JP4377177B2 - Spark plug for internal combustion engine - Google Patents

Spark plug for internal combustion engine Download PDF

Info

Publication number
JP4377177B2
JP4377177B2 JP2003283504A JP2003283504A JP4377177B2 JP 4377177 B2 JP4377177 B2 JP 4377177B2 JP 2003283504 A JP2003283504 A JP 2003283504A JP 2003283504 A JP2003283504 A JP 2003283504A JP 4377177 B2 JP4377177 B2 JP 4377177B2
Authority
JP
Japan
Prior art keywords
tip
insulator
electrode
spark plug
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003283504A
Other languages
Japanese (ja)
Other versions
JP2005050746A (en
Inventor
守 小寺
佳弘 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003283504A priority Critical patent/JP4377177B2/en
Publication of JP2005050746A publication Critical patent/JP2005050746A/en
Application granted granted Critical
Publication of JP4377177B2 publication Critical patent/JP4377177B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Spark Plugs (AREA)

Description

本発明は、内燃機関用スパークプラグ、特に、沿面接地電極と絶縁体との間では気中放電し、絶縁体と中心電極との間では絶縁体の先端部表面を経由した沿面放電形態で伝播する火花放電が発生する内燃機関用スパークプラグに関する。   The present invention relates to a spark plug for an internal combustion engine, in particular, in the form of creeping discharge between the creeping ground electrode and the insulator, and between the insulator and the central electrode via the tip of the insulator. The present invention relates to a spark plug for an internal combustion engine that generates a propagating spark discharge.

近年、エンジン性能の改良に伴い、内燃機関用スパークプラグには更なる長寿命化や耐汚損性向上等が求められている。例えば、耐汚損性を改善した内燃機関用スパークプラグとして、セミ沿面放電を生じさせるスパークプラグが知られている(例えば、特許文献1参照)。セミ沿面放電とは、沿面接地電極と絶縁体との間では気中放電し、絶縁体と中心電極との間では絶縁体の先端部表面を経由した沿面放電形態で伝播する火花放電のことをいう。一般に、内燃機関用スパークプラグは、低温環境下で長時間使用されると、いわゆる「燻り」や「かぶり」の状態となり、絶縁体の先端部表面がカーボンなどの導電性汚損物質で覆われて作動不良が生じやすくなる。これに対し、上記のように、セミ沿面放電を生じさせるスパークプラグは、絶縁体の先端部表面に沿う沿面放電によってカーボンなどの汚損物質を焼き切ることができるので、耐汚損性に優れている。   In recent years, along with improvements in engine performance, spark plugs for internal combustion engines are required to have a longer life and improved antifouling property. For example, a spark plug that generates semi-surface discharge is known as a spark plug for an internal combustion engine with improved fouling resistance (see, for example, Patent Document 1). Semi-creeping discharge is a spark discharge that propagates in the form of creeping discharge between the surface of the insulator and the center electrode, and the surface of the surface of the insulator is in the air. Say. In general, when a spark plug for an internal combustion engine is used for a long time in a low temperature environment, it becomes a so-called “buzz” or “cover” state, and the surface of the tip of the insulator is covered with a conductive fouling substance such as carbon. Malfunction is likely to occur. On the other hand, as described above, the spark plug that generates a semi-surface discharge has excellent anti-fouling property because it can burn off a fouling substance such as carbon by the surface discharge along the surface of the tip of the insulator.

特開2000−68032号公報(第1図、第2図)Japanese Unexamined Patent Publication No. 2000-68032 (FIGS. 1 and 2) 特表平11−510958号公報(第1図)Japanese National Patent Publication No. 11-510958 (FIG. 1)

ところで、特許文献1のセミ沿面放電型スパークプラグでは、沿面接地電極の先端が絶縁体先端部に対向しているため、沿面接地電極と絶縁体先端部との間の電界強度が過度に強くなる虞があった。従って、セミ沿面放電により、絶縁体が早期消耗し、あるいは貫通破壊してしまう危険性があった。   By the way, in the semi-surface discharge type spark plug of Patent Document 1, since the tip of the creeping ground electrode faces the insulator tip, the electric field strength between the creeping ground electrode and the insulator tip is excessive. There was a risk of becoming stronger. Therefore, there has been a risk that the insulator will be prematurely consumed or penetrated due to semi-surface discharge.

これに対し、特許文献2の第1図に示されるセミ沿面放電型スパークプラグでは、沿面接地電極の先端が絶縁体先端部に対向することなく、さらに、絶縁体先端部の径方向外側にも存在することなく、沿面接地電極のうち中心電極側を向いて沿面接地電極の長手方向に延びる内側面と絶縁体先端部との間でセミ沿面放電ギャップ(沿面接地電極と絶縁体先端部との最短距離)を形成している。これにより、沿面接地電極と絶縁体先端部との間の電界強度が過度に強くならず、セミ沿面放電による絶縁体の早期消耗・貫通破壊を抑制するようにしている。   On the other hand, in the semi-surface discharge type spark plug shown in FIG. 1 of Patent Document 2, the tip of the creeping ground electrode does not face the insulator tip, and further on the radially outer side of the insulator tip. The semi-creeping discharge gap (creeping ground electrode and insulator) is formed between the inner surface of the creeping ground electrode facing the center electrode and extending in the longitudinal direction of the creeping ground electrode and the tip of the insulator. The shortest distance from the tip). As a result, the electric field strength between the creeping ground electrode and the tip of the insulator is not excessively increased, and the early consumption / penetration breakdown of the insulator due to the semi-creeping discharge is suppressed.

ところで、セミ沿面放電を生じさせるスパークプラグでは、セミ沿面放電による絶縁体の早期消耗・貫通破壊を抑制することの他、良好な耐汚損性や良好な着火性など、様々な条件を満たすことが求められている。これらの条件を満たすためには、沿面接地電極と他の部位との様々な位置関係(寸法関係)を調整する必要がある。これに対し、特許文献2の第1図に示されるセミ沿面放電型スパークプラグでは、沿面接地電極の寸法形状に関し、沿面接地電極は、単に絶縁体の先端から沿面接地電極の厚さもしくは太さに相当する長さだけ先端側に突出していれば良いとされているだけで、接地電極と他の部位との様々な位置関係(寸法関係)については不明であった。   By the way, spark plugs that generate semi-surface discharge satisfy various conditions such as good anti-fouling property and good ignitability in addition to suppressing early consumption and penetration failure of the insulator due to semi-surface discharge. It has been demanded. In order to satisfy these conditions, it is necessary to adjust various positional relationships (dimensional relationships) between the creeping ground electrode and other portions. On the other hand, in the semi-surface discharge type spark plug shown in FIG. 1 of Patent Document 2, regarding the size and shape of the surface ground electrode, the surface ground electrode is simply the thickness of the surface ground electrode from the tip of the insulator. Alternatively, it is only necessary to project to the tip side by a length corresponding to the thickness, and various positional relationships (dimensional relationships) between the ground electrode and other parts have not been known.

本発明は、かかる現状に鑑みてなされたものであって、セミ沿面放電による絶縁体の早期消耗・貫通破壊を抑制しつつ、良好な耐汚損性、良好な着火性などを得ることができる内燃機関用スパークプラグを提供することを目的とする。   The present invention has been made in view of such a current situation, and is capable of obtaining good fouling resistance, good ignitability, and the like while suppressing early consumption / penetration breakdown of an insulator due to semi-surface discharge. An object is to provide a spark plug for an engine.

その解決手段は、軸線方向に貫通する軸孔を有する筒状の絶縁体と、上記軸孔に挿設された中心電極であって、上記絶縁体の先端から突出する中心電極先端部を有する中心電極と、筒状の主体金具であって、上記絶縁体の周囲を取り囲み、自身の先端より上記絶縁体の一部が突出するように配置された主体金具と、上記主体金具の先端面に接合された1または複数の沿面接地電極であって、この沿面接地電極と上記中心電極先端部との間に生じさせる火花放電の放電経路の一部に、上記絶縁体のうち上記主体金具の先端よりも先端側に突出する絶縁体先端部の表面に沿う沿面放電経路を含むように、上記絶縁体先端部及び上記中心電極先端部に対する形態を定めてなる沿面接地電極と、を備える内燃機関用スパークプラグであって、上記沿面接地電極は、上記主体金具の先端面から上記中心電極側を向いて延びる滑らかな内側面であって、上記絶縁体の先端よりも上記軸線方向先端側まで延びる内側面を有し、上記沿面接地電極と上記絶縁体先端部との間隙のうち最短の間隙をセミ沿面放電ギャップとしたとき、上記沿面接地電極の内側面は、上記絶縁体先端部との間で上記セミ沿面放電ギャップをなす電極側ギャップ位置を含み、上記絶縁体の先端を起点とし、上記軸線方向先端側を正の方向、上記軸線方向基端側を負の方向としたとき、上記絶縁体の先端から上記電極側ギャップ位置までの上記軸線方向距離L1(mm)は、−0.8≦L1≦0.0の関係を満たす内燃機関用スパークプラグである。   The solution includes a cylindrical insulator having an axial hole penetrating in the axial direction, and a center electrode inserted into the axial hole, the center electrode having a center electrode tip protruding from the tip of the insulator. An electrode and a cylindrical metal shell, which surrounds the insulator and is arranged so that a part of the insulator protrudes from the tip of itself, and is joined to the tip surface of the metal shell One or a plurality of creeping ground electrodes formed on a portion of a discharge path of a spark discharge generated between the creeping ground electrode and the tip of the center electrode. An internal combustion engine comprising: a creeping ground electrode having a shape with respect to the insulator tip and the center electrode tip so as to include a creeping discharge path along a surface of the insulator tip protruding beyond the tip. Spark plug for engine The ground electrode has a smooth inner surface extending from the front end surface of the metal shell toward the center electrode side, and has an inner side surface extending from the front end of the insulator to the front end side in the axial direction. When the shortest gap among the gaps between the ground electrode and the insulator tip is defined as a semi-creeping discharge gap, the inner surface of the creeping ground electrode has the semi-creeping discharge gap between the insulator tip and the insulator. Including an electrode-side gap position, where the tip of the insulator is the starting point, the tip in the axial direction is the positive direction, and the base end in the axial direction is the negative direction. The axial distance L1 (mm) to the gap position is a spark plug for an internal combustion engine that satisfies a relationship of −0.8 ≦ L1 ≦ 0.0.

本発明の内燃機関用スパークプラグは、沿面接地電極が、主体金具の先端面から中心電極側を向いて延びる滑らかな内側面であって、絶縁体の先端よりも軸線方向先端側まで延びる内側面を有している。さらに、この内側面は、絶縁体先端部との間でセミ沿面放電ギャップをなす電極側ギャップ位置を含んでいる。換言すれば、セミ沿面放電ギャップは、沿面接地電極のうち滑らかな内側面と絶縁体先端部との間で形成される。このため、沿面接地電極と絶縁体先端部との間で電界強度が過度に強くならず、セミ沿面放電(沿面接地電極と絶縁体との間で気中放電し、絶縁体と中心電極との間では絶縁体先端部の表面に沿って沿面放電する火花放電をいう)による絶縁体の早期消耗、貫通破壊を抑制することができる。   In the spark plug for an internal combustion engine according to the present invention, the creeping ground electrode is a smooth inner surface extending from the front end surface of the metal shell toward the center electrode side, and extends from the front end of the insulator to the front end in the axial direction. It has a side. Further, the inner side surface includes an electrode side gap position that forms a semi-creeping discharge gap with the insulator tip. In other words, the semi-creeping discharge gap is formed between the smooth inner surface of the creeping ground electrode and the insulator tip. For this reason, the electric field strength is not excessively increased between the creeping ground electrode and the tip of the insulator, and semi-creeping discharge (air-discharge between the creeping ground electrode and the insulator is caused by Between the first and second insulators, which means spark discharge that creeps along the surface of the tip of the insulator), and can prevent early consumption and penetration breakdown of the insulator.

さらに、本発明の内燃機関用スパークプラグでは、絶縁体の先端を起点とし、軸線方向先端側を正の方向、軸線方向基端側を負の方向としたとき、絶縁体の先端から電極側ギャップ位置までの軸線方向距離L1(mm)が、−0.8≦L1≦0.0の関係を満たしている。L1を0.0mm以下とすることで、換言すれば、セミ沿面放電ギャップを絶縁体の先端よりも軸線方向基端側の位置に形成することで、絶縁体先端部の表面のうち比較的長い距離に亘って沿面放電させることができる。従って、カーボン等の付着によりスパークプラグが汚損した場合には、絶縁体先端部の表面のうち比較的広範囲に亘ってカーボン等の汚損物質を焼き切ることができるので、耐汚損性が良好となる。一方、L1を−0.8mm以上とすることで、換言すれば、セミ沿面放電ギャップを絶縁体の先端よりも軸線方向基端側に0.8mmを超えない範囲で形成することで、混合気への着火性を良好とすることができる。これは、沿面接地電極と絶縁体に挟まれた領域では、軸線方向基端側ほど混合気が希薄となる傾向にあるため、セミ沿面放電ギャップが軸線方向基端側に位置するほど混合気への着火性が低下する傾向にあることに基づいている。   Furthermore, in the spark plug for an internal combustion engine according to the present invention, when the tip of the insulator is the starting point, the tip in the axial direction is the positive direction, and the base end in the axial direction is the negative direction, the gap on the electrode side from the tip of the insulator The axial distance L1 (mm) to the position satisfies the relationship of −0.8 ≦ L1 ≦ 0.0. In other words, by setting L1 to 0.0 mm or less, the semi-creeping discharge gap is formed at a position closer to the base end side in the axial direction than the tip of the insulator, so that the surface of the tip of the insulator is relatively long. It is possible to cause creeping discharge over a distance. Therefore, when the spark plug is soiled due to adhesion of carbon or the like, the soiling material such as carbon can be burned out over a relatively wide area of the surface of the insulator tip, so that the soil resistance is good. On the other hand, when L1 is set to −0.8 mm or more, in other words, the semi-surface discharge gap is formed in a range not exceeding 0.8 mm on the proximal side in the axial direction from the distal end of the insulator. The ignitability can be improved. This is because, in the region sandwiched between the creeping ground electrode and the insulator, the air-fuel mixture tends to become leaner toward the proximal end in the axial direction, so the air-fuel mixture increases as the semi-creeping discharge gap is located closer to the proximal end in the axial direction. This is based on the fact that the ignitability tends to decrease.

なお、沿面接地電極の滑らかな内側面の形状としては、緩やかに屈曲して延びる曲面形状や真っ直ぐ延びる平滑面などが挙げられる。
また、本発明の内燃機関用スパークプラグとしては、例えば、中心電極との間で火花放電する電極として沿面接地電極のみを有するセミ沿面放電型スパークプラグが挙げられる。また、このセミ沿面放電型スパークプラグに、中心電極の先端との間で気中放電ギャップを形成する気中電極を組合わせたスパークプラグとしても良い。
Examples of the shape of the smooth inner surface of the creeping ground electrode include a curved surface shape that is gently bent and extended, and a smooth surface that extends straight.
Moreover, as a spark plug for internal combustion engines of this invention, the semi-surface discharge type spark plug which has only a surface ground electrode as an electrode which carries out a spark discharge between center electrodes is mentioned, for example. Moreover, it is good also as a spark plug which combined this semi-surface discharge type spark plug with the air electrode which forms an air discharge gap between the front-end | tips of a center electrode.

他の解決手段は、軸線方向に貫通する軸孔を有する筒状の絶縁体と、上記軸孔に挿設された中心電極であって、上記絶縁体の先端から突出する中心電極先端部を有する中心電極と、筒状の主体金具であって、上記絶縁体の周囲を取り囲み、自身の先端より上記絶縁体の一部が突出するように配置された主体金具と、上記主体金具の先端面に接合された1または複数の沿面接地電極であって、この沿面接地電極と上記中心電極先端部との間に生じさせる火花放電の放電経路の一部に、上記絶縁体のうち上記主体金具の先端よりも先端側に突出する絶縁体先端部の表面に沿う沿面放電経路を含むように、上記絶縁体先端部及び上記中心電極先端部に対する形態を定めてなる沿面接地電極と、を備える内燃機関用スパークプラグであって、上記沿面接地電極は、上記主体金具の先端面から上記中心電極側を向いて延びる滑らかな内側面であって、上記絶縁体の先端よりも上記軸線方向先端側まで延びる内側面を有し、上記沿面接地電極と上記絶縁体先端部との間隙のうち最短の間隙をセミ沿面放電ギャップとしたとき、上記沿面接地電極の内側面は、上記絶縁体先端部との間で上記セミ沿面放電ギャップをなし、上記セミ沿面放電ギャップの寸法G2(mm)は、0.35≦G2≦0.80の関係を満たす内燃機関用スパークプラグである。   Another solution is a cylindrical insulator having an axial hole penetrating in the axial direction, and a central electrode inserted into the axial hole, the central electrode having a distal end protruding from the distal end of the insulator. A central electrode and a cylindrical metal shell, which surrounds the periphery of the insulator and is disposed so that a part of the insulator protrudes from the tip of itself; and on the tip surface of the metal shell One or a plurality of creeping ground electrodes bonded to each other, and the metal shell of the insulator is part of a discharge path of a spark discharge generated between the creeping ground electrode and the tip of the center electrode. A creeping ground electrode having a shape defined with respect to the insulator tip and the center electrode tip so as to include a creeping discharge path along the surface of the insulator tip protruding beyond the tip of the insulator. A spark plug for an internal combustion engine, wherein The ground electrode has a smooth inner surface extending from the front end surface of the metal shell toward the center electrode side, and has an inner side surface extending from the front end of the insulator to the front end side in the axial direction. When the shortest gap among the gaps between the ground electrode and the insulator tip is defined as a semi-creeping discharge gap, the inner surface of the creeping ground electrode has the semi-creeping discharge gap between the insulator tip and the insulator. None, the semi-surface discharge gap dimension G2 (mm) is a spark plug for an internal combustion engine that satisfies a relationship of 0.35 ≦ G2 ≦ 0.80.

本発明の内燃機関用スパークプラグは、セミ沿面放電ギャップ寸法G2(mm)が0.35≦G2≦0.80の関係を満たしている。0.35≦G2≦0.80とすることで、適切にセミ沿面放電ギャップでの火花放電を生じさせることができる。具体的には、G2を0.35mm以上とすることで、例えば、混合気中の燃料がセミ沿面放電ギャップに入り込んだり、あるいは、セミ沿面放電ギャップの位置でカーボンブリッジが生じることによって、失火する危険性が小さくなる。一方、G2を0.80mm以下とすることで、例えば、カーボン等の導電性汚損物質が、主体金具の筒内の絶縁体表面にまで付着した場合でも、主体金具の内周面と絶縁体汚損部分との間で火花放電してしまう危険性が小さく、適切にセミ沿面放電ギャップにおいて火花放電させることができる。   In the spark plug for an internal combustion engine of the present invention, the semi-surface discharge gap dimension G2 (mm) satisfies the relationship of 0.35 ≦ G2 ≦ 0.80. By setting 0.35 ≦ G2 ≦ 0.80, it is possible to appropriately cause a spark discharge in the semi-creeping discharge gap. Specifically, by setting G2 to 0.35 mm or more, for example, the fuel in the air-fuel mixture enters the semi-creeping discharge gap or a carbon bridge is generated at the position of the semi-creeping discharge gap, resulting in misfire. The risk is reduced. On the other hand, by setting G2 to 0.80 mm or less, for example, even when a conductive fouling substance such as carbon adheres to the insulator surface in the cylinder of the metal shell, the inner peripheral surface of the metal shell and the insulator fouling There is little risk of spark discharge between the parts, and spark discharge can be appropriately performed in the semi-creeping discharge gap.

なお、沿面接地電極の滑らかな内側面としては、請求項1と同様に、緩やかに屈曲して延びる曲面や真っ直ぐ延びる平滑面などが挙げられる。
また、本発明の内燃機関用スパークプラグとしては、請求項1と同様に、セミ沿面放電型スパークプラグや、このセミ沿面放電型スパークプラグに気中電極を組合わせたスパークプラグなどが挙げられる。
In addition, examples of the smooth inner surface of the creeping ground electrode include a curved surface that is gently bent and extends, a smooth surface that extends straight, and the like.
The spark plug for the internal combustion engine of the present invention includes a semi-surface discharge type spark plug, a spark plug in which an air electrode is combined with the semi-surface discharge type spark plug, and the like.

さらに、本発明の内燃機関用スパークプラグであって、絶縁体の先端から沿面接地電極の内側面のうち絶縁体先端部との間でセミ沿面放電ギャップをなす電極側ギャップ位置までの軸線方向基端側への距離をL1(mm)としたとき、0.0≦L1≦0.8の関係を満たす内燃機関用スパークプラグとするのが好ましい。このようにすることで、前述のように、耐汚損性が良好となると共に、混合気への着火性をも良好とすることができる。   Furthermore, in the spark plug for an internal combustion engine of the present invention, the axial direction from the tip of the insulator to the electrode-side gap position forming a semi-creeping discharge gap between the inner surface of the creeping ground electrode and the tip of the insulator When the distance to the base end side is L1 (mm), a spark plug for an internal combustion engine that satisfies the relationship of 0.0 ≦ L1 ≦ 0.8 is preferable. By doing so, as described above, the fouling resistance can be improved and the ignitability to the air-fuel mixture can also be improved.

また、軸線方向に貫通する軸孔を有する筒状の絶縁体と、上記軸孔に挿設された中心電極であって、上記絶縁体の先端から突出する中心電極先端部を有する中心電極と、筒状の主体金具であって、上記絶縁体の周囲を取り囲み、自身の先端より上記絶縁体の一部が突出するように配置された主体金具と、上記主体金具の先端面に接合された1または複数の沿面接地電極であって、この沿面接地電極と上記中心電極先端部との間に生じさせる火花放電の放電経路の一部に、上記絶縁体のうち上記主体金具の先端よりも先端側に突出する絶縁体先端部の表面に沿う沿面放電経路を含むように、上記絶縁体先端部及び上記中心電極先端部に対する形態を定めてなる沿面接地電極と、を備える内燃機関用スパークプラグであって、上記沿面接地電極は、上記主体金具の先端面から上記中心電極側を向いて延びる滑らかな内側面であって、上記絶縁体の先端よりも上記軸線方向先端側まで延びる内側面を有し、上記沿面接地電極と上記絶縁体先端部との間隙のうち最短の間隙をセミ沿面放電ギャップとしたとき、上記沿面接地電極の内側面は、上記絶縁体先端部との間で上記セミ沿面放電ギャップをなし、上記中心電極は、上記絶縁体の先端の近傍に位置し、上記軸線方向先端側ほど縮径する縮径部と、上記縮径部から上記軸線方向基端側に延びる円筒形状の基端側部と、を有し、上記絶縁体の先端を起点とし、上記軸線方向先端側を正の方向、上記軸線方向基端側を負の方向としたとき、上記絶縁体の先端から上記縮径部と上記基端側部との間に形成される環状稜線までの上記軸線方向距離N(mm)は、N≧−0.5の関係を満たす内燃機関用スパークプラグとするのが好ましい Further, a tubular insulator having an axial hole penetrating in the axial direction, a center electrode which is inserted into the shaft hole, a center electrode having a center electrode leading end portion protruding from the tip of the insulator, A cylindrical metal shell, which surrounds the insulator and is disposed so that a part of the insulator protrudes from the tip of the metal shell, and 1 joined to the tip surface of the metal shell Or a plurality of creeping ground electrodes, and a part of a discharge path of a spark discharge generated between the creeping ground electrode and the tip of the center electrode, than the tip of the metal shell of the insulator. A spark for an internal combustion engine, comprising: a creeping ground electrode having a shape with respect to the insulator tip and the center electrode tip so as to include a creeping discharge path along a surface of the insulator tip protruding to the tip side. Plug, the creeping ground electrode is A smooth inner surface extending from the front end surface of the metal shell toward the center electrode side, the inner surface extending from the front end of the insulator to the front end side in the axial direction, and the creeping ground electrode and the When the shortest gap among the gaps with the insulator tip is the semi-creeping discharge gap, the inner surface of the creeping ground electrode forms the semi-creeping discharge gap with the insulator tip, and the center The electrode is located in the vicinity of the distal end of the insulator and has a reduced diameter portion that decreases in diameter toward the distal end side in the axial direction, and a cylindrical proximal end side portion that extends from the reduced diameter portion to the proximal side in the axial direction. Where the distal end of the insulator is the starting point, the distal end side in the axial direction is the positive direction, and the proximal end side in the axial direction is the negative direction. The axial distance to the annular ridgeline formed between the end side part (Mm) is preferably set to spark plug satisfies the relationship N ≧ -0.5.

この内燃機関用スパークプラグでは、絶縁体の先端を起点とし、軸線方向先端側を正の方向、軸線方向基端側を負の方向としたとき、絶縁体の先端から中心電極の縮径部と基端側部との間に形成される環状稜線までの軸線方向距離N(mm)が、N≧−0.5の関係を満たすようにしている。中心電極の環状稜線は角部となるため、その付近に電界が集中し、放電の端点(起点あるいは終点)となる傾向にある。このため、この環状稜線を絶縁体の先端より大きく基端側に位置させると、沿面放電せずに、絶縁体中を貫通して放電してしまう虞がある。これに対し、このスパークプラグでは、中心電極の環状稜線を、絶縁体の先端から軸線方向基端側に0.5mm離れた位置よりも軸線方向先端側に配置させている。これにより、この環状稜線付近の電界強度が強くなることで環状稜線を端点として火花放電が生じてしまった場合でも、火花放電が絶縁体を貫通することなく、適切に沿面放電させることができる。 In this spark plug for an internal combustion engine, when the front end of the insulator is the starting point, the front end side in the axial direction is the positive direction, and the base end side in the axial direction is the negative direction, the reduced diameter portion of the center electrode from the front end of the insulator The axial distance N (mm) to the annular ridge formed between the base end side portion satisfies the relationship of N ≧ −0.5. Since the annular ridge line of the center electrode is a corner, the electric field is concentrated in the vicinity thereof and tends to be an end point (start point or end point) of discharge. For this reason, if this annular ridge line is positioned larger than the distal end of the insulator on the base end side, there is a risk that the creeping discharge may occur and the electric discharge penetrate through the insulator. On the other hand, in this spark plug , the annular ridge line of the center electrode is arranged on the distal end side in the axial direction from the position 0.5 mm away from the distal end of the insulator to the proximal end side in the axial direction. As a result, even when a spark discharge occurs with the annular ridge line as an end point due to an increase in the electric field strength in the vicinity of the annular ridge line, it is possible to appropriately cause a creeping discharge without the spark discharge penetrating the insulator.

なお、絶縁体の先端から中心電極の環状稜線までの軸線方向距離N(mm)は、負の値(環状稜線が絶縁体の先端よりも軸線方向基端側に位置する場合)に限らず、正の値(環状稜線が絶縁体の先端よりも軸線方向先端側に位置する場合)であっても良い。
また、沿面接地電極の滑らかな内側面としては、請求項1と同様に、緩やかに屈曲して延びる曲面や真っ直ぐ延びる平滑面などが挙げられる。また、上述の内燃機関用スパークプラグとしては、請求項1と同様に、セミ沿面放電型スパークプラグや、このセミ沿面放電型スパークプラグに気中電極を組合わせたスパークプラグなどが挙げられる。
The axial distance N (mm) from the tip of the insulator to the annular ridge line of the center electrode is not limited to a negative value (when the annular ridge line is positioned closer to the proximal side in the axial direction than the tip of the insulator), It may be a positive value (when the annular ridge line is located on the tip side in the axial direction with respect to the tip of the insulator).
In addition, examples of the smooth inner surface of the creeping ground electrode include a curved surface that is gently bent and extended, a smooth surface that extends straight, and the like. As the spark plug for an internal combustion engine described above, the same as defined in Claim 1, and the semi-creeping discharge type spark plug, such as spark plugs and the like which combined aerial electrodes to the semi-creeping discharge type spark plug.

さらに、上記いずれかの内燃機関用スパークプラグであって、前記主体金具に固着され、前記中心電極の先端との間で気中放電ギャップを形成する気中電極を有する内燃機関用スパークプラグとすると良い。   Furthermore, any one of the above-described spark plugs for an internal combustion engine, wherein the spark plug for the internal combustion engine has an air electrode fixed to the metal shell and forming an air discharge gap with the tip of the center electrode. good.

本発明は、セミ沿面放電型スパークプラグに、中心電極の先端との間で気中放電ギャップを形成する気中電極を組合わせたスパークプラグについても適用することができる。このようなスパークプラグにおいても、セミ沿面放電による絶縁体の早期消耗、貫通破壊を抑制しつつ、良好な耐汚損性、良好な着火性などを得ることができる。   The present invention can also be applied to a spark plug in which a semi-surface discharge spark plug is combined with an air electrode that forms an air discharge gap with the tip of the center electrode. Also in such a spark plug, it is possible to obtain good fouling resistance, good ignition property, etc. while suppressing early consumption of the insulator due to semi-surface discharge and through breakage.

なお、気中放電ギャップとは、中心電極の先端と気中電極との間隙のうち最短の間隙をいう。また、着火性と耐久性を向上するため、中心電極の先端及び気中電極のうち中心電極の先端と対向する位置の少なくともいずれかに、貴金属チップを設けるようにしても良い。中心電極の先端に貴金属チップを設けた場合、中心電極の先端は貴金属チップの先端となり、さらに、気中電極に貴金属チップを設けた場合は、気中放電ギャップは両電極の貴金属チップ同士の最短距離となる。この貴金属チップとしては、例えば、Pt,Ir,Rhなどの貴金属を主成分とする合金が挙げられる。   The air discharge gap refers to the shortest gap among the gaps between the tip of the center electrode and the air electrode. In order to improve ignitability and durability, a noble metal tip may be provided at at least one of the tip of the center electrode and the air electrode facing the tip of the center electrode. When the noble metal tip is provided at the tip of the center electrode, the tip of the center electrode is the tip of the noble metal tip, and when the noble metal tip is provided on the air electrode, the air discharge gap is the shortest distance between the noble metal tips of both electrodes. Distance. As this noble metal tip, for example, an alloy containing a noble metal such as Pt, Ir, Rh or the like as a main component can be cited.

さらに、上記の内燃機関用スパークプラグであって、前記沿面接地電極の先端は、前記中心電極の先端より前記軸線方向基端側に位置してなる内燃機関用スパークプラグとすると良い。   Further, in the above-mentioned spark plug for an internal combustion engine, the tip of the creeping ground electrode may be a spark plug for an internal combustion engine that is positioned on the proximal side in the axial direction from the tip of the center electrode.

本発明の内燃機関用スパークプラグは、セミ沿面放電型スパークプラグに、中心電極の先端との間で気中放電ギャップを形成する気中電極を組合わせたスパークプラグにおいて、沿面接地電極の先端を、中心電極の先端より軸線方向基端側に位置させている。このため、気中放電ギャップにおいて火花放電した場合の火炎の拡がりが、沿面接地電極によって妨げられる虞がない。従って、気中放電ギャップにおいて火花放電した際の混合気への着火性を良好とすることができる。   The spark plug for an internal combustion engine according to the present invention is a spark plug in which a semi-surface discharge type spark plug is combined with an air electrode that forms an air discharge gap with the tip of the center electrode. Is positioned on the proximal side in the axial direction from the tip of the center electrode. For this reason, there is no possibility that the spread of the flame when spark discharge occurs in the air discharge gap is hindered by the creeping ground electrode. Therefore, it is possible to improve the ignitability of the air-fuel mixture when spark discharge occurs in the air discharge gap.

さらに、上記いずれかの内燃機関用スパークプラグであって、前記セミ沿面放電ギャップの寸法G2(mm)は、0.35≦G2≦0.80の関係を満たし、且つ前記気中放電ギャップの寸法G1(mm)は、0.5≦G1≦1.1の関係を満たす内燃機関用スパークプラグとすると良い。   Furthermore, in any of the above-described spark plugs for an internal combustion engine, the semi-surface discharge gap dimension G2 (mm) satisfies a relationship of 0.35 ≦ G2 ≦ 0.80, and the air discharge gap dimension. G1 (mm) is preferably a spark plug for an internal combustion engine that satisfies the relationship of 0.5 ≦ G1 ≦ 1.1.

本発明の内燃機関用スパークプラグは、セミ沿面放電型スパークプラグに、中心電極の先端との間で気中放電ギャップを形成する気中電極を組合わせたスパークプラグにおいて、セミ沿面放電ギャップ寸法G2(mm)を0.35≦G2≦0.80とした場合に、気中放電ギャップ寸法G1(mm)が0.5≦G1≦1.1の関係を満たしている。G1を0.5mm以上とすることで、気中放電ギャップにおいて火花放電した際、混合気への着火性を良好とすることができる。具体的には、G1を0.5mm以上とすることで、気中放電ギャップに十分な混合気を介在させることができると共に、この混合気に着火するための十分な火花放電を生じさせることができる。   The spark plug for an internal combustion engine of the present invention is a spark plug in which a semi-surface discharge type spark plug is combined with an air electrode that forms an air discharge gap with the tip of a center electrode. When (mm) is 0.35 ≦ G2 ≦ 0.80, the air discharge gap dimension G1 (mm) satisfies the relationship of 0.5 ≦ G1 ≦ 1.1. By setting G1 to 0.5 mm or more, when spark discharge occurs in the air discharge gap, the ignitability of the air-fuel mixture can be improved. Specifically, by setting G1 to 0.5 mm or more, a sufficient air-fuel mixture can be interposed in the air discharge gap, and a sufficient spark discharge for igniting this air-fuel mixture can be generated. it can.

一方、G1を1.1mm以下とすることで、気中放電ギャップを経由する放電経路の放電電圧が高くなりすぎないようにし、適切に気中放電ギャップを経由する火花放電を生じさせることができる。具体的には、例えば、気中放電ギャップを経由する放電経路の放電電圧が高すぎることで、汚損していない(絶縁体先端部の表面にカーボン等が付着していない)状況でもセミ沿面放電ギャップにおいて火花放電が生じてしまい、着火性が低下する危険性を小さくできる。あるいは、気中放電ギャップ及びセミ沿面放電ギャップのいずれにおいても火花放電が生じることなく、絶縁体を貫通する放電が生じてしまう危険性を小さくできる。   On the other hand, by setting G1 to 1.1 mm or less, the discharge voltage of the discharge path passing through the air discharge gap can be prevented from becoming too high, and a spark discharge can be appropriately generated via the air discharge gap. . Specifically, for example, the discharge voltage of the discharge path through the air discharge gap is too high, so that the semi-surface discharge is not contaminated (carbon is not attached to the surface of the insulator tip). It is possible to reduce the risk that spark discharge occurs in the gap and the ignitability is lowered. Alternatively, the risk of a discharge penetrating the insulator can be reduced without causing a spark discharge in any of the air discharge gap and the semi-surface discharge gap.

さらに、上記いずれかの内燃機関用スパークプラグであって、前記気中電極は、前記主体金具に固着され前記軸線方向先端側に延びる基端部、この基端部から延設されて上記主体金具の径方向内側に屈曲する屈曲部、及びこの屈曲部から延設されて前記中心電極と上記軸線方向に対向する位置まで延びる先端部を備える気中電極本体部と、上記気中電極本体部の上記先端部に直接あるいは間接に固着され、上記中心電極の先端との間で前記気中放電ギャップを形成する貴金属チップと、を有し、上記気中電極本体部の上記先端部のうち上記中心電極側を向く先端部内側面から、上記貴金属チップのうち前記気中放電ギャップを形成するチップ側ギャップ位置までの上記先端部内側面に垂直な方向への距離をH(mm)としたとき、H≧0.1の関係を満たす内燃機関用スパークプラグとすると良い。   Furthermore, in any one of the above-described spark plugs for an internal combustion engine, the air electrode is fixed to the metal shell and extends to the axial front end side, and extends from the base end portion to extend the metal shell. An air electrode main body portion including a bent portion that is bent radially inward, and a distal end portion that extends from the bent portion and extends to a position facing the central electrode in the axial direction, and the air electrode main body portion. A noble metal tip fixed directly or indirectly to the tip portion and forming the air discharge gap with the tip of the center electrode, and the center of the tip portion of the air electrode body portion When a distance in a direction perpendicular to the inner surface of the tip portion from the inner surface of the tip portion facing the electrode side to the tip side gap position of the noble metal tip forming the air discharge gap in the noble metal tip is defined as H (mm), H ≧ 0.1 It may be a spark plug for an internal combustion engine that satisfies the relationship.

本発明の内燃機関用スパークプラグは、気中電極本体部の先端部に、中心電極の先端との間で気中放電ギャップを形成する貴金属チップを設けている。このため、着火性と耐久性(耐火花消耗性)が良好となる。さらに、気中電極本体部の先端部内側面からチップ側ギャップ位置までの先端部内側面に垂直な方向への距離をH(mm)とすると、H≧0.1の関係を満たすようにしている。換言すれば、気中放電ギャップを気中電極本体部の先端部内側面から0.1mm以上離れた位置に設けるようにしている。これにより、気中放電ギャップにおいて火花放電した場合の火炎の拡がりが、気中電極本体部の先端部によって妨げられ難くなる。従って、気中放電ギャップにおいて火花放電した際の混合気への着火性を良好とすることができる。   In the spark plug for an internal combustion engine of the present invention, a noble metal tip that forms an air discharge gap with the tip of the center electrode is provided at the tip of the air electrode main body. For this reason, ignitability and durability (spark wear resistance) are improved. Furthermore, when the distance in the direction perpendicular to the inner surface of the tip from the inner surface of the tip of the air electrode main body to the tip side gap position is H (mm), the relationship of H ≧ 0.1 is satisfied. In other words, the air discharge gap is provided at a position separated by 0.1 mm or more from the inner surface of the distal end portion of the air electrode main body. This makes it difficult for flame spread when spark discharge occurs in the air discharge gap to be hindered by the tip of the air electrode main body. Therefore, it is possible to improve the ignitability of the air-fuel mixture when spark discharge occurs in the air discharge gap.

なお、貴金属チップの固着形態としては、例えば、気中電極本体部の先端部内側面上に直接固着した形態が挙げられる。あるいは、気中電極本体部の先端部内側面と貴金属チップとの間に他の貴金属チップ等を介在させる形態で、貴金属チップを設けるようにしても良い。あるいは、気中電極本体部に設けた凹部内に貴金属チップを配置し、少なくとも貴金属チップの先端が気中電極本体部の先端部内側面から突出する形態としても良い。
貴金属チップとしては、例えば、Pt,Ir,Rhなどの貴金属を主成分とする合金が挙げられる。
In addition, as a fixed form of a noble metal tip, the form fixed directly on the inner surface of the front-end | tip part of an air electrode main body part is mentioned, for example. Alternatively, the noble metal tip may be provided in a form in which another noble metal tip or the like is interposed between the inner surface of the distal end portion of the air electrode main body and the noble metal tip. Or it is good also as a form which arrange | positions a noble metal chip | tip in the recessed part provided in the air electrode main-body part, and the front-end | tip of a noble metal main body part protrudes from the inner surface of the front-end | tip part at least.
As the noble metal tip, for example, an alloy containing a noble metal such as Pt, Ir, Rh or the like as a main component can be cited.

さらに、上記いずれかの内燃機関用スパークプラグであって、前記主体金具の先端外径は10.1mm以下である内燃機関用スパークプラグとすると良い。   Furthermore, any of the above-described spark plugs for an internal combustion engine, wherein the metal shell has a tip outer diameter of 10.1 mm or less.

近年、内燃機関の高出力化に伴って燃焼室内における吸気及び排気バルブの大型化や4バルブ化が検討され、また、エンジンが小型化される傾向から、内燃機関用スパークプラグは小型化を望まれている。しかし、セミ沿面放電型スパークプラグ等の沿面放電するスパークプラグでは、小型化(小径化)するほど絶縁体の肉厚は薄くなる傾向にある。このため、絶縁体の早期消耗・貫通破壊の問題は、特に、主体金具のネジ径をM12以下(主体金具の先端外径を10.1mm以下)とした場合に深刻となる。   In recent years, as the output of internal combustion engines has increased, the intake and exhaust valves in combustion chambers have been increased in size and four valves have been studied. In addition, because of the trend toward smaller engines, it is hoped that spark plugs for internal combustion engines will be smaller. It is rare. However, in a spark plug that performs creeping discharge, such as a semi-creeping discharge type spark plug, the thickness of the insulator tends to be thinner as the size is reduced (smaller diameter). For this reason, the problem of premature wear and penetration breakage of the insulator becomes particularly serious when the screw diameter of the metal shell is M12 or less (the outer diameter of the tip of the metal shell is 10.1 mm or less).

これに対し、本発明の内燃機関用スパークプラグは、主体金具の先端外径を10.1mm以下(ネジ径がM12以下の主体金具の先端外径に相当する)としても、沿面接地電極と絶縁体先端部との間の電界強度が過度に強くならず、セミ沿面放電による絶縁体の早期消耗、貫通破壊を抑制することができる。
なお、主体金具の先端外径とは、主体金具の先端角部に形成された面取り部を除いた先端の外径をいい、本発明は、主体金具の外側面に取付ネジ部が形成されていない、いわゆるネジなしプラグについても適用できる。
On the other hand, the spark plug for an internal combustion engine of the present invention has a creeping ground electrode and an outer diameter of the metal shell, even if the tip outer diameter of the metal shell is 10.1 mm or less (corresponding to the tip outer diameter of the metal shell having a screw diameter of M12 or less) The strength of the electric field between the front end of the insulator does not become excessively high, and the early consumption of the insulator due to semi-surface discharge and penetration damage can be suppressed.
Note that the outer diameter of the front end of the metal shell means the outer diameter of the front end excluding the chamfered portion formed at the front end corner of the metal shell, and the present invention has a mounting screw portion formed on the outer surface of the metal shell. It can also be applied to a so-called screwless plug.

さらに、上記いずれかの内燃機関用スパークプラグであって、前記沿面接地電極は、前記主体金具の先端面から延び前記軸線方向先端側ほど前記中心電極に近づく形態の基端部を有する内燃機関用スパークプラグとすると良い。   Furthermore, in any one of the spark plugs for an internal combustion engine, the creeping ground electrode has a base end portion that extends from a front end surface of the metal shell and approaches the center electrode toward the front end side in the axial direction. It is better to use a spark plug.

従来の内燃機関用スパークプラグ(特許文献2,Fig.1参照)の沿面接地電極は、その基端部が主体金具の先端面から軸線方向に延びる形状であった。このため、沿面接地電極のうち中心電極側を向いて沿面接地電極の長手方向に延びる内側面と絶縁体先端部との間でセミ沿面放電ギャップを形成するために、一旦沿面接地電極を中心電極側に屈曲させて、絶縁体先端部に近づける必要があった。
これに対し、本発明の内燃機関用スパークプラグでは、沿面接地電極の基端部を、主体金具の先端面から延び、軸線方向先端側ほど中心電極に近づく形態としている。従って、沿面接地電極を中心電極側に屈曲させることなく、沿面接地電極の内側面と絶縁体先端部との間でセミ沿面放電ギャップを形成することができる。このため、沿面接地電極の形成が容易となり、低コストとなる。
A creeping ground electrode of a conventional spark plug for an internal combustion engine (see Patent Document 2, FIG. 1) has a shape in which the base end portion extends in the axial direction from the front end surface of the metal shell. For this reason, in order to form a semi-creeping discharge gap between the inner surface of the creeping ground electrode facing the center electrode side and extending in the longitudinal direction of the creeping ground electrode and the tip of the insulator, the creeping ground electrode is temporarily Has to be bent toward the center electrode side to approach the tip of the insulator.
On the other hand, in the spark plug for an internal combustion engine of the present invention, the base end portion of the creeping ground electrode extends from the front end surface of the metal shell and approaches the center electrode toward the front end side in the axial direction. Therefore, a semi-creeping discharge gap can be formed between the inner surface of the creeping ground electrode and the tip of the insulator without bending the creeping ground electrode toward the center electrode. For this reason, it is easy to form the creeping ground electrode, and the cost is reduced.

さらに、本発明の内燃機関用スパークプラグでは、上記のように沿面接地電極の基端部を中心電極に近づけるために屈曲させる必要がないため、沿面接地電極のセミ沿面放電ギャップ付近の形状を特許文献2(Fig.1)の形状と同一にする場合は、スパークプラグの軸線方向及び径方向のそれぞれについて沿面接地電極の長さを短縮することができる。反対に、沿面接地電極を特許文献2(Fig.1)と同じ軸線方向長さにする場合には、特許文献2(Fig.1)の形状よりも緩やかなカーブを描かせこの部分での電界集中を緩和するなど、適切なセミ沿面放電が生じるように、適切な形状を選択する選択範囲を広げることができる。   Furthermore, in the spark plug for an internal combustion engine of the present invention, it is not necessary to bend the base end portion of the creeping ground electrode so as to approach the center electrode as described above, so the shape of the creeping ground electrode in the vicinity of the semi-creeping discharge gap Can be made the same as the shape of Patent Document 2 (FIG. 1), the length of the creeping ground electrode can be shortened in each of the axial direction and the radial direction of the spark plug. On the other hand, if the creeping ground electrode has the same axial length as that of Patent Document 2 (FIG. 1), draw a gentler curve than the shape of Patent Document 2 (FIG. 1). The selection range for selecting an appropriate shape can be expanded so as to generate an appropriate semi-surface discharge, such as relaxation of electric field concentration.

特に、本発明の内燃機関用スパークプラグは、M12以下の小径プラグについて好適となる。具体的には、以下のような理由による。スパークプラグは、小型化(小径化)するほど、主体金具のうち沿面接地電極が固着される固着面と絶縁体先端部との径方向距離は短くなる。また、主体金具の先端からの絶縁体及び中心電極の突出量が小さくなる傾向にある。このため、特許文献2(Fig.1)のように2カ所で屈曲する形態の沿面接地電極では、スパークプラグの軸線方向及び径方向のそれぞれについて沿面接地電極の長さを小さくするには限界があり、M12以下の小径プラグに適用することは困難であった。これに対し、本発明のスパークプラグでは、上述のように、沿面接地電極について中心電極側に屈曲する部分を削減できる分、スパークプラグの軸線方向及び径方向のそれぞれについて沿面接地電極の長さを小さくすることができるので、M12以下の小径プラグについても適切なセミ沿面放電ギャップを形成することができる。   In particular, the spark plug for an internal combustion engine of the present invention is suitable for a small diameter plug of M12 or less. Specifically, for the following reason. As the spark plug becomes smaller (smaller in diameter), the radial distance between the fixing surface of the metal shell to which the creeping ground electrode is fixed and the tip of the insulator becomes shorter. Further, the amount of protrusion of the insulator and the center electrode from the tip of the metal shell tends to be small. For this reason, in a creeping ground electrode that is bent at two locations as in Patent Document 2 (FIG. 1), in order to reduce the length of the creeping ground electrode in the axial direction and the radial direction of the spark plug, respectively. There was a limit and it was difficult to apply to a small diameter plug of M12 or less. On the other hand, in the spark plug of the present invention, as described above, the length of the creeping ground electrode in each of the axial direction and the radial direction of the spark plug can be reduced by reducing the portion bent to the center electrode side of the creeping ground electrode. Therefore, an appropriate semi-creeping discharge gap can be formed even for a small-diameter plug of M12 or less.

なお、沿面接地電極の基端部は、主体金具の先端面から延び、軸線方向先端側ほど中心電極に近づく形態を有していれば良い。例えば、主体金具の先端面を軸線方向先端側ほど軸線から遠くなる斜面とし、この斜面から垂直に延びる直線形状の基端部が挙げられる。また、主体金具の先端面を、特許文献2(Fig.1)と同様に軸線方向に垂直な面とするが、沿面接地電極のうち主体金具の先端面と接合する接合端面を基端部の延びる方向に対し斜めにして接合するようにしても良い。また、基端部は直線形状に限らず、湾曲形状としても良い。   The base end portion of the creeping ground electrode only needs to extend from the distal end surface of the metal shell and have a form closer to the center electrode toward the distal end side in the axial direction. For example, the front end surface of the metal shell is a slope that is farther from the axis toward the tip in the axial direction, and a linear base end portion that extends perpendicularly from the slope can be used. Further, the distal end surface of the metal shell is a surface perpendicular to the axial direction as in Patent Document 2 (FIG. 1), but the joint end surface that joins the distal surface of the metal shell among the creeping ground electrodes is the base end portion. They may be joined obliquely with respect to the extending direction. Further, the base end portion is not limited to a linear shape, and may be a curved shape.

以下、本発明にかかる実施例1〜4について説明する。   Examples 1 to 4 according to the present invention will be described below.

実施例1の内燃機関用スパークプラグ100は、図1に示すように、沿面接地電極110、中心電極120、主体金具130、絶縁体140、及び気中電極150を備えている。この内燃機関用スパークプラグ100は、主体金具130の外側面に形成されているネジ部130bを利用して図示しないエンジンのシリンダヘッドに取り付けられ、使用に供される。   As shown in FIG. 1, the spark plug 100 for an internal combustion engine according to the first embodiment includes a creeping ground electrode 110, a center electrode 120, a metal shell 130, an insulator 140, and an air electrode 150. The spark plug 100 for an internal combustion engine is attached to a cylinder head of an engine (not shown) using a screw portion 130b formed on the outer surface of the metal shell 130, and is used.

ここで、内燃機関用スパークプラグ100の先端側部分(図1のB部)の拡大図を図2に示すと共に、内燃機関用スパークプラグ100ついて詳細に説明する。絶縁体140はアルミナからなり、軸線C方向に貫通する軸孔140bを有する筒状体である。主体金具130は、外側面に呼びがM10のネジ部130bが形成された筒状の金属体であり、絶縁体140の周囲を間隙を設けて取り囲んでいる。さらに、主体金具130の先端面132は、軸線C方向先端側(図2中下方向)ほど軸線Cから遠くなる傾斜を有している。なお、本実施例1では、主体金具130の先端外径Dは、8.5mmとなっている。   Here, an enlarged view of the front end side portion (B portion in FIG. 1) of the spark plug 100 for the internal combustion engine is shown in FIG. 2, and the spark plug 100 for the internal combustion engine will be described in detail. The insulator 140 is a cylindrical body made of alumina and having a shaft hole 140b penetrating in the direction of the axis C. The metal shell 130 is a cylindrical metal body having a screw portion 130b with a nominal size M10 formed on the outer surface, and surrounds the insulator 140 with a gap. Furthermore, the front end surface 132 of the metal shell 130 has an inclination that is farther from the axis C toward the front end side in the axis C direction (downward in FIG. 2). In the first embodiment, the outer diameter D of the front end of the metal shell 130 is 8.5 mm.

中心電極120は、絶縁体140の軸孔140bに挿設され、その先端部121が絶縁体140の先端141bより先端側に突出するように固設された軸状金属体である。この中心電極120は、絶縁体140の先端141bの近傍に位置し軸線C方向先端側ほど縮径する縮径部123と、この縮径部123から軸線C方向基端側に延びる円筒形状の基端側部124とを有している。ここで、この縮径部123と基端側部124との間に形成される環状の稜線を環状稜線125(縮径部123と基端側部124との境界線に相当し、図2中破線で示す)とする。また、絶縁体140の先端141bを起点とし、軸線C方向先端側(図2中下方向)を正の方向、軸線C方向基端側(図2中上方向)を負の方向としたとき、絶縁体140の先端141bから中心電極120の環状稜線125までの距離をN(mm)とする。   The center electrode 120 is a shaft-shaped metal body that is inserted into the shaft hole 140 b of the insulator 140 and fixed so that the tip 121 thereof protrudes from the tip 141 b of the insulator 140 to the tip side. The center electrode 120 is located near the distal end 141b of the insulator 140 and has a diameter-reduced portion 123 that decreases in diameter toward the distal end side in the axis C direction, and a cylindrical base extending from the reduced diameter portion 123 toward the proximal end side in the axis C direction. And an end side portion 124. Here, the annular ridgeline formed between the reduced diameter portion 123 and the proximal end side portion 124 corresponds to the annular ridgeline 125 (corresponding to the boundary line between the reduced diameter portion 123 and the proximal end side portion 124, as shown in FIG. (Shown with a broken line). Further, when the tip end 141b of the insulator 140 is a starting point, the tip end side in the axis C direction (downward direction in FIG. 2) is the positive direction, and the base end side in the axis C direction (upward direction in FIG. 2) is the negative direction. The distance from the tip 141b of the insulator 140 to the annular ridge line 125 of the center electrode 120 is N (mm).

このような中心電極120を構成する電極母材の金属体としては、Ni耐熱合金、Fe耐熱合金等が挙げられる。また、これら電極母材内にCuまたはCu合金からなる良熱伝導性金属芯が封入されていても良い。なお、内燃機関用スパークプラグ100では、中心電極120の先端に円盤状の貴金属チップ122がレーザ溶接によって固設されている。この貴金属チップ122は、例えば、Pt,Ir,Rhなどの貴金属を主成分とする合金によって形成される。ここで、絶縁体140の先端141bから中心電極120の先端120b(本実施例1では、貴金属チップ122の先端に相当する)までの軸線C方向先端側への距離をJ(mm)とする。   Examples of the metal body of the electrode base material constituting the center electrode 120 include Ni heat-resistant alloys and Fe heat-resistant alloys. Further, a good heat conductive metal core made of Cu or Cu alloy may be enclosed in these electrode base materials. In the spark plug 100 for an internal combustion engine, a disc-shaped noble metal tip 122 is fixed to the tip of the center electrode 120 by laser welding. The noble metal tip 122 is formed of, for example, an alloy containing a noble metal such as Pt, Ir, or Rh as a main component. Here, the distance from the tip 141b of the insulator 140 to the tip 120b of the center electrode 120 (corresponding to the tip of the noble metal tip 122 in the first embodiment) on the tip side in the axis C direction is J (mm).

沿面接地電極110は、例えば、Ni耐熱合金やFe耐熱合金からなる金属体であり、中心電極120を間に挟んで対向する位置に2つ設けられている。具体的には、沿面接地電極110は、主体金具130の先端面132に固着された直線形状の基端部111と、軸線C方向に延びる直線形状の先端部112とを有している。このような沿面接地電極110のうち主体金具130の先端面132から中心電極120側を向いて延びる内側面114は、滑らかな面を構成している。   The creeping ground electrode 110 is a metal body made of, for example, a Ni heat-resistant alloy or an Fe heat-resistant alloy, and is provided at two positions facing each other with the center electrode 120 interposed therebetween. Specifically, the creeping ground electrode 110 has a linear base end portion 111 fixed to the front end surface 132 of the metal shell 130 and a linear tip end portion 112 extending in the axis C direction. Among such creeping ground electrodes 110, the inner side surface 114 extending from the front end surface 132 of the metal shell 130 toward the center electrode 120 constitutes a smooth surface.

ここで、沿面接地電極110と絶縁体先端部141との間隙のうち最短の間隙をセミ沿面放電ギャップといい、このセミ沿面放電ギャップの寸法をG2(mm)とする。また、絶縁体140の先端141bを起点とし、軸線C方向先端側を正の方向、軸線C方向基端側を負の方向としたとき、絶縁体140の先端141bから沿面接地電極110の先端113(本実施例1では、先端が先端面と一致する)までの軸線方向距離をL2(mm)とする。同様に、絶縁体140の先端141bから沿面接地電極110のうち絶縁体先端部141との間でセミ沿面放電ギャップをなす電極側ギャップ位置110gまでの軸線方向距離をL1(mm)とする。   Here, the shortest gap among the gaps between the creeping ground electrode 110 and the insulator tip 141 is called a semi-creeping discharge gap, and the dimension of the semi-creeping discharge gap is G2 (mm). Further, when the tip end 141b of the insulator 140 is a starting point, the tip end side in the axis C direction is a positive direction, and the base end side in the axis C direction is a negative direction, the tip of the creeping ground electrode 110 extends from the tip 141b of the insulator 140. The axial distance to 113 (in the first embodiment, the tip coincides with the tip surface) is L2 (mm). Similarly, the axial distance from the tip 141b of the insulator 140 to the electrode side gap position 110g forming a semi-creeping discharge gap with the insulator tip 141 of the creeping ground electrode 110 is defined as L1 (mm).

沿面接地電極110の基端部111は、直線形状を有しており、この基端部111のうち主体金具130の先端面132と接合する接合端面116が、基端部111の延長方向を向いている(換言すれば、接合端面116が、基端部111の軸線に垂直となっている)。そして、沿面接地電極110の接合端面116が先端面132と接する形態で先端面132に対し垂直に固着されている。これにより、沿面接地電極110の基端部111が軸線C方向先端側(図2中下方向)ほど中心電極120に近づく形態となっている。   The base end portion 111 of the creeping ground electrode 110 has a linear shape, and the joining end surface 116 that joins the tip end surface 132 of the metal shell 130 in the base end portion 111 extends in the extending direction of the base end portion 111. It faces (in other words, the joint end surface 116 is perpendicular to the axis of the base end portion 111). Further, the joining end face 116 of the creeping ground electrode 110 is fixed vertically to the tip end face 132 in a form in contact with the tip end face 132. As a result, the base end portion 111 of the creeping ground electrode 110 is closer to the center electrode 120 toward the tip end side in the axis C direction (downward in FIG. 2).

ところで、従来の内燃機関用スパークプラグ(特許文献2,Fig.1参照)の沿面接地電極は、基端部が主体金具の先端面から軸線方向に延びる形状であった。このため、沿面接地電極の内側面と絶縁体先端部との間でセミ沿面ギャップを形成するために、一旦沿面接地電極を中心電極側に屈曲させて、絶縁体先端部に近づけていた。これに対し、本実施形態の内燃機関用スパークプラグ100では、上述のように、沿面接地電極110の基端部111が軸線C方向先端側ほど中心電極120に近づく形態となっているので、沿面接地電極110を中心電極120側に屈曲させることなく、沿面接地電極110の内側面114と絶縁体先端部141との間で、適切なセミ沿面ギャップ寸法G2を確保することができる。このため、沿面接地電極110の形成が容易となり、低コストとなる。   By the way, the creeping ground electrode of the conventional spark plug for an internal combustion engine (see Patent Document 2, FIG. 1) has a shape in which the base end portion extends in the axial direction from the front end surface of the metal shell. For this reason, in order to form a semi-creeping gap between the inner surface of the creeping ground electrode and the tip of the insulator, the creeping ground electrode was once bent toward the center electrode and brought closer to the tip of the insulator. . On the other hand, in the spark plug 100 for the internal combustion engine of the present embodiment, as described above, the base end portion 111 of the creeping ground electrode 110 is closer to the center electrode 120 toward the front end side in the axis C direction. An appropriate semi-creeping gap dimension G2 can be ensured between the inner surface 114 of the creeping ground electrode 110 and the insulator tip 141 without bending the creeping ground electrode 110 toward the center electrode 120 side. For this reason, formation of the creeping ground electrode 110 is facilitated and the cost is reduced.

特に、スパークプラグを小型化(小径化)するほど、主体金具130の先端面132と絶縁体先端部141との径方向距離は短くなる。また、主体金具130の先端131からの絶縁体140及び中心電極120の突出量が小さくなる傾向にある。このため、特許文献2(Fig.1)のように2カ所で屈曲する形態の沿面接地電極では、スパークプラグの軸線方向及び径方向のそれぞれについて沿面接地電極の長さを小さくするには限界があり、M12以下の小径プラグに適用することは困難であった。   In particular, as the spark plug is made smaller (smaller in diameter), the radial distance between the front end surface 132 of the metal shell 130 and the insulator front end 141 becomes shorter. Further, the amount of protrusion of the insulator 140 and the center electrode 120 from the tip 131 of the metal shell 130 tends to be small. For this reason, in a creeping ground electrode that is bent at two locations as in Patent Document 2 (FIG. 1), in order to reduce the length of the creeping ground electrode in the axial direction and the radial direction of the spark plug, respectively. There was a limit and it was difficult to apply to a small diameter plug of M12 or less.

これに対し、本実施形態の内燃機関用スパークプラグ100では、沿面接地電極110を中心電極120に近づけるために屈曲させる必要がないため、特許文献2(Fig.1)に比して、スパークプラグの軸線C方向及び径方向のそれぞれについて沿面接地電極110の長さを短縮することができる。従って、本実施形態の内燃機関用スパークプラグ1
00は、主体金具130の先端外径Dを8.5mm(ネジ径がM10の主体金具の先端外径に相当する)としても、適切なセミ沿面ギャップ寸法G2を確保することができる。
On the other hand, in the spark plug 100 for the internal combustion engine according to the present embodiment, since it is not necessary to bend the creeping ground electrode 110 in order to approach the center electrode 120, compared with Patent Document 2 (FIG. 1). The length of the creeping ground electrode 110 can be shortened in each of the axial direction C and the radial direction of the plug. Accordingly, the spark plug 1 for the internal combustion engine of the present embodiment.
00 can secure an appropriate semi-creeping gap dimension G2 even if the outer diameter D of the metal shell 130 is 8.5 mm (corresponding to the outer diameter of the metal shell having a screw diameter of M10).

気中電極150は、図3に示すように、気中電極本体部155と貴金属チップ152とを有している。このうち、気中電極本体部155は、金属体であり、主体金具130の先端面132に固着され軸線C方向先端側に延びる基端部154、この基端部154から延設されて主体金具130の径方向内側に屈曲する屈曲部153、及びこの屈曲部153から延設されて中心電極120と軸線C方向に対向する位置まで延びる先端部151を有している。なお、本実施例1では、気中電極本体部155の先端部151は、軸線C方向に対し直交する方向に延びている。   As shown in FIG. 3, the air electrode 150 includes an air electrode main body 155 and a noble metal tip 152. Among these, the air electrode main body 155 is a metal body, is fixed to the distal end surface 132 of the metallic shell 130 and extends to the distal end side in the axis C direction, and extends from the proximal end 154 to extend the metallic shell. 130 has a bent portion 153 bent inward in the radial direction, and a tip portion 151 extending from the bent portion 153 to a position facing the center electrode 120 in the axis C direction. In the first embodiment, the tip 151 of the air electrode main body 155 extends in a direction orthogonal to the axis C direction.

貴金属チップ152は、例えば、Pt,Ir,Rhなどの貴金属を主成分とする合金からなり、気中電極本体部155の先端部151のうち中心電極120の先端120bと略対向する位置に、抵抗溶接あるいはレーザ溶接によって固設されている。これによって、中心電極120の先端120bと気中電極150の貴金属チップ152との間で、気中放電ギャップが形成される。なお、この気中放電ギャップの寸法をG1(mm)とする。また、気中電極本体部155の先端部151のうち中心電極120側を向く先端部内側面151bから貴金属チップ152のうち気中放電ギャップを形成するチップ側ギャップ位置152bまでの先端部内側面151bに垂直な方向への距離(本実施例1では、先端部内側面151bからの貴金属チップ152の突出量に相当する)をH(mm)とする。   The noble metal tip 152 is made of, for example, an alloy containing a noble metal such as Pt, Ir, or Rh as a main component, and a resistance is provided at a position that substantially opposes the tip 120b of the center electrode 120 in the tip 151 of the air electrode body 155. It is fixed by welding or laser welding. As a result, an air discharge gap is formed between the tip 120b of the center electrode 120 and the noble metal tip 152 of the air electrode 150. The size of the air discharge gap is G1 (mm). Further, the front end portion 151 of the air electrode body portion 155 is perpendicular to the front end portion inner surface 151b from the front end portion inner side surface 151b facing the center electrode 120 to the tip side gap position 152b of the noble metal tip 152 forming the air discharge gap. The distance in the right direction (corresponding to the amount of protrusion of the noble metal tip 152 from the tip inner surface 151b in the first embodiment) is H (mm).

このような内燃機関用スパークプラグ100に関し、前述した寸法値H(mm),N(mm),L1(mm),L2(mm),G1(mm),G2(mm)の適切な寸法範囲を調査すべく、サンプルを用意して火花放電試験を行った。
まず、絶縁体140の先端141bから沿面接地電極110の先端113までの距離L2(mm)の適切な寸法範囲を調査すべく、J(mm),H(mm),N(mm),L1(mm),G2(mm),G1(mm)の値が同一で、L2(mm)の値のみが異なる4種類のサンプルを用意した。具体的には、J=1.5(mm),H=0.1(mm),N=−0.3(mm),L1=−0.3(mm),G2=0.35(mm),G1=2.0(mm)とし、L2のみL2=−0.2,−0.1,0.0,0.1(mm)の4種類とした。なお、本試験では、気中放電ギャップにおいて気中放電させないようにするために、G1=2.0(mm)と大きな値に設定している。
With respect to such a spark plug 100 for an internal combustion engine, appropriate dimension ranges of the dimension values H (mm), N (mm), L1 (mm), L2 (mm), G1 (mm), and G2 (mm) described above are set. In order to investigate, a sample was prepared and a spark discharge test was conducted.
First, in order to investigate an appropriate dimension range of the distance L2 (mm) from the tip 141b of the insulator 140 to the tip 113 of the creeping ground electrode 110, J (mm), H (mm), N (mm), L1 Four types of samples having the same values of (mm), G2 (mm), and G1 (mm) but different values of L2 (mm) were prepared. Specifically, J = 1.5 (mm), H = 0.1 (mm), N = −0.3 (mm), L1 = −0.3 (mm), G2 = 0.35 (mm) ), G1 = 2.0 (mm), and only L2 was L4 = −0.2, −0.1, 0.0, 0.1 (mm). In this test, G1 = 2.0 (mm) is set to a large value so as not to cause air discharge in the air discharge gap.

このような4種類のサンプルをそれぞれ、排気量2000ccのエンジンに取付け、エンジン回転数3500rpmで5時間の連続運転を行い、L2(mm)と火花放電による絶縁体140の貫通破壊との関係を調査した。この試験結果を表1に示す。表1では、貫通破壊が生じたものを×、生じなかったものを○で表示している。なお、4種類のサンプルの放電電圧は、それぞれ30kV程度としている。   Each of these four types of samples was attached to an engine with a displacement of 2000 cc, and continuously operated for 5 hours at an engine speed of 3500 rpm, and the relationship between L2 (mm) and the penetration failure of the insulator 140 due to spark discharge was investigated. did. The test results are shown in Table 1. In Table 1, the case where penetration failure occurred is indicated by x, and the case where no penetration failure occurred is indicated by ○. The discharge voltages of the four types of samples are about 30 kV each.

Figure 0004377177
Figure 0004377177

表1に示すように、L2(mm)を負の値、具体的にはL2=−0.2,−0.1(mm)に設定した2つのサンプルでは、絶縁体140の貫通破壊が生じてしまった。これに対し、L2(mm)を0以上の値、具体的にはL2=0.0,0.1(mm)に設定した2つのサンプルでは、絶縁体140の貫通破壊が生じなかった。ところで、本試験で用いたサンプルでは、図2に示すように、沿面接地電極110の先端113の軸線方向位置と内側面114の先端の軸線方向位置とが一致しており、内側面114は滑らかに形成されている。換言すれば、沿面接地電極110の滑らかな内側面114は、沿面接地電極110の先端113の軸線方向位置まで延びている。   As shown in Table 1, in two samples in which L2 (mm) is set to a negative value, specifically, L2 = −0.2, −0.1 (mm), the penetration failure of the insulator 140 occurs. I have. On the other hand, the penetration failure of the insulator 140 did not occur in the two samples in which L2 (mm) was set to a value of 0 or more, specifically, L2 = 0.0, 0.1 (mm). By the way, in the sample used in this test, as shown in FIG. 2, the axial position of the tip 113 of the creeping ground electrode 110 and the axial position of the tip of the inner surface 114 coincide with each other. It is formed smoothly. In other words, the smooth inner surface 114 of the creeping ground electrode 110 extends to the axial position of the tip 113 of the creeping ground electrode 110.

従って、本試験結果より、L2(mm)を0以上の値、換言すれば、沿面接地電極110の滑らかな内側面114を絶縁体の先端よりも軸線方向先端側まで延ばし、この内側面114が電極側ギャップ位置110gを含むようにすることで、絶縁体140の貫通破壊を抑制することができるといえる。これは、沿面接地電極110の滑らかな内側面114が電極側ギャップ位置110gを含むようにすることで、換言すれば、滑らかな内側面114と絶縁体先端部141との間でセミ沿面放電ギャップを形成することで、沿面接地電極110と絶縁体先端部141との間の電界強度が過度に強くならないためと考えられる。   Therefore, from this test result, L2 (mm) is a value of 0 or more, in other words, the smooth inner side surface 114 of the creeping ground electrode 110 is extended to the tip end side in the axial direction from the tip of the insulator, and this inner side surface 114 By including the electrode side gap position 110g, it can be said that the penetration breakdown of the insulator 140 can be suppressed. This is because the smooth inner surface 114 of the creeping ground electrode 110 includes the electrode-side gap position 110g, in other words, a semi-surface discharge between the smooth inner surface 114 and the insulator tip 141. It is considered that the formation of the gap prevents the electric field strength between the creeping ground electrode 110 and the insulator tip 141 from becoming excessively strong.

さらに、L2(mm)の適切な寸法範囲を調査すべく、J(mm),H(mm),N(mm),L1(mm),G2(mm),G1(mm)の値を同一とし、L2(mm)の値のみが異なる7種類のサンプルを用意した。具体的には、J=1.5(mm),H=0.1(mm),N=−0.3(mm),L1=−0.3(mm),G2=0.5(mm),G1=0.9(mm)とし、L2のみL2=0.0,0.5,1.0,1.5,2.0,2.5,3.0(mm)の7種類とした。   Furthermore, in order to investigate an appropriate dimension range of L2 (mm), the values of J (mm), H (mm), N (mm), L1 (mm), G2 (mm), and G1 (mm) are the same. Seven types of samples differing only in the value of L2 (mm) were prepared. Specifically, J = 1.5 (mm), H = 0.1 (mm), N = −0.3 (mm), L1 = −0.3 (mm), G2 = 0.5 (mm) ), G1 = 0.9 (mm), and only L2 is L2 = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 (mm) did.

このような7種類のサンプルをそれぞれ、排気量2000ccのエンジンに取付け、A/F(空燃比)をリーン側から推移させ、アイドリング(エンジン回転数700rpm)の条件で着火性の試験を行った。本試験では、上記エンジン条件で、HCスパイクが2分あたり3回発生したときのA/Fの値を着火限界と判断し、このときのA/Fの値とL2(mm)との関係を調査した。この試験結果を図4のグラフに示す。   Each of these seven types of samples was attached to an engine with a displacement of 2000 cc, A / F (air-fuel ratio) was shifted from the lean side, and an ignitability test was performed under idling conditions (engine speed 700 rpm). In this test, the A / F value when the HC spike occurs 3 times per 2 minutes under the above engine conditions is determined as the ignition limit, and the relationship between the A / F value and L2 (mm) at this time is determined. investigated. The test results are shown in the graph of FIG.

図4に示すように、L2(mm)=0.0,0.5,1.0,1.5(mm)に設定した4つのサンプルでは、着火限界におけるA/Fの値が共に16.8と高い値を示し、極めて良好な着火性を得ることができた。ところが、L2が1.5mmより大きくなると、具体的にはL2=2.0,2.5,3.0(mm)に設定した3つのサンプルでは、A/Fの値が16.5,16.0,15.0と次第に低下してしまった。すなわち、L2を1.5mmより大きくすると、着火性が低下してしまった。   As shown in FIG. 4, in the four samples set to L2 (mm) = 0.0, 0.5, 1.0, 1.5 (mm), the A / F value at the ignition limit is 16. The value was as high as 8 and extremely good ignitability could be obtained. However, when L2 is larger than 1.5 mm, specifically, in the three samples set to L2 = 2.0, 2.5, 3.0 (mm), the value of A / F is 16.5, 16 It gradually decreased to 0.0, 15.0. That is, when L2 is larger than 1.5 mm, the ignitability is lowered.

ところで、本試験で用いたサンプルでは、上記のように、絶縁体140の先端141bから中心電極120の先端120bまでの軸線C方向先端側への距離J=1.5(mm)としている。従って、本試験結果より、沿面接地電極110の先端113を、中心電極120の先端120bよりも軸線C方向先端側(図2中下方向)に位置させると、着火性が低下してしまうといえる。反対に、沿面接地電極110の先端113を、中心電極120の先端120bより軸線C方向基端側に位置させることで、混合気への着火性を良好にできるといえる。これは、気中放電ギャップにおいて火花放電した場合の火炎の拡がりが、沿面接地電極1110によって妨げられないためであると考えられる。   By the way, in the sample used in this test, as described above, the distance J from the tip 141b of the insulator 140 to the tip 120b of the central electrode 120 in the direction of the axis C is set to 1.5 (mm). Therefore, from this test result, if the tip 113 of the creeping ground electrode 110 is positioned closer to the tip end side in the axis C direction (downward in FIG. 2) than the tip 120b of the center electrode 120, the ignitability is reduced. I can say that. On the contrary, it can be said that the ignitability of the air-fuel mixture can be improved by positioning the tip 113 of the creeping ground electrode 110 closer to the base end side in the axis C direction than the tip 120b of the center electrode 120. This is considered to be because the spread of the flame when spark discharge occurs in the air discharge gap is not hindered by the creeping ground electrode 1110.

次に、絶縁体140の先端141bから電極側ギャップ位置110gまでの軸線C方向距離L1(mm)の適切な寸法範囲を調査すべく、J(mm),H(mm),N(mm),L2(mm),G2(mm),G1(mm)の値を同一とし、L1(mm)の値のみが異なる4種類のサンプルを用意した。具体的には、J=1.5(mm),H=0.1(mm),N=−0.2(mm),L2=0.5(mm),G2=0.5(mm),G1=1.0(mm)とし、L1のみL1=−0.2,−0.1,0.0,0.1(mm)の4種類とした。   Next, in order to investigate an appropriate dimension range of the distance L1 (mm) in the axis C direction from the tip 141b of the insulator 140 to the electrode side gap position 110g, J (mm), H (mm), N (mm), Four types of samples were prepared in which the values of L2 (mm), G2 (mm), and G1 (mm) were the same and only the value of L1 (mm) was different. Specifically, J = 1.5 (mm), H = 0.1 (mm), N = −0.2 (mm), L2 = 0.5 (mm), G2 = 0.5 (mm) , G1 = 1.0 (mm), and only L1 has four types of L1 = −0.2, −0.1, 0.0, 0.1 (mm).

このような4種類のサンプルをそれぞれ、排気量2000ccのエンジンに取付け、JIS D 1606に規定に基づいて、くすぶり汚損試験を行った。本試験では、JIS D 1606に規定されている所定の運転パターンを1サイクルとし、それぞれのサンプルについて、絶縁抵抗が10MΩに到達するまでのサイクル数を調査した。この試験結果を表2に示す。   Each of these four types of samples was attached to an engine with a displacement of 2000 cc, and a smoldering fouling test was conducted according to JIS D 1606. In this test, a predetermined operation pattern defined in JIS D 1606 was set as one cycle, and the number of cycles until the insulation resistance reached 10 MΩ was investigated for each sample. The test results are shown in Table 2.

Figure 0004377177
Figure 0004377177

表2に示すように、L1(mm)を正の値、具体的にはL2=0.1(mm)に設定したサンプルでは、7サイクル経過後に絶縁抵抗が10MΩに到達してしまった。これに対し、L1(mm)を0.0mm以下、具体的にはL2=−0.2,−0.1,0.0(mm)に設定した3つのサンプルでは、絶縁抵抗が10MΩに到達するまでに、8サイクル運転することができた。従って、本試験結果より、L1(mm)を0.0mm以下とすることで、換言すれば、セミ沿面放電ギャップG2を絶縁体140の先端141bよりも軸線C方向基端側の位置に形成することで、絶縁抵抗の低下を抑制、すなわち耐汚損性を良好にできるといえる。   As shown in Table 2, in the sample in which L1 (mm) was set to a positive value, specifically, L2 = 0.1 (mm), the insulation resistance reached 10 MΩ after 7 cycles. In contrast, in the three samples where L1 (mm) is set to 0.0 mm or less, specifically, L2 = −0.2, −0.1, 0.0 (mm), the insulation resistance reaches 10 MΩ. Until then, it was able to operate for 8 cycles. Therefore, from this test result, by setting L1 (mm) to 0.0 mm or less, in other words, the semi-creeping discharge gap G2 is formed at a position closer to the proximal end side in the axis C direction than the distal end 141b of the insulator 140. Thus, it can be said that the decrease in insulation resistance can be suppressed, that is, the stain resistance can be improved.

この試験結果の要因は、次のように考えられる。L1を0.0mm以下とすることで、換言すれば、セミ沿面放電ギャップG2を絶縁体140の先端141bよりも軸線C方向基端側の位置に形成することで、絶縁体先端部141の表面のうち比較的長い距離に亘って沿面放電させることが可能となる。従って、カーボン等の付着によりスパークプラグが汚損した場合には、絶縁体先端部141の表面のうち比較的広範囲に亘ってカーボン等の汚損物質を焼き切ることができるので、耐汚損性が良好となる。   The factors of this test result are considered as follows. In other words, by setting L1 to 0.0 mm or less, the semi-surface discharge gap G2 is formed at a position closer to the base end side in the direction of the axis C than the tip 141b of the insulator 140, whereby the surface of the insulator tip 141 is formed. It is possible to cause creeping discharge over a relatively long distance. Accordingly, when the spark plug is soiled due to adhesion of carbon or the like, the soiling material such as carbon can be burned out over a relatively wide area of the surface of the insulator tip portion 141, so that the soil resistance is good. .

さらに、L1(mm)の適切な寸法範囲を調査すべく、J(mm),H(mm),N(mm),L2(mm),G2(mm)の値については変更することなく、L1のみL1=−1.5,−1.0,−0.5,0.0,0.5(mm)とした5種類のサンプルを用意した。なお、本試験では、気中放電ギャップにおいて気中放電させないようにするために、G1=2.0(mm)と大きな値に設定している。   Further, in order to investigate an appropriate dimension range of L1 (mm), the values of J (mm), H (mm), N (mm), L2 (mm), and G2 (mm) are not changed, and L1 Only 5 samples were prepared with L1 = −1.5, −1.0, −0.5, 0.0, 0.5 (mm). In this test, G1 = 2.0 (mm) is set to a large value so as not to cause air discharge in the air discharge gap.

このような5種類のサンプルをそれぞれ、排気量2000ccのエンジンに取付け、A/F(空燃比)をリーン側から推移させ、アイドリング(エンジン回転数700rpm)の条件で着火性の試験を行った。本試験では、上記エンジン条件で、HCスパイクが2分あたり3回発生したときのA/Fの値を着火限界と判断し、このときのA/Fの値とL2(mm)との関係を調査した。この試験結果を図5のグラフに示す。   Each of these five types of samples was attached to an engine with a displacement of 2000 cc, A / F (air-fuel ratio) was shifted from the lean side, and an ignitability test was performed under idling conditions (engine speed 700 rpm). In this test, the A / F value when the HC spike occurs 3 times per 2 minutes under the above engine conditions is determined as the ignition limit, and the relationship between the A / F value and L2 (mm) at this time is determined. investigated. The test results are shown in the graph of FIG.

図5に示すように、L1=−1.5,−1.0(mm)に設定したサンプルでは、着火限界におけるA/Fの値が14.5,15.0と低かったが、L1=−0.5,0.0,0.5(mm)と大きくなるにしたがって、着火限界におけるA/Fの値が16.0,16.5,16.8と高い値を示し、良好な着火性を得ることができた。このように、本試験では、L1(mm)の値が大きくなるにしたがって、換言すれば、セミ沿面放電ギャップG2を軸線C方向基端側に配置するほど、着火限界におけるA/Fの値が上昇し、着火性が向上することがわかった。特に、図5のグラフより、L1=−0.8(mm)以上で着火限界におけるA/Fの値が15.5以上となり、着火性が良好となることがわかった。   As shown in FIG. 5, in the sample set to L1 = −1.5, −1.0 (mm), the A / F value at the ignition limit was as low as 14.5 and 15.0, but L1 = As the value increases to -0.5, 0.0, 0.5 (mm), the A / F values at the ignition limit show high values of 16.0, 16.5, 16.8, and good ignition I was able to get sex. In this way, in this test, as the value of L1 (mm) increases, in other words, as the semi-creeping discharge gap G2 is arranged closer to the base end side in the axis C direction, the value of A / F at the ignition limit increases. It was found that the ignitability improved. In particular, from the graph of FIG. 5, it was found that when L1 = −0.8 (mm) or more, the A / F value at the ignition limit is 15.5 or more, and the ignitability is improved.

従って、L1を−0.8mm以上とすることで、換言すれば、セミ沿面放電ギャップG2を絶縁体140の先端141bよりも軸線C方向基端側に0.8mmを超えない範囲で形成することで、混合気への着火性を良好とすることができるといえる。これは、沿面接地電極110と絶縁体140に挟まれた領域では、軸線C方向基端側ほど混合気が希薄となる傾向にあるため、セミ沿面放電ギャップG2が軸線C方向基端側に位置するほど混合気への着火性が低下する傾向にあるためと考えられる。
以上で説明したように、L1(mm)を0.0mm以下とすることで耐汚損性を良好にでき、−0.8mm以上とすることで混合気への着火性を良好とすることができた。従って、−0.8≦L1≦0.0の関係を満たすことで、耐汚損性を良好にできると共に、着火性をも良好にできるといえる。
Therefore, by setting L1 to be −0.8 mm or more, in other words, the semi-surface discharge gap G2 is formed in a range not exceeding 0.8 mm on the base end side in the axis C direction from the tip 141b of the insulator 140. Thus, it can be said that the ignitability of the air-fuel mixture can be improved. This is because, in the region sandwiched between the creeping ground electrode 110 and the insulator 140, the air-fuel mixture tends to become leaner toward the base end side in the axis C direction, so that the semi-creeping discharge gap G2 is on the base end side in the axis C direction. This is probably because the ignitability of the air-fuel mixture tends to decrease as the position increases.
As explained above, the fouling resistance can be improved by setting L1 (mm) to 0.0 mm or less, and the ignitability to the air-fuel mixture can be improved by setting it to -0.8 mm or more. It was. Therefore, it can be said that by satisfying the relationship of −0.8 ≦ L1 ≦ 0.0, the fouling resistance can be improved and the ignitability can be improved.

次に、セミ沿面放電ギャップ寸法G2(mm)の適切な寸法範囲を調査すべく、J(mm),H(mm),N(mm),L2(mm),L1(mm),G1(mm)の値が同一で、G2(mm)の値のみが異なる5種類のサンプルを用意した。具体的には、J=1.5(mm),H=0.1(mm),N=−0.2(mm),L2=0.5(mm),L1=−0.3(mm),とし、G2のみG2=0.30,0.35,0.40,0.45,0.50(mm)の5種類とした。なお、本試験では、気中放電ギャップにおいて気中放電させないようにするために、G1=2.0(mm)と大きな値に設定している。   Next, J (mm), H (mm), N (mm), L2 (mm), L1 (mm), G1 (mm) are investigated in order to investigate an appropriate dimension range of the semi-creeping discharge gap dimension G2 (mm). ) Values were the same, and five types of samples differing only in G2 (mm) values were prepared. Specifically, J = 1.5 (mm), H = 0.1 (mm), N = −0.2 (mm), L2 = 0.5 (mm), L1 = −0.3 (mm) ), And only G2, five types of G2 = 0.30, 0.35, 0.40, 0.45, 0.50 (mm) were used. In this test, G1 = 2.0 (mm) is set to a large value so as not to cause air discharge in the air discharge gap.

このような5種類のサンプルをそれぞれ、排気量2000ccのエンジンに取付け、JIS D 1606に規定に基づいて、くすぶり汚損試験を行った。本試験では、JIS D 1606に規定されている所定の運転パターンを1サイクルとし、それぞれのサンプルについて、絶縁抵抗が10MΩに到達するまで運転を行った。その後、それぞれのサンプルについて、セミ沿面放電ギャップの位置でのカーボンブリッジの有無を調査した。この試験結果を表3に示す。表3では、カーボンブリッジが生じたものを×、生じなかったものを○で表示している。なお、本試験は、室温−10℃の温度条件下で行っている。   Each of these five types of samples was attached to an engine with a displacement of 2000 cc, and a smoldering fouling test was carried out based on JIS D 1606. In this test, a predetermined operation pattern defined in JIS D 1606 was set as one cycle, and each sample was operated until the insulation resistance reached 10 MΩ. Thereafter, each sample was examined for the presence of a carbon bridge at the semi-creeping discharge gap. The test results are shown in Table 3. In Table 3, the case where the carbon bridge was generated is indicated by x, and the case where the carbon bridge was not generated is indicated by ◯. In addition, this test is performed on the temperature conditions of room temperature-10 degreeC.

Figure 0004377177
Figure 0004377177

表3に示すように、G2=0.30(mm)に設定したサンプルでは、カーボンブリッジが生じてしまった。これに対し、G2を0.35mm以上、具体的にはG2=0.35,0.40,0.45,0.50(mm)に設定した4つのサンプルでは、カーボンブリッジが生じなかった。従って、本試験結果より、G2を0.35mm以上とすることで、セミ沿面放電ギャップの位置でのカーボンブリッジの発生を抑制することができ、ひいては失火の危険性を小さくできるといえる。   As shown in Table 3, in the sample set to G2 = 0.30 (mm), a carbon bridge occurred. On the other hand, carbon bridges did not occur in the four samples in which G2 was set to 0.35 mm or more, specifically G2 = 0.35, 0.40, 0.45, 0.50 (mm). Therefore, from this test result, it can be said that by setting G2 to 0.35 mm or more, the occurrence of carbon bridges at the semi-creeping discharge gap position can be suppressed, and the risk of misfire can be reduced.

さらに、G2(mm)の適切な寸法範囲を調査すべく、J(mm),H(mm),N(mm),L2(mm),L1(mm)の値については変更することなく、G2=0.5,0.6,0.7,0.8,0.9,1.0(mm)とした6種類のサンプルを用意した。なお、本試験では、G1=0.9(mm)に設定している。   Further, in order to investigate an appropriate dimension range of G2 (mm), the values of J (mm), H (mm), N (mm), L2 (mm), and L1 (mm) are not changed, and G2 Six types of samples with 0.5 = 0.6, 0.7, 0.8, 0.9, 1.0 (mm) were prepared. In this test, G1 is set to 0.9 (mm).

このような6種類のサンプルをそれぞれ、絶縁抵抗が100MΩの燻った状態で、排気量2000ccのエンジンに取付け、0.2MPaの加圧下で火花放電試験を行った。本試験では、このときのリーク発生率(%)を調査した。なお、本試験でのリークとは、セミ沿面放電ギャップにおいて火花放電することなく、例えば、主体金具の内周面と絶縁体汚損部分との間で火花放電してしまう現象をいう。この試験結果を表4に示す。   Each of these six types of samples was mounted on a 2000 cc engine with an insulation resistance of 100 MΩ, and a spark discharge test was performed under a pressure of 0.2 MPa. In this test, the leak rate (%) at this time was investigated. In addition, the leak in this test refers to a phenomenon in which, for example, a spark discharge occurs between the inner peripheral surface of the metal shell and the insulator fouling portion without causing a spark discharge in the semi-surface discharge gap. The test results are shown in Table 4.

Figure 0004377177
Figure 0004377177

表4に示すように、G2=0.5,0.6,0.7,0.8(mm)に設定した4つのサンプルでは、リークが発生することなく、セミ沿面放電ギャップにおいて適切に火花放電した。これに対し、G2が0.80mmを超えたサンプル、具体的にはG2=0.90,1.00(mm)に設定した2つのサンプルでは、リークが発生してしまった。具体的には、リーク発生率(%)がそれぞれ5%、15%となり、G2が大きくなるにしたがってリーク発生率(%)も上昇した。従って、本試験の結果より、G2を0.80mm以下とすることで、スパークプラグが燻った状態(例えば、カーボン等の導電性汚損物質が、主体金具の筒内の絶縁体表面にまで付着した状態)となっても、リークしてしまう(例えば、主体金具の内周面と絶縁体汚損部分との間で火花放電してしまう)危険性が小さく、適切にセミ沿面放電ギャップにおいて火花放電させることができるといえる。
以上より、0.35≦G2≦0.80とすることで、適切にセミ沿面放電ギャップでの火花放電を生じさせることができるといえる。
As shown in Table 4, in the four samples set to G2 = 0.5, 0.6, 0.7, 0.8 (mm), there is no leakage, and sparks are appropriately generated in the semi-creeping discharge gap. Discharged. On the other hand, leakage occurred in the sample in which G2 exceeded 0.80 mm, specifically, in the two samples set to G2 = 0.90 and 1.00 (mm). Specifically, the leak rate (%) was 5% and 15%, respectively, and the leak rate (%) increased as G2 increased. Therefore, from the result of this test, by setting G2 to 0.80 mm or less, the spark plug is in a state of being rolled (for example, conductive fouling substances such as carbon adhere to the insulator surface in the cylinder of the metal shell. State), the risk of leakage (for example, spark discharge between the inner peripheral surface of the metal shell and the contaminated part of the insulator) is small, and spark discharge is appropriately performed in the semi-surface discharge gap. It can be said that it is possible.
From the above, it can be said that by setting 0.35 ≦ G2 ≦ 0.80, it is possible to appropriately cause a spark discharge in the semi-creeping discharge gap.

次に、絶縁体140の先端141bから中心電極120の環状稜線125までの軸線C方向距離N(mm)の適切な寸法範囲を調査すべく、J(mm),H(mm),L2(mm),L1(mm),G2(mm),G1(mm)の値が同一で、N(mm)の値のみが異なる4種類のサンプルを用意した。具体的には、J=1.5(mm),H=0.1(mm),L2=0.0(mm),L1=−0.3(mm),G2=0.35(mm),G1=2.0(mm)とし、NをN=−0.7,−0.5,−0.3,−0.1(mm)の4種類とした。なお、本試験では、気中放電ギャップにおいて気中放電させないようにするために、G1=2.0(mm)と大きな値に設定している。   Next, J (mm), H (mm), and L2 (mm) are investigated in order to investigate an appropriate dimension range of the distance N (mm) in the axis C direction from the tip 141b of the insulator 140 to the annular ridgeline 125 of the center electrode 120. ), L1 (mm), G2 (mm), and G1 (mm) are the same, and four types of samples differing only in the value of N (mm) were prepared. Specifically, J = 1.5 (mm), H = 0.1 (mm), L2 = 0.0 (mm), L1 = −0.3 (mm), G2 = 0.35 (mm) , G1 = 2.0 (mm), and N is four types of N = −0.7, −0.5, −0.3, and −0.1 (mm). In this test, G1 = 2.0 (mm) is set to a large value so as not to cause air discharge in the air discharge gap.

このような4種類のサンプルをそれぞれ、排気量2000ccのエンジンに取付け、エンジン回転数3500rpmで5時間の連続運転を行い、N(mm)と絶縁体140の貫通破壊との関係を調査した。この試験結果を表5に示す。表5では、貫通破壊が生じたものを×、生じなかったものを○で表示している。なお、4種類のサンプルの放電電圧は、それぞれ30kV程度としている。   Each of these four types of samples was attached to an engine with a displacement of 2000 cc, and continuously operated for 5 hours at an engine speed of 3500 rpm, and the relationship between N (mm) and penetration failure of the insulator 140 was investigated. The test results are shown in Table 5. In Table 5, the case where penetration failure occurred is indicated by x, and the case where no penetration failure occurred is indicated by ◯. The discharge voltages of the four types of samples are about 30 kV each.

Figure 0004377177
Figure 0004377177

表5に示すように、N=−0.7(mm)に設定したサンプルでは、絶縁体140の貫通破壊が生じてしまった。これは、次のような理由によるものと考えられる。中心電極120の環状稜線125は角部となっているため、その付近に電界が集中し、放電の端点(起点あるいは終点)となり易い。従って、この環状稜線125を絶縁体140の先端141bより大きく軸線方向基端側に位置させると、絶縁体先端部141の表面に沿った沿面放電よりも絶縁体140を貫通する放電が生じやすくなるためと考えられる。   As shown in Table 5, in the sample set to N = −0.7 (mm), the penetration failure of the insulator 140 occurred. This is considered due to the following reasons. Since the annular ridge line 125 of the center electrode 120 is a corner, the electric field is concentrated in the vicinity thereof, and tends to be an end point (start point or end point) of discharge. Therefore, when the annular ridge line 125 is positioned larger than the distal end 141b of the insulator 140 on the proximal side in the axial direction, a discharge penetrating the insulator 140 is more likely to occur than a creeping discharge along the surface of the insulator distal end portion 141. This is probably because of this.

これに対し、N(mm)を−0.5以上の値、具体的にはN=−0.5,−0.3,−0.1(mm)に設定した3つのサンプルでは、絶縁体140の貫通破壊が生じなかった。従って、本試験結果より、N≧−0.5、換言すれば、中心電極120の環状稜線125を、絶縁体140の先端141bから軸線方向基端側に0.5mm離れた位置よりも軸線方向先端側に配置させることで、絶縁体140の貫通破壊を抑制することができるといえる。これは、環状稜線125の位置が、絶縁体140の先端141bよりも軸線方向基端側であっても、比較的絶縁体140の先端141bに近い位置であるため、中心電極120の環状稜線125を起点に火花放電が生じても、火花放電が絶縁体140を貫通することなく、適切に沿面放電させることができると考えられる。   On the other hand, in three samples in which N (mm) is set to a value of −0.5 or more, specifically, N = −0.5, −0.3, and −0.1 (mm), the insulator 140 penetration failure did not occur. Therefore, from this test result, N ≧ −0.5, in other words, the annular ridge line 125 of the center electrode 120 is more axial than the position of 0.5 mm away from the distal end 141b of the insulator 140 toward the proximal side in the axial direction. It can be said that the breakthrough of the insulator 140 can be suppressed by disposing it on the tip side. This is because the position of the annular ridge line 125 is relatively close to the distal end 141b of the insulator 140 even if the position of the annular ridge line 125 is closer to the proximal end side in the axial direction than the distal end 141b of the insulator 140. Even if a spark discharge occurs at the starting point, it is considered that the spark discharge can appropriately cause a creeping discharge without penetrating the insulator 140.

次に、0.35≦G2≦0.80とした場合に、気中放電ギャップG1(mm)の適切な寸法範囲を調査すべく、J(mm),H(mm),L2(mm),L1(mm),G2(mm),N(mm)の値が同一で、G1(mm)の値のみが異なる5種類のサンプルを用意した。具体的には、J=1.5(mm),H=0.1(mm),L2=0.0(mm),L1=−0.3(mm),N=−0.2(mm)とし、G1をG1=0.3,0.5,0.7,0.9,1.1(mm)の5種類とした。なお、本試験では、0.35≦G2≦0.80の好適範囲からG2=0.5(mm)を選択している。   Next, when 0.35 ≦ G2 ≦ 0.80, J (mm), H (mm), L2 (mm), in order to investigate an appropriate size range of the air discharge gap G1 (mm), Five types of samples having the same values of L1 (mm), G2 (mm), and N (mm) but different values of G1 (mm) were prepared. Specifically, J = 1.5 (mm), H = 0.1 (mm), L2 = 0.0 (mm), L1 = −0.3 (mm), N = −0.2 (mm) ), And G1 has five types of G1 = 0.3, 0.5, 0.7, 0.9, 1.1 (mm). In this test, G2 = 0.5 (mm) is selected from a suitable range of 0.35 ≦ G2 ≦ 0.80.

このような5種類のサンプルをそれぞれ、排気量2000ccのエンジンに取付け、A/F(空燃比)をリーン側から推移させ、アイドリング(エンジン回転数700rpm)の条件で着火性の試験を行った。本試験では、上記エンジン条件で、HCスパイクが2分あたり3回発生したときのA/Fの値を着火限界と判断し、このときのA/Fの値とL2(mm)との関係を調査した。この試験結果を図6のグラフに示す。   Each of these five types of samples was attached to an engine with a displacement of 2000 cc, A / F (air-fuel ratio) was shifted from the lean side, and an ignitability test was performed under idling conditions (engine speed 700 rpm). In this test, the A / F value when the HC spike occurs 3 times per 2 minutes under the above engine conditions is determined as the ignition limit, and the relationship between the A / F value and L2 (mm) at this time is determined. investigated. The test results are shown in the graph of FIG.

図6に示すように、G1=0.3(mm)に設定したサンプルでは、着火限界におけるA/Fの値が15.0と低かったが、G1=0.5,0.7,0.9(mm)と大きくなるにしたがって、着火限界におけるA/Fの値が、15.5,16.0,17.0と上昇し、良好な着火性を得ることができた。また、G1=1.1(mm)に設定したサンプルでは、G1=0.9(mm)に設定したサンプルに比して着火限界におけるA/Fの値が低下したが、A/F=15.5と着火性は良好であった。この試験結果より、0.5≦G1≦1.1とすることで、着火限界におけるA/Fの値が15.5以上となり、着火性を良好にできることがわかった。   As shown in FIG. 6, in the sample set to G1 = 0.3 (mm), the A / F value at the ignition limit was as low as 15.0, but G1 = 0.5, 0.7, 0. As the value increased to 9 (mm), the A / F value at the ignition limit increased to 15.5, 16.0, 17.0, and good ignitability could be obtained. Further, in the sample set to G1 = 1.1 (mm), the A / F value at the ignition limit was lower than that of the sample set to G1 = 0.9 (mm), but A / F = 15 .5 and the ignitability was good. From this test result, it was found that by setting 0.5 ≦ G1 ≦ 1.1, the A / F value at the ignition limit became 15.5 or more, and the ignitability could be improved.

これは、次のような理由によるものと考えられる。G1を0.5mm以上とすることで、気中放電ギャップに十分な混合気を介在させることができると共に、この混合気に着火するための十分な火花放電を生じさせることができるためと考えられる。一方、G1を1.1mm以下とすることで、気中放電ギャップを経由する放電経路の放電電圧が高くなりすぎないようにし、適切に気中放電ギャップを経由する火花放電を生じさせることができるためと考えられる。   This is considered due to the following reasons. It is considered that by setting G1 to 0.5 mm or more, a sufficient air-fuel mixture can be interposed in the air discharge gap, and a sufficient spark discharge for igniting this air-fuel mixture can be generated. . On the other hand, by setting G1 to 1.1 mm or less, the discharge voltage of the discharge path passing through the air discharge gap can be prevented from becoming too high, and a spark discharge can be appropriately generated via the air discharge gap. This is probably because of this.

次に、気中電極本体部155の先端部内側面151bからチップ側ギャップ位置152bまでの先端部内側面151bに垂直な方向への距離H(mm)の適切な寸法範囲を調査すべく、J(mm),N(mm),L2(mm),L1(mm),G2(mm),G1(mm)の値が同一で、H(mm)の値のみが異なる5種類のサンプルを用意した。具体的には、J=1.5(mm),N=−0.2(mm),L2=0.5(mm),L1=−0.3(mm),G2=0.5(mm),G1=0.8(mm)とし、HをH=0,0.05,0.10,0.15,0.20(mm)の5種類とした。   Next, in order to investigate an appropriate dimensional range of the distance H (mm) in the direction perpendicular to the tip inner surface 151b from the tip inner surface 151b of the air electrode main body 155 to the tip-side gap position 152b, J (mm ), N (mm), L2 (mm), L1 (mm), G2 (mm), and G1 (mm) were the same, and five types of samples differing only in the value of H (mm) were prepared. Specifically, J = 1.5 (mm), N = −0.2 (mm), L2 = 0.5 (mm), L1 = −0.3 (mm), G2 = 0.5 (mm) ), G1 = 0.8 (mm), and H is five types of H = 0, 0.05, 0.10, 0.15, 0.20 (mm).

このような5種類のサンプルをそれぞれ、排気量2000ccのエンジンに取付け、A/F(空燃比)をリーン側から推移させ、アイドリング(エンジン回転数700rpm)の条件で着火性の試験を行った。本試験では、上記エンジン条件で、HCスパイクが2分あたり3回発生したときのA/Fの値を着火限界と判断し、このときのA/Fの値とL2(mm)との関係を調査した。この試験結果を図7のグラフに示す。   Each of these five types of samples was attached to an engine with a displacement of 2000 cc, A / F (air-fuel ratio) was shifted from the lean side, and an ignitability test was performed under idling conditions (engine speed 700 rpm). In this test, the A / F value when the HC spike occurs 3 times per 2 minutes under the above engine conditions is determined as the ignition limit, and the relationship between the A / F value and L2 (mm) at this time is determined. investigated. The test results are shown in the graph of FIG.

図7に示すように、H=0,0.05(mm)に設定した2つのサンプルでは、着火限界におけるA/Fの値が15.3と低かったが、H=0.10,0.15,0.20(mm)の3つのサンプルでは、着火限界におけるA/Fの値が、16.8,16.9,17.0と高い値を示し、良好な着火性を得ることができた。従って、本試験結果より、H≧0.1とすることで、換言すれば、気中放電ギャップを気中電極本体部155の先端部内側面151bから0.1mm以上離れた位置に設けるようにすることで、混合気への着火性を良好にできるといえる。これは、H≧0.1とすることで、気中放電ギャップにおいて火花放電した場合の火炎の拡がりが、気中電極本体部155の先端部151によって妨げられ難くなるためと考えられる。   As shown in FIG. 7, in the two samples set at H = 0, 0.05 (mm), the A / F value at the ignition limit was as low as 15.3, but H = 0.10, 0. In the three samples of 15, 0.20 (mm), the A / F values at the ignition limit are as high as 16.8, 16.9, 17.0, and good ignitability can be obtained. It was. Therefore, from this test result, by setting H ≧ 0.1, in other words, the air discharge gap is provided at a position 0.1 mm or more away from the inner surface 151b of the distal end portion of the air electrode main body 155. Thus, it can be said that the ignitability of the air-fuel mixture can be improved. This is considered to be because when H ≧ 0.1, it is difficult for the tip of the air electrode main body 155 to prevent the flame from spreading when a spark discharge occurs in the air discharge gap.

本実施例1の内燃機関用スパークプラグ100は、次のようにして製造する。
まず、主原料にアルミナを使用し、高温で所定の形状に焼成することによって絶縁体140を形成する。また、鋼材を使用し、所定の形状に塑性加工することによって略円筒状の主体金具130を形成する。次いで、この主体金具130の先端側を切削加工し、軸線C方向先端側ほど軸線Cから遠くなる傾斜となる先端面132を形成する(図2参照)。
The spark plug 100 for the internal combustion engine according to the first embodiment is manufactured as follows.
First, the insulator 140 is formed by using alumina as a main raw material and firing it into a predetermined shape at a high temperature. Moreover, the substantially cylindrical metal shell 130 is formed by using a steel material and plastic processing into a predetermined shape. Next, the front end side of the metal shell 130 is cut to form a front end surface 132 that is inclined farther from the axis C toward the front end side in the axis C direction (see FIG. 2).

一方、Ni耐熱合金からなる直線棒状の沿面接地電極110を2つ、気中電極150を1つ用意する。なお、沿面接地電極110のうち主体金具130の先端面132と接合する接合端面116は、直線棒状の沿面接地電極110の延長方向を向くように形成する(換言すれば、接合端面116は、沿面接地電極110の軸線に垂直に形成する)(図8参照)。また、気中電極150のうち主体金具130の先端面132と接合する接合端面156は、直線棒状の気中電極150の延長方向に対し斜めに形成している(図9参照)。詳細には、気中電極150の延長方向を軸線C方向に一致させたときに、接合端面156の傾斜が主体金具130の先端面132の傾斜と一致するようにしている。また、気中電極150の先端部152には、貴金属チップ152をレーザ溶接によって固着しておく。   On the other hand, two straight rod-shaped creeping ground electrodes 110 made of Ni heat-resistant alloy and one aerial electrode 150 are prepared. In addition, the joining end surface 116 joined to the front end surface 132 of the metal shell 130 of the creeping ground electrode 110 is formed so as to face the extending direction of the straight rod-like creeping ground electrode 110 (in other words, the joining end surface 116 is And formed perpendicular to the axis of the creeping ground electrode 110) (see FIG. 8). Moreover, the joining end surface 156 joined to the front end surface 132 of the metal shell 130 in the air electrode 150 is formed obliquely with respect to the extending direction of the straight bar-shaped air electrode 150 (see FIG. 9). Specifically, when the extending direction of the air electrode 150 is made to coincide with the direction of the axis C, the inclination of the joining end face 156 is made to coincide with the inclination of the front end face 132 of the metal shell 130. Further, a noble metal tip 152 is fixed to the distal end portion 152 of the air electrode 150 by laser welding.

次いで、図8に示すように、電気抵抗溶接によって、2つの沿面接地電極110を、軸線Cを間に挟んで対向するように主体金具130の先端面132に固着する。このとき、沿面接地電極110は、軸線C方向先端側ほど中心電極120に近づく形態となる。次いで、電気抵抗溶接によって、気中電極150を、主体金具130の先端面132のうち2つの沿面接地電極110が固着された固着面132bから90度ずれた位置に固着する(図8(b)参照)。このとき、気中電極150は、図9に示すように、軸線C方向に延びる形態で主体金具130の先端面132に固着される。   Next, as shown in FIG. 8, the two creeping ground electrodes 110 are fixed to the front end surface 132 of the metal shell 130 so as to face each other with the axis C interposed therebetween by electric resistance welding. At this time, the creeping ground electrode 110 is configured to approach the center electrode 120 toward the tip end side in the axis C direction. Next, the aerial electrode 150 is fixed by electrical resistance welding at a position shifted by 90 degrees from the fixing surface 132b to which the two creeping ground electrodes 110 are fixed on the front end surface 132 of the metal shell 130 (FIG. 8B). )reference). At this time, the air electrode 150 is fixed to the front end surface 132 of the metallic shell 130 in a form extending in the direction of the axis C as shown in FIG.

次いで、沿面接地電極110の先端部112が軸線Cから遠ざかるよに沿面接地電極110を屈曲させ、沿面接地電極110の先端部112を軸線C方向に延びる形状にする。
その後、呼びがM10のネジ部130bを主体金具130の外側面に形成する。次いで、絶縁体140、中心電極120、沿面接地電極110及び気中電極150が固着された主体金具130等を組み付ける。次いで、気中電極150の先端部151がの軸線C方向に対し垂直に延びるように、気中電極150を屈曲させる。このようにして、図1に示すような、内燃機関用スパークプラグ100が完成する。
Next, the creeping ground electrode 110 is bent so that the tip 112 of the creeping ground electrode 110 moves away from the axis C, and the tip 112 of the creeping ground electrode 110 extends in the direction of the axis C.
Thereafter, a screw portion 130b having a name of M10 is formed on the outer surface of the metal shell 130. Next, the metal shell 130 to which the insulator 140, the center electrode 120, the creeping ground electrode 110, and the air electrode 150 are fixed is assembled. Next, the aerial electrode 150 is bent so that the front end portion 151 of the aerial electrode 150 extends perpendicularly to the axis C direction. In this way, the spark plug 100 for the internal combustion engine as shown in FIG. 1 is completed.

次に、実施例2の内燃機関用スパークプラグ400ついて説明する。本実施例2の内燃機関用スパークプラグ400は、図10に示すように、実施例1の内燃機関用スパークプラグ100と比較して、沿面接地電極及び気中電極の形状が異なり、その他の部分については同様である。   Next, the internal combustion engine spark plug 400 according to the second embodiment will be described. As shown in FIG. 10, the spark plug 400 for the internal combustion engine of the second embodiment is different from the spark plug 100 for the internal combustion engine of the first embodiment in the shapes of the creeping ground electrode and the air electrode. The same applies to the parts.

実施例1の内燃機関用スパークプラグ100では、沿面接地電極110の基端部111は、軸線C方向先端側ほど中心電極120に近づく形態で、直線形状を有していた(図2参照)。これに対し、本実施例2の内燃機関用スパークプラグ400では、図10(a)に示すように、沿面接地電極410の基端部411は、湾曲形状となっているが、軸線C方向先端側ほど中心電極120に近づく形態を有している。このため、本実施例2の内燃機関用スパークプラグ400でも、沿面接地電極410を中心電極120側に屈曲させることなく、沿面接地電極410の内側面414と絶縁体先端部141との間で、適切なセミ沿面ギャップG2を形成することができる。このように、沿面接地電極の基端部は、その形状に拘わらず、軸線方向先端側ほど中心電極に近づく形態とすることで、沿面接地電極を中心電極側に屈曲させることなく、沿面接地電極の内側面と絶縁体先端部との間で、適切なセミ沿面ギャップを形成することができる。   In the spark plug 100 for the internal combustion engine of the first embodiment, the base end portion 111 of the creeping ground electrode 110 has a linear shape in such a form that it approaches the center electrode 120 toward the tip end side in the axis C direction (see FIG. 2). . On the other hand, in the spark plug 400 for the internal combustion engine of the second embodiment, the base end portion 411 of the creeping ground electrode 410 has a curved shape as shown in FIG. The tip side is closer to the center electrode 120. For this reason, even in the spark plug 400 for the internal combustion engine of the second embodiment, the creeping ground electrode 410 is not bent toward the center electrode 120 side, and the gap between the inner side surface 414 of the creeping ground electrode 410 and the insulator tip portion 141 is reduced. Thus, an appropriate semi-creeping gap G2 can be formed. As described above, the base end portion of the creeping ground electrode is formed so as to be closer to the center electrode toward the distal end side in the axial direction regardless of the shape thereof, so that the creeping ground electrode is not bent toward the center electrode side. An appropriate semi-creeping gap can be formed between the inner surface of the surface ground electrode and the insulator tip.

また、実施例1の内燃機関用スパークプラグ100では、図3に示すように、気中電極本体部155の先端部151を、軸線C方向に直交する方向に延びるようにした。これに対し、本実施例2の内燃機関用スパークプラグ400では、図10(b)に示すように、気中電極450の先端部451を、軸線C方向に対し斜めに延びるようにしている。このようにすることで、気中電極450の先端部451は、中心電極120の先端120bの角部との間で気中放電ギャップを形成することとなる。このため、気中放電ギャップ付近の電界強度が強くなり、気中放電ギャップでの火花放電が良好となる。   Further, in the spark plug 100 for the internal combustion engine of the first embodiment, as shown in FIG. 3, the distal end portion 151 of the air electrode main body portion 155 extends in a direction orthogonal to the axis C direction. On the other hand, in the spark plug 400 for the internal combustion engine of the second embodiment, as shown in FIG. 10B, the tip portion 451 of the air electrode 450 extends obliquely with respect to the axis C direction. By doing in this way, the front-end | tip part 451 of the air electrode 450 forms an air discharge gap between the corner | angular parts of the front-end | tip 120b of the center electrode 120. FIG. For this reason, the electric field strength in the vicinity of the air discharge gap is increased, and the spark discharge in the air discharge gap is improved.

さらに、実施例1の内燃機関用スパークプラグ100では、図3に示すように、気中電極150の先端部151に貴金属チップ152を設けていた。これに対し、本実施例2の内燃機関用スパークプラグ400では、図10に示すように、気中電極450の先端部451に貴金属チップ152が設けられていない。このように、高価な貴金属チップ152を削減することで、本実施例2の内燃機関用スパークプラグ400は低コストとなる。
このような本実施例2の内燃機関用スパークプラグ400においても、H(mm),N(mm),L1(mm),L2(mm),G1(mm),G2(mm)について、実施例1の内燃機関用スパークプラグ100と同様な寸法範囲とすることで、絶縁体140の貫通破壊を抑制し、また、着火性を良好とすることができる。
Further, in the spark plug 100 for the internal combustion engine of the first embodiment, as shown in FIG. 3, the noble metal tip 152 is provided at the tip portion 151 of the air electrode 150. In contrast, in the spark plug 400 for the internal combustion engine of the second embodiment, the noble metal tip 152 is not provided at the tip portion 451 of the air electrode 450 as shown in FIG. In this way, by reducing the expensive noble metal tip 152, the spark plug 400 for the internal combustion engine of the second embodiment is reduced in cost.
Also in the spark plug 400 for the internal combustion engine of the second embodiment, H (mm), N (mm), L1 (mm), L2 (mm), G1 (mm), and G2 (mm) are examples. By setting the size range to be the same as that of the spark plug 100 for an internal combustion engine of 1, the penetration damage of the insulator 140 can be suppressed and the ignitability can be improved.

次に、実施例3の内燃機関用スパークプラグ300について説明する。本実施例3の内燃機関用スパークプラグ300は、図11に示すように、実施例1の内燃機関用スパークプラグ100と比較して、沿面接地電極の形状が異なり、その他の部分については同様である。   Next, a spark plug 300 for an internal combustion engine according to a third embodiment will be described. As shown in FIG. 11, the spark plug 300 for the internal combustion engine of the third embodiment is different in the shape of the creeping ground electrode from the spark plug 100 for the internal combustion engine of the first embodiment, and the other parts are the same. It is.

実施例1の内燃機関用スパークプラグ100では、沿面接地電極110は1カ所だけ屈曲した形態で、沿面接地電極110の先端部112を軸線C方向に延びる形状とした(図2参照)。これに対し、本実施例3の内燃機関用スパークプラグ300では、実施例1の内燃機関用スパークプラグ100と同様に沿面接地電極310は1カ所だけ屈曲した形態であるが、沿面接地電極310の先端部312は、軸線C方向先端側ほど中心電極120に近づく形態となっている。しかしながら、実施例1の内燃機関用スパークプラグ100と同様に、沿面接地電極310の先端部312を、仮想沿面接地電極310kの仮想先端部312kに比して中心電極120から遠くに位置させているので、適切なセミ沿面ギャップG2を形成することができる(図11参照)。なお、仮想沿面接地電極とは、沿面接地電極を基端部の延長方向に直線状に延ばしたと仮定した場合の沿面接地電極をいう。   In the spark plug 100 for an internal combustion engine according to the first embodiment, the creeping ground electrode 110 is bent at only one place, and the tip 112 of the creeping ground electrode 110 is extended in the direction of the axis C (see FIG. 2). On the other hand, in the spark plug 300 for the internal combustion engine of the third embodiment, the creeping ground electrode 310 is bent at only one place as in the spark plug 100 for the internal combustion engine of the first embodiment. The tip portion 312 of 310 has a form that approaches the center electrode 120 toward the tip end side in the axis C direction. However, like the spark plug 100 for the internal combustion engine of the first embodiment, the tip portion 312 of the creeping ground electrode 310 is positioned farther from the center electrode 120 than the virtual tip portion 312k of the virtual creeping ground electrode 310k. Therefore, an appropriate semi-creeping gap G2 can be formed (see FIG. 11). The virtual creeping ground electrode is a creeping ground electrode when it is assumed that the creeping ground electrode is linearly extended in the extending direction of the base end portion.

このような本実施例3の内燃機関用スパークプラグ300においても、H(mm),N(mm),L1(mm),L2(mm),G1(mm),G2(mm)について、実施例1の内燃機関用スパークプラグ100と同様な寸法範囲とすることで、絶縁体140の貫通破壊を抑制し、また、着火性を良好とすることができる。   Also in the spark plug 300 for the internal combustion engine of the third embodiment, H (mm), N (mm), L1 (mm), L2 (mm), G1 (mm), and G2 (mm) are examples. By setting the size range to be the same as that of the spark plug 100 for an internal combustion engine of 1, the penetration damage of the insulator 140 can be suppressed and the ignitability can be improved.

次に、実施例4の内燃機関用スパークプラグ500について説明する。本実施例4の内燃機関用スパークプラグ500は、図12に示すように、実施例1の内燃機関用スパークプラグ100と比較して、主体金具の先端面及び沿面接地電極の形状が異なり、その他の部分については同様である。   Next, a spark plug 500 for an internal combustion engine according to a fourth embodiment will be described. As shown in FIG. 12, the spark plug 500 for the internal combustion engine of the fourth embodiment is different from the spark plug 100 for the internal combustion engine of the first embodiment in the shapes of the front end surface of the metal shell and the creeping ground electrode. The other parts are the same.

実施例1の内燃機関用スパークプラグ100では、主体金具130の先端面132を軸線C方向先端側ほど軸線Cから遠くなる斜面とし、この先端面132から基端部111が垂直に延びるように沿面接地電極110を固着した(図2参照)。これにより、沿面接地電極110の基端部111を軸線C方向先端側ほど中心電極120に近づく形態とした。
これに対し、本実施例4の内燃機関用スパークプラグ500では、図12に示すように、主体金具530の先端面532を軸線Cに垂直な面とするが、沿面接地電極510の接合端面516を基端部511の延びる方向に対し斜めに形成し、沿面接地電極510の基端部511を軸線C方向先端側ほど中心電極120に近づく形態としている。
In the spark plug 100 for the internal combustion engine of the first embodiment, the distal end surface 132 of the metallic shell 130 is a slope that is farther from the axis C toward the distal end side in the axis C direction, and the proximal end 111 extends vertically from the distal end surface 132. The surface ground electrode 110 was fixed (see FIG. 2). Accordingly, the base end portion 111 of the creeping ground electrode 110 is configured to approach the center electrode 120 toward the tip end side in the axis C direction.
On the other hand, in the spark plug 500 for the internal combustion engine of the fourth embodiment, as shown in FIG. 12, the front end surface 532 of the metal shell 530 is a surface perpendicular to the axis C, but the joining end surface of the creeping ground electrode 510 is 516 is formed obliquely with respect to the direction in which the base end portion 511 extends, and the base end portion 511 of the creeping ground electrode 510 is configured to approach the center electrode 120 toward the front end side in the axis C direction.

このように、本実施例4の内燃機関用スパークプラグ500においても、実施例1の内燃機関用スパークプラグ100と同様に、沿面接地電極の基端部を軸線C方向先端側ほど中心電極120に近づく形態としているので、沿面接地電極510を中心電極120側に屈曲させることなく、沿面接地電極510の内側面514と絶縁体先端部141との間でセミ沿面ギャップG2を形成することができる。
このような本実施例4の内燃機関用スパークプラグ500においても、H(mm),N(mm),L1(mm),L2(mm),G1(mm),G2(mm)について、実施例1の内燃機関用スパークプラグ100と同様な寸法範囲とすることで、絶縁体140の貫通破壊を抑制し、また、着火性を良好とすることができる。
As described above, in the spark plug 500 for the internal combustion engine of the fourth embodiment, as in the spark plug 100 for the internal combustion engine of the first embodiment, the proximal end portion of the creeping ground electrode is closer to the front end side in the axis C direction. Therefore, the semi-creeping gap G2 is formed between the inner surface 514 of the creeping ground electrode 510 and the insulator tip 141 without bending the creeping ground electrode 510 to the center electrode 120 side. Can do.
Also in the spark plug 500 for the internal combustion engine of the fourth embodiment, H (mm), N (mm), L1 (mm), L2 (mm), G1 (mm), and G2 (mm) are examples. By setting the size range to be the same as that of the spark plug 100 for an internal combustion engine of 1, the penetration damage of the insulator 140 can be suppressed and the ignitability can be improved.

以上において、本発明を実施例1〜4に即して説明したが、本発明は、上記実施例1〜4に限定されるものではなく、その要旨を逸脱しない範囲で適宜変更して適用できることはいうまでもない。
例えば、実施例1〜4の内燃機関用スパークプラグ100,300,400,500では、主体金具130のネジ部130bの呼び径がM10のスパークプラグを用いた。しかし、本発明はM10のスパークプラグに限定されるものではない。さらに言えば、M12以下のもの、例えば、M12,M8の主体金具を有する内燃機関用スパークプラグに対して特に有効となる。
また、本発明は、主体金具の外側面に取付ネジ部が形成さていない、いわゆるネジなしプラグについても適用することができる。
In the above, the present invention has been described with reference to the first to fourth embodiments. However, the present invention is not limited to the first to fourth embodiments, and can be appropriately modified and applied without departing from the gist thereof. Needless to say.
For example, in the spark plugs 100, 300, 400, 500 for the internal combustion engine of Examples 1 to 4, a spark plug having a nominal diameter M10 of the threaded portion 130b of the metal shell 130 was used. However, the present invention is not limited to the M10 spark plug. Further, it is particularly effective for spark plugs for internal combustion engines having M12 or less, for example, M12, M8 metal shells.
The present invention can also be applied to a so-called screwless plug in which a mounting screw portion is not formed on the outer surface of the metal shell.

また、実施例1〜4のの内燃機関用スパークプラグ100,300,400,500では、沿面接地電極110,310,410,510を2つ設け、さらに気中電極150,450を設けたスパークプラグとした。しかし、気中電極を設けることなく、沿面接地電極のみを有するセミ沿面放電型スパークプラグとしても良い。また、沿面接地電極は1または複数であれば良く、例えば、沿面接地電極を3つあるいは4つ設けるようにしても良い。
また、実施例1〜4のの内燃機関用スパークプラグ100,300,400,500では、絶縁体140の先端141bから中心電極120の環状稜線125までの軸線C方向距離N(mm)を負の値(環状稜線125を絶縁体140の先端141bよりも軸線C方向基端側に配置)とした。しかし、正の値(環状稜線125を絶縁体140の先端141bよりも軸線C方向先端側に配置)としても、絶縁体140の貫通破壊を抑制することができる。
Further, in the spark plugs 100, 300, 400, 500 for the internal combustion engines of the first to fourth embodiments, two sparking ground electrodes 110, 310, 410, 510 are provided, and further, the spark electrodes 150, 450 are provided. Plug. However, a semi-creeping discharge type spark plug having only a creeping ground electrode without providing an air electrode may be used. Further, the creeping ground electrode may be one or more, and for example, three or four creeping ground electrodes may be provided.
Further, in the spark plugs 100, 300, 400, 500 for the internal combustion engine of Examples 1 to 4, the axial C direction distance N (mm) from the tip 141b of the insulator 140 to the annular ridge line 125 of the center electrode 120 is negative. The value (the annular ridge line 125 is arranged closer to the base end side in the axis C direction than the distal end 141b of the insulator 140). However, even if the positive value (the annular ridge 125 is arranged on the tip end side in the axis C direction with respect to the tip 141b of the insulator 140), the penetration failure of the insulator 140 can be suppressed.

実施例1にかかる内燃機関用スパークプラグ100の正面図である。1 is a front view of a spark plug 100 for an internal combustion engine according to a first embodiment. 実施例1にかかる内燃機関用スパークプラグ100の先端側の拡大図であり、図1B部の部分断面図に相当する。FIG. 2 is an enlarged view of the front end side of the spark plug 100 for an internal combustion engine according to the first embodiment, and corresponds to a partial cross-sectional view of FIG. 実施例1にかかる内燃機関用スパークプラグ100の先端側の拡大図であり、図2の側面図に相当する。FIG. 3 is an enlarged view of the front end side of the spark plug 100 for the internal combustion engine according to the first embodiment, and corresponds to a side view of FIG. 2. 実施例1にかかる内燃機関用スパークプラグ100の着火性試験の結果を示すグラフであり、L2(mm)の変動に伴うA/Fの値を示す。It is a graph which shows the result of the ignitability test of the spark plug 100 for internal combustion engines concerning Example 1, and shows the value of A / F accompanying the fluctuation | variation of L2 (mm). 実施例1にかかる内燃機関用スパークプラグ100の着火性試験の結果を示すグラフであり、L1(mm)の変動に伴うA/Fの値を示す。It is a graph which shows the result of the ignitability test of the spark plug 100 for internal combustion engines concerning Example 1, and shows the value of A / F accompanying the fluctuation | variation of L1 (mm). 実施例1にかかる内燃機関用スパークプラグ100の着火性試験の結果を示すグラフであり、G1(mm)の変動に伴うA/Fの値を示す。It is a graph which shows the result of the ignitability test of the spark plug 100 for internal combustion engines concerning Example 1, and shows the value of A / F accompanying the fluctuation | variation of G1 (mm). 実施例1にかかる内燃機関用スパークプラグ100の着火性試験の結果を示すグラフであり、H(mm)の変動に伴うA/Fの値を示す。It is a graph which shows the result of the ignitability test of the spark plug 100 for internal combustion engines concerning Example 1, and shows the value of A / F accompanying the fluctuation | variation of H (mm). 実施例1にかかる内燃機関用スパークプラグ100の製造方法を説明する説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram for explaining a method for manufacturing an internal combustion engine spark plug 100 according to a first embodiment; 実施例1にかかる内燃機関用スパークプラグ100の製造方法を説明する説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram for explaining a method for manufacturing an internal combustion engine spark plug 100 according to a first embodiment; 実施例2にかかる内燃機関用スパークプラグ400の先端側を示す図であり、(a)は部分断面図、(b)はその側面図である。It is a figure which shows the front end side of the spark plug 400 for internal combustion engines concerning Example 2, (a) is a fragmentary sectional view, (b) is the side view. 実施例3にかかる内燃機関用スパークプラグ300の先端側の部分断面図である。FIG. 6 is a partial cross-sectional view of a tip side of a spark plug 300 for an internal combustion engine according to a third embodiment. 実施例4にかかる内燃機関用スパークプラグ500の先端側の部分断面図である。FIG. 6 is a partial cross-sectional view of a tip side of a spark plug 500 for an internal combustion engine according to a fourth embodiment.

100,300,400,500 内燃機関用スパークプラグ
110,310,410,510 沿面接地電極
110g,310g,410g,510g 電極側ギャプ位置
111,311,411,511 沿面接地電極の基端部
112,312,412 沿面接地電極の先端部
114,314,414,514 沿面接地電極の内側面
120 中心電極
120b チップ側ギャップ位置
121 中心電極先端部
122,152 貴金属チップ
123 中心電極の縮径部
124 中心電極の基端側部
125 中心電極の環状稜線
130,530 主体金具
140 絶縁体
141 絶縁体先端部
141b 絶縁体の先端
150,450 気中電極
155,455 気中電極本体部
151b 気中電極本体部の先端部内側面
C 軸線
D 主体金具の先端外径
G1 気中放電ギャップ寸法
G2 セミ沿面放電ギャップ寸法
H 気中電極本体部の先端部内側面からチップ側ギャップ位置までの先端部内側面に垂直
な方向への距離
J 絶縁体の先端から中心電極の先端までの軸線C方向先端側への距離
L1 絶縁体の先端から電極側ギャップ位置までの軸線方向距離
L2 絶縁体の先端から沿面接地電極の先端までの軸線方向距離
N 絶縁体の先端から環状稜線までの軸線方向距離
100, 300, 400, 500 Spark plug for internal combustion engine 110, 310, 410, 510 Creeping ground electrode 110g, 310g, 410g, 510g Electrode side gap position 111, 311, 411, 511 Base end 112 of creeping ground electrode , 312, 412 Creeping ground electrode tip 114, 314, 414, 514 Creeping ground electrode inner surface 120 Center electrode 120 b Tip side gap position 121 Center electrode tip 122, 152 Precious metal tip 123 Reduced diameter portion of center electrode 124 Base electrode side end portion 125 Center electrode annular ridge 130, 530 Metal shell 140 Insulator 141 Insulator tip 141b Insulator tip 150, 450 Air electrode 155, 455 Air electrode main body 151b Air electrode Inner side surface C of the tip of the main body Axis D Outer diameter G1 of the metal shell Dimension G2 Semi-surface discharge gap dimension H Distance in the direction perpendicular to the inner surface of the tip from the inner surface of the tip of the aerial electrode body to the tip-side gap position J Axis C direction from the tip of the insulator to the tip of the center electrode Distance L1 to tip side Axial direction distance L2 from tip of insulator to electrode side gap position Axial direction distance N from tip of insulator to tip of creeping ground electrode Axial direction distance from tip of insulator to annular ridge line

Claims (8)

軸線方向に貫通する軸孔を有する筒状の絶縁体と、
上記軸孔に挿設された中心電極であって、上記絶縁体の先端から突出する中心電極先端部を有する中心電極と、
筒状の主体金具であって、上記絶縁体の周囲を取り囲み、自身の先端より上記絶縁体の一部が突出するように配置された主体金具と、
上記主体金具の先端面に接合された1または複数の沿面接地電極であって、この沿面接地電極と上記中心電極先端部との間に生じさせる火花放電の放電経路の一部に、上記絶縁体のうち上記主体金具の先端よりも先端側に突出する絶縁体先端部の表面に沿う沿面放電経路を含むように、上記絶縁体先端部及び上記中心電極先端部に対する形態を定めてなる沿面接地電極と、
を備える内燃機関用スパークプラグであって、
上記沿面接地電極は、上記主体金具の先端面から上記中心電極側を向いて延びる滑らかな内側面であって、上記絶縁体の先端よりも上記軸線方向先端側まで延びる内側面を有し、
上記沿面接地電極と上記絶縁体先端部との間隙のうち最短の間隙をセミ沿面放電ギャップとしたとき、上記沿面接地電極の内側面は、上記絶縁体先端部との間で上記セミ沿面放電ギャップをなす電極側ギャップ位置を含み、
上記絶縁体の先端を起点とし、上記軸線方向先端側を正の方向、上記軸線方向基端側を負の方向としたとき、上記絶縁体の先端から上記電極側ギャップ位置までの上記軸線方向距離L1(mm)は、−0.8≦L1≦0.0の関係を満たす
内燃機関用スパークプラグ。
A cylindrical insulator having an axial hole penetrating in the axial direction;
A center electrode inserted into the shaft hole, the center electrode having a center electrode tip protruding from the tip of the insulator;
A cylindrical metal shell that surrounds the insulator and is arranged so that a part of the insulator protrudes from its tip;
One or a plurality of creeping ground electrodes joined to the front end surface of the metal shell, and a part of a discharge path of a spark discharge generated between the creeping ground electrode and the center electrode front end portion, Of the insulator, a shape with respect to the insulator tip and the center electrode tip is defined so as to include a creeping discharge path along the surface of the insulator tip protruding beyond the tip of the metal shell. A surface ground electrode;
A spark plug for an internal combustion engine comprising:
The creeping ground electrode is a smooth inner surface extending from the front end surface of the metal shell toward the center electrode side, and has an inner side surface extending from the front end of the insulator to the front end side in the axial direction.
When the shortest gap among the gaps between the creeping ground electrode and the insulator tip is a semi-creeping discharge gap, the inner surface of the creeping ground electrode is in contact with the insulator tip. Including the electrode side gap position forming the discharge gap,
The axial distance from the distal end of the insulator to the electrode-side gap position when the distal end of the insulator is a starting point, the distal end side in the axial direction is a positive direction, and the proximal end side in the axial direction is a negative direction. L1 (mm) is a spark plug for an internal combustion engine that satisfies a relationship of −0.8 ≦ L1 ≦ 0.0.
軸線方向に貫通する軸孔を有する筒状の絶縁体と、
上記軸孔に挿設された中心電極であって、上記絶縁体の先端から突出する中心電極先端部を有する中心電極と、
筒状の主体金具であって、上記絶縁体の周囲を取り囲み、自身の先端より上記絶縁体の一部が突出するように配置された主体金具と、
上記主体金具の先端面に接合された1または複数の沿面接地電極であって、この沿面接地電極と上記中心電極先端部との間に生じさせる火花放電の放電経路の一部に、上記絶縁体のうち上記主体金具の先端よりも先端側に突出する絶縁体先端部の表面に沿う沿面放電経路を含むように、上記絶縁体先端部及び上記中心電極先端部に対する形態を定めてなる沿面接地電極と、
を備える内燃機関用スパークプラグであって、
上記沿面接地電極は、上記主体金具の先端面から上記中心電極側を向いて延びる滑らかな内側面であって、上記絶縁体の先端よりも上記軸線方向先端側まで延びる内側面を有し、
上記沿面接地電極と上記絶縁体先端部との間隙のうち最短の間隙をセミ沿面放電ギャップとしたとき、上記沿面接地電極の内側面は、上記絶縁体先端部との間で上記セミ沿面放電ギャップをなし、
上記セミ沿面放電ギャップの寸法G2(mm)は、0.35≦G2≦0.80の関係を満たす
内燃機関用スパークプラグ。
A cylindrical insulator having an axial hole penetrating in the axial direction;
A center electrode inserted into the shaft hole, the center electrode having a center electrode tip protruding from the tip of the insulator;
A cylindrical metal shell that surrounds the insulator and is arranged so that a part of the insulator protrudes from its tip;
One or a plurality of creeping ground electrodes joined to the front end surface of the metal shell, and a part of a discharge path of a spark discharge generated between the creeping ground electrode and the center electrode front end portion, Of the insulator, a shape with respect to the insulator tip and the center electrode tip is defined so as to include a creeping discharge path along the surface of the insulator tip protruding beyond the tip of the metal shell. A surface ground electrode;
A spark plug for an internal combustion engine comprising:
The creeping ground electrode is a smooth inner surface extending from the front end surface of the metal shell toward the center electrode side, and has an inner side surface extending from the front end of the insulator to the front end side in the axial direction.
When the shortest gap among the gaps between the creeping ground electrode and the insulator tip is a semi-creeping discharge gap, the inner surface of the creeping ground electrode is in contact with the insulator tip. No discharge gap,
The spark plug for an internal combustion engine, wherein the semi-surface discharge gap dimension G2 (mm) satisfies a relationship of 0.35 ≦ G2 ≦ 0.80.
請求項1または請求項2に記載の内燃機関用スパークプラグであって、
前記主体金具に固着され、前記中心電極の先端との間で気中放電ギャップを形成する気中電極を有する
内燃機関用スパークプラグ。
A spark plug for an internal combustion engine according to claim 1 or 2 ,
A spark plug for an internal combustion engine having an air electrode fixed to the metal shell and forming an air discharge gap with a tip of the center electrode.
請求項3に記載の内燃機関用スパークプラグであって、
前記沿面接地電極の先端は、前記中心電極の先端より前記軸線方向基端側に位置してなる
内燃機関用スパークプラグ。
A spark plug for an internal combustion engine according to claim 3 ,
A spark plug for an internal combustion engine, wherein a tip of the creeping ground electrode is positioned closer to a base end side in the axial direction than a tip of the center electrode.
請求項3または請求項4に記載の内燃機関用スパークプラグであって、
前記セミ沿面放電ギャップの寸法G2(mm)は、0.35≦G2≦0.80の関係を満たし、且つ
前記気中放電ギャップの寸法G1(mm)は、0.5≦G1≦1.1の関係を満たす
内燃機関用スパークプラグ。
A spark plug for an internal combustion engine according to claim 3 or 4 ,
The semi-surface discharge gap dimension G2 (mm) satisfies a relationship of 0.35 ≦ G2 ≦ 0.80, and the air discharge gap dimension G1 (mm) is 0.5 ≦ G1 ≦ 1.1. A spark plug for internal combustion engines that satisfies this relationship.
請求項3〜請求項5のいずれか一項に記載の内燃機関用スパークプラグであって、
前記気中電極は、
前記主体金具に固着され前記軸線方向先端側に延びる基端部、この基端部から延設されて上記主体金具の径方向内側に屈曲する屈曲部、及びこの屈曲部から延設されて前記中心電極と上記軸線方向に対向する位置まで延びる先端部を備える気中電極本体部と、
上記気中電極本体部の上記先端部に直接あるいは間接に固着され、上記中心電極の先端との間で前記気中放電ギャップを形成する貴金属チップと、を有し、
上記気中電極本体部の上記先端部のうち上記中心電極側を向く先端部内側面から、上記貴金属チップのうち前記気中放電ギャップを形成するチップ側ギャップ位置までの上記先端部内側面に垂直な方向への距離をH(mm)としたとき、H≧0.1の関係を満たす
内燃機関用スパークプラグ。
A spark plug for an internal combustion engine according to any one of claims 3 to 5 ,
The air electrode is
A base end portion fixed to the metal shell and extending toward the axial front end side, a bent portion extending from the base end portion and bending radially inward of the metal shell, and extending from the bent portion to the center An air electrode main body comprising a tip extending to a position facing the electrode in the axial direction;
A noble metal tip that is directly or indirectly fixed to the tip of the air electrode main body and forms the air discharge gap with the tip of the center electrode;
A direction perpendicular to the inner surface of the tip from the inner surface of the tip of the air electrode main body facing the center electrode to the tip side gap position of the noble metal tip forming the air discharge gap. A spark plug for an internal combustion engine that satisfies a relationship of H ≧ 0.1 when the distance to is H (mm).
請求項1〜請求項6のいずれか一項に記載の内燃機関用スパークプラグであって、
前記主体金具の先端外径は10.1mm以下である
内燃機関用スパークプラグ。
A spark plug for an internal combustion engine according to any one of claims 1 to 6 ,
A spark plug for an internal combustion engine, wherein the outer diameter of the metal shell is 10.1 mm or less.
請求項1〜請求項7のいずれか一項に記載の内燃機関用スパークプラグであって、
前記沿面接地電極は、前記主体金具の先端面から延び前記軸線方向先端側ほど前記中心電極に近づく形態の基端部を有する
内燃機関用スパークプラグ。
A spark plug for an internal combustion engine according to any one of claims 1 to 7 ,
The creeping ground electrode is a spark plug for an internal combustion engine that has a base end portion that extends from a front end surface of the metal shell and is closer to the center electrode toward the front end side in the axial direction.
JP2003283504A 2003-07-31 2003-07-31 Spark plug for internal combustion engine Expired - Fee Related JP4377177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003283504A JP4377177B2 (en) 2003-07-31 2003-07-31 Spark plug for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003283504A JP4377177B2 (en) 2003-07-31 2003-07-31 Spark plug for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005050746A JP2005050746A (en) 2005-02-24
JP4377177B2 true JP4377177B2 (en) 2009-12-02

Family

ID=34268378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003283504A Expired - Fee Related JP4377177B2 (en) 2003-07-31 2003-07-31 Spark plug for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4377177B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101689753B (en) 2007-08-08 2012-05-23 日本特殊陶业株式会社 Spark plug and its manufacturing method
DE102013102854B4 (en) 2012-03-23 2019-08-22 Ngk Spark Plug Co., Ltd. Spark plug and method of making the same

Also Published As

Publication number Publication date
JP2005050746A (en) 2005-02-24

Similar Documents

Publication Publication Date Title
JP4965692B2 (en) Spark plug
JP2003317896A (en) Spark plug
JP4187343B2 (en) Spark plug for semi-surface discharge type internal combustion engine
JP6843933B2 (en) Spark plug
KR101375915B1 (en) Spark plug
EP2264844B1 (en) Spark plug for internal combustion engine
JP6645314B2 (en) Spark plug for internal combustion engine and method of manufacturing the same
JP2002260817A (en) Spark plug
JP2006049206A (en) Spark plug for internal combustion engine
KR101118401B1 (en) Spark plug
JP5870629B2 (en) Spark plug for internal combustion engine and mounting structure thereof
EP1517417A2 (en) Spark plug having enhanced capability to ignite air-fuel mixture
JP2006085941A (en) Spark plug for internal combustion engine
JP4377177B2 (en) Spark plug for internal combustion engine
JP5032556B2 (en) Spark plug
JP2001160475A (en) Spark plug for internal combustion engine
JP2005135783A (en) Spark plug
JP2006085997A (en) Spark plug for internal combustion engine
JP4739281B2 (en) Semi creeping spark plug
JP2002359052A (en) Composite electrode material for ignition
JP2006073205A (en) Spark plug
JP4773923B2 (en) Semi creeping spark plug
JP4562030B2 (en) Spark plug
JP5933154B2 (en) Spark plug
JP2005353606A (en) Spark plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090910

R150 Certificate of patent or registration of utility model

Ref document number: 4377177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees