JP4739244B2 - Particle removal method - Google Patents

Particle removal method Download PDF

Info

Publication number
JP4739244B2
JP4739244B2 JP2007012619A JP2007012619A JP4739244B2 JP 4739244 B2 JP4739244 B2 JP 4739244B2 JP 2007012619 A JP2007012619 A JP 2007012619A JP 2007012619 A JP2007012619 A JP 2007012619A JP 4739244 B2 JP4739244 B2 JP 4739244B2
Authority
JP
Japan
Prior art keywords
pipette
particle
particles
tip
fib
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007012619A
Other languages
Japanese (ja)
Other versions
JP2008181948A (en
Inventor
修 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2007012619A priority Critical patent/JP4739244B2/en
Publication of JP2008181948A publication Critical patent/JP2008181948A/en
Application granted granted Critical
Publication of JP4739244B2 publication Critical patent/JP4739244B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は半導体集積回路などの電子製品の製造の各種工程で発生するμm単位の微小なパーティクルの除去方法に関するものである。   The present invention relates to a method for removing fine particles in units of μm generated in various processes of manufacturing an electronic product such as a semiconductor integrated circuit.

半導体集積回路のみならず電子製品の性能向上のために部品の小型化が進み、製造工程で発生する今まで問題とならなったサイズのパーティクルが製品の性能に大きく影響を及ぼすようになってきている。そのため各種工程で発生するパーティクル除去技術は製品の歩留まりを上げるために今まで以上に重要になってきつつある。例えばCCDカメラの最終組立工程で発生するマイクロレンズ上の数μmのパーティクルはCCDの局所的な入光量を低くしカメラとしての性能を低下させ、歩留まりを下げていた。   In order to improve the performance of electronic products as well as semiconductor integrated circuits, the miniaturization of parts has progressed, and particles of a size that has been a problem in the manufacturing process have greatly affected the performance of products. Yes. Therefore, particle removal technology generated in various processes is becoming more important than ever in order to increase the yield of products. For example, particles of several μm on the microlens generated in the final assembly process of the CCD camera lowered the CCD's local incident light intensity, reducing the performance as a camera, and reducing the yield.

従来洗浄によりパーティクルは除去されてきたが、洗浄で落としきれないパーティクルが増加してきており、最終組立工程で洗浄工程が入れられない場合などにも対応する方法が必要になってきている。また洗浄でパーティクルを除去しようとしてもパーティクルの再付着や新しい汚染でパーティクルが増える場合があり、パーティクルの数が少ない場合には直接ピンポイントで除去できる方法が求められている。   Particles have been removed by conventional cleaning, but the number of particles that cannot be removed by cleaning has increased, and there is a need for a method that can cope with cases where the cleaning process cannot be performed in the final assembly process. Even if particles are removed by washing, the particles may increase due to reattachment or new contamination, and when the number of particles is small, a method that can be directly removed by pinpoint is required.

微細なパーティクルを直接ピンポイントで除去できる方法として、フォトマスク上のパーティクルをAFM探針で移動または除去した後洗浄で除去する方法(特許文献1)や、ウェハ上のパーティクルをピンセットでつかみ取る方法(非特許文献1)が提案されている。AFM探針で除去する場合は、除去後に洗浄工程が必要で、ピンセットでつかむ方法は凹凸が大きなサンプルでは干渉により使用できないし、凹凸のないところでも落とさないように確実に挟むためにはピンセットの正確な位置合わせが必要となり、挟む工程と合わせると時間がかかりスループットを高くできなかった。更にピンセットでは挟んだパーティクルをピンセットが開いても落とせないという問題があった。そこで、除去後の洗浄工程の要らない、スループットの高いパーティクル除去方法が求められている。   As a method to remove fine particles directly by pinpoint, move or remove particles on the photomask with an AFM probe and then remove them by cleaning (Patent Document 1), or grab particles on the wafer with tweezers (Non-Patent Document 1) has been proposed. When removing with an AFM probe, a cleaning process is required after removal, and the method of grasping with tweezers cannot be used due to interference with samples with large irregularities, and in order to pinch them securely so as not to drop even if there are no irregularities, Accurate alignment is required, and when combined with the sandwiching process, it takes time and the throughput cannot be increased. Furthermore, the tweezers have a problem that the sandwiched particles cannot be dropped even if the tweezers are opened. Therefore, there is a need for a high-throughput particle removal method that does not require a cleaning step after removal.

ガラスピペットを加熱して引き伸ばして先端を細くしたピペットは、パッチクランプ法などで生物・医学分野で広く使われている。最近集束イオンビーム(FIB)装置を用いた除去加工で滑らかな端面のピペット先端が得られている。更に滑らかにしたピペット端面にFIBのデポジションでピペット先端に微細な所望の形状を作製できることも知られている(非特許文献2)。
特開2005-084582号([0007]、図1) 逢坂勉、国安仁、服部毅、宗兼正直、岩崎浩二、林宏樹、今野隆、第52回応用物理学関係連合講演会予稿集、p880(2005) 松井真二、光技術コンタクト、41 356-363(2003)
Pipettes with heated glass pipettes that have been stretched to make their tips thinner are widely used in the biological and medical fields due to the patch clamp method. Recently, pipette tips with smooth end faces have been obtained by removal using a focused ion beam (FIB) device. It is also known that a fine desired shape can be produced at the pipette tip by FIB deposition on a smooth pipette end face (Non-patent Document 2).
JP 2005-084582 ([0007], FIG. 1) Tsutomu Osaka, Kuniyasu Yasushi, Jun Hattori, Honor Munekane, Koji Iwasaki, Hiroki Hayashi, Takashi Konno, Proceedings of the 52nd Joint Conference on Applied Physics, p880 (2005) Shinji Matsui, Optical Technology Contact, 41 356-363 (2003)

本発明は上記問題点を解決し、フォトマスク上、ウェハ上、あるいはマイクロレンズ上等に付着した、2〜40μmのサイズのパーティクルを、後洗浄なしで、高スループットで除去することを目的とする。   The present invention solves the above-described problems, and aims to remove particles having a size of 2 to 40 μm adhering to a photomask, a wafer, a microlens, or the like at high throughput without post-cleaning. .

公知の技術により、ガラスピペットを加熱して引き伸ばすことにより、100nm程度から数10μmの内径を持つ先細(さきぼそ)の円錐台状の端部を有するピペットが作製可能である。この引き伸ばしたピペット先端を、パーティクルと接触させた時にパーティクルとの隙間ができないようにするため、FIBで加工して、凸凹のない端面になるようにする。
先端を先細の円錐台状に尖らせたピペットをパーティクルに接するまで近づけピペット内を真空に引きパーティクルを吸着させて後持ち上げ試料外に移動し、ピペット内を大気または加圧にしてパーティクルを捨て去る。
By heating and stretching the glass pipette by a known technique, it is possible to produce a pipette having a tapered frustoconical end having an inner diameter of about 100 nm to several tens of μm. The expanded pipette tip is processed by FIB so that there is no gap between the particles when they are brought into contact with the particles, so that the end surface has no unevenness.
A pipette whose tip is sharpened in a tapered truncated cone shape is brought close to contact with the particles, and the inside of the pipette is evacuated to adsorb the particles, then lifted and moved to the outside of the sample, and the inside of the pipette is moved to the atmosphere or pressurized to discard the particles.

パーティクルが小さいときには内径の小さいピペットを使用し、パーティクルが大きいときには吸着力が大きくなるように内径の大きなピペットでパーティクルを真空吸引して試料外に移動してパーティクルを捨て去る。   When the particle is small, a pipette having a small inner diameter is used, and when the particle is large, the pipette having a large inner diameter is vacuum sucked with a pipette having a large inner diameter so as to increase the adsorption force, and the particle is discarded.

ピペットに金属細線を含有したピペットを使用して、ピペットを引き伸ばし先端から金属細線が突き出たものを用いて、アースした金属細線の先端をパーティクルに押し当ててパーティクルのチャージを取り除いてからパーティクルを真空吸着させた後、持ち上げ試料外に移動し、ピペット内を大気または加圧にしてパーティクルを捨て去る。金属細線が露出しないときにはFIB加工でガラス部を取り除き金属細線を露出させる。
真空度を上げて減圧雰囲気に引き伸ばして薄くなったガラス壁が耐えられなくて破損する場合には先端のガラスをFIBエッチングで除去して凹凸のない滑らか面を出した後にピペット先端にFIBデポ膜で硬い丈夫な凹凸のない滑らかな先端を作製する。このFIB修飾ピペットを用いてパーティクルを真空吸着させて後持ち上げ試料外に移動し、ピペット内を大気または加圧にしてパーティクルを捨て去る。
Using a pipette containing a fine metal wire in the pipette, using a pipette that is stretched and protruding from the tip, press the tip of the grounded fine metal wire against the particle to remove the charge of the particle, and then vacuum the particle After being adsorbed, the sample is lifted and moved out of the sample, and the inside of the pipette is made atmospheric or pressurized to discard the particles. When the fine metal wire is not exposed, the glass part is removed by FIB processing to expose the fine metal wire.
If the glass wall thinned by raising the vacuum to a reduced pressure atmosphere cannot be tolerated and damaged, the glass at the tip is removed by FIB etching to give a smooth surface without irregularities, and then the FIB deposit film on the pipette tip Make a hard, durable and smooth tip without irregularities. Using this FIB-modified pipette, the particles are vacuum-adsorbed and then lifted and moved out of the sample, and the inside of the pipette is placed in the atmosphere or under pressure to discard the particles.

引き伸ばしたピペット先端をFIBエッチングで除去して凹凸のない滑らか面を出した後に、該滑らかな面の上に、FIBデポ膜で試料よりも硬く、鋭角に尖った壁部先端を有する端部を作製する。このFIBデポ膜で補修したピペットを用いてパーティクルに尖った先端を突き刺した後、真空吸着させて後持ち上げ試料外に移動し、ピペット内を大気または加圧にしてパーティクルを捨て去る。   After removing the stretched pipette tip by FIB etching to give a smooth surface without unevenness, an end portion having a sharply sharp wall tip that is harder than the sample by the FIB deposition film is formed on the smooth surface. Make it. Using a pipette repaired with this FIB deposition film, the tip of the particle is pierced and then vacuum-adsorbed, then lifted and moved out of the sample, and the inside of the pipette is set to the atmosphere or pressurized to discard the particle.

先端を細くすることで真空の吸着力が低下するが、ガラスピペットの先端面をFIBで凹凸のないように加工することでパーティクルとの隙間を小さくし、弱い吸引力でもパーティクルを吸着することができる。   The suction force of the vacuum is reduced by making the tip thin, but by processing the tip surface of the glass pipette so that there is no irregularity with FIB, the gap between the particles can be reduced and the particles can be absorbed even with a weak suction force. it can.

パーティクルを吸着させて、そのまま持ち上げて試料外に持ち出すためパーティクル除去後の洗浄工程を必要としない。   Since the particles are adsorbed, lifted as they are, and taken out of the sample, a cleaning step after removing the particles is not necessary.

ピンセットで挟む場合よりも正確な位置合わせや、ピンセットで挟む工程を必要としないためスループットを向上することができる。またピペット先端さえ入れば良いので少々の凹凸があっても適用できる。   Throughput can be improved because there is no need for more accurate alignment and pinching with tweezers than with tweezers. Moreover, it is only necessary to insert the tip of the pipette, so it can be applied even if there is a slight unevenness.

試料外で大気または加圧することでピペットに吸着したパーティクルを捨て去ることができるので、ピンセットのようにパーティクルがついたままとれないということもない。もし残っていても真空吸引で真空度をチェックし、ピペット先端にパーティクルが残っているときにはピペットを交換する。   Since the particles adsorbed on the pipette can be discarded by applying air or pressurizing outside the sample, there is no possibility that particles will not remain attached like tweezers. If it remains, check the degree of vacuum by vacuum suction and replace the pipette if particles remain on the pipette tip.

パーティクルに溜まったチャージを取り除くことにより、パーティクルの試料への吸着力を弱くしピペットの真空吸着で除去しやすくすることができる。   By removing the charge accumulated in the particles, the adsorption force of the particles to the sample can be weakened and can be easily removed by vacuum adsorption of the pipette.

ガラス壁が薄くなる先端を丈夫なFIBデポ膜に置き換えることにより、より高い真空度まで吸引できるのでパーティクルの吸着力を高めることができる。   Replacing the thin end of the glass wall with a strong FIB deposition film can increase the vacuum of the particles because it can be sucked to a higher degree of vacuum.

FIBで作製した硬く鋭く尖った壁部先端を突き刺すことにより隙間を減らし、弱い吸引力でもパーティクルを吸着することができる。   By piercing the tip of a hard, sharp and sharp wall made with FIB, the gap can be reduced and particles can be adsorbed even with a weak suction force.

以下に本発明の実施例について図面を用いて詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings.

図1a−図1dは、本発明の特徴を最も良く表す先端を先細の円錐台状に尖らせたピペットをパーティクルに接するまで近づけピペット内を真空に引きパーティクルを吸着させて移動後捨て去る場合を説明する図である。   FIGS. 1a to 1d illustrate a case where a pipette whose tip best represents the characteristics of the present invention is sharpened into a tapered truncated cone is brought close to contact with the particle until the inside of the pipette is evacuated to adsorb the particle, and then discarded after being moved. It is a figure to do.

ガラスピペットを加熱して引き伸ばして100nmから5μmくらいの内径をもつ先端の細いピペットを用意する。パーティクルとの隙間をなくすためFIBでピペット先端を凸凹のない滑らかな端面になるように加工したものを用いる。この滑らかな断面は、例えばピペット軸の垂直方向から少ない電流量(数10pA以下)で絞ったビームを照射してエッチングすることにより得られる。   Prepare a thin pipette with an inner diameter of 100nm to 5μm by heating and stretching the glass pipette. To eliminate gaps between particles, use a pipette tip processed with FIB so that it has a smooth end face without irregularities. This smooth cross section can be obtained by, for example, etching by irradiating a beam focused with a small amount of current (several tens of pA or less) from the direction perpendicular to the pipette axis.

対物レンズ8を有する高倍率の光学顕微鏡、試料3を配置する高精度なステージ、引き伸ばしたピペット1を装着したマニュピュレータ4、及び真空排気系を有するパーティクル除去装置に、パーティクル検査装置で見つかった試料3、例えばCCDカメラのマイクロレンズを導入する。パーティクル検査装置でパーティクルの見つかった位置がパーティクル除去装置の視野中心にくるようにステージを移動し、パーティクルを光学顕微鏡で観察する。大きなパーティクルを除去するには強い吸着力が必要なので、パーティクルの大きさに応じてピペットの内径を選択する。   Samples found in particle inspection equipment in a high magnification optical microscope having an objective lens 8, a high precision stage on which the specimen 3 is placed, a manipulator 4 to which the stretched pipette 1 is attached, and a particle removal apparatus having a vacuum exhaust system. 3. For example, introduce a CCD camera micro lens. The stage is moved so that the position where the particle is found by the particle inspection device is at the center of the visual field of the particle removal device, and the particle is observed with an optical microscope. Since a strong adsorption force is required to remove large particles, the inner diameter of the pipette is selected according to the particle size.

光学顕微鏡の対物レンズ8の直下にあるパーティクル2に、光学顕微鏡で観察しながら先端を先細の円錐台状に尖らせたピペット1をマニュピュレータ4を使って、接するまで近づけ(図1a)、ピペット1内を真空に引きパーティクル2を吸着させたのち(図1b)、ピペット1を引き上げ試料からパーティクル2を引き離す。パーティクル2を吸着させたまま試料外でパーティクルを廃棄しても良い位置、例えば排気ダクトに移動し(図1c)、ピペット1内を大気または加圧にして吸着していたパーティクル2を捨て去る(図1d)。パーティクル2の吸引はピペットが壊れない程度の真空排気で行う。   Using a manipulator 4, bring the pipette 1 with its tip sharpened into a tapered truncated cone while observing with an optical microscope to the particle 2 just below the objective lens 8 of the optical microscope until it comes into contact (Fig. 1a). After vacuuming 1 and adsorbing particle 2 (Fig. 1b), pipette 1 is pulled up and particle 2 is pulled away from the sample. Move to a position where particles 2 can be discarded outside the sample while adsorbing particles 2, for example, to the exhaust duct (Fig. 1c), and discard the adsorbed particles 2 in the pipette 1 in the atmosphere or under pressure (Fig. 1c) 1d). The suction of particle 2 is performed by evacuating the pipette so that it does not break.

図2(a)、(b)は、アースした金属細線5をパーティクルに押し当ててパーティクルのチャージを取り除いてからパーティクルを真空吸着させる場合を説明する図である。   FIGS. 2A and 2B are diagrams for explaining a case in which particles are vacuum-adsorbed after the grounded metal wire 5 is pressed against the particles to remove the charge of the particles.

ピペットに金属細線5を含有し先端から金属部が突き出たものを用いて、光学顕微鏡で観察しながらマニュピュレータ4を使って、ピペット1を光学顕微鏡の対物レンズ8の直下にあるパーティクル2に接するまで近づける(図2(a))。アースした金属細線5をパーティクル2に押し当ててパーティクルに溜まったチャージを取り除いてから(図2(b))、上記同様の手順でパーティクル2を真空吸着させたのち、ピペット1を引き上げ試料からパーティクル2を引き離す。パーティクル2を吸着させたまま試料外でパーティクルを廃棄しても良い位置に移動し、ピペット1内を大気または加圧にして吸着していたパーティクル2を捨て去る。   Using a pipette containing a fine metal wire 5 with a metal part protruding from the tip, using a manipulator 4 while observing with an optical microscope, the pipette 1 is brought into contact with the particle 2 immediately below the objective lens 8 of the optical microscope. (Fig. 2 (a)). After pressing the grounded metal wire 5 against the particle 2 to remove the charge accumulated in the particle (Fig. 2 (b)), the particle 2 is vacuum-sucked in the same procedure as above, then the pipette 1 is pulled up and the particle is removed from the sample. Pull 2 apart. The particle 2 is moved to a position where the particle can be discarded outside the sample while the particle 2 is adsorbed, and the adsorbed particle 2 is discarded by making the inside of the pipette 1 atmospheric or pressurized.

図3(a)、(b)は、ピペット先端にFIBデポ膜で硬い丈夫な先端を作製し、より高い真空度で真空吸着させる場合を説明する図である。   FIGS. 3 (a) and 3 (b) are diagrams for explaining a case where a hard and durable tip is produced at the tip of the pipette with a FIB deposition film and vacuum-adsorbed at a higher degree of vacuum.

ピペット1の先端に、該先端をFIBエッチングで除去した後FIBデポ膜で更なる減圧雰囲気でも耐えられるような硬い丈夫な凹凸のない滑らかな先細の円錐台状の端部6を作製したものを用い、その先端を光学顕微鏡で観察しながらマニュピュレータ4を使って対物レンズ8直下にあるパーティクル2に接するまで近づける(図3(a))。パーティクル2を今までよりも高い真空度で真空吸着させたのち(図3(b))、上記と同様の手順でピペット1を引き上げ試料からパーティクル2を引き離す。パーティクル2を吸着させたまま試料外でパーティクルを廃棄しても良い位置に移動し、FIB修飾したピペット1内を大気または加圧にして吸着していたパーティクル2を捨て去る。   The pipette 1 has a tip end that is formed into a smooth, truncated cone-shaped end 6 that is hard, durable, and without unevenness that can be endured in a reduced pressure atmosphere with a FIB deposition film after the tip is removed by FIB etching. Use the manipulator 4 while observing the tip of the tip with an optical microscope until it comes into contact with the particles 2 immediately below the objective lens 8 (FIG. 3 (a)). After the particles 2 are vacuum-adsorbed at a higher degree of vacuum than before (FIG. 3 (b)), the pipette 1 is pulled up and the particles 2 are pulled away from the sample in the same procedure as described above. The particle 2 is moved to a position where the particle can be discarded outside the sample while the particle 2 is adsorbed, and the adsorbed particle 2 is discarded by making the inside of the pipette 1 modified with the FIB air or pressurized.

図4(a)、(b)は、ピペット先端にFIBデポ膜で硬い尖った壁部先端を有する端部7を作製しパーティクルに突き刺した後真空吸着させる場合を説明する図である。   FIGS. 4 (a) and 4 (b) are diagrams for explaining a case where an end portion 7 having a hard pointed wall tip is formed at the tip of a pipette and pierced with particles and then vacuum-adsorbed.

ピペット1先端にFIBデポ膜で硬い鋭く尖った壁部先端を有する端部7を作製したものを用い、光学顕微鏡で観察しながらマニュピュレータ4を使って対物レンズ8直下にあるパーティクル2に接するまで近づける(図4(a))。ピペットの尖った壁部先端を有する端部7をパーティクル2に突き刺して真空吸着させたのち(図4(b))、上記と同様の手順でピペット1を引き上げ試料からパーティクル2を引き離す。パーティクル2を吸着させたまま試料外でパーティクルを廃棄しても良い位置に移動し、尖った壁部先端を有する端部7が形成されたピペット1内を大気または加圧にしてパーティクル2を捨て去る。
パーティクルを捨て去った後真空吸引でピペット内の真空度をチェックし、この真空度がパーティクル除去未使用時のピペットよりも高いときは、ピペット先端にパーティクルが残っているのでピペットを交換する。
Using pipette 1 tip with end 7 with hard sharp pointed wall tip made of FIB deposition film, using manipulator 4 while touching particle 2 directly under objective lens 8 while observing with optical microscope Move closer (Fig. 4 (a)). After piercing the particle 2 with the end 7 having the tip of the wall with a sharp pipette and vacuum-adsorbing the particle 2 (FIG. 4 (b)), the pipette 1 is pulled up and the particle 2 is pulled away from the sample in the same procedure as described above. Move to a position where particles can be discarded outside the sample with particles 2 adsorbed, and discard the particles 2 by making the inside of the pipette 1 with the end 7 having a sharp wall tip formed into the atmosphere or pressure. .
After discarding the particles, the degree of vacuum in the pipette is checked by vacuum suction. If this degree of vacuum is higher than the pipette when particle removal is not used, the pipette is replaced because the particles remain at the tip of the pipette.

先細の円錐台状に尖らせたピペットをパーティクルに接するまで近づけピペット内を真空に引きパーティクルを吸着させて移動後捨て去る場合を説明する図である。It is a figure explaining the case where the pipette sharpened in the shape of a tapered truncated cone is brought close to contact with a particle, the inside of the pipette is evacuated, the particle is adsorbed, moved and discarded. 先細の円錐台状に尖らせたピペットをパーティクルに接するまで近づけピペット内を真空に引きパーティクルを吸着させて移動後捨て去る場合を説明する図である。It is a figure explaining the case where the pipette sharpened in the shape of a tapered truncated cone is brought close to contact with a particle, the inside of the pipette is evacuated, the particle is adsorbed, moved and discarded. 先細の円錐台状に尖らせたピペットをパーティクルに接するまで近づけピペット内を真空に引きパーティクルを吸着させて移動後捨て去る場合を説明する図である。It is a figure explaining the case where the pipette sharpened in the shape of a tapered truncated cone is brought close to contact with a particle, the inside of the pipette is evacuated, the particle is adsorbed, moved and discarded. 先細の円錐台状に尖らせたピペットをパーティクルに接するまで近づけピペット内を真空に引きパーティクルを吸着させて移動後捨て去る場合を説明する図である。It is a figure explaining the case where the pipette sharpened in the shape of a tapered truncated cone is brought close to contact with a particle, the inside of the pipette is evacuated, the particle is adsorbed, moved and discarded. アースした金属部をパーティクルを押し当ててパーティクルのチャージを取り除いてからパーティクルを真空吸着させる場合を説明する図である。It is a figure explaining the case where a particle is vacuum-sucked after pressing the particle to the metal part which earthed and removing the charge of a particle. ピペット先端にFIBデポ膜で硬い丈夫な先端を作製しより高い真空度で真空吸着させる場合を説明する図である。It is a figure explaining the case where a strong durable tip is produced with a FIB deposit membrane at the tip of a pipette, and it is made to vacuum-suck with a higher degree of vacuum. ピペット先端にFIBデポ膜で硬い尖った壁部先端を有する端部を作製しパーティクルに突き刺した後真空吸着させる場合を説明する図である。It is a figure explaining the case where the edge part which has the hard-pointed wall part tip with a FIB deposit film at the tip of a pipette is produced, and is vacuum-sucked after piercing particles.

符号の説明Explanation of symbols

1 ピペット
2 パーティクル
3 試料
4 マニュピュレータ
5 金属細線
6 FIBデポジションで形成した先細の円錐台状の丈夫な先端
7 FIBデポジションで形成した壁部を鋭角に尖らせた先端
8 対物レンズ
1 Pipette 2 Particle 3 Specimen 4 Manipulator 5 Metal fine wire 6 Tapered truncated cone-shaped strong tip formed by FIB deposition 7 Tip with sharp sharpened wall formed by FIB deposition 8 Objective lens

Claims (7)

半導体集積回路などの電子製品の製造の各種工程で発生するパーティクルの除去方法であって、ガラスピペットの端部を加熱して引き伸ばすことにより、先細の円錐台状にした後、前記ガラスピペットの先端端面をFIBにて加工して、凹凸の少ない滑らかな端面にした後、前記ピペットでパーティクルを真空吸着させて除去することを特徴とするパーティクル除去方法。   A method for removing particles generated in various steps of manufacturing an electronic product such as a semiconductor integrated circuit, and heating and stretching the end of a glass pipette to form a tapered truncated cone, and then the tip of the glass pipette A method for removing particles, comprising processing an end face with FIB to form a smooth end face with less unevenness, and then removing the particles by vacuum suction using the pipette. 前記除去しようとするパーティクルの大きさに合わせて前記ピペットの先端の内径を変えることを特徴とする請求項1記載のパーティクル除去方法。   2. The particle removal method according to claim 1, wherein an inner diameter of the tip of the pipette is changed in accordance with a size of the particle to be removed. 前記ピペットに、アースされた金属細線を含有させ、前記ピペットの先端から突き出た前記金属細線の先端をパーティクルに押し当ててパーティクルのチャージを取り除いてからパーティクルを真空吸着させて除去することを特徴とする請求項1又は2記載のパーティクル除去方法。   The pipette contains a grounded fine metal wire, the tip of the fine metal wire protruding from the tip of the pipette is pressed against the particle to remove the charge of the particle, and then the particle is vacuum adsorbed and removed. The particle removal method according to claim 1 or 2. 前記FIBにて加工してできた凹凸のない滑らかな端面に、FIBデポ膜で、凹凸のない滑らかな端面を有する先端部を作製することを特徴とする請求項1又は2記載のパーティクル除去方法。   3. The particle removal method according to claim 1 or 2, wherein a tip end portion having a smooth end face without unevenness is made of an FIB deposition film on a smooth end face without unevenness made by processing with the FIB. . 前記FIBにて加工してできた凹凸の少ない滑らかな端面に、FIBデポ膜で壁部が鋭角に尖った先端部を作製し、パーティクルに突き刺した後真空吸着させて除去することを特徴とする請求項1又は2記載のパーティクル除去方法。   On the smooth end face with few irregularities made by the FIB, a FIB deposit film is used to produce a tip with a sharply sharp wall, and after piercing the particles, it is removed by vacuum adsorption. The particle removal method according to claim 1 or 2. 前記ピペットに吸着させたパーティクルを試料外でピペット内を大気にして捨て去ることを特徴とする請求項1から4のいずれか1項に記載のパーティクル除去方法。   5. The particle removal method according to claim 1, wherein the particles adsorbed on the pipette are discarded outside the sample with the inside of the pipette in the atmosphere. 前記ピペットに吸着させたパーティクルを試料外でピペット内を加圧して捨て去ることを特徴とする請求項1から5のいずれか1項に記載のパーティクル除去方法。   6. The particle removal method according to claim 1, wherein the particles adsorbed by the pipette are pressurized and discarded outside the sample.
JP2007012619A 2007-01-23 2007-01-23 Particle removal method Expired - Fee Related JP4739244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007012619A JP4739244B2 (en) 2007-01-23 2007-01-23 Particle removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007012619A JP4739244B2 (en) 2007-01-23 2007-01-23 Particle removal method

Publications (2)

Publication Number Publication Date
JP2008181948A JP2008181948A (en) 2008-08-07
JP4739244B2 true JP4739244B2 (en) 2011-08-03

Family

ID=39725638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007012619A Expired - Fee Related JP4739244B2 (en) 2007-01-23 2007-01-23 Particle removal method

Country Status (1)

Country Link
JP (1) JP4739244B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW285721B (en) * 1994-12-27 1996-09-11 Siemens Ag
JP4260970B2 (en) * 1999-03-24 2009-04-30 島田理化工業株式会社 Semiconductor wafer cleaning equipment
JP4614569B2 (en) * 2001-04-06 2011-01-19 一雄 岡野 Suction type ionizer
JP3637877B2 (en) * 2001-06-11 2005-04-13 株式会社デンソー Foreign matter removal method and foreign matter removal nozzle
JP2005081503A (en) * 2003-09-09 2005-03-31 Japan Science & Technology Agency Manufacturing method for micro space structure bio-nano tool, and its micro space structure bio-nano tool
JP2005084582A (en) * 2003-09-11 2005-03-31 Sii Nanotechnology Inc Method for removing particle from photomask

Also Published As

Publication number Publication date
JP2008181948A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
JP4628361B2 (en) Method for preparing a sample for electron microscopy, sample support and transport holder used therefor
US7525087B2 (en) Method for creating observational sample
JP5711204B2 (en) Methods and apparatus for sample extraction and handling
US8258473B2 (en) Method and apparatus for rapid preparation of multiple specimens for transmission electron microscopy
JP4619695B2 (en) Method and apparatus for manipulating a microscopic sample
US20080185286A1 (en) Method for thinning a sample and sample carrier for performing said method
US20060017016A1 (en) Method for the removal of a microscopic sample from a substrate
JP6396038B2 (en) Multiple sample attachment to nanomanipulators for high-throughput sample preparation
JP2004087174A (en) Ion beam device, and working method of the same
JP4229837B2 (en) Electrostatic manipulating device
JP2009216534A (en) Thin-film sample preparation method
JP4739244B2 (en) Particle removal method
JP2007194096A (en) Charged particle beam device and pick-up method of test piece using charged particle beam device
JP2010181339A (en) Micromanipulator apparatus
US7394075B1 (en) Preparation of integrated circuit device samples for observation and analysis
US10416050B2 (en) Liquid sample drying apparatus, dried sample test piece and preparation method thereof
JP4644470B2 (en) Ion beam processing apparatus and sample preparation method
TWI516755B (en) Liquid sample drying device, dried sample specimen and the preparation method for the dried sample specimen
JP2009133833A (en) Method of preparing transmission electron microscope sample and sample piece for transmission electron microscope
JPS62163248A (en) Pattern inspection device
CN104766811B (en) A kind of store method of scanning electron microscope example
JP2004061204A (en) Method for preparing sample for observation
KR101009939B1 (en) Method of reducing carbon contamination generated in a electron energy loss spectroscopy
JP2008008850A (en) Micromanipulator
JP6658354B2 (en) Method for preparing sample surface, method for analyzing sample surface, probe for electric field assisted oxidation, and scanning probe microscope equipped with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091006

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110427

R150 Certificate of patent or registration of utility model

Ref document number: 4739244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees