JP4738775B2 - Raw material solution for CVD used for manufacturing a lanthanide-based metal-containing thin film and a method for manufacturing a thin film using the same - Google Patents

Raw material solution for CVD used for manufacturing a lanthanide-based metal-containing thin film and a method for manufacturing a thin film using the same Download PDF

Info

Publication number
JP4738775B2
JP4738775B2 JP2004244014A JP2004244014A JP4738775B2 JP 4738775 B2 JP4738775 B2 JP 4738775B2 JP 2004244014 A JP2004244014 A JP 2004244014A JP 2004244014 A JP2004244014 A JP 2004244014A JP 4738775 B2 JP4738775 B2 JP 4738775B2
Authority
JP
Japan
Prior art keywords
raw material
thin film
lanthanide
metal
phen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004244014A
Other languages
Japanese (ja)
Other versions
JP2006063352A (en
Inventor
雄三 田▲崎▼
秀二 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshima Manufacturing Co Ltd
Original Assignee
Toshima Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshima Manufacturing Co Ltd filed Critical Toshima Manufacturing Co Ltd
Priority to JP2004244014A priority Critical patent/JP4738775B2/en
Priority to PCT/IB2005/002397 priority patent/WO2006021850A2/en
Publication of JP2006063352A publication Critical patent/JP2006063352A/en
Application granted granted Critical
Publication of JP4738775B2 publication Critical patent/JP4738775B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/003Compounds containing elements of Groups 3 or 13 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)
  • Pyridine Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、ランタニド系金属を含む薄膜を化学的気相成長(CVD)法により製造する際に用いられる薄膜用CVD原料及びそれを用いて得られる薄膜に関する。詳しくは、本発明は、溶液気化CVD法において、少ない使用量で安価にランタニド系金属含有薄膜を安定して得ることができる薄膜用CVD原料に関する。   The present invention relates to a CVD raw material for a thin film used when a thin film containing a lanthanide-based metal is produced by a chemical vapor deposition (CVD) method, and a thin film obtained using the same. Specifically, the present invention relates to a CVD raw material for a thin film that can stably obtain a lanthanide-based metal-containing thin film with a small amount of use in a solution vaporization CVD method.

一般にCVD法での薄膜作製における原料蒸気供給方法としては、トリメチルガリウム(GaAs薄膜原料)やテトラエトキシシラン(SiO2薄膜原料)のように常温で液体の原料の場合、原料にキャリアガスをバブリングさせて原料蒸気を成膜室まで同伴させて行うバブリング法が行なわれている。バブリングの場合、原料蒸気は飽和蒸気圧(温度のみに依存する)で発生するので、温度を制御することにより原料蒸気の供給を安定に行うことができる。
一方、原料が固体の場合は;昇華によって原料蒸気を発生させる昇華法;原料をテトラヒドロフラン、酢酸ブチル、トルエン等の有機溶媒に一定濃度で溶解し、得られた溶液を流量制御しながら高温の気化室内に送り込み、全量を気化させることによって一定の原料蒸発量を得ることのできる溶液気化法;が通常使用されている。
In general, as a raw material vapor supply method for thin film formation by CVD, in the case of a raw material that is liquid at room temperature, such as trimethylgallium (GaAs thin film raw material) or tetraethoxysilane (SiO 2 thin film raw material), a carrier gas is bubbled through the raw material. A bubbling method in which raw material vapor is accompanied to a film forming chamber is performed. In the case of bubbling, the raw material vapor is generated at a saturated vapor pressure (which depends only on the temperature), so that the raw material vapor can be stably supplied by controlling the temperature.
On the other hand, when the raw material is solid; sublimation method in which raw material vapor is generated by sublimation; the raw material is dissolved in an organic solvent such as tetrahydrofuran, butyl acetate, and toluene at a constant concentration, and the resulting solution is vaporized at high temperature while controlling the flow rate. A solution vaporization method is generally used in which a constant amount of raw material evaporation can be obtained by sending the solution into a room and vaporizing the entire amount.

薄膜原料として、β−ジケトン系のジピバロイルメタン(DPM)等の金属錯体を代表とする特定の金属化合物は、(1)一般に熱安定性が高く、酸素存在化においてもある程度の温度までは分解しにくく反応しない;(2)酸化物の超伝導体や強誘電体(YBa2Cu3y、Bi2Sr2Ca2Cu3y、SrBi2Ta29等)にはアルカリ土類金属(Ca、Sr、Ba等)が含まれており、アルカリ土類金属を含むものとしてこれら化合物がCVD法で求められる気化性、熱安定性、酸素存在下での安定性を満たす;ことから現在広く使用されている。しかし、これら金属化合物は一般に融点が高いためにバブリング法による原料気化を行うことができず、昇華法の場合、(1)飽和蒸気を得ることが難しく、(2)これら金属化合物は加熱され続けられるため劣化して気化特性が不良となり、(3)蒸気の発生量は原料容器内の充填量又は使用中の原料残量の変化によって変化しやすく、一定の原料蒸発量の維持及び得られる薄膜の組成制御が困難である欠点があった。又、特に気化性がわるいアルカリ土類金属の錯体については、(4)気化効率を上げるために高い温度で加熱すると、原料が熱分解しながら輸送されてしまい、膜の結晶性が不良となるか組成が不均一となり、(5)気化速度を抑えて蒸着時間を長くすると、原料が経時的に劣化して気化性が低下するため、形成された膜の厚さ方向の組成が不均質になってしまう問題があった。そのために、多成分系の複合酸化物薄膜の作製は溶液気化法が現在の主流になっている。 As a thin film material, a specific metal compound typified by a metal complex such as β-diketone dipivaloylmethane (DPM) is (1) generally high in thermal stability and up to a certain temperature even in the presence of oxygen. (2) Oxide superconductors and ferroelectrics (YBa 2 Cu 3 O y , Bi 2 Sr 2 Ca 2 Cu 3 O y , SrBi 2 Ta 2 O 9, etc.) are alkaline. Earth metals ( Ca , Sr, Ba, etc.) are contained, and these compounds satisfy the vaporization property, thermal stability, and stability in the presence of oxygen required by the CVD method as those containing alkaline earth metals; It is now widely used. However, since these metal compounds generally have a high melting point, the raw material cannot be vaporized by the bubbling method. In the case of the sublimation method, (1) it is difficult to obtain saturated vapor, and (2) these metal compounds continue to be heated. (3) The amount of steam generated is likely to change depending on the amount of filling in the raw material container or the remaining amount of raw material in use, maintaining a constant raw material evaporation amount and the thin film obtained There was a drawback that it was difficult to control the composition. In particular, for alkaline earth metal complexes with poor vaporization, (4) When heated at a high temperature to increase vaporization efficiency, the raw materials are transported while being thermally decomposed, resulting in poor film crystallinity. (5) If the vaporization rate is reduced and the vapor deposition time is lengthened, the material deteriorates with time and the vaporization property decreases, so that the composition in the thickness direction of the formed film becomes inhomogeneous. There was a problem that would become. For this reason, the solution vaporization method has become the current mainstream for the production of multi-component complex oxide thin films.

近年盛んに研究されている多成分系の複合酸化物薄膜として、例えば強誘電体メモリ(FeRAM)のキャパシタ膜用としてのチタン酸ビスマスランタン(BLT)及びチタン酸ビスマスネオジム(BNT)並びに電極膜としてのニッケル酸ランタン(LNO)等が挙げられる。そして、CVD溶液気化法によるBLT,BNT薄膜やLNO薄膜製造用のCVD原料に使用されるランタニド系金属を含む化合物として、これまで実際に使用が検討されたのは、ジピバロイルメタナト(DPM)錯体、2,2,6,6−テトラメチル−3,5−オクタンジオナト(TMOD)錯体、ジイソブチリルメタナト(DIBM)錯体等のβ−ジケトン系金属錯体であった。   As multi-component complex oxide thin films that have been actively studied in recent years, for example, bismuth lanthanum titanate (BLT) and bismuth neodymium titanate (BNT) for capacitor films of ferroelectric memory (FeRAM) and as electrode films Lanthanum nickelate (LNO) and the like. As a compound containing a lanthanide metal used as a CVD raw material for producing BLT, BNT thin films and LNO thin films by the CVD solution vaporization method, the use of dipivaloylmethanato (DPM) has been studied so far. ) Complexes, 2,2,6,6-tetramethyl-3,5-octanedionate (TMOD) complexes, and diisobutyrylmethanato (DIBM) complexes.

一般に、原料化合物が分解して金属、酸化物等に変化するための活性化エネルギーは、原料化合物によって異なるため、各原料の供給比率がそのまま膜の組成比率と一致することは少ない。ランタニド系金属の場合にはこの傾向は著しく顕著となり、前記β−ジケトン系ランタニド錯体を用いて溶液気化CVD法によりBLT,BNT膜やLNO膜のようにランタニド系金属とランタニド系金属以外の金属を含有する多成分系の複合酸化物薄膜を製造すると、目的となる膜の金属組成と同じ比率で各原料を供給しても膜中にランタニド系金属がほとんど導入されなかった。例えばBLT膜の製造においてβ−ジケトン系ランタン錯体であるLa(DPM)3を用いた場合、所望の膜組成と同じ比率(例えばBi:La:Ti=3.25:0.75:3)の混合溶液を使用すると、得られた膜中にランタンは所望膜組成の1/10以下しか存在しない。 Generally, the activation energy for decomposing a raw material compound to change to a metal, an oxide, or the like differs depending on the raw material compound, and therefore, the supply ratio of each raw material rarely matches the composition ratio of the film. In the case of a lanthanide-based metal, this tendency becomes remarkably remarkable. By using the β-diketone lanthanide complex, a metal other than the lanthanide-based metal and the lanthanide-based metal, such as a BLT, BNT film, or LNO film, is obtained by a solution vaporization CVD method. When the multicomponent composite oxide thin film contained was produced, even if each raw material was supplied at the same ratio as the metal composition of the target film, almost no lanthanide metal was introduced into the film. For example, when La (DPM) 3 , which is a β-diketone lanthanum complex, is used in the production of a BLT film, the same ratio as the desired film composition (for example, Bi: La: Ti = 3.25: 0.75: 3) When the mixed solution is used, lanthanum is present in the obtained film only at 1/10 or less of the desired film composition.

このような場合に所望の膜組成を得るためには、通常2通りの方法が考えられる。第1は、膜に導入されにくい金属化合物(BLTの場合はランタン化合物)の原料溶液中の割合を高くすることであり、第2は、膜に導入されにくい金属の原料化合物を分解しやすい物質に取り替えることである。
しかしながら、第1の方法でBLT膜を製造した場合、原料溶液中のランタン錯体の割合を所望膜組成の10倍にしても実際に膜に導入されるランタニド系金属は所望膜組成の1/3以下であった。また、第2の方法としてLa(DPM)3の代わりにLa(DPM)3より分解しやすいLa(TMOD)3を使用しても、得られた膜の中のランタンは、La(DPM)3を用いた場合と同様に所望膜組成の1/10以下であった。
以上のように、β−ジケトン系ランタニド錯体は膜への変換効率(原料供給量に対する膜への堆積量の割合)がきわめて低いため、ランタニド系金属を含有する多成分系の複合酸化物薄膜を製造すると、薄膜中にランタニド系金属を導入することが困難であった。
In order to obtain a desired film composition in such a case, usually two methods are conceivable. The first is to increase the ratio in the raw material solution of a metal compound (lanthanum compound in the case of BLT) that is difficult to be introduced into the film, and the second is a substance that is likely to decompose the metal raw compound that is difficult to be introduced into the film. Is to replace it.
However, when the BLT film is produced by the first method, the lanthanide metal actually introduced into the film is 1/3 of the desired film composition even if the ratio of the lanthanum complex in the raw material solution is 10 times the desired film composition. It was the following. Moreover, the use of a second La as a method (DPM) 3 in place of La (DPM) 3 from easily decomposed La (TMOD) 3, lanthanum in the resulting film, La (DPM) 3 It was 1/10 or less of the desired film | membrane composition similarly to the case where was used.
As described above, β-diketone-based lanthanide complexes have extremely low conversion efficiency (ratio of the amount deposited on the film with respect to the amount of raw material supplied), so a multi-component complex oxide thin film containing a lanthanide-based metal can be used. When manufactured, it was difficult to introduce a lanthanide metal into the thin film.

一方、中心金属を中性配位子により遮蔽したCVD原料化合物は、これまで特許文献1〜5等で多数開示されている。しかし、それらは異種の原料化合物同士が配位子交換等の反応を起こして溶液中での沈殿生成、もしくは気相中での固体析出による配管閉塞が発生することを防いだり、原料化合物の重合を防いで蒸気圧の増加または安定化を図ったり、溶液中の水分等の他の物質との反応を抑えることで原料溶液の経時劣化を防ぐことを目的としており、金属化合物の安定化を目的として中性配位子を添加していた。
そして、膜への変換効率の向上のためには、分解しやすい材料を選択するのが一般的であり、あえて分解しにくい安定化された金属化合物を選択することは通常想起されない。さらにβ−ジケトン系ランタニド錯体は中性配位子を付加させなくても経時変化がおきにくい安定な材料であり、また中性配位子を付加させると蒸気圧が低下することから、これまでCVD材料として膜への変換効率を向上させるために積極的に利用されたことは皆無であった。
特表平11−507629号公報 特開2001−355070号公報 特開平5−98444号公報 特表平7−500318号公報 特開平7−188271号公報
On the other hand, many CVD raw material compounds in which the central metal is shielded by a neutral ligand have been disclosed in Patent Documents 1 to 5 and so on. However, they prevent reactions between different types of raw material compounds such as ligand exchange, resulting in precipitation in solution or clogging of pipes due to solid precipitation in the gas phase. The purpose is to prevent the deterioration of the raw material solution over time by preventing or preventing the vapor pressure from increasing or stabilizing, or by suppressing the reaction with other substances such as moisture in the solution. As a neutral ligand was added.
In order to improve the conversion efficiency into a film, it is common to select a material that is easily decomposed, and it is not usually conceived to select a stabilized metal compound that is difficult to decompose. Furthermore, β-diketone lanthanide complexes are stable materials that do not easily change over time without the addition of neutral ligands, and the addition of neutral ligands reduces the vapor pressure. As a CVD material, it has never been actively used to improve the conversion efficiency into a film.
Japanese National Patent Publication No. 11-507629 JP 2001-355070 A Japanese Patent Laid-Open No. 5-98444 JP 7-500318 JP-A-7-188271

本発明は、所望の組成を有する多成分系のランタニド系複合酸化物薄膜を安定して得ることを目的とする。   An object of the present invention is to stably obtain a multicomponent lanthanide-based composite oxide thin film having a desired composition.

本発明者らは、斯かる問題を解決すべく鋭意研究したところ、β−ジケトン系ランタニド錯体のランタニド系金属原子に中性配位子を配位させることによって遮蔽し、ランタニド系金属以外の原料化合物との反応性を下げることでランタニド系金属の膜への変換効率が著しく引き上げられることを見いだした。
本発明は、一種以上のランタニド系金属及びランタニド系金属以外の一種以上の金属を含む薄膜製造用CVD原料であり、下式(I)で示される化合物並びにランタニド系金属以外の有機金属化合物を溶媒に溶解して得られ、式(I)で示される化合物を熱重量天秤分析(TG)にかけて得られるΔTGグラフは1つの気化点ピークのみを有するCVD原料に関する。
Ln(β−dik) 3 ・L ・・・(I)
(但し、Lnはランタニド系金属原子、β−dikはジピバロイルメタン(DPM)、ジイソブチリルメタン(DIBM)、イソブチリルピバロイルメタン(IBPM)、2,2,6,6−テトラメチル−3,5−オクタンジオン(TMOD)、6−エチル−2,2−ジメチル−3,5−オクタンジオン、5−メチル−2,4−ヘキサンジオン、5,5−ジメチル−2,4−ヘキサンジオン、ペンタフルオロプロパノイルピバロイルメタン、2,4−オクタンジオン、及び6−エチル−2,2−ジメチル−3,5−デカンジオンの群から選ばれた少なくとも一種のβ−ジケトン類、Lは1,10−フェナントロリン(phen)、2,2’−ビピリジル(bpy)及びそれらの誘導体の群から選ばれた少なくとも一種の中性配位子を表す。)
The inventors of the present invention have intensively studied to solve such a problem. As a result, a neutral ligand is coordinated to the lanthanide metal atom of the β-diketone lanthanide complex to shield the raw material other than the lanthanide metal. We found that the conversion efficiency of lanthanide-based metals into films can be significantly increased by reducing the reactivity with compounds.
The present invention is a CVD raw material for producing a thin film containing at least one lanthanide-based metal and at least one metal other than the lanthanide-based metal. The compound represented by the following formula (I) and an organometallic compound other than the lanthanide-based metal are used as solvents. The ΔTG graph obtained by dissolving the compound represented by formula (I) by thermogravimetric balance analysis (TG) relates to a CVD raw material having only one vaporization point peak .
Ln (β-dik) 3 · L (I)
(However, Ln is a lanthanide metal atom, β-dik is dipivaloylmethane (DPM), diisobutyrylmethane (DIBM), isobutyrylpivaloylmethane (IBPM), 2,2,6,6-tetra Methyl-3,5-octanedione (TMOD), 6-ethyl-2,2-dimethyl-3,5-octanedione, 5-methyl-2,4-hexanedione, 5,5-dimethyl-2,4- At least one β-diketone selected from the group consisting of hexanedione, pentafluoropropanoylpivaloylmethane, 2,4-octanedione, and 6-ethyl-2,2-dimethyl-3,5-decanedione, L Represents at least one neutral ligand selected from the group of 1,10-phenanthroline (phen), 2,2′-bipyridyl (bpy) and derivatives thereof.

本発明の式(I)の化合物を用いて薄膜製造用CVD原料溶液を調製し、ランタニド系金属とランタニド系金属以外の金属を含有する薄膜を製造したところ、ランタニド系金属への膜への変換効率が3〜100倍以上に飛躍的に向上した。そのため、ランタニド系金属原料の使用量を大幅に減らすことができた。また使用する溶媒の総量が減ったことでランタニド錯体以外の金属も膜への変換効率が向上した。これは、成膜反応に必要なエネルギーを奪っていた溶媒の使用総量が減少することによって、成膜反応に使用されるエネルギー量が増えたためと考えられる。従って、本発明は、目的の組成を有する品質の高いランタニド系金属含有薄膜を安定して製造することが出来る。   A thin film containing a lanthanide-based metal and a metal other than the lanthanide-based metal was prepared using the compound of formula (I) of the present invention to produce a CVD raw material solution, and the film was converted to a lanthanide-based metal. The efficiency has improved dramatically by 3 to 100 times or more. As a result, the amount of lanthanide-based metal raw material used could be greatly reduced. Moreover, the conversion efficiency of metals other than lanthanide complexes was improved by reducing the total amount of solvent used. This is presumably because the amount of energy used for the film-forming reaction has increased due to a decrease in the total amount of solvent used to deprive the energy necessary for the film-forming reaction. Therefore, the present invention can stably produce a high-quality lanthanide-based metal-containing thin film having a target composition.

本発明を以下に詳細に説明する。
本発明の式(I)の化合物(β−ジケトン系ランタニド錯体中性配位子付加体)は、ランタニド系金属の正3価のイオンが3つのβ−ジケトンと金属錯体を形成し、それに中性配位子が付加したものである。
上記ランタニド系金属は、元素の周期律表に記載されたランタン系列元素であり、原子番号57のランタンから原子番号71のルテチウムまでである。好ましくはランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユーロピウム(Eu)、ガドリニウム(Gd)及びイッテルビウム(Yb)が挙げられる。
The present invention is described in detail below.
In the compound of the formula (I) of the present invention (β-diketone lanthanide complex neutral ligand adduct), a positive trivalent ion of a lanthanide metal forms a metal complex with three β-diketones. It is the one to which the sex ligand is added.
The lanthanide-based metal is a lanthanum series element described in the periodic table of elements, and ranges from lanthanum with atomic number 57 to lutetium with atomic number 71. Preferred examples include lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), and ytterbium (Yb).

本発明のβ−ジケトン類としては、ジピバロイルメタン(DPM)、ジイソブチリルメタン(DIBM)、イソブチリルピバロイルメタン(IBPM)、2,2,6,6−テトラメチル−3,5−オクタンジオン(TMOD)、アセチルアセトン、ヘキサフルオロアセチルアセトン、6−エチル−2,2−ジメチル−3,5−オクタンジオン、5−メチル−2,4−ヘキサンジオン、5,5−ジメチル−2,4−ヘキサンジオン、ペンタフルオロプロパノイルピバロイルメタン、2,4−オクタンジオン、及び6−エチル−2,2−ジメチル−3,5−デカンジオン等が挙げられる。好ましくはDPM,DIBM,IBPM,TMODである。
β−ジケトン系ランタニド錯体を用いてランタニド酸化物単体膜を製造する場合には、膜への変換効率はランタニド系金属以外の原料化合物と比べて大きな違いが見られない。このことから、β−ジケトン系ランタニド錯体により複合酸化物薄膜を製造する場合は、ランタニド錯体は他の金属を含む原料化合物又は溶媒との反応等により、膜に導入されにくい状態(複核錯体、反応中間体等)に変化していると考えられる。
Examples of the β-diketone of the present invention include dipivaloylmethane (DPM), diisobutyrylmethane (DIBM), isobutyrylpivaloylmethane (IBPM), 2,2,6,6-tetramethyl-3, 5-octanedione (TMOD), acetylacetone, hexafluoroacetylacetone, 6-ethyl-2,2-dimethyl-3,5-octanedione, 5-methyl-2,4-hexanedione, 5,5-dimethyl-2, Examples include 4-hexanedione, pentafluoropropanoylpivaloylmethane, 2,4-octanedione, and 6-ethyl-2,2-dimethyl-3,5-decanedione. DPM, DIBM, IBPM, and TMOD are preferable.
In the case of producing a lanthanide oxide single film using a β-diketone lanthanide complex, the conversion efficiency into the film is not significantly different from that of the raw material compound other than the lanthanide metal. From this, when producing a complex oxide thin film with a β-diketone lanthanide complex, the lanthanide complex is not easily introduced into the film due to a reaction with a raw material compound or solvent containing other metals (binuclear complex, reaction). It is considered that the intermediate has changed to an intermediate.

本発明の中性配位子は、式(I)の化合物(β−ジケトン系ランタニド錯体中性配位子付加体)の気化の際に脱離しない。気化時に中性配位子の脱離がないことを調べる方法として熱重量天秤示差熱分析(TG−DTA)がある。「気化時に中性配位子の脱離がない」とは、式(I)の化合物を熱重量天秤分析(TG)にかけて得られるΔTGグラフは1つの気化点ピークのみを有し、ピークの肩には他の気化点ピークを示す変曲点が存在しないことをいう。他の気化点ピークの存在は、気化時に中性配位子のみが先に脱離したことを示す。
図1に式(I)の化合物であるトリス(2,2,6,6−テトラメチル−3,5−オクタンジオナト)ネオジム・1,10−フェナントロリン付加体のTG−DTAデータ(Arフロー中、常圧)を示す。図中、細線がTGカーブ、太線がΔTGカーブを表す。図1では気化の終了まで一様なTG減少曲線を描き、ΔTGは1のピークのみが表されている。又、図2及び図3にそれぞれ示すLa(TMOD)3・phen、Nb(IBPM)3・phenでも気化の終了まで一様なTG減少曲線を描き、ΔTGは1のピークのみが表れる。一方、比較例として図5に示すトリス(2,2,6,6−テトラメチル−3,5−オクタンジオナト)ネオジム・テトラグライム付加体(Nd(TMOD)3・tetraglyme)のTG−DTAデータ(Arフロー中、常圧)では、TG減少曲線はベースラインが2つ以上存在し、ΔTGグラフは主ピーク及びその左肩の第2のピークを表す。従って、この付加体は本発明の範囲外である。
尚、気化温度は使用する他の原料や気化装置の種類によって変化するが、TG減少曲線が一様であっても、ΔTGに主ピーク以外に他のピークを示さず設定された気化温度で脱離しない中性配位子であれば本発明に使用できる。
本発明の中性配位子として、例えば1,10−フェナントロリン(phen)、2,2'−ビピリジル(bpy)及びそれらの誘導体等が挙げられる。
The neutral ligand of the present invention is not eliminated upon vaporization of the compound of formula (I) (β-diketone lanthanide complex neutral ligand adduct). There is a thermogravimetric balance differential thermal analysis (TG-DTA) as a method for examining the absence of neutral ligand desorption at the time of vaporization. “There is no elimination of neutral ligands upon vaporization” means that the ΔTG graph obtained by subjecting the compound of formula (I) to thermogravimetric balance analysis (TG) has only one vaporization point peak, Means that there is no inflection point indicating another vaporization point peak. The presence of other vaporization point peaks indicates that only the neutral ligand has been desorbed first during vaporization.
FIG. 1 shows TG-DTA data of tris (2,2,6,6-tetramethyl-3,5-octanedionato) neodymium / 1,10-phenanthroline adduct, which is a compound of formula (I) (in Ar flow) , Normal pressure). In the figure, the thin line represents the TG curve and the thick line represents the ΔTG curve. In FIG. 1, a uniform TG decrease curve is drawn until the end of vaporization, and ΔTG shows only a peak of 1. Also, La (TMOD) 3 · phen and Nb (IBPM) 3 · phen shown in FIGS. 2 and 3, respectively, draw a uniform TG decrease curve until the end of vaporization, and ΔTG shows only a peak of 1. On the other hand, TG-DTA data of tris (2,2,6,6-tetramethyl-3,5-octanedionato) neodymium tetraglyme adduct (Nd (TMOD) 3 .tetraglyme) shown in FIG. 5 as a comparative example. In (Ar flow, normal pressure), the TG decrease curve has two or more baselines, and the ΔTG graph represents the main peak and the second peak on the left shoulder thereof. Therefore, this adduct is outside the scope of the present invention.
The vaporization temperature varies depending on the other raw materials used and the type of vaporizer, but even if the TG decrease curve is uniform, ΔTG does not show any other peak other than the main peak, and the vaporization temperature is set at the set vaporization temperature. Any neutral ligand that is not released can be used in the present invention.
Examples of the neutral ligand of the present invention include 1,10-phenanthroline (phen), 2,2′-bipyridyl (bpy), and derivatives thereof.

本発明に使用されるランタニド系金属以外の有機金属化合物は、金属に配位化合物が配位した錯体、金属に有機化合物が結合した有機金属化合物等である。上記有機金属化合物に含まれる金属は、溶液CVD法に通常使用される金属であり、例えばビスマス(Bi)、ストロンチウム(Sr)、バリウム(Ba)、イットリウム(Y)、ジルコニウム(Zr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、銅(Cu)、チタン(Ti)、鉛(Pb)、亜鉛(Zn)、カルシウム(Ca)、タンタル(Ta)、ニオブ(Nb)、リチウム(Li)、カリウム(K)、ルビジウム(Rb)、ルテニウム(Ru)、ハフニウム(Hf)、イリジウム(Ir)、白金(Pt)、ガリウム(Ga)、アルミニウム(Al)、インジウム(In)、錫(Sn)、ニッケル(Ni)等が挙げられる。好ましくはBi、Sr、Ba、Ti、Pb、Ni、Ta、Nb及びZrである。   The organometallic compound other than the lanthanide metal used in the present invention is a complex in which a coordination compound is coordinated to a metal, an organometallic compound in which an organic compound is bonded to a metal, or the like. The metal contained in the organometallic compound is a metal usually used in the solution CVD method. For example, bismuth (Bi), strontium (Sr), barium (Ba), yttrium (Y), zirconium (Zr), manganese ( Mn), iron (Fe), cobalt (Co), copper (Cu), titanium (Ti), lead (Pb), zinc (Zn), calcium (Ca), tantalum (Ta), niobium (Nb), lithium ( Li), potassium (K), rubidium (Rb), ruthenium (Ru), hafnium (Hf), iridium (Ir), platinum (Pt), gallium (Ga), aluminum (Al), indium (In), tin ( Sn), nickel (Ni), etc. are mentioned. Bi, Sr, Ba, Ti, Pb, Ni, Ta, Nb and Zr are preferable.

上記有機金属化合物中の金属に配位又は結合する化合物としては、溶液CVD法に通常使用されるものが使用できる。例えば、ジピバロイルメタン(DPM)、ペンタフルオロプロパノイルピバロイルメタン、ジイソブチリルメタン(DIBM)、イソブチリルピバロイルメタン(IBPM)、アセチルアセトン、ヘキサフルオロアセチルアセトン、2,2,6,6−テトラメチル−3,5−オクタンジオン(TMOD)、6−エチル−2,2−ジメチル−3,5−オクタンジオン(EDMOD)、2,4−オクタンジオン、6−エチル−2,2−ジメチル−3,5−デカンジオン、1,5−シクロオクタジエン、シクロペンタジエン、メチルシクロペンタジエン、エチルシクロペンタジエン、ジエチルメチルアミン、トリエチルアミン、トリエチレンテトラミン、トリエチルホスフィン、トリエチルビニルシラン、ビストリメチルシリルアセチレン、ジオール、ジアルキルアミド錯体等の化合物の他に、アルコキシド、グリコキシド、フェニル、オルトトリル(o−Tol)、パラトリル(p−Tol)、オルトエチルフェニル等の基が挙げられる。   As the compound that coordinates or bonds to the metal in the organometallic compound, those usually used in the solution CVD method can be used. For example, dipivaloylmethane (DPM), pentafluoropropanoylpivaloylmethane, diisobutyrylmethane (DIBM), isobutyrylpivaloylmethane (IBPM), acetylacetone, hexafluoroacetylacetone, 2,2,6, 6-tetramethyl-3,5-octanedione (TMOD), 6-ethyl-2,2-dimethyl-3,5-octanedione (EDMOD), 2,4-octanedione, 6-ethyl-2,2- Dimethyl-3,5-decanedione, 1,5-cyclooctadiene, cyclopentadiene, methylcyclopentadiene, ethylcyclopentadiene, diethylmethylamine, triethylamine, triethylenetetramine, triethylphosphine, triethylvinylsilane, bistrimethylsilylacetylene, dio , To other compounds, such as dialkyl amide complexes, alkoxide, Gurikokishido, phenyl, Orutotoriru (o-Tol), para-tolyl (p-Tol), it includes groups such as ortho-ethylphenyl.

上記ジオールとして1,3−プロパンジオール、2−メチル−2,4−ペンタンジオール等が挙げられる。上記ジアルキルアミド錯体として、ジエチルアミド、ジメチルアミド、エチルメチルアミド等が挙げられる。上記アルコキシドとして、イソプロポキシド(Oi−Pr)、エトキシド、メトキシド、t−アミロキシド(Ot−Am)、t−ブトキシド(Ot−Bu)、sec−ブトキシド(Os−Bu)、1−メトキシ−2−メチル−2−プロポキシド、2−エトキシエトキシド等が挙げられる。好ましくはジピバロイルメタン、ペンタフルオロプロパノイルピバロイルメタン、ジイソブチリルメタン、イソブチリルピバロイルメタン、アセチルアセトン、ヘキサフルオロアセチルアセトン、2,2,6,6−テトラメチル−3,5−オクタンジオン、アルコキシド、シクロペンタジエン又はそれらの誘導体である。上記化合物は1種以上使用でき、本発明の有機金属化合物は、例えばTi(Oi−Pr)2(DPM)2のようなアルコキシドの一部がβ−ジケトンで置換されたような化合物でもよい。 Examples of the diol include 1,3-propanediol and 2-methyl-2,4-pentanediol. Examples of the dialkylamide complex include diethylamide, dimethylamide, and ethylmethylamide. Examples of the alkoxide include isopropoxide (Oi-Pr), ethoxide, methoxide, t-amyloxide (Ot-Am), t-butoxide (Ot-Bu), sec-butoxide (Os-Bu), 1-methoxy-2- Examples thereof include methyl-2-propoxide and 2-ethoxyethoxide. Preferably dipivaloylmethane, pentafluoropropanoylpivaloylmethane, diisobutyrylmethane, isobutyrylpivaloylmethane, acetylacetone, hexafluoroacetylacetone, 2,2,6,6-tetramethyl-3,5- Octanedione, alkoxide, cyclopentadiene or derivatives thereof. One or more of the above compounds can be used, and the organometallic compound of the present invention may be a compound in which a part of an alkoxide such as Ti (Oi-Pr) 2 (DPM) 2 is substituted with a β-diketone.

気化の際に中性配位子が脱離しない式(I)の化合物(β−ジケトン系ランタニド錯体中性配位子付加体)としては、La(TMOD)3・phen、Nd(TMOD)3・phen、Nd(IBPM)3・phen、La(DPM)3・phen、La(DPM)3・bpy、La(DIBM)3・phen、La(DIBM)3・bpy、La(IBPM)3・phen、La(IBPM)3・bpy、La(DIBM)3・phen、La(DIBM)3・bpy、Ce(DPM)3・phen、Ce(DPM)3・bpy、Ce(DIBM)3・phen、Ce(DIBM)3・bpy、Ce(IBPM)3・phen、Ce(IBPM)3・bpy、Ce(DIBM)3・phen、Ce(DIBM)3・bpy、Pr(DPM)3・phen、Pr(DPM)3・bpy、Pr(DIBM)3・phen、Pr(DIBM)3・bpy、Pr(IBPM)3・phen、Pr(IBPM)3・bpy、Pr(DIBM)3・phen、Pr(DIBM)3・bpy、Nd(DPM)3・phen、Nd(DPM)3・bpy、Nd(DIBM)3・phen、Nd(DIBM)3・bpy、Nd(IBPM)3・phen、Nd(IBPM)3・bpy、Nd(DIBM)3・phen、Nd(DIBM)3・bpy、Sm(DPM)3・phen、Sm(DPM)3・bpy、Sm(DIBM)3・phen、Sm(DIBM)3・bpy、Sm(IBPM)3・phen、Sm(IBPM)3・bpy、Sm(DIBM)3・phen、Sm(DIBM)3・bpy、Eu(DPM)3・phen、Eu(DPM)3・bpy、Eu(DIBM)3・phen、Eu(DIBM)3・bpy、Eu(IBPM)3・phen、Eu(IBPM)3・bpy、Eu(DIBM)3・phen、Eu(DIBM)3・bpy、Gd(DPM)3・phen、Gd(DPM)3・bpy、Gd(DIBM)3・phen、Gd(DIBM)3・bpy、Gd(IBPM)3・phen、Gd(IBPM)3・bpy、Gd(DIBM)3・phen、Gd(DIBM)3・bpy、Yb(DPM)3・phen、Yb(DPM)3・bpy、Yb(DIBM)3・phen、Yb(DIBM)3・bpy、Yb(IBPM)3・phen、Yb(IBPM)3・bpy、Yb(DIBM)3・phen、Yb(DIBM)3・bpy等が挙げられるが、これらにより本発明は限定されない。 As a compound of the formula (I) in which a neutral ligand is not eliminated upon vaporization (a neutral ligand adduct of a β-diketone lanthanide complex), La (TMOD) 3 .phen, Nd (TMOD) 3・ Phen, Nd (IBPM) 3・ phen, La (DPM) 3・ phen, La (DPM) 3・ bpy, La (DIBM) 3・ phen, La (DIBM) 3・ bpy, La (IBPM) 3・ phen , La (IBPM) 3 · bpy, La (DIBM) 3 · phen, La (DIBM) 3 · bpy, Ce (DPM) 3 · phen, Ce (DPM) 3 · bpy, Ce (DIBM) 3 · phen, Ce (DIBM) 3 · bpy, Ce (IBPM) 3 · phen, Ce (IBPM) 3 · bpy, Ce (DIBM) 3 · phen, Ce (DIBM) 3 · bpy, Pr (DPM) 3 · phen, r (DPM) 3 · bpy, Pr (DIBM) 3 · phen, Pr (DIBM) 3 · bpy, Pr (IBPM) 3 · phen, Pr (IBPM) 3 · bpy, Pr (DIBM) 3 · phen, Pr ( DIBM) 3 · bpy, Nd (DPM) 3 · phen, Nd (DPM) 3 · bpy, Nd (DIBM) 3 · phen, Nd (DIBM) 3 · bpy, Nd (IBPM) 3 · phen, Nd (IBPM) 3 · bpy, Nd (DIBM) 3 · phen, Nd (DIBM) 3 · bpy, Sm (DPM) 3 · phen, Sm (DPM) 3 · bpy, Sm (DIBM) 3 · phen, Sm (DIBM) 3 · bpy, Sm (IBPM) 3 · phen, Sm (IBPM) 3 · bpy, Sm (DIBM) 3 · phen, Sm (DIBM) 3 · bpy, Eu (DPM) 3 · phen Eu (DPM) 3 · bpy, Eu (DIBM) 3 · phen, Eu (DIBM) 3 · bpy, Eu (IBPM) 3 · phen, Eu (IBPM) 3 · bpy, Eu (DIBM) 3 · phen, Eu ( DIBM) 3 · bpy, Gd (DPM) 3 · phen, Gd (DPM) 3 · bpy, Gd (DIBM) 3 · phen, Gd (DIBM) 3 · bpy, Gd (IBPM) 3 · phen, Gd (IBPM) 3 · bpy, Gd (DIBM) 3 · phen, Gd (DIBM) 3 · bpy, Yb (DPM) 3 · phen, Yb (DPM) 3 · bpy, Yb (DIBM) 3 · phen, Yb (DIBM) 3 · bpy, Yb (IBPM) 3 · phen, Yb (IBPM) 3 · bpy, Yb (DIBM) 3 · phen, Yb (DIBM) but 3 · bpy etc., these Ri the present invention is not limited.

本発明の薄膜用CVD原料中の式(I)の化合物及び有機金属化合物の濃度は、安定した溶液を提供できる範囲であれば特に制限はない。濃度は、原料の輸送量、膜製造時の成膜速度等により適宜選択されるが、室温(25℃)での飽和濃度の5〜70%程度のものが通常好ましく使用できる。溶液濃度は原料によって溶解度が異なるため一律に規定することができないが、通常0.02〜1mol/リットル、好ましくは0.05〜0.8mol/リットルである。この範囲未満であると、原料溶液の経時劣化、成膜速度低下、形成薄膜表面の劣化、及びカーボンが形成薄膜中へ取り込まれる等の問題が発生しやすい。一方、上記範囲を超えると、溶媒の気化に伴い原料が析出し、気化室に詰まりを生じやすくなる。   The concentration of the compound of formula (I) and the organometallic compound in the CVD raw material for thin film of the present invention is not particularly limited as long as it can provide a stable solution. The concentration is appropriately selected depending on the transport amount of the raw material, the film formation rate at the time of film production, and the like, but a concentration of about 5 to 70% of the saturated concentration at room temperature (25 ° C.) can be preferably used. The solution concentration cannot be uniformly defined because the solubility differs depending on the raw material, but is usually 0.02 to 1 mol / liter, preferably 0.05 to 0.8 mol / liter. If it is less than this range, problems such as deterioration of the raw material solution over time, reduction of the film formation rate, deterioration of the formed thin film surface, and incorporation of carbon into the formed thin film tend to occur. On the other hand, when the above range is exceeded, the raw material is precipitated with the vaporization of the solvent, and the vaporization chamber is easily clogged.

本発明の溶媒としては、式(I)の化合物と反応が起こらないものが選択される。例えば、THF、酢酸n−ブチルエステル(酢酸ブチル)、ベンゼン、トルエン、ヘキサン、オクタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、1,2−エポキシシクロヘキサン、メタノール、エタノール、イソプロピルアルコール、ジエチレングリコールジメチルエーテル(ジグライム)、アセトン、メチルエチルケトン、1,2−ジメトキシエタン等が挙げられる。溶液濃度は、気化室が詰まらず、経時変化がおきにくい範囲内で、溶液濃度、膜製造時の成膜速度、気化室の構造や気化方式等により適宜選択される。   As the solvent of the present invention, a solvent that does not react with the compound of formula (I) is selected. For example, THF, acetic acid n-butyl ester (butyl acetate), benzene, toluene, hexane, octane, cyclohexane, methylcyclohexane, ethylcyclohexane, 1,2-epoxycyclohexane, methanol, ethanol, isopropyl alcohol, diethylene glycol dimethyl ether (diglyme), Acetone, methyl ethyl ketone, 1,2-dimethoxyethane and the like can be mentioned. The solution concentration is appropriately selected depending on the solution concentration, the film formation speed during film production, the structure of the vaporization chamber, the vaporization method, and the like within a range where the vaporization chamber is not clogged and change with time is difficult to occur.

本発明の有機金属化合物及び/又は溶液の安定化剤として、求核性試薬を用いてもよい。安定化剤として例えば、グライム、ジグライム、トリグライム、テトラグライム等のエチレングリコールエーテル類、18−クラウン−6、ジシクロヘキシル−18−クラウン−6、24−クラウン−8、ジシクロヘキシル−24−クラウン−8、ジベンゾ−24−クラウン−8等のクラウンエーテル類、エチレンジアミン、N,N'−テトラメチルエチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、1,1,4,7,7−ペンタメチルジエチレントリアミン、1,1,4,7,10,10−ヘキサメチルトリエチレンテトラミン等のポリアミン類、環状ポリアミン類、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸−2−メトキシエチル等のβ−ケトエステル類又はβ−ジケトン類が挙げられる。上記安定剤の使用量は、金属化合物1モルに対して通常0.1〜10モル、好ましくは1〜4モルである。   A nucleophilic reagent may be used as the organometallic compound and / or solution stabilizer of the present invention. Examples of stabilizers include ethylene glycol ethers such as glyme, diglyme, triglyme and tetraglyme, 18-crown-6, dicyclohexyl-18-crown-6, 24-crown-8, dicyclohexyl-24-crown-8, dibenzo Crown ethers such as -24-crown-8, ethylenediamine, N, N'-tetramethylethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, 1,1,4,7,7-pentamethyl Polyamines such as diethylenetriamine, 1,1,4,7,10,10-hexamethyltriethylenetetramine, cyclic polyamines, β-ketoesters such as methyl acetoacetate, ethyl acetoacetate, and 2-methoxyethyl acetoacetate Alternatively, β-diketones can be mentioned. The usage-amount of the said stabilizer is 0.1-10 mol normally with respect to 1 mol of metal compounds, Preferably it is 1-4 mol.

また、本発明の薄膜用CVD原料を使用して得られる薄膜としては、チタン酸ビスマスランタン、チタン酸ビスマスネオジム、チタン酸ジルコン酸鉛ランタン、チタン酸ランタン、ニッケル酸ランタン、ニッケル酸サマリウム、ジルコン酸ガドリニウム、コバルト酸ランタンストロンチウム、マンガン酸プラセオジムカルシウム、マンガン酸セリウム、ネオジムバリウム銅酸化物、ジスプロシウムバリウム銅酸化物、イッテルビウムバリウム銅酸化物、セリウムバリウムイットリウム酸化物等から構成される薄膜が挙げられる。これらは多分野において非常に有用であり、超伝導体、誘電体、導電体、特に、キャパシタ用誘電体、圧電共振子や赤外線センサー等に使用できる。   Moreover, as a thin film obtained using the CVD raw material for thin film of the present invention, bismuth lanthanum titanate, bismuth neodymium titanate, lead lanthanum zirconate titanate, lanthanum titanate, lanthanum nickelate, samarium nickelate, zirconate Examples include thin films composed of gadolinium, lanthanum strontium cobaltate, praseodymium calcium manganate, cerium manganate, neodymium barium copper oxide, dysprosium barium copper oxide, ytterbium barium copper oxide, cerium barium yttrium oxide, and the like. These are very useful in many fields, and can be used for superconductors, dielectrics, conductors, in particular, capacitor dielectrics, piezoelectric resonators, infrared sensors, and the like.

溶液気化CVD法で複数の金属成分から構成される酸化物薄膜(多成分系)を作製する場合、原料溶液は一般的に、下記(1)〜(4)いずれかの方法で混合及び気化される。
(1)目的とする金属を含む有機金属化合物を別々に溶かした複数の原料溶液を、気化室へ供給する直前に混合して混合溶液を1つの気化室へ供給する(マルチボトルA式)。
(2)上記複数の原料溶液を別々に1つの気化室へ直接供給する(マルチボトルB式)。
(3)上記複数の原料溶液を別々に複数の気化室で気化して得られた蒸気を混合する(マルチボトルC式)。
(4)複数の有機金属化合物を特定の割合で含む1の原料溶液(以下「カクテル」ともいう)を1の気化室へ直接供給する(ワンボトル式)。
上記(1)〜(3)は組成変更が容易であり、(4)は装置の設備費用、運転費用及び運転制御性に優れている。本発明の薄膜用CVD原料は、2種以上の原料溶液から構成されてもよく、2種以上の有機金属化合物を含む1の溶液(カクテル)でもよいため、上記(1)〜(4)のいずれにも適用できる。
When producing an oxide thin film (multicomponent system) composed of a plurality of metal components by the solution vaporization CVD method, the raw material solution is generally mixed and vaporized by any of the following methods (1) to (4). The
(1) A plurality of raw material solutions in which an organometallic compound containing a target metal is separately dissolved are mixed immediately before being supplied to the vaporizing chamber, and the mixed solution is supplied to one vaporizing chamber (multi-bottle A type).
(2) The plurality of raw material solutions are separately supplied directly to one vaporizing chamber (multi-bottle B type).
(3) Vapors obtained by vaporizing the plurality of raw material solutions separately in a plurality of vaporization chambers are mixed (multi-bottle C type).
(4) One raw material solution (hereinafter also referred to as “cocktail”) containing a plurality of organometallic compounds in a specific ratio is directly supplied to one vaporizing chamber (one-bottle type).
The above (1) to (3) are easy to change the composition, and (4) is excellent in equipment cost, operation cost and operation controllability of the apparatus. Since the CVD raw material for thin film of the present invention may be composed of two or more raw material solutions or one solution (cocktail) containing two or more organic metal compounds, the above (1) to (4) It can be applied to both.

薄膜製造方法は当業者に公知の方法を使用でき、例えば、熱CVD、プラズマCVD、光CVD等の方法が挙げられる。熱CVDの場合は、原料を気化して蒸気とし(気化段階)、原料蒸気を基板上に導入し、次いで原料を基板上で分解させて薄膜を基板上に成長させる(成膜段階)。気化段階では原料の気化速度を向上させ、かつ分解を防止するために13330Pa以下、特に8000Pa以下の減圧下で、原料の分解温度以下で行なうことが好ましい。また、基板は予め原料の分解温度以上、好ましくは350℃以上、より好ましくは450℃以上に加熱しておくことが好ましい。また、得られた薄膜には必要に応じてアニール処理を行ってもよい。
本発明の薄膜製造に使用できる装置としては、どのようなものでも良いが、例えば図7に示されるようなMOCVD(metal-organic chemical vapor deposition)法に使用される装置等が挙げられる。
As a thin film manufacturing method, a method known to those skilled in the art can be used, and examples thereof include methods such as thermal CVD, plasma CVD, and photo CVD. In the case of thermal CVD, the raw material is vaporized into vapor (vaporization stage), the raw material vapor is introduced onto the substrate, and then the raw material is decomposed on the substrate to grow a thin film on the substrate (deposition stage). In the vaporization stage, in order to improve the vaporization rate of the raw material and prevent decomposition, it is preferable to carry out under a reduced pressure of 13330 Pa or less, particularly 8000 Pa or less and below the decomposition temperature of the raw material. The substrate is preferably heated in advance to a decomposition temperature of the raw material or higher, preferably 350 ° C. or higher, more preferably 450 ° C. or higher. Further, the obtained thin film may be annealed as necessary.
Any apparatus may be used as the thin film manufacturing apparatus according to the present invention. For example, an apparatus used in a metal-organic chemical vapor deposition (MOCVD) method as shown in FIG.

具体的には、まず、式(I)の化合物を、有機溶媒に例えば0.05〜1mol/lの濃度で溶解させる。同様に目的膜の製造に必要なランタニド系金属以外のCVD原料の溶液も調製する。又、カクテル原料溶液を調製する場合の各CVD原料の混合比率は、目的膜の組成とは必ずしも同じではなく、成膜条件、装置構造に応じて最適なものが選択される。   Specifically, first, the compound of formula (I) is dissolved in an organic solvent at a concentration of, for example, 0.05 to 1 mol / l. Similarly, a solution of a CVD raw material other than the lanthanide metal necessary for manufacturing the target film is also prepared. In addition, the mixing ratio of the respective CVD raw materials when preparing the cocktail raw material solution is not necessarily the same as the composition of the target film, and an optimum one is selected according to the film forming conditions and the apparatus structure.

上記のようにして調製した溶液を使用してランタニド系金属含有薄膜を製造するには、例えばマルチボトルA式の場合、図7に示したような溶液気化CVD装置を用いることが出来る。原料容器に式(I)の化合物を含む原料溶液を充填して溶液気化CVD装置に取り付け、別の原料容器にランタニド系金属以外の有機金属化合物を含む原料溶液を充填して溶液気化CVD装置に取り付け、気化室温度を例えば150〜300℃に設定し、原料溶液供給流量を例えば0.1〜1ml/minとして気化室に供給する。原料溶液は供給された全量が気化し、反応室にAr等の不活性ガスをキャリアガスに用いて送り込まれる。酸化ガスとしては、例えば酸素が使用できる。反応室の圧力は0.1〜50torrに保ち、反応室内に設置した基板を400〜850℃に加熱しておくと基板上にランタニド系金属含有薄膜が形成できる。   In order to produce a lanthanide-based metal-containing thin film using the solution prepared as described above, for example, in the case of the multi-bottle A type, a solution vaporization CVD apparatus as shown in FIG. 7 can be used. Fill the raw material container with the raw material solution containing the compound of formula (I) and attach it to the solution vaporization CVD apparatus, and fill the other raw material container with the raw material solution containing the organometallic compound other than the lanthanide metal to the solution vaporization CVD apparatus. The vaporization chamber temperature is set to 150 to 300 ° C., for example, and the raw material solution supply flow rate is set to 0.1 to 1 ml / min and supplied to the vaporization chamber. The whole amount of the raw material solution supplied is vaporized and fed into the reaction chamber using an inert gas such as Ar as a carrier gas. For example, oxygen can be used as the oxidizing gas. When the pressure in the reaction chamber is kept at 0.1 to 50 torr and the substrate placed in the reaction chamber is heated to 400 to 850 ° C., a lanthanide metal-containing thin film can be formed on the substrate.

以下、実施例によって本発明を更に詳細に説明するが、下記実施例は本発明の範囲を限定するものではない。
実施例1(溶液の調製)
2.75gのNd(TMOD)3・phenをトルエン中に溶解して100mlとし、濃度0.03mol/lの溶液とした。又、4.82gのBi(o−Tol)3をトルエン中に溶解して100mlとし、5.32gのTi(Oi−Pr)2(DPM)2をトルエン中に溶解して100mlとし、それぞれ濃度0.1mol/lの溶液を調製した。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, the following Example does not limit the scope of the present invention.
Example 1 (Preparation of solution)
2.75 g of Nd (TMOD) 3 · phen was dissolved in toluene to 100 ml to obtain a solution having a concentration of 0.03 mol / l. Also, 4.82 g of Bi (o-Tol) 3 was dissolved in toluene to make 100 ml, and 5.32 g of Ti (Oi-Pr) 2 (DPM) 2 was dissolved in toluene to make 100 ml. A 0.1 mol / l solution was prepared.

(薄膜の製造;マルチボトルA式)
図7に示した三元の原料加熱系統を有する通常のホットウォールタイプの溶液気化CVD装置を用い、ヘリウムガスの加圧により原料容器から気化室(温度:230℃)まで原料溶液をそれぞれNd原料溶液0.25ml/min,Bi原料溶液0.35ml/min,Ti原料溶液0.3ml/minで供給した(原料供給量のモル比はTi=3の場合Bi:Nd:Ti=3.5:0.75:3)。気化室に供給された原料溶液全量を気化させ、発生した蒸気をArキャリアガス(200ml/min)により気化室(圧力;47hPa)から反応室(圧力;10.7hPa、温度;250℃)へ供給した。反応室のPt/TiO2/Si基板上(温度;550℃)で、反応ガスは酸素(流量100ml/min)で、10分間成膜を行なった。得られた膜のICP(誘導結合プラズマ発光分析)による組成分析結果は、Bi;80.1μg/cm2、Nd;9.7μg/cm2、Ti;16.2μg/cm2であり、モル比はTi=3としてBi:Nd:Ti=3.40:0.60:3であった。これは目的とするチタン酸ビスマスネオジムの組成モル比3.25:0.75:3とほとんど等しかった。得られた薄膜のキャパシタ特性として5V印加時の残留分極および直流電圧1.5V印加時のリーク電流密度は、2Pr=18μC/cm2及び1×10-8A/cm2以下であった。
(Manufacture of thin film; multi-bottle A type)
Using the normal hot wall type solution vaporization CVD apparatus having the ternary material heating system shown in FIG. 7, the raw material solutions are respectively supplied from the raw material container to the vaporization chamber (temperature: 230 ° C.) by pressurization of helium gas. The solution was supplied at a solution of 0.25 ml / min, a Bi raw material solution of 0.35 ml / min, and a Ti raw material solution of 0.3 ml / min. 0.75: 3). The entire amount of the raw material solution supplied to the vaporizing chamber is vaporized, and the generated vapor is supplied from the vaporizing chamber (pressure: 47 hPa) to the reaction chamber (pressure: 10.7 hPa, temperature: 250 ° C.) by Ar carrier gas (200 ml / min). did. On the Pt / TiO 2 / Si substrate in the reaction chamber (temperature: 550 ° C.), the reaction gas was oxygen (flow rate 100 ml / min) and film formation was performed for 10 minutes. The composition analysis results of the obtained film by ICP (inductively coupled plasma emission spectrometry) were Bi: 80.1 μg / cm 2 , Nd: 9.7 μg / cm 2 , Ti: 16.2 μg / cm 2 , and the molar ratio Was Ti: 3 and Bi: Nd: Ti = 3.40: 0.60: 3. This was almost equal to the composition molar ratio of the target bismuth neodymium titanate 3.25: 0.75: 3. As the capacitor characteristics of the obtained thin film, the remanent polarization when 5 V was applied and the leak current density when DC voltage 1.5 V was applied were 2 Pr = 18 μC / cm 2 and 1 × 10 −8 A / cm 2 or less.

比較例1
Nd(TMOD)32.21gをトルエン中に溶解して100mlとし、濃度0.03mol/lの溶液とした。Bi,Ti原料溶液は実施例1と同じものを使用して、実施例1と同様に成膜した、得られた膜の組成分析の結果は、Bi;84.6μg/cm2、Nd;0.72μg/cm2、Ti;16.8μg/cm2であり、モル比はTi=3としてBi:Nd:Ti=3.46:0.04:3であった。これは目的とするチタン酸ビスマスネオジムの組成モル比に対してNd比が非常に低かった。得られた薄膜の残留分極およびリーク電流密度は、2Pr=1.5μC/cm2及び4×10-7A/cm2であった。
Comparative Example 1
Nd (TMOD) 3 (2.21 g) was dissolved in toluene to 100 ml to obtain a solution having a concentration of 0.03 mol / l. The same Bi and Ti raw material solution as in Example 1 was used, and a film was formed in the same manner as in Example 1. The result of composition analysis of the obtained film was Bi; 84.6 μg / cm 2 , Nd; 0 0.72 μg / cm 2 , Ti; 16.8 μg / cm 2 , and the molar ratio was Bi: Nd: Ti = 3.46: 0.04: 3 with Ti = 3. The Nd ratio was very low with respect to the composition molar ratio of the target bismuth neodymium titanate. The remanent polarization and leakage current density of the obtained thin film were 2Pr = 1.5 μC / cm 2 and 4 × 10 −7 A / cm 2 .

比較例2
Nd(TMOD)3・tetraglyme2.88gをトルエン中に溶解して100mlとし、濃度0.03mol/lの溶液とした。Bi,Ti原料溶液は実施例1と同じものを使用して、実施例1と同様に成膜した、得られた膜の組成分析の結果は、Bi;83.9μg/cm2、Nd;0.88μg/cm2、Ti;16.6μg/cm2であり、モル比はTi=3としてBi:Nd:Ti=3.48:0.05:3であった。これは目的とするチタン酸ビスマスネオジムの組成モル比に対してNd比が非常に低かった。得られた薄膜の残留分極およびリーク電流密度は、2Pr=1.8μC/cm2及び3×10-7A/cm2であった。
Comparative Example 2
2.88 g of Nd (TMOD) 3 · tetraglyme was dissolved in toluene to 100 ml to obtain a solution having a concentration of 0.03 mol / l. The same Bi and Ti raw material solution as in Example 1 was used, and a film was formed in the same manner as in Example 1. The result of composition analysis of the obtained film was Bi; 83.9 μg / cm 2 , Nd; 0 .88 μg / cm 2 , Ti; 16.6 μg / cm 2 , and the molar ratio was Bi: Nd: Ti = 3.48: 0.05: 3 with Ti = 3. The Nd ratio was very low with respect to the composition molar ratio of the target bismuth neodymium titanate. The remanent polarization and leakage current density of the obtained thin film were 2Pr = 1.8 μC / cm 2 and 3 × 10 −7 A / cm 2 .

実施例2(混合溶液の調製)
11.24gのLa(TMOD)3・phen及び2.95gのビス[ジイソブチリルメタナト]ニッケル(Ni(DIBM)2)をトルエン中に溶解して100mlとし、カクテル溶液(濃度はそれぞれ、0.12mol/l及び0.08mol/l)を調製した。
Example 2 (Preparation of mixed solution)
11.24 g of La (TMOD) 3 .phen and 2.95 g of bis [diisobutyrylmethanato] nickel (Ni (DIBM) 2 ) were dissolved in toluene to make 100 ml, and the cocktail solution (concentration was 0.8% each). 12 mol / l and 0.08 mol / l) were prepared.

(薄膜の製造;ワンボトル式)
通常のホットウォールタイプのCVD装置を用い、上記で調製したカクテル溶液を0.3ml/minで気化室(温度;230℃)に導入して気化させ、発生した蒸気をArキャリアガス(200ml/min)により気化室(圧力;47hPa)から反応室(圧力;10.7hPa、温度;250℃)へ供給した。反応室のシリコン単結晶基板上で、反応ガスは酸素(流量100ml/min)で、10分間成膜を行なった。基板温度600℃で得られた薄膜の組成分析結果は、La;41.9μg/cm2、Ni;17.6μg/cm2であり、モル比はLa:Ni=1.01:1.00であった。これは目的とするニッケル酸ランタンの組成モル比1:1とほとんど等しかった。基板温度600℃で得られた薄膜の比抵抗は8×10-4Ωcm2であった。
(Manufacture of thin film; one bottle type)
Using a normal hot wall type CVD apparatus, the cocktail solution prepared above was introduced into the vaporization chamber (temperature: 230 ° C.) at 0.3 ml / min to vaporize, and the generated vapor was converted into an Ar carrier gas (200 ml / min). ) Was supplied from the vaporization chamber (pressure: 47 hPa) to the reaction chamber (pressure: 10.7 hPa, temperature: 250 ° C.). On the silicon single crystal substrate in the reaction chamber, the reaction gas was oxygen (flow rate 100 ml / min) and film formation was performed for 10 minutes. The composition analysis results of the thin film obtained at the substrate temperature of 600 ° C. are La; 41.9 μg / cm 2 , Ni; 17.6 μg / cm 2 , and the molar ratio is La: Ni = 1.01: 1.00. there were. This was almost equal to the target molar ratio of 1: 1 lanthanum nickelate. The specific resistance of the thin film obtained at a substrate temperature of 600 ° C. was 8 × 10 −4 Ωcm 2 .

比較例3
8,77gのLa(TMOD)3及び2.95gの(Ni(DIBM)2)をトルエン中に溶解して100mlとし、カクテル溶液(濃度はそれぞれ、0.12mol/l及び0.08mol/l)を調製した。基板温度600℃で得られた薄膜の組成分析結果は、La;11.6μg/cm2、Ni;17.4μg/cm2であり、モル比はLa:Ni=0.28:1.00であった。これは目的とするニッケル酸ランタンの組成モル比に対してLa比が非常に低かった。又、比抵抗は2×10-2Ωcm2であった。
Comparative Example 3
8.77 g of La (TMOD) 3 and 2.95 g of (Ni (DIBM) 2 ) were dissolved in toluene to make 100 ml, and cocktail solutions (concentrations were 0.12 mol / l and 0.08 mol / l, respectively) Was prepared. The composition analysis results of the thin film obtained at the substrate temperature of 600 ° C. are La; 11.6 μg / cm 2 , Ni; 17.4 μg / cm 2 , and the molar ratio is La: Ni = 0.28: 1.00. there were. The La ratio was very low with respect to the compositional molar ratio of the target lanthanum nickelate. The specific resistance was 2 × 10 −2 Ωcm 2 .

以上のように、本発明の薄膜製造用CVD原料は、ランタニド系金属の膜への変換効率を飛躍的に向上させ、原料及び溶媒の低い使用量で、品質の高いランタニド系金属含有薄膜を安定して製造することが出来た。   As described above, the CVD raw material for thin film production of the present invention dramatically improves the conversion efficiency of lanthanide-based metal into a film, and stabilizes a high-quality lanthanide-based metal-containing thin film with a low amount of raw material and solvent. Could be manufactured.

Nd(TMOD)3・phen(実施例1)の熱重量天秤(TG)分析グラフを示した図である。It is the figure which showed the thermogravimetric balance (TG) analysis graph of Nd (TMOD) 3 * phen (Example 1). La(TMOD)3・phen(実施例2)のTG分析グラフを示した図である。It is the figure which showed the TG analysis graph of La (TMOD) 3 * phen (Example 2). Nd(IBPM)3・phenのTG分析グラフを示した図である。It is the figure which showed the TG analysis graph of Nd (IBPM) 3 * phen. Nd(TMOD)3(比較例1)のTG分析グラフを示した図である。It is the figure which showed the TG analysis graph of Nd (TMOD) 3 (comparative example 1). Nd(TMOD)3・tetraglyme(比較例2)のTG分析グラフを示した図である。It is the figure which showed the TG analysis graph of Nd (TMOD) 3 * tetraglyme (comparative example 2). La(TMOD)3(比較例3)のTG分析グラフを示した図である。It is the figure which showed the TG analysis graph of La (TMOD) 3 (comparative example 3). 溶液気化CVD装置の一例を示した図である。It is the figure which showed an example of the solution vaporization CVD apparatus.

符号の説明Explanation of symbols

1:原料容器
2:洗浄溶媒容器
3:マスフローコントローラ(気体)
4:マスフローコントローラ(液体)
5:気化室
6:反応室
7:基板
8:トラップ
9:真空ポンプ
10:薄膜製造装置
15;キャリアガス(Ar)
16:排ガス
1: Raw material container 2: Cleaning solvent container 3: Mass flow controller (gas)
4: Mass flow controller (liquid)
5: Vaporization chamber 6: Reaction chamber 7: Substrate 8: Trap 9: Vacuum pump 10: Thin film production apparatus 15; Carrier gas (Ar)
16: exhaust gas

Claims (5)

一種以上のランタニド系金属及びランタニド系金属以外の一種以上の金属を含む薄膜製造用CVD原料であり、下式(I)で示される化合物並びにランタニド系金属以外の有機金属化合物を溶媒に溶解して得られ、式(I)で示される化合物を熱重量天秤分析(TG)にかけて得られるΔTGグラフは1つの気化点ピークのみを有する薄膜製造用CVD原料。
Ln(β−dik)3・L ・・・(I)
(但し、Lnはランタニド系金属原子、β−dikはジピバロイルメタン(DPM)、ジイソブチリルメタン(DIBM)、イソブチリルピバロイルメタン(IBPM)、2,2,6,6−テトラメチル−3,5−オクタンジオン(TMOD)、6−エチル−2,2−ジメチル−3,5−オクタンジオン、5−メチル−2,4−ヘキサンジオン、5,5−ジメチル−2,4−ヘキサンジオン、ペンタフルオロプロパノイルピバロイルメタン、2,4−オクタンジオン、及び6−エチル−2,2−ジメチル−3,5−デカンジオンの群から選ばれた少なくとも一種のβ−ジケトン類、Lは1,10−フェナントロリン(phen)、2,2’−ビピリジル(bpy)及びそれらの誘導体の群から選ばれた少なくとも一種の中性配位子を表す。)
A CVD raw material for thin film production containing one or more lanthanide-based metals and one or more metals other than lanthanide-based metals, wherein a compound represented by the following formula (I) and an organometallic compound other than a lanthanide-based metal are dissolved in a solvent: A ΔTG graph obtained by subjecting the compound represented by the formula (I) to thermogravimetric balance analysis (TG) is a CVD raw material for thin film production having only one vaporization point peak.
Ln (β-dik) 3 · L (I)
(However, Ln is a lanthanide metal atom, β-dik is dipivaloylmethane (DPM), diisobutyrylmethane (DIBM), isobutyrylpivaloylmethane (IBPM), 2,2,6,6-tetra Methyl-3,5-octanedione (TMOD), 6-ethyl-2,2-dimethyl-3,5-octanedione, 5-methyl-2,4-hexanedione, 5,5-dimethyl-2,4- At least one β-diketone selected from the group consisting of hexanedione, pentafluoropropanoylpivaloylmethane, 2,4-octanedione, and 6-ethyl-2,2-dimethyl-3,5-decanedione, L Represents at least one neutral ligand selected from the group of 1,10-phenanthroline (phen), 2,2′-bipyridyl (bpy) and derivatives thereof.
上記ランタニド系金属以外の金属がBi、Sr、Ba、Ti、Pb、Ni、Ta、Nb及びZrの群から選ばれた少なくとも一種である請求項1記載の薄膜製造用CVD原料。 The CVD raw material for thin film production according to claim 1, wherein the metal other than the lanthanide metal is at least one selected from the group consisting of Bi, Sr, Ba, Ti, Pb, Ni, Ta, Nb and Zr. 上記有機金属化合物が金属のジピバロイルメタナト、ペンタフルオロプロパノイルピバロイルメタナト、ジイソブチリルメタナト、イソブチリルピバロイルメタナト、2,2,6,6−テトラメチル−3,5−オクタンジオナト、ジオラート、ジアルキルアミド錯体、アルコキシド、シクロペンタジエニル又はそれらの誘導体の少なくとも1種である請求項1又は2記載の薄膜製造用CVD原料。 The organometallic compound is a metal dipivaloylmethanato, pentafluoropropanoylpivaloylmethanato, diisobutyrylmethanato, isobutyrylpivaloylmethanato, 2,2,6,6-tetramethyl-3,5-octane The CVD raw material for producing a thin film according to claim 1 or 2, which is at least one of diato, dioleate, dialkylamide complex, alkoxide, cyclopentadienyl or a derivative thereof. アルコキシドがメトキシド、エトキシド、イソプロポキシド、t−ブトキシド、t−アミロキシドである請求項3記載の薄膜製造用CVD原料。 The CVD raw material for thin film production according to claim 3, wherein the alkoxide is methoxide, ethoxide, isopropoxide, t-butoxide, or t-amyloxide. 請求項1〜4いずれか1項記載の薄膜製造用CVD原料を用いる薄膜製造方法。 The thin film manufacturing method using the CVD raw material for thin film manufacture of any one of Claims 1-4.
JP2004244014A 2004-08-24 2004-08-24 Raw material solution for CVD used for manufacturing a lanthanide-based metal-containing thin film and a method for manufacturing a thin film using the same Expired - Fee Related JP4738775B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004244014A JP4738775B2 (en) 2004-08-24 2004-08-24 Raw material solution for CVD used for manufacturing a lanthanide-based metal-containing thin film and a method for manufacturing a thin film using the same
PCT/IB2005/002397 WO2006021850A2 (en) 2004-08-24 2005-08-10 Cvd precursor solution used for production of a thin film comprising a lanthanide series metal and a thin film producing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004244014A JP4738775B2 (en) 2004-08-24 2004-08-24 Raw material solution for CVD used for manufacturing a lanthanide-based metal-containing thin film and a method for manufacturing a thin film using the same

Publications (2)

Publication Number Publication Date
JP2006063352A JP2006063352A (en) 2006-03-09
JP4738775B2 true JP4738775B2 (en) 2011-08-03

Family

ID=35967905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004244014A Expired - Fee Related JP4738775B2 (en) 2004-08-24 2004-08-24 Raw material solution for CVD used for manufacturing a lanthanide-based metal-containing thin film and a method for manufacturing a thin film using the same

Country Status (2)

Country Link
JP (1) JP4738775B2 (en)
WO (1) WO2006021850A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308789A (en) * 2006-04-19 2007-11-29 Tokyo Electron Ltd Film deposition apparatus and film deposition method
US8142847B2 (en) 2007-07-13 2012-03-27 Rohm And Haas Electronic Materials Llc Precursor compositions and methods
WO2009038168A1 (en) * 2007-09-21 2009-03-26 Tokyo Electron Limited Film forming apparatus and film forming method
US20100034719A1 (en) * 2008-08-06 2010-02-11 Christian Dussarrat Novel lanthanide beta-diketonate precursors for lanthanide thin film deposition
JP5690684B2 (en) 2011-08-02 2015-03-25 株式会社Adeka Alkoxide compounds
JP6359246B2 (en) * 2013-06-11 2018-07-18 宇部興産株式会社 Praseodymium compound and method for producing the same
WO2015066558A1 (en) * 2013-11-01 2015-05-07 President And Fellows Of Harvard College Dopant-driven phase transitions in correlated metal oxides
KR102168174B1 (en) 2014-03-19 2020-10-20 삼성전자주식회사 Ni compound and method of forming thin film
JP2022531068A (en) 2019-03-13 2022-07-06 メトオックス テクノロジーズ,インコーポレイテッド Solid precursor feed system for thin film deposition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106045A (en) * 1991-10-17 1993-04-27 Tosoh Akzo Corp Metallic acetyl acetonato-complex for forming oxide thin film
JPH11507629A (en) * 1995-06-07 1999-07-06 アドバンスド.テクノロジー.マテリアルズ.インコーポレイテッド Reagents based on metal complexes
JP2003321475A (en) * 2002-04-26 2003-11-11 Kojundo Chem Lab Co Ltd Lanthanum tris(diisobutyrylmethanate), method for producing the same and method for producing plzt film using the same by chemical vapor deposition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9302030A (en) * 1993-11-24 1995-06-16 Ass Octel Volatile yttrium organic compounds and process for the preparation of yttrium-containing layered materials from these compounds.
US5916359A (en) * 1995-03-31 1999-06-29 Advanced Technology Materials, Inc. Alkane and polyamine solvent compositions for liquid delivery chemical vapor deposition
US6303391B1 (en) * 1997-06-26 2001-10-16 Advanced Technology Materials, Inc. Low temperature chemical vapor deposition process for forming bismuth-containing ceramic films useful in ferroelectric memory devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106045A (en) * 1991-10-17 1993-04-27 Tosoh Akzo Corp Metallic acetyl acetonato-complex for forming oxide thin film
JPH11507629A (en) * 1995-06-07 1999-07-06 アドバンスド.テクノロジー.マテリアルズ.インコーポレイテッド Reagents based on metal complexes
JP2003321475A (en) * 2002-04-26 2003-11-11 Kojundo Chem Lab Co Ltd Lanthanum tris(diisobutyrylmethanate), method for producing the same and method for producing plzt film using the same by chemical vapor deposition

Also Published As

Publication number Publication date
JP2006063352A (en) 2006-03-09
WO2006021850A3 (en) 2006-10-26
WO2006021850A2 (en) 2006-03-02

Similar Documents

Publication Publication Date Title
JP4565897B2 (en) Thin film forming raw material and thin film manufacturing method
KR101138130B1 (en) Metal compound, material for forming thin film and method for preparing thin film
EP0873343B1 (en) Metal complex source reagents for chemical vapor deposition
WO2006021850A2 (en) Cvd precursor solution used for production of a thin film comprising a lanthanide series metal and a thin film producing method using the same
WO2006043418A1 (en) Alkoxide compound, thin film-forming material and method for forming thin film
JP2005068074A (en) Rare-earth metal complex, raw material for forming thin film, and method for producing thin film
US6504015B2 (en) Tetrahydrofuran-adducted group II β-diketonate complexes as source reagents for chemical vapor deposition
JP2004507551A (en) Source material composition and method for forming metal film on substrate by chemical vapor deposition
US20060088660A1 (en) Methods of depositing lead containing oxides films
WO2018088078A1 (en) Compound, thin-film-forming raw material, thin-film-forming raw material for atomic-layer deposition method, and process for producing thin film
JP4823069B2 (en) Metal compound, thin film forming raw material, and thin film manufacturing method
JP5214191B2 (en) Thin film forming raw material and thin film manufacturing method
JP2006037123A (en) Cvd raw material for thin film, and thin film obtained by using the same
JP4107923B2 (en) Method for producing yttrium-containing composite oxide thin film
EP4067365A1 (en) Compound, thin film-forming material, and method for producing thin film
WO2004076712A1 (en) Bismuth precursor solution for use in a cvd process and deposition process of a bismuth containing thin film using thereof
CN110831950B (en) Tungsten compound, thin film-forming material, and method for producing thin film
WO2006045885A1 (en) Method of depositing lead containing oxides films
JP2004360058A (en) Cvd ingredient solution and method for producing thin film by using the same
EP3951006A1 (en) Raw material for forming thin film, method for producing thin film, and scandium compound
KR100480501B1 (en) Process for the formation of pzt thin film by metal-organic chemical vapor deposition
JP2004360059A (en) Cvd ingredient solution and method for vaporizing the same
EP1961755A1 (en) Strontium silylamides, adducts thereof with Lewis bases, preparation thereof and deposition of strontium thin films
JP4296756B2 (en) Method for producing titanium-containing dielectric thin film from organic titanium compound and solution raw material containing the same
WO2004106583A1 (en) Precursor solution used for the cvd method and use thereof in the production of thin films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110427

R150 Certificate of patent or registration of utility model

Ref document number: 4738775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees