 (en) Spark plug
JP4705596B2 (en) Spark plug for internal combustion engine
JP4227942B2 (en) Spark plug
JP5293030B2 (en) Spark plug
US7352121B2 (en) Spark plug
JP4562030B2 (en) Spark plug
JP4377177B2 (en) Spark plug for internal combustion engine
JP2009158343A (en) Spark plug
JP4524415B2 (en) Spark plug
JP4773923B2 (en) Semi creeping spark plug
JP7316252B2 (en) Spark plug
JP2001237046A (en) Spark plug
JP2007184299A (en) Spark plug
JP2006073205A (en) Spark plug
JP2005353606A (en) Spark plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110427

R150 Certificate of patent or registration of utility model

Ref document number: 4739281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees