JP4738789B2 - Ozone water generator - Google Patents

Ozone water generator Download PDF

Info

Publication number
JP4738789B2
JP4738789B2 JP2004312368A JP2004312368A JP4738789B2 JP 4738789 B2 JP4738789 B2 JP 4738789B2 JP 2004312368 A JP2004312368 A JP 2004312368A JP 2004312368 A JP2004312368 A JP 2004312368A JP 4738789 B2 JP4738789 B2 JP 4738789B2
Authority
JP
Japan
Prior art keywords
water
anode
ozone
ozone water
partition wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004312368A
Other languages
Japanese (ja)
Other versions
JP2006124750A (en
Inventor
政彦 石川
一樹 在原
昭 藤嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Japan Railway Co
Original Assignee
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Japan Railway Co filed Critical Central Japan Railway Co
Priority to JP2004312368A priority Critical patent/JP4738789B2/en
Publication of JP2006124750A publication Critical patent/JP2006124750A/en
Application granted granted Critical
Publication of JP4738789B2 publication Critical patent/JP4738789B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、固体高分子膜を陰極と陽極とで挟んでなる電解セルを備え、水を電気分解してオゾン水を生成するオゾン水生成装置に関する。   The present invention relates to an ozone water generating apparatus that includes an electrolytic cell in which a solid polymer film is sandwiched between a cathode and an anode, and electrolyzes water to generate ozone water.

オゾンは酸化力の非常に強い物質であり、その酸化力に由来する殺菌・脱色・脱臭作用が様々な分野で応用されている。オゾンを利用した殺菌方法,脱色方法等は、オゾン自身が容易に自然分解して酸素となるため、二次汚染の心配のない処理方法といえる。水に溶け込んだオゾンの酸化力は更に向上し、一般に殺菌等に用いられている。これらの目的のために、オゾンガス或いはオゾン水のより簡便かつ高効率な生成手法の開発が求められている。   Ozone is a substance having a very strong oxidizing power, and sterilization, decolorization, and deodorizing effects derived from the oxidizing power are applied in various fields. The sterilization method, decolorization method, etc. using ozone can be said to be a treatment method that does not cause the secondary contamination because ozone itself is naturally decomposed into oxygen. The oxidizing power of ozone dissolved in water is further improved and is generally used for sterilization and the like. For these purposes, development of a simpler and more efficient generation method than ozone gas or ozone water is required.

気体状のオゾンを生成するための手法としては、紫外線ランプ法、無声放電法及び電気分解(電解)法が知られている(例えば、非特許文献1参照)。紫外線ランプ法は発生するオゾンの量が少なく、室内・車内の消臭等、少量の悪臭源を除くために用いられることが多い。無声放電法はオゾンガスを生成するための一般的な手法であるが、例えば原料として空気を用いた場合には同時に窒素酸化物も発生してしまう。これを防ぐためには、原料として酸素ガスを用いるか、空気中の酸素のみを濃縮するような付属装置を備える必要がある。また、金属電極の消耗による金属不純物のオゾンガス中への混入も問題となる。更に、水の電気分解によってもオゾンガスは得られる。この電解法によれば、水分を多少含むものの高純度かつ高濃度のオゾンガスを簡単に得ることができ、次のようにオゾン水を直接得ることもできる。   As a method for generating gaseous ozone, an ultraviolet lamp method, a silent discharge method, and an electrolysis (electrolysis) method are known (for example, see Non-Patent Document 1). The ultraviolet lamp method generates a small amount of ozone and is often used to remove a small amount of bad odor sources such as deodorizing indoors and cars. The silent discharge method is a general method for generating ozone gas. For example, when air is used as a raw material, nitrogen oxides are also generated at the same time. In order to prevent this, it is necessary to use an accessory device that uses oxygen gas as a raw material or concentrates only oxygen in the air. In addition, mixing of metal impurities into the ozone gas due to consumption of the metal electrode is also a problem. Furthermore, ozone gas can also be obtained by electrolysis of water. According to this electrolysis method, high purity and high concentration ozone gas containing some water can be easily obtained, and ozone water can also be obtained directly as follows.

オゾン水を得るための手法としては、前記手法により得られたオゾンガスを水中に溶解させる手法や、前記電解法により直接生成する手法が知られている。無声放電法或いは電解法で発生させたオゾンガスを気泡塔やエジェクタに通じて水に溶解させることでオゾン水を得ることができるが、これは装置の大型化・複雑化の原因となる。   As a technique for obtaining ozone water, a technique for dissolving the ozone gas obtained by the above technique in water and a technique for directly generating the ozone water by the electrolytic method are known. Ozone water can be obtained by dissolving ozone gas generated by a silent discharge method or an electrolytic method in water through a bubble column or an ejector, but this causes an increase in size and complexity of the apparatus.

これに対し、固体高分子膜を多孔質状或いは網状の陽極と陰極とで挟むことで電解セルを構成し、少なくとも前記陽極の表面に通水可能な水路を設けたオゾン水生成装置が提案されている。このような装置では、水路に水道水や純水を通水してそれを電気分解することでオゾン水を直接生成することができ、装置の小型化も容易となる(例えば、非特許文献2、特許文献1,2,3参照)。
杉光 英俊 著「オゾンの基礎と応用」 光琳、1996年2月 「neoハイジ電解オゾン水システム」(カタログ),株式会社ブイエムシー,2003年3月 特開2000−234191号公報 特許第3297227号公報 特開2002−69679号公報
On the other hand, an ozone water generating device is proposed in which an electrolytic cell is configured by sandwiching a solid polymer membrane between a porous or net-like anode and a cathode, and at least a water channel capable of passing water is provided on the surface of the anode. ing. In such an apparatus, tap water or pure water can be passed through the water channel and electrolyzed to generate ozone water directly, and the apparatus can be easily downsized (for example, Non-Patent Document 2). Patent Documents 1, 2, and 3).
Hidetoshi Sugimitsu "Basics and Applications of Ozone" Korin, February 1996 “Neo Heidi Electrolytic Ozone Water System” (catalog), BMC Corporation, March 2003 JP 2000-234191 A Japanese Patent No. 3297227 JP 2002-69679 A

ところが、従来のオゾン水生成装置では、生成されたオゾンがガスとして陽極の表面に滞留する。そして、このオゾンガスが水に溶解せずにガスとして水と一緒に排出される場合、気泡塔やエジェクタに通じて再び水に溶解させる工程が必要となる。   However, in the conventional ozone water generator, the generated ozone stays on the surface of the anode as a gas. And when this ozone gas is discharged | emitted with water as gas, without melt | dissolving in water, the process of making it melt | dissolve in water again through a bubble tower or an ejector is needed.

陽極表面に生成されたオゾンを良好に水に溶解させるには、生成されたオゾンを気泡となる前に陽極表面から水流によって除去する方法(気泡掃引)と、水圧を上げてオゾンの溶解度を上昇させる方法とが考えられるが、従来はそのいずれも充分に達成できなかった。例えば、非特許文献2記載の装置では、電解セルの陽極と接する水路の断面積が3.6mm×3.6mmと太いため、気泡掃引に有効な乱流は殆ど発生せず、水圧も水路全体を通じてほぼ1気圧であった。   In order to dissolve ozone generated on the anode surface well in water, the generated ozone is removed from the anode surface by a water flow (bubble sweep) before forming bubbles, and the solubility of ozone is increased by increasing the water pressure. However, none of them have been achieved sufficiently in the past. For example, in the device described in Non-Patent Document 2, since the cross-sectional area of the water channel in contact with the anode of the electrolysis cell is as thick as 3.6 mm × 3.6 mm, turbulent flow effective for bubble sweeping hardly occurs, and the water pressure is also the entire water channel It was almost 1 atm.

そこで、本発明は、陽極表面のオゾンを良好に除去すると共に、そのオゾンを良好に水に溶解させることによって、高濃度のオゾン水を効率よく生成可能なオゾン水生成装置を提供することを目的としてなされた。   Accordingly, an object of the present invention is to provide an ozone water generator capable of efficiently generating high-concentration ozone water by removing ozone on the anode surface and dissolving the ozone in water. As made.

記目的を達するためになされた本発明は、固体高分子膜を平板状の陽極と陰極とで挟んでなる電解セルと、前記陽極表面に通水可能に設けられた水路と、を備えたオゾン水生成装置において、前記陽極の表面全体に亘って渦巻状または櫛歯同士が互い違いになるように組み合わされた櫛歯状の隔壁が配設され、前記水路の前記陽極と接する部分が、前記隔壁の前記陽極とは反対面に平面状の壁面を密着させることによって前記隔壁で区画されて形成され、断面積が円管に換算して内径2mm以下で、前記通水によって乱流を発生可能な小径部とされたことを特徴としているThe present invention has been made to reach a pre-Symbol object, comprising an electrolytic cell the polymer film formed by interposing between plate-shaped anode and a cathode, and a water passage provided so as to be passed through to the anode surface in the ozone water generation apparatus, wherein is disposed the comb-shaped barrier ribs that are combined as a spiral or comb teeth with each other over the entire surface of the anode is staggered, said anode in contact with portions of the waterway, the A partition wall is formed by adhering a flat wall to the opposite surface of the partition to the anode, and the cross-sectional area is converted into a circular tube with an inner diameter of 2 mm or less, and turbulence can be generated by the water flow. is characterized in that a has a smaller diameter portion.

本発明では、固体高分子膜を陽極と陰極とで挟んでなる電解セルの陽極表面に通水可能に設けられた水路の、陽極と接する部分が、通水によって乱流を発生可能な小径部となっている。このため、陽極の表面に生成されたオゾンを気泡となる前に乱流によって良好に除去することができる。また、小径部に通水して乱流を発生させる場合、その小径部における水圧(圧力損失)も高くなり、オゾンの溶解度も上昇する。従って、本発明では、陽極で生成されたオゾンを、乱流と水圧との相乗効果によって良好に水に溶解させて、オゾン水を得ることができる。このため、本発明で、高濃度のオゾン水を効率よく生成することができる。 In the present invention, the portion of the water channel that is provided on the anode surface of the electrolysis cell that sandwiches the solid polymer membrane between the anode and the cathode so as to be able to pass water is a small-diameter portion that can generate turbulent flow by passing water. It has become. For this reason, the ozone generated on the surface of the anode can be satisfactorily removed by turbulent flow before becoming bubbles. Moreover, when water is passed through the small diameter portion to generate turbulent flow, the water pressure (pressure loss) in the small diameter portion is also increased, and the solubility of ozone is increased. Therefore, in the present invention, ozone water generated by the anode can be dissolved in water satisfactorily by the synergistic effect of turbulent flow and water pressure to obtain ozone water. Therefore, in the present invention, it is possible to efficiently generate a high concentration of ozone water.

また、前記小径部の断面積が、円管に換算して内径2mm以下であるので、0.5l/min程度の水流量でも乱流を発生させることができ、非常に効率よくオゾン水を生成することができる。 Moreover, production cross section of the small-diameter portion, since the inner diameter 2mm or less in terms of a circular tube, it is possible to generate a turbulent flow in the water flow rate of about 0.5 l / min, very efficiently ozone water can do.

また、前記水路、平板状の前記陽極の表面全体に亘って渦巻状または櫛歯同士が互い違いになるように組み合わされた櫛歯状の隔壁が配設され、更にその隔壁の前記陽極とは反対面に平面状の壁面を密着させることにより、前記小径部が形成されているので、次のような更なる効果が生じる。 Further, the water channel is provided with a comb-like partition that is spirally or combined so that the comb teeth are staggered over the entire surface of the flat plate-like anode, and further, the anode of the partition is by adhering the planar wall to the opposite side, since the small diameter portion is formed, additional effects such as the following may occur.

この場合、平板状の電解セルが使用できるので構成が簡略化し、しかも、隔壁を陽極の表面に配設することによって小径部を形成しているので、断面積の小さい小径部も容易に形成することができる。従って、この場合、製造が一層容易になると共に、装置を一層小型化することができる。   In this case, since a plate-shaped electrolytic cell can be used, the configuration is simplified, and the small diameter portion is formed by disposing the partition wall on the surface of the anode, so that the small diameter portion having a small cross-sectional area is also easily formed. be able to. Therefore, in this case, the manufacturing becomes easier and the apparatus can be further downsized.

そして、この場合、前記隔壁が渦巻状に配設されると、次のような更なる効果が生じる。この場合、小径部も隔壁と同様、渦巻状に形成される。渦巻は角がなく滑らかなため、水の流れも円滑になり、余分な圧力損失が生じない。従って、この場合、オゾン水を一層効率よく生成することができる。   In this case, when the partition walls are arranged in a spiral shape, the following further effects are produced. In this case, the small diameter portion is also formed in a spiral shape like the partition wall. Since the vortex has no corners and is smooth, the water flow is smooth and no extra pressure loss occurs. Therefore, in this case, ozone water can be generated more efficiently.

また、前述のように隔壁を利用する構成において、前記隔壁がチタンによって構成された場合、次のような更なる効果が生じる。チタンは表面に二酸化チタン皮膜が形成されるため耐蝕性に優れている。従って、この場合、オゾン水生成装置の耐久性を一層向上させることができる。   Further, in the configuration using partition walls as described above, when the partition walls are made of titanium, the following further effects are produced. Titanium has excellent corrosion resistance because a titanium dioxide film is formed on the surface. Therefore, in this case, the durability of the ozone water generator can be further improved.

また、前述のように隔壁を利用する構成において、前記隔壁がシリコーンゴムによって構成された場合、次のような更なる効果が生じる。シリコーンゴムは種々の形状に容易に成形することができる。従って、この場合、種々の形状の小径部を容易に形成することができる。   Moreover, in the structure using a partition as mentioned above, when the said partition is comprised with silicone rubber, the following further effects will arise. Silicone rubber can be easily formed into various shapes. Accordingly, in this case, small-diameter portions having various shapes can be easily formed.

また、前述のように隔壁を利用する構成において、前記隔壁が前記壁面と一体成形された場合、次のような更なる効果が生じる。隔壁が壁面と一体成形されている場合、隔壁の機械的強度が向上する。従って、この場合、オゾン水生成装置の耐久性を一層向上させることができる。   Further, in the configuration using partition walls as described above, when the partition walls are integrally formed with the wall surface, the following further effects are produced. When the partition wall is integrally formed with the wall surface, the mechanical strength of the partition wall is improved. Therefore, in this case, the durability of the ozone water generator can be further improved.

次に、本発明の実施の形態を図面と共に説明する。図1(A)は、本発明が適用されたオゾン水生成装置1の構成を表す平面図で、図1(B)はそのA−A線断面図である。図1(A),(B)に示すように、本実施の形態のオゾン水生成装置1は、平面視略正方形の平板状の固体高分子膜2を、円板状の陽極3と同じく円板状の陰極4とで挟んでなる電解セル5を備えている。   Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 (A) is a plan view showing a configuration of an ozone water generating apparatus 1 to which the present invention is applied, and FIG. 1 (B) is a cross-sectional view taken along the line AA. As shown in FIGS. 1 (A) and 1 (B), the ozone water generating apparatus 1 according to the present embodiment includes a flat solid polymer film 2 having a substantially square shape in plan view, like a disk-like anode 3. An electrolysis cell 5 sandwiched between plate-like cathodes 4 is provided.

陽極3の表面には、渦巻状に巻回された針金7が配設され、陽極3及び針金7の外周には、陽極3の外周に嵌合する円形穴を有するゴム製のスペーサ8が嵌合されている。スペーサ8及び針金7の表面には、透明樹脂からなる外枠9の平面状の壁面9aが押し付けられ、陽極3,針金7,スペーサ8,壁面9aで囲まれた空間に、陽極側の渦巻状水路10が形成される。   A spirally wound wire 7 is disposed on the surface of the anode 3, and a rubber spacer 8 having a circular hole fitted to the outer periphery of the anode 3 is fitted to the outer periphery of the anode 3 and the wire 7. Are combined. A flat wall surface 9a of an outer frame 9 made of a transparent resin is pressed against the surfaces of the spacer 8 and the wire 7, and a spiral shape on the anode side is placed in a space surrounded by the anode 3, the wire 7, the spacer 8, and the wall surface 9a. A water channel 10 is formed.

渦巻状水路10は、針金7の形状に沿って渦巻状に構成され、外枠9の、その渦巻状水路10の外周側端部と対向する位置には、渦巻状水路10に水を供給する供給口9bが形成されている。また、外枠9の、渦巻状水路10の中心側端部と対向する位置には、渦巻状水路10から水(後述のようにオゾン水)を排出する排出口9cが形成されている。   The spiral water channel 10 is formed in a spiral shape along the shape of the wire 7, and water is supplied to the spiral water channel 10 at a position of the outer frame 9 facing the outer peripheral side end of the spiral water channel 10. A supply port 9b is formed. A discharge port 9 c for discharging water (ozone water as will be described later) from the spiral water channel 10 is formed at a position of the outer frame 9 facing the center side end of the spiral water channel 10.

一方、陰極4の外周には、陰極4の外周に嵌合する円形穴を有するゴム製のスペーサ11が配設され、陰極4の表面には、透明樹脂からなる網目状の円板状の押え板13が配設されている。更に、スペーサ11の表面には、押え板13の外周に嵌合する円形穴15aを有し、押え板13よりも厚い外形直方体状の外枠15が配設され、更にその表面に、略直方体状の外枠17が配設されている。これによって、陰極4の表面には、陰極4及び押え板13と、外枠15の円形穴15aと、外枠17とで囲まれた陰極室19が形成されている。   On the other hand, a rubber spacer 11 having a circular hole fitted to the outer periphery of the cathode 4 is disposed on the outer periphery of the cathode 4, and a mesh-like disc-shaped presser made of a transparent resin is provided on the surface of the cathode 4. A plate 13 is provided. Further, the outer surface 15 of a rectangular parallelepiped shape having a circular hole 15a fitted to the outer periphery of the presser plate 13 and thicker than the presser plate 13 is disposed on the surface of the spacer 11, and further, a substantially rectangular parallelepiped is provided on the surface thereof. A shaped outer frame 17 is provided. Thus, a cathode chamber 19 surrounded by the cathode 4 and the holding plate 13, the circular hole 15 a of the outer frame 15, and the outer frame 17 is formed on the surface of the cathode 4.

また、外枠17には、この陰極室19にカソード液を供給するための供給口17aと、そのカソード液を排出するための排出口17bと、押え板13を押さえるためのリブ17cとが一体成形されている。そして、このオゾン水生成装置1は、外枠9,スペーサ8,固体高分子膜2,スペーサ11,外枠15,及び外枠17を、図示しないビスで図1(B)の上下方向に締め付けることによって構成されている。この締め付けによって、前述の渦巻状水路10及び陰極室19からの水(オゾン水またはカソード水を含む)の漏出が防止される。   The outer frame 17 is integrally provided with a supply port 17a for supplying the catholyte to the cathode chamber 19, a discharge port 17b for discharging the catholyte, and a rib 17c for pressing the presser plate 13. Molded. The ozone water generator 1 fastens the outer frame 9, the spacer 8, the solid polymer film 2, the spacer 11, the outer frame 15, and the outer frame 17 in the vertical direction of FIG. Is made up of. By this tightening, leakage of water (including ozone water or cathode water) from the spiral water channel 10 and the cathode chamber 19 is prevented.

ここで、渦巻状水路10に水道水等の水を通水しながら陽極3と陰極4との間に直流電流を通電すると、水が電気分解され、陽極3の表面では次のような反応が生じる。なお、次に示す(1c)〜(3c)は酸化反応であり、(4c),(5c)は溶解平衡である。   Here, when a direct current is passed between the anode 3 and the cathode 4 while passing water such as tap water through the spiral water channel 10, the water is electrolyzed, and the following reaction occurs on the surface of the anode 3. Arise. The following (1c) to (3c) are oxidation reactions, and (4c) and (5c) are dissolution equilibrium.

Figure 0004738789
Figure 0004738789

オゾン生成(1c)と酸素生成(2c)とは共に水の酸化(電気分解)による競争反応である。(2c)によって生成した溶存酸素02(aq) は、更に、溶解平衡(5c)の右側へのシフトによって気泡02(g)となるか、或いは更に酸化されて(3c)、溶存オゾン03(aq) を生成する。また、(1c)または(3c)によって生成された溶存オゾン03(aq) の一部は、溶解平衡(4c)の右側へのシフトによって気泡となる。 Both ozone generation (1c) and oxygen generation (2c) are competitive reactions due to water oxidation (electrolysis). The dissolved oxygen 0 2 (aq) generated by (2c) is further converted into bubbles 0 2 (g) by the shift of the dissolution equilibrium (5c) to the right side or further oxidized (3c), and dissolved ozone 0 3 (aq) is generated. Further, a part of the dissolved ozone 0 3 (aq) generated by (1c) or (3c) becomes bubbles by shifting the dissolution equilibrium (4c) to the right side.

水の酸化反応である(1c),(2c)の速度は、電位によって決まるため殆ど変える余地がないが、(3c)は溶存酸素02(aq) の濃度によって変わる。従って、高濃度のオゾン水を効率よく生成するためには、次のような手法によって溶解平衡(4c),(5c)を溶解側(左側)へシフトさせることが考えられる。 Although the rates of (1c) and (2c), which are water oxidation reactions, are determined by the potential, there is little room for change, but (3c) varies depending on the concentration of dissolved oxygen 0 2 (aq). Therefore, in order to efficiently generate high-concentration ozone water, it is conceivable to shift the dissolution equilibrium (4c) and (5c) to the dissolution side (left side) by the following method.

そのための手法の1つは、水圧を上げることによって気体の溶解度を高める手法(平衡論的手法)で、もう1つは、陽極3の表面に生成された溶存酸素02(aq) 及び溶存オゾン03(aq) を乱流によって速やかに除去し、局所的な濃度増加による気泡の発生を防ぐ手法(速度論的手法)である。 One method is to increase the gas solubility by increasing the water pressure (equilibrium method), and the other is the dissolved oxygen O 2 (aq) generated on the surface of the anode 3 and dissolved ozone. This is a method (kinetic method) that removes 0 3 (aq) quickly by turbulent flow and prevents the generation of bubbles due to local concentration increase.

続いて、これらの手法による効果について、次のように計算式に基づいて検証した。先ず、長さL(m)、内径d(m)の円管に、水流量v(l/min)で水を流したとき、円管の入口と出口との差圧(圧力損失)ΔPは、下記の式(1m)〜(3m)によって得られる。   Subsequently, the effects of these methods were verified based on the calculation formula as follows. First, when water is flowed through a circular pipe having a length L (m) and an inner diameter d (m) at a water flow rate v (l / min), a differential pressure (pressure loss) ΔP between the inlet and outlet of the circular pipe is The following formulas (1m) to (3m) are obtained.

Figure 0004738789
Figure 0004738789

なお、前記(1m)〜(3m)において、fは摩擦係数、ρは水の密度(=1000kg/m3 )、uは流速(=4v/πd2 )、μは水の粘度(=0.00089Pa・s)、である。この(1m)〜(3m)に基づき、円管の長さLを0.25mとして、種々の内径d(m)の円管に通水した場合の、圧力損失ΔPと水流量vとの関係を計算した。結果を図2に示す。なお、図2の凡例は、円管の内径d(m)を表している。 In the above (1 m) to (3 m), f is a coefficient of friction, ρ is a density of water (= 1000 kg / m 3 ), u is a flow velocity (= 4 v / πd 2 ), and μ is a viscosity of water (= 0.0. 00089 Pa · s). Based on these (1 m) to (3 m), the relationship between the pressure loss ΔP and the water flow rate v when the length L of the circular pipe is 0.25 m and water is passed through the circular pipes having various inner diameters d (m). Was calculated. The results are shown in FIG. The legend in FIG. 2 represents the inner diameter d (m) of the circular tube.

図2に示すように、円管の内径dが0.002m(=2mm)以下となると、圧力損失ΔPが急激に増加する。従って、オゾン水生成装置1における渦巻状水路10の断面積を円管に換算して内径2mm以下とした場合、渦巻状水路10内の水圧を良好に高めることができ、前記平衡論的手法によって高濃度のオゾン水を効率よく生成することができる。   As shown in FIG. 2, when the inner diameter d of the circular tube is 0.002 m (= 2 mm) or less, the pressure loss ΔP increases rapidly. Therefore, when the cross-sectional area of the spiral water channel 10 in the ozone water generating apparatus 1 is converted into a circular tube and the inner diameter is 2 mm or less, the water pressure in the spiral water channel 10 can be increased satisfactorily. High concentration ozone water can be efficiently generated.

次に、陽極3の表面に生成された溶存酸素02(aq) 及び溶存オゾン03(aq) をバルクの水中に移動させるためには、水に乱流を発生させるのが有効である。乱流は、前記レイノルズ数Reが4000以上の場合に生じるが、前述のようにd=2mmとすれば、v=0.5(l/min)であってもRe≒6000と充分な乱流が発生していることが計算で明らかになった。これに対して、従来の装置のようにd=4mm程度であると、v=0.5(l/min)の場合はRe≒3000(<4000)となり乱流は発生せず、溶存酸素02(aq) 及び溶存オゾン03(aq) を陽極3の表面から良好に除去することができない。 Next, in order to move the dissolved oxygen 0 2 (aq) and dissolved ozone 0 3 (aq) generated on the surface of the anode 3 into bulk water, it is effective to generate turbulence in the water. Turbulence occurs when the Reynolds number Re is 4000 or more. However, if d = 2 mm as described above, even if v = 0.5 (l / min), sufficient turbulence with Re≈6000. The calculation revealed that this occurred. On the other hand, when d = about 4 mm as in the conventional apparatus, when v = 0.5 (l / min), Re≈3000 (<4000), and no turbulent flow is generated. 2 (aq) and dissolved ozone 0 3 (aq) cannot be removed well from the surface of the anode 3.

また、物質移動を表すシャーウッド数Shは次の式(4m)によって得られる。そこで、前記と同様の条件で、種々の内径d(m)の円管に通水した場合のシャーウッド数Shと水流量vとの関係を計算し、結果を図3に示した。   The Sherwood number Sh representing mass transfer is obtained by the following equation (4m). Therefore, the relationship between the Sherwood number Sh and the water flow rate v when water was passed through circular pipes with various inner diameters d (m) under the same conditions as described above was calculated, and the results are shown in FIG.

Figure 0004738789
Figure 0004738789

なお、前記(4m)において、Sc=μ/Dρ(Dは水中拡散係数)であり、水の場合はSc≒890である。図3に示すように、前記条件では3l/minに対してShが91554となり、空気中の物質移動並みに速い物質移動が生じている。従って、この場合、陽極3の表面に生成された溶存酸素02(aq) 及び溶存オゾン03(aq) を速やかに除去できることが分かる。 In the above (4 m), Sc = μ / Dρ (D is a diffusion coefficient in water), and in the case of water, Sc≈890. As shown in FIG. 3, Sh is 91554 with respect to 3 l / min under the above conditions, and mass transfer is occurring as fast as mass transfer in air. Therefore, in this case, it can be seen that dissolved oxygen 0 2 (aq) and dissolved ozone 0 3 (aq) generated on the surface of the anode 3 can be quickly removed.

このため、本実施の形態のオゾン水生成装置1では、針金7を適宜の間隔で渦巻状に巻回して、渦巻状水路10の断面積を円管に換算して内径2mm以下とすることにより、高濃度のオゾン水を効率よく生成することができる。   For this reason, in the ozone water generating apparatus 1 of the present embodiment, the wire 7 is wound in a spiral shape at an appropriate interval, and the cross-sectional area of the spiral water channel 10 is converted into a circular tube so that the inner diameter is 2 mm or less. High-concentration ozone water can be generated efficiently.

続いて、オゾン水生成装置1を以下のように実際に作成し、その性能評価を行った。先ず、固体高分子膜2としては、デュポン製ナフィオン324(ナフィオン117でもよい)を使用した。陽極3及び陰極4としては、白金金網(ニラコ製,0.08mm,80メッシュ)を使用し、直径3cmの円板状電極とした。針金7としては直径1mmのチタン線を使用し、間隔1〜3mmで渦巻状に巻回することで渦巻状水路10を形成した。更に、外枠9,15,17はアクリル樹脂にて成形した。   Then, the ozone water production | generation apparatus 1 was actually created as follows, and the performance evaluation was performed. First, as the solid polymer film 2, Nafion 324 (Nafion 117 may be used) manufactured by DuPont was used. As the anode 3 and the cathode 4, a platinum wire mesh (manufactured by Niraco, 0.08 mm, 80 mesh) was used to form a disc-shaped electrode having a diameter of 3 cm. As the wire 7, a titanium wire having a diameter of 1 mm was used, and the spiral water channel 10 was formed by winding it in a spiral shape with an interval of 1 to 3 mm. Further, the outer frames 9, 15, and 17 were formed of acrylic resin.

供給口9bを水道に直結し(蒸留水を送液ポンプにて連続的に送り込んでもよい)、陽極3と陰極4との間に5Aで直流電流を通電しながら電解実験を行った。なお、電源には、可変直流定電圧・定直流電源(菊水電子工業製PAD110−5L)を用い、定電流条件にて通電した。また、この電解実験では、カソード液として0.1MのNaCl水溶液をクエン酸添加によりpH約4に調整したものをタンク(バケツでもよい)に入れて使用し、供給口17a及び排出口17bを介して陰極室19に循環通水した。   The supply port 9b was directly connected to the water supply (distilled water may be continuously fed by a liquid feed pump), and an electrolysis experiment was conducted while a direct current was applied between the anode 3 and the cathode 4 at 5A. As the power source, a variable DC constant voltage / constant DC power source (PAD110-5L manufactured by Kikusui Electronics Co., Ltd.) was used and energized under constant current conditions. In this electrolysis experiment, a 0.1 M NaCl aqueous solution adjusted to a pH of about 4 by adding citric acid as a catholyte is placed in a tank (may be a bucket) and used via a supply port 17a and a discharge port 17b. Then, water was circulated through the cathode chamber 19.

溶存オゾン濃度等を、オゾンメーター(笠原理化工業製O3-2Z)を用いて比色法にて測定した結果を表1に示す。なお、実験では新品のナフィオン膜を用いたため、オゾン水濃度データが落ち着くまで30分以上の連続操作の後、測定を行った。また、表1には、従来製品として、非特許文献2に示した製品を購入してデータを実測したものを示す。 The dissolved ozone concentration, etc. The results are shown in Table 1 was measured by a colorimetric method using ozone meter (Rika Ltd. O 3- 2Z Kasahara). Since a new Nafion membrane was used in the experiment, measurement was performed after continuous operation for 30 minutes or more until the ozone water concentration data settled. Table 1 shows the actual data obtained by purchasing the product shown in Non-Patent Document 2 as a conventional product.

Figure 0004738789
Figure 0004738789

表1に示すように、本実施例では高濃度のオゾン水を極めて効率よく生成することができた。なお、前記実施例及び発明の実施の形態において、供給口9b,渦巻状水路10,及び排出口9cが水路に相当し、その内、渦巻状水路10が小径部に、供給口9b及び排出口9cが大径部に、それぞれ相当する。また、針金7は隔壁に相当する。   As shown in Table 1, in this example, highly concentrated ozone water could be generated very efficiently. In addition, in the said Example and embodiment of invention, the supply port 9b, the spiral water channel 10, and the discharge port 9c are equivalent to a water channel, Among these, the spiral water channel 10 is a small diameter part, The supply port 9b and a discharge port 9c corresponds to the large diameter portion. The wire 7 corresponds to a partition wall.

以上、本発明の実施の形態について説明したが、本発明は前記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の形態で実施することができる。例えば、前記実施の形態では、渦巻状水路10の全体が陽極3と接し、供給口9b及び排出口9cは陽極3と全く接していないが、本発明は、必ずしも小径部の全体が陽極と接する部分に配設される必要もなければ、必ずしも大径部の全体が陽極と接しない部分に配設される必要もない。例えば、小径部の80%以上の部分が陽極と接する部分に配設され、大径部の80%以上の部分が陽極と接しない部分に配設される場合でも、同様の作用・効果はある程度生じる。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and can be implemented in various forms without departing from the gist of the present invention. For example, in the above-described embodiment, the entire spiral water channel 10 is in contact with the anode 3, and the supply port 9 b and the discharge port 9 c are not in contact with the anode 3 at all. However, in the present invention, the entire small-diameter portion is not necessarily in contact with the anode. There is no need to be disposed in the portion, and it is not necessarily required to be disposed in the portion where the entire large diameter portion is not in contact with the anode. For example, even when 80% or more of the small-diameter portion is disposed in the portion in contact with the anode and 80% or more of the large-diameter portion is disposed in the portion not in contact with the anode, the same operation / effect is obtained to some extent. Arise.

また、オゾン水生成装置1ではチタン製の針金7によって渦巻状水路10を形成したが、隔壁は、他の金属や樹脂,ゴム等の種々の素材を利用して構成することができる。但し、前述のように隔壁をチタンによって構成した場合、チタンは表面に二酸化チタン皮膜が形成されるため耐蝕性に優れており、オゾン水生成装置1の耐久性を一層向上させることができる。   Moreover, in the ozone water generating apparatus 1, the spiral water channel 10 is formed by the titanium wire 7, but the partition wall can be configured by using various materials such as other metals, resins, and rubbers. However, when the partition wall is made of titanium as described above, titanium is excellent in corrosion resistance because a titanium dioxide film is formed on the surface, and the durability of the ozone water generating apparatus 1 can be further improved.

また、隔壁をシリコーンゴムによって構成した場合、シリコーンゴムは種々の形状に容易に成形することができるため、種々の形状の小径部を容易に形成することができる。更に、隔壁は外枠9の壁面9a等と樹脂にて一体成形してもよく、この場合、隔壁の機械的強度が向上するため、オゾン水生成装置の耐久性を一層向上させることができる。   Further, when the partition walls are made of silicone rubber, since the silicone rubber can be easily formed into various shapes, small-diameter portions having various shapes can be easily formed. Furthermore, the partition wall may be integrally formed with the wall surface 9a of the outer frame 9 or the like with a resin. In this case, the mechanical strength of the partition wall is improved, so that the durability of the ozone water generator can be further improved.

また更に、水路の形態も種々考えられる。例えば、図4(A)に示すように、一対の櫛歯状の隔壁27,27を、櫛歯27a同士が互い違いになるように組合せ、小径部としての葛折状水路20を構成してもよい。   Furthermore, various forms of water channels are also conceivable. For example, as shown in FIG. 4A, a pair of comb-shaped partition walls 27, 27 are combined so that the comb teeth 27a are alternated to form a twisted water channel 20 as a small diameter portion. Good.

この場合、葛折状水路20の両端はその葛折状水路20の面の両端に配設されるので、供給口27b及び排出口27cもその面に沿って配設することができる。但し、前述のような渦巻状水路10は角がなく滑らかなため、水の流れも円滑になり、余分な圧力損失が生じない。このため、前述のオゾン水生成装置1では、オゾン水を一層効率よく生成することができる。   In this case, since both ends of the twisted water channel 20 are disposed at both ends of the surface of the twisted water channel 20, the supply port 27b and the discharge port 27c can also be disposed along the surface. However, since the spiral water channel 10 as described above has no corners and is smooth, the flow of water is also smooth and no extra pressure loss occurs. For this reason, in the above-mentioned ozone water production | generation apparatus 1, ozone water can be produced | generated more efficiently.

また、オゾン水生成装置1において供給口9bと排出口9cとを入れ替えてもよい。但し、渦巻状水路10の曲率半径が小さい部分では曲率半径が大きい部分に比べて高い水圧が生じることが予測される。従って、前述のように渦巻状水路10の外周側端部に供給口9bを設けた方が、渦巻状水路10の全体(すなわち陽極3の表面全体)に渡って水圧を均一に近づけて一層効率よくオゾン水を生成できる可能性がある。   Further, the supply port 9b and the discharge port 9c may be interchanged in the ozone water generator 1. However, it is predicted that a higher water pressure is generated in a portion where the radius of curvature of the spiral water channel 10 is smaller than a portion where the radius of curvature is large. Therefore, providing the supply port 9b at the outer peripheral side end of the spiral water channel 10 as described above makes the water pressure more uniform over the entire spiral water channel 10 (that is, the entire surface of the anode 3), thereby further improving the efficiency. There is a possibility that ozone water can be generated well.

更に、図4(B)に示すように、渦巻状に構成した一対の針金37,37を組み合わせることにより、小径部としての二重渦巻状水路30を構成してもよい。図4(B)の例では、オゾン水生成装置1と同様に、二重渦巻状水路30の面に対して垂直に供給口39a,排出口39bを設けているが、この例でも二重渦巻状水路30の両端はその二重渦巻状水路30の面の両端に配設されるので、供給口,排出口は図4(A)と同様にその面に沿って配設することもできる。   Furthermore, as shown in FIG. 4 (B), a double spiral water channel 30 as a small diameter portion may be configured by combining a pair of wires 37, 37 configured in a spiral shape. In the example of FIG. 4 (B), the supply port 39a and the discharge port 39b are provided perpendicularly to the surface of the double spiral water channel 30 as in the case of the ozone water generator 1, but in this example as well, the double spiral is provided. Since both ends of the water channel 30 are disposed at both ends of the surface of the double spiral water channel 30, the supply port and the discharge port can be disposed along the surface in the same manner as in FIG.

また、陽極3及び陰極4の材質や形状としても、種々の形態が考えられる。例えば、陽極としては二酸化亜鉛,多孔質ダイヤモンドなど、陰極としてはステンレス鋼など、種々の電極材料を使用することができ、電極形状も、円筒形,正方形平板,長方形平板などが考えられる。円筒形の電極を使用した場合は、隔壁を円筒面に沿って螺旋状に配設する形態などが考えられる。但し、前述のオゾン水生成装置1では、平板状の電解セル5が使用できるので構成が簡略化し、しかも、針金7を陽極3の表面に配設することによって渦巻状水路10を形成しているので、断面積の小さい渦巻状水路10を容易に形成することができる。従って、前述のオゾン水生成装置1では、製造が一層容易になると共に、装置を一層小型化することができる。   Also, various forms are conceivable as materials and shapes of the anode 3 and the cathode 4. For example, various electrode materials such as zinc dioxide and porous diamond can be used as the anode and stainless steel can be used as the cathode, and the electrode shape can be a cylindrical shape, a square flat plate, a rectangular flat plate, or the like. When a cylindrical electrode is used, a form in which the partition wall is spirally arranged along the cylindrical surface is conceivable. However, in the above-mentioned ozone water generating apparatus 1, the configuration can be simplified because the flat electrolytic cell 5 can be used, and the spiral water channel 10 is formed by arranging the wire 7 on the surface of the anode 3. Therefore, the spiral water channel 10 having a small cross-sectional area can be easily formed. Therefore, the above-described ozone water generation apparatus 1 can be manufactured more easily and the apparatus can be further downsized.

また、前記実施例では、外枠9,15,17をアクリル樹脂にて成形しているが、それ以外の多種プラスチック,アルミニウム,SUSなど、種々の材料によって構成することができる。   Moreover, in the said Example, although the outer frames 9,15,17 are shape | molded with the acrylic resin, it can comprise with various materials, such as other various plastics, aluminum, and SUS.

更に、陰極室19には水道水を通水してもよく、或いは、陰極4は大気に開放してもよく、これらの場合も陽極3の側にオゾン水を生成することができる。但し、前記実施例では、陰極室19に前記カソード液を循環通水したので、固体高分子膜2を通って陰極4の表面まで運ばれたH+ をNaClによって良好に逃がすことができる。また、水道水中のCa等がH+ の代わりに陰極4の表面まで運ばれた場合には、陰極4にて還元されるべきH+ が不足するが、それをクエン酸によって補償することができる。従って、本実施例では、陰極4の機能を確保して一層効率よくオゾン水を生成することができる。なお、陰極4の側にも前述のような渦巻状水路10,葛折状水路20などを形成することにより、前述の水圧及び乱流を利用して、陰極4の表面まで運ばれたH+ 等を一層良好に逃がすことも可能である。 Further, tap water may be passed through the cathode chamber 19 or the cathode 4 may be opened to the atmosphere. In these cases, ozone water can be generated on the anode 3 side. However, in the above embodiment, since the catholyte is circulated through the cathode chamber 19, H + transported to the surface of the cathode 4 through the solid polymer membrane 2 can be released well with NaCl. Further, if the Ca or the like in tap water is carried to the surface of the cathode 4 in place of the H + is insufficient H + to be reduced at the cathode 4 can be compensated for by citric acid . Therefore, in this embodiment, the function of the cathode 4 can be secured and ozone water can be generated more efficiently. In addition, by forming the spiral water channel 10 and the twisted water channel 20 as described above on the cathode 4 side, the water pressure and the turbulent flow described above are used to bring the H + carried to the surface of the cathode 4. Etc. can be released more satisfactorily.

本発明が適用されたオゾン水生成装置の構成を表す平面図及び断面図である。It is the top view and sectional drawing showing the structure of the ozone water production | generation apparatus to which this invention was applied. 水路の断面積が圧力損失に与える影響を表すグラフである。It is a graph showing the influence which the cross-sectional area of a water channel has on a pressure loss. 水路の断面積が物質移動に与える影響を表すグラフである。It is a graph showing the influence which the cross-sectional area of a water channel has on mass transfer. 前記オゾン水生成装置の水路の変形例を表す平面図である。It is a top view showing the modification of the water channel of the said ozone water production | generation apparatus.

符号の説明Explanation of symbols

1…オゾン水生成装置 2…固体高分子膜 3…陽極 4…陰極
5…電解セル 7,37…針金 9…外枠 9a…壁面
9b,17a,39a…供給口 9c,17b,39b…排出口
10…渦巻状水路 19…陰極室 20…葛折状水路 27…隔壁
30…二重渦巻状水路
DESCRIPTION OF SYMBOLS 1 ... Ozone water generator 2 ... Solid polymer film 3 ... Anode 4 ... Cathode 5 ... Electrolytic cell 7, 37 ... Wire 9 ... Outer frame 9a ... Wall surface 9b, 17a, 39a ... Supply port 9c, 17b, 39b ... Discharge port DESCRIPTION OF SYMBOLS 10 ... Spiral channel 19 ... Cathode chamber 20 ... Twist channel 27 ... Bulkhead 30 ... Double spiral channel

Claims (4)

固体高分子膜を平板状の陽極と陰極とで挟んでなる電解セルと、
前記陽極表面に通水可能に設けられた水路と、
を備えたオゾン水生成装置において、
前記陽極の表面全体に亘って渦巻状または櫛歯同士が互い違いになるように組み合わされた櫛歯状の隔壁が配設され、
前記水路の前記陽極と接する部分が、前記隔壁の前記陽極とは反対面に平面状の壁面を密着させることによって前記隔壁で区画されて形成され、断面積が円管に換算して内径2mm以下で、前記通水によって乱流を発生可能な小径部とされたことを特徴とするオゾン水生成装置。
An electrolysis cell comprising a solid polymer membrane sandwiched between a flat anode and a cathode;
A water channel provided on the anode surface so as to allow water to pass through;
In the ozone water generating apparatus provided with
Comb-like partition walls that are spirally or combined so that the comb teeth are staggered over the entire surface of the anode are disposed,
The portion of the water channel that is in contact with the anode is formed by partitioning the partition wall by bringing a flat wall surface into close contact with the surface opposite to the anode of the partition wall, and the cross-sectional area is converted to a circular tube and the inner diameter is 2 mm or less. in ozone water generation apparatus, characterized in that it is a possible small diameter portion turbulence by the water flow.
前記隔壁がチタンによって構成されたことを特徴とする請求項1記載のオゾン水生成装置。 The ozone water generating apparatus according to claim 1, wherein the partition wall is made of titanium . 前記隔壁がシリコーンゴムによって構成されたことを特徴とする請求項1記載のオゾン水生成装置。 The partition wall according to claim 1 Symbol placement of the ozone water production apparatus characterized in that it is constituted by a silicone rubber. 前記隔壁が前記壁面と一体成形されたことを特徴とする請求項1記載のオゾン水生成装置。 The partition wall according to claim 1 Symbol placement of the ozone water generation apparatus, characterized in that integrally molded with said wall.
JP2004312368A 2004-10-27 2004-10-27 Ozone water generator Expired - Fee Related JP4738789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004312368A JP4738789B2 (en) 2004-10-27 2004-10-27 Ozone water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004312368A JP4738789B2 (en) 2004-10-27 2004-10-27 Ozone water generator

Publications (2)

Publication Number Publication Date
JP2006124750A JP2006124750A (en) 2006-05-18
JP4738789B2 true JP4738789B2 (en) 2011-08-03

Family

ID=36719770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004312368A Expired - Fee Related JP4738789B2 (en) 2004-10-27 2004-10-27 Ozone water generator

Country Status (1)

Country Link
JP (1) JP4738789B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101810392B1 (en) * 2016-04-29 2017-12-19 주식회사 파이노 Dissolving filter module and apparatus for manufacturing fuctional water

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4838705B2 (en) * 2006-12-28 2011-12-14 株式会社アイ電子工業 Ozone water generator
JP5048878B1 (en) * 2012-02-15 2012-10-17 日科ミクロン株式会社 Ozone water generator
JP5069383B1 (en) 2012-04-27 2012-11-07 日科ミクロン株式会社 Ozone water generator
JP6897927B2 (en) * 2016-12-12 2021-07-07 青島海爾洗衣机有限公司QingDao Haier Washing Machine Co.,Ltd. Washing machine
CN108796541B (en) * 2018-05-30 2019-12-27 中氧科技(广州)有限公司 Adjustable ozone electrolysis generator subassembly
US11939687B2 (en) 2019-02-22 2024-03-26 Kogakuin University Water electrolysis apparatus, and sterilization/cleaning method and method for decomposing/removing harmful substance, each using water electrolysis apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680841A (en) * 1991-12-09 1994-03-22 Denki Kagaku Kogyo Kk Plate for forming electric discharge space
JP3002101B2 (en) * 1994-09-21 2000-01-24 株式会社ササクラ Electrolytic ozone generator
JPH0995791A (en) * 1995-10-04 1997-04-08 Sasakura Eng Co Ltd Solid polyelectrolyte water electrolyzer and its electrode structure
JP2002339089A (en) * 2001-05-18 2002-11-27 Shinko Plant Kensetsu Kk Method for producing electrolytic ozone water and apparatus therefor
JP2003126667A (en) * 2001-10-22 2003-05-07 Mitsuru Kitahara Air mixing and feeding device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101810392B1 (en) * 2016-04-29 2017-12-19 주식회사 파이노 Dissolving filter module and apparatus for manufacturing fuctional water

Also Published As

Publication number Publication date
JP2006124750A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
CN108367946B (en) In-situ delivery system for reaction product removal in electrochemical cells
JP4220978B2 (en) Electrode, ozone generator, and ozone generation method
JP2007283180A (en) Ozone water generator and ozone water generation method
JP4738789B2 (en) Ozone water generator
JP5069292B2 (en) Equipment for electrochemical water treatment
US4196068A (en) Chlorine gas producing apparatus
JP2009054557A (en) In-liquid plasma generating device
JP4932529B2 (en) Water treatment method
JP4394942B2 (en) Electrolytic ozonizer
JP7010529B2 (en) Sterilization and cleaning method using water electrolyzer and water electrolyzer and method for decomposing and removing harmful substances
WO2015050162A1 (en) Microbial fuel cell
JP6490166B2 (en) Electrolytic reduction module and water purifier
US6210643B1 (en) Ozonizer
JP3682275B2 (en) Ozone water production equipment
TWI547445B (en) Composite water purification apparatus and method thereof
JPWO2006038298A1 (en) Ozone water production equipment
WO2013065355A1 (en) Ozone liquid generator and ozone liquid generation method
CN108474123B (en) Hydrogen peroxide generator
JP2021120140A (en) Ozone water generation method, generation sprayer and generation spraying device
JP2020009593A (en) Microbial fuel cell, power generator and sewage treatment system
JP2007277632A (en) Method for producing ozone water
JP2006281075A (en) Alkaline wastewater neutralization system
JP4644272B2 (en) Ozone generator and ozone generation method
JP5984063B2 (en) Ozone water generator
JP2013094711A (en) Ozone liquid generation apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees