JP4738767B2 - Large cryogenic liquefied gas storage system - Google Patents

Large cryogenic liquefied gas storage system Download PDF

Info

Publication number
JP4738767B2
JP4738767B2 JP2004199562A JP2004199562A JP4738767B2 JP 4738767 B2 JP4738767 B2 JP 4738767B2 JP 2004199562 A JP2004199562 A JP 2004199562A JP 2004199562 A JP2004199562 A JP 2004199562A JP 4738767 B2 JP4738767 B2 JP 4738767B2
Authority
JP
Japan
Prior art keywords
storage tank
tank
liquefied gas
cryogenic liquefied
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004199562A
Other languages
Japanese (ja)
Other versions
JP2006022855A (en
Inventor
明 吉野
耕治 田中
良祐 松林
公憲 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Air Water Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc filed Critical Air Water Inc
Priority to JP2004199562A priority Critical patent/JP4738767B2/en
Publication of JP2006022855A publication Critical patent/JP2006022855A/en
Application granted granted Critical
Publication of JP4738767B2 publication Critical patent/JP4738767B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、LNG(液化天然ガス)等の極低温液化ガスを貯蔵するための大形極低温液化ガス貯槽装置に関するものである。   The present invention relates to a large cryogenic liquefied gas storage device for storing a cryogenic liquefied gas such as LNG (liquefied natural gas).

従来から、LNGサテライト設備等に設置した、LNG等の極低温液化ガスを貯蔵する断熱貯槽では、これが空になる等してローリーからLNG等を充填する場合に、ローリーの運転圧力と断熱貯槽の運転圧力との差圧を利用した差圧充填が行われている。また、断熱貯槽に貯蔵するLNG等を工業用として供給する場合には、ローリーの運転圧力(法律の規定により、差圧充填の場合、0.55MPa程度の運転圧力が常用されている)より高い圧力(0.6MPa程度の中圧)で供給する必要がある場合がある。   Conventionally, in an adiabatic storage tank for storing a cryogenic liquefied gas such as LNG installed in an LNG satellite facility or the like, when the LNG or the like is filled from lorry due to emptiness, the operating pressure of the lorry and the insulation storage tank Differential pressure filling is performed using the differential pressure with the operating pressure. Moreover, when supplying LNG etc. which are stored in an adiabatic storage tank for industrial use, it is higher than the operating pressure of Raleigh (operating pressure of about 0.55 MPa is commonly used in the case of differential pressure filling according to the law). It may be necessary to supply at a pressure (medium pressure of about 0.6 MPa).

そこで、例えば、図2に示すように、内外二重槽(図示せず)で構成された複数基(図2では、2基)の断熱貯槽21,22を設置し、これら両断熱貯槽21,22の頂部からBOG(ボイルオフガス)排出管23,24を延ばすとともに、底部からLNG取出管25,26を延ばし、これら両LNG取出管25,26を連結管27を介して中圧ガス供給管28および低圧ガス供給管29に連結し、充填時には、まず、空になった断熱貯槽21(22)からBOGを排出して(0.7MPa程度から0.3MPa程度に)脱圧し、つぎに、ローリー30に搭載したLNG収容タンク30aから、充填ライン31により、脱圧した断熱貯槽21(22)へLNGを差圧充填したのち、断熱貯槽21(22)に設けた昇圧手段(図示せず)により断熱貯槽21(22)内を加圧して0.7MPa程度にまで昇圧するようにしている。また、需要者側への供給時には、両LNG取出管25,26に設けた開閉弁25a,26aおよび両ガス供給管28,29に設けた減圧弁28a,29aを操作し、中圧ガス供給管28から0.6MPa程度の中圧LNGを需要者側に供給し、低圧ガス供給管29から0.15MPa程度の低圧LNGを需要者側に供給するようにしている。図において、23a,24aはBOG排出管23,24に設けた開閉弁で、31a,31bは充填ライン31に設けた開閉弁である。   Therefore, for example, as shown in FIG. 2, a plurality of (two in FIG. 2) heat insulation storage tanks 21 and 22 configured by inner and outer double tanks (not shown) are installed. The BOG (boil-off gas) discharge pipes 23 and 24 are extended from the top of 22, and the LNG take-out pipes 25 and 26 are extended from the bottom, and both the LNG take-out pipes 25 and 26 are connected to the intermediate pressure gas supply pipe 28 via the connecting pipe 27. And at the time of filling, first, BOG is discharged from the emptied heat insulation storage tank 21 (22) to depressurize (from about 0.7 MPa to about 0.3 MPa), and then the lorry After the LNG is filled into the heat-insulated storage tank 21 (22), which has been depressurized by the filling line 31, from the LNG storage tank 30a mounted on the tank 30, the pressure-increasing means (not shown) provided in the heat-insulated storage tank 21 (22) is used. Heat storage tank 21 (22) in pressurized and so as to boost up to approximately 0.7 MPa. At the time of supply to the consumer side, the on-off valves 25a and 26a provided on both LNG take-out pipes 25 and 26 and the pressure reducing valves 28a and 29a provided on both gas supply pipes 28 and 29 are operated to provide an intermediate pressure gas supply pipe. A medium pressure LNG of about 28 to 0.6 MPa is supplied to the consumer side, and a low pressure LNG of about 0.15 MPa is supplied to the consumer side from the low pressure gas supply pipe 29. In the figure, 23a and 24a are on-off valves provided on the BOG discharge pipes 23 and 24, and 31a and 31b are on-off valves provided on the filling line 31.

また、図3に示すように、LNG取出管25に供給ポンプ33を設け、この供給ポンプ33の下流側部分と断熱貯槽21の頂部とを流量調整弁34a付きバイパス管34で連結し、充填時には、空になった断熱貯槽21にローリー30(運転圧力は0.55MPa程度)から断熱貯槽21(運転圧力は0.3MPa程度)へLNGを差圧充填し、需要者側への供給時には、LNGを供給ポンプ33によりポンプアップして0.7MPa程度にまで加圧したのち、中圧ガス供給管28や低圧ガス供給管29に供給するようにしたものもある。このものでは、供給ポンプ33のミニマムフローを確保するため、LNG取出管25の流量が低下した場合には、これを流量指示調節計35で検出して流量調整弁34aを操作し、LNG取出管25内を通るLNGをバイパス管34を経由して断熱貯槽21に戻すようにしている。   Further, as shown in FIG. 3, a supply pump 33 is provided in the LNG take-out pipe 25, and a downstream portion of the supply pump 33 and the top of the heat insulation storage tank 21 are connected by a bypass pipe 34 with a flow rate adjusting valve 34a. , LNG is filled into the heat insulation storage tank 21 (the operation pressure is about 0.3 MPa) from the lorry 30 (the operation pressure is about 0.55 MPa) into the heat insulation storage tank 21 that has been emptied. In some cases, the gas is pumped up by the supply pump 33 and pressurized to about 0.7 MPa, and then supplied to the intermediate pressure gas supply pipe 28 and the low pressure gas supply pipe 29. In this case, in order to secure the minimum flow of the supply pump 33, when the flow rate of the LNG take-out pipe 25 decreases, this is detected by the flow rate indicating controller 35, and the flow rate adjusting valve 34a is operated, and the LNG take-out pipe is The LNG passing through the inside 25 is returned to the heat insulating storage tank 21 via the bypass pipe 34.

しかしながら、図2に示すものでは、充填時に、脱圧作業・差圧充填作業・加圧作業を行わなければならないため、充填を頻繁に行う場合には、作業が煩雑になる。しかも、脱圧の際に、断熱貯槽21,22からBOGを大気中に排出すると、温暖化を促進するという問題があるため、再利用する必要があり、そのための設備が高価であるうえ、断熱貯槽21,22が大形である場合には、BOGの排出量が大きくなるため、上記設備の規模も大きくする必要があり、一層高価になる。また、図3に示すものでは、需要者の使用量変動やミニマムフローによる流量制限等に対応するため、流量調整弁34aを調整して流量制御しなければならず、その制御が複雑になる。しかも、LNGをバイパス管34を経由して断熱貯槽21に戻す際に、LNGが供給ポンプ33通過時にその機械的エネルギーで加温されたり、バイパス管34通過時に外部からの侵入熱で加温されたりするため、BOGが発生する。   However, in the case shown in FIG. 2, since the depressurization work, the differential pressure filling work, and the pressurizing work must be performed at the time of filling, the work becomes complicated when the filling is performed frequently. In addition, when BOG is discharged from the heat-insulating storage tanks 21 and 22 to the atmosphere at the time of depressurization, there is a problem of promoting global warming, so it is necessary to reuse it, and the equipment for that purpose is expensive, and heat insulation When the storage tanks 21 and 22 are large, the amount of BOG discharged becomes large, so the scale of the equipment needs to be increased and the cost is further increased. Further, in the case shown in FIG. 3, in order to cope with a change in the usage amount of the consumer and a flow rate restriction due to the minimum flow, the flow rate control valve 34 a must be adjusted to control the flow rate, and the control becomes complicated. Moreover, when the LNG is returned to the heat insulating storage tank 21 via the bypass pipe 34, the LNG is heated by its mechanical energy when passing through the supply pump 33, or is heated by external intrusion heat when passing through the bypass pipe 34. As a result, BOG occurs.

本発明は、このような事情に鑑みなされたもので、充填作業が簡単で、設備が安価で、しかも、流量制御が簡単で、BOGが発生しない大形極低温液化ガス貯槽装置の提供をその目的とする。   The present invention has been made in view of such circumstances, and provides a large cryogenic liquefied gas storage tank device that is simple in filling operation, inexpensive in equipment, easy to control the flow rate, and does not generate BOG. Objective.

上記の目的を達成するため、本発明の大形極低温液化ガス貯槽装置は、極低温液化ガスを充填するための3個以上の貯槽を備えた大形極低温液化ガス貯槽装置であって、上記3個以上の貯槽がそれぞれ、内槽と外槽とからなり、それら内槽と外槽との間で真空断熱された内外二重槽で構成され、1個の貯槽が、ローリー搭載のタンク内に収容された極低温液化ガスをタンク内圧と貯槽内圧との差圧を利用して貯槽内に充填する専用の貯槽であり、この専用の貯槽以外の複数の貯槽がそれぞれ、その内圧を所定の圧力に昇圧,保持するための昇圧手段を有している貯槽であり、上記専用の貯槽から極低温液化ガス取出管を上記専用の貯槽以外の複数の貯槽に延ばし、この極低温液化ガス取出管に、上記専用の貯槽から取り出した極低温液化ガスを上記専用の貯槽以外の複数の貯槽に送給して充填するための送給ポンプを、上記専用の貯槽以外の複数の貯槽の複数種類の内圧の種類数未満の数設けたという構成をとる。 In order to achieve the above object, a large cryogenic liquefied gas storage tank apparatus of the present invention is a large cryogenic liquefied gas storage tank apparatus having three or more storage tanks for charging a cryogenic liquefied gas, Each of the three or more storage tanks is composed of an inner tank and an outer tank, and is composed of an inner and outer double tank that is vacuum insulated between the inner tank and the outer tank. One tank is a tank equipped with a lorry. It is a dedicated storage tank that fills the storage tank with the cryogenic liquefied gas contained in the tank using the pressure difference between the tank internal pressure and the storage tank internal pressure. Each of the multiple storage tanks other than this dedicated storage tank has a predetermined internal pressure. A storage tank having a pressure-increasing means for increasing and maintaining the pressure of the tank, and extending the cryogenic liquefied gas extraction pipe from the dedicated storage tank to a plurality of storage tanks other than the dedicated storage tank. The cryogenic liquefied gas removed from the dedicated storage tank The feed pump for filling and feeding a plurality of reservoirs other than the dedicated reservoir, a configuration that is provided number of fewer than the number of a plurality of types of internal pressure of the plurality of reservoirs other than the dedicated reservoir.

すなわち、本発明の大形極低温液化ガス貯槽装置は、ローリーから供給される極低温液化ガスを充填するために用いられる受け入れ専用の貯槽を1個有しており、この専用の貯槽にのみ、ローリー搭載のタンク内に収容された極低温液化ガスを、タンク内圧(すなわち、ローリーの運転圧力)と貯槽内圧(すなわち、貯槽の運転圧力)との差圧を利用して充填するようにしている。この差圧充填では、上記貯槽内圧はタンク内圧より低くなる。そこで、上記専用の貯槽から延びる極低温液化ガス取出管に送給ポンプを設け、この送給ポンプにより、上記専用の貯槽から取り出した極低温液化ガスを上記専用の貯槽以外の貯槽に送給して充填するようにしている。このように、本発明の大形極低温液化ガス貯槽装置では、上記専用の貯槽の内圧がローリー搭載のタンクの内圧より低く設定されているため、ローリーから極低温液化ガスを上記専用の貯槽に充填する場合に、上記専用の貯槽に対し、充填前の脱圧作業および充填後の加圧作業を行う必要がなく、上記充填のための作業が簡単化する。しかも、上記脱圧作業を行わないため、BOGが発生せず、BOGを再利用するための設備を設ける必要がなくなり、安価になる。しかも、送給ポンプにより、上記専用の貯槽と上記専用の貯槽以外の貯槽との間で極低温液化ガスを液移送させるだけであるため、送給ポンプ等の流量制御が簡単になる。しかも、上記専用の貯槽に多量の極低温液化ガスを充填しておき、上記専用の貯槽以外の貯槽において極低温液化ガスが所定量減少すると、その都度送給ポンプを駆動させて極低温液化ガスを補給することで、ミニマムフローの心配がなくなり、従来例ではミニマムフロー使用時に生じていた、BOGの発生がなくなる。しかも、上記専用の貯槽以外の貯槽の貯槽内圧を多用な供給条件ごとに設定できるため、供給圧力が数種ある場合にも送給ポンプを数種類持つ必要がない。   That is, the large cryogenic liquefied gas storage device of the present invention has one receiving-only storage tank used for filling the cryogenic liquefied gas supplied from the lorry, and only in this dedicated storage tank, The cryogenic liquefied gas contained in the tank equipped with the lorry is filled using the pressure difference between the tank internal pressure (ie, the operating pressure of the lorry) and the storage tank internal pressure (ie, the operating pressure of the storage tank). . In this differential pressure filling, the storage tank internal pressure is lower than the tank internal pressure. Therefore, a feed pump is provided in the cryogenic liquefied gas extraction pipe extending from the dedicated storage tank, and the cryogenic liquefied gas taken out from the dedicated storage tank is sent to a storage tank other than the dedicated storage tank by the feed pump. To fill. Thus, in the large cryogenic liquefied gas storage device of the present invention, since the internal pressure of the dedicated storage tank is set lower than the internal pressure of the tank equipped with the lorry, the cryogenic liquefied gas from the lorry is transferred to the dedicated storage tank. When filling, there is no need to perform depressurization work before filling and pressurization work after filling the dedicated storage tank, and the work for filling is simplified. In addition, since the depressurization operation is not performed, BOG does not occur, and it is not necessary to provide facilities for reusing BOG, and the cost is reduced. Moreover, since the cryogenic liquefied gas is merely transferred between the dedicated storage tank and the storage tank other than the dedicated storage tank by the feed pump, the flow rate control of the feed pump and the like is simplified. In addition, a large amount of cryogenic liquefied gas is filled in the dedicated storage tank, and when the cryogenic liquefied gas is reduced by a predetermined amount in a storage tank other than the dedicated storage tank, the feed pump is driven each time the cryogenic liquefied gas is driven. By replenishing, there is no worry about the minimum flow, and the occurrence of BOG, which was generated when using the minimum flow in the conventional example, is eliminated. Moreover, since the tank internal pressures of the storage tanks other than the dedicated storage tank can be set for various supply conditions, it is not necessary to have several types of feed pumps even when there are several types of supply pressures.

また、上記専用の貯槽以外の貯槽が、その内圧を昇圧させるための昇圧手段を有していると、この昇圧手段で、上記専用の貯槽以外の貯槽の内圧を所定の圧力に昇圧,保持することができる。   Further, when the storage tank other than the dedicated storage tank has a pressure increasing means for increasing the internal pressure, the pressure increasing means increases and holds the internal pressure of the storage tank other than the dedicated storage tank to a predetermined pressure. be able to.

つぎに、本発明を実施の形態にもとづいて詳しく説明する。   Next, the present invention will be described in detail based on embodiments.

図1は本発明の大形極低温液化ガス貯槽装置の一実施の形態を示している。図において、1〜4は複数基(この実施の形態では、4基)の貯槽であり、それぞれ内槽(図示せず)と外槽1a〜4aとを備えた内外二重槽で構成されている。これら内槽の外周面および外槽1aの内周面には、断熱層(図示せず)が形成されており、かつ、内槽と外槽1a間の空間が真空断熱されている。上記貯槽1〜4のうち、貯槽(専用の貯槽)1は、ローリー5から供給されるLNGを充填するために設けられた受け入れ専用の貯槽であり、その運転圧力(すなわち、貯槽内圧)が0.3MPa程度に設定されている。また、貯槽2は、その運転圧力が0.3MPa程度に、貯槽3は0.7MPa程度に、貯槽4は2.2MPa程度にそれぞれ設定されている。また、これら各貯槽1〜4は、その内部圧力を上記運転圧力に昇圧,保持するための昇圧手段(図示せず)を有している。これら各昇圧手段は、各貯槽1〜4内のLNGを各貯槽1〜4の底部から取り出し、気化器で気化したのち各貯槽1〜4の頂部に戻すことにより、その内部圧力を上記運転圧力に昇圧,保持するものである。6は送給ポンプであり、上記受け入れ専用の貯槽1の底部から延びるLNG取出管(極低温液化ガス取出管)10に設けられている。11〜13は上記LNG取出管10の送給ポンプ6の下流側部分から上記貯槽2〜4の底部に延びる入口管で、14〜16は上記貯槽2〜4の底部から延びるLNG導出管であり、貯槽2の底部から延びるLNG導出管14は減圧弁17a付き低圧LNG供給管17に連結し、貯槽3の底部から延びるLNG導出管15は減圧弁18a付き中圧LNG供給管18に連結し、貯槽4の底部から延びるLNG導出管16は減圧弁19a付き高圧LNG供給管19に連結している。図において、11a,12a,13aは入口管11〜13に設けた開閉弁で、20は充填ラインである。   FIG. 1 shows an embodiment of a large cryogenic liquefied gas storage device of the present invention. In the figure, 1 to 4 are storage tanks of a plurality of groups (in this embodiment, 4 groups), each of which is composed of an inner / outer double tank having an inner tank (not shown) and outer tanks 1a to 4a. Yes. A heat insulating layer (not shown) is formed on the outer peripheral surface of these inner tanks and the inner peripheral surface of the outer tank 1a, and the space between the inner tank and the outer tank 1a is vacuum insulated. Among the storage tanks 1 to 4, the storage tank (dedicated storage tank) 1 is a receiving-only storage tank provided to fill the LNG supplied from the lorry 5, and its operating pressure (that is, the storage tank internal pressure) is 0. It is set to about 3 MPa. Further, the operating pressure of the storage tank 2 is set to about 0.3 MPa, the storage tank 3 is set to about 0.7 MPa, and the storage tank 4 is set to about 2.2 MPa. Each of the storage tanks 1 to 4 has a pressure increasing means (not shown) for increasing and maintaining the internal pressure at the above operating pressure. Each of these pressurizing means takes out the LNG in each of the storage tanks 1 to 4 from the bottom of each of the storage tanks 1 to 4, vaporizes it with a vaporizer, and then returns the LNG to the top of each of the storage tanks 1 to 4. The voltage is boosted and maintained. Reference numeral 6 denotes a feed pump, which is provided in an LNG take-out pipe (cryogenic liquefied gas take-out pipe) 10 extending from the bottom of the storage tank 1 dedicated to reception. Reference numerals 11 to 13 denote inlet pipes extending from the downstream side portion of the feed pump 6 of the LNG take-out pipe 10 to the bottom of the storage tanks 2 to 4, and reference numerals 14 to 16 denote LNG lead-out pipes extending from the bottom of the storage tanks 2 to 4. The LNG outlet pipe 14 extending from the bottom of the storage tank 2 is connected to a low pressure LNG supply pipe 17 with a pressure reducing valve 17a, and the LNG outlet pipe 15 extending from the bottom of the storage tank 3 is connected to an intermediate pressure LNG supply pipe 18 with a pressure reducing valve 18a. An LNG lead-out pipe 16 extending from the bottom of the storage tank 4 is connected to a high-pressure LNG supply pipe 19 with a pressure reducing valve 19a. In the figure, 11a, 12a and 13a are on-off valves provided in the inlet pipes 11 to 13, and 20 is a filling line.

このような大形極低温液化ガス貯槽装置に、つぎのようにしてLNGを充填することができる。すなわち、まず、ローリー5に搭載されたLNG収容タンク5a(運転圧力0.55MPa程度)のLNGを差圧充填により受け入れ専用の貯槽1に充填し、ついで、各入口管11〜13の開閉弁11a〜13aを開閉操作し、送給ポンプ6を駆動し、LNG取出管10により貯槽1から取り出したLNGを、所定の圧力に保持された貯槽2〜4に適時液移送して充填しながら、昇圧手段で所定の運転圧力に昇圧,保持する。そして、0.15MPa程度の低圧LNGを需要者側へ供給する場合には、貯槽2のLNGを低圧LNG供給管17により供給し、0.6MPa程度の中圧LNGを需要者側へ供給する場合には、貯槽3のLNGを中圧LNG供給管18により供給し、2.1MPa程度の高圧LNGを需要者側へ供給する場合には、貯槽4のLNGを高圧LNG供給管19により供給することを行う。   Such a large cryogenic liquefied gas storage device can be filled with LNG as follows. That is, first, LNG in the LNG storage tank 5a (operating pressure of about 0.55 MPa) mounted on the lorry 5 is filled into the storage tank 1 dedicated to receiving by differential pressure filling, and then the on-off valves 11a of the respective inlet pipes 11-13. -13a is opened / closed, the feed pump 6 is driven, and the LNG taken out from the storage tank 1 by the LNG take-out pipe 10 is pressurized and transferred to the storage tanks 2 to 4 held at a predetermined pressure in a timely manner. The pressure is increased and maintained at a predetermined operating pressure by means. And when supplying the low pressure LNG of about 0.15 MPa to the customer side, the LNG of the storage tank 2 is supplied by the low pressure LNG supply pipe 17 and the medium pressure LNG of about 0.6 MPa is supplied to the customer side. In the case of supplying the LNG in the storage tank 3 through the medium pressure LNG supply pipe 18 and supplying the high pressure LNG of about 2.1 MPa to the consumer side, the LNG in the storage tank 4 is supplied through the high pressure LNG supply pipe 19. I do.

上記のように、この実施の形態では、受け入れ専用の貯槽1の運転圧力がローリー5の運転圧力より低く設定されているため、充填時に、受け入れ専用の貯槽1に対し、充填前の脱圧作業および充填後の加圧作業を行う必要がなく、上記充填のための作業が簡単化する。しかも、上記脱圧作業を行わないため、BOGが発生せず、BOGを再利用するための設備を設ける必要がなくなり、安価になる。しかも、送給ポンプ6により、受け入れ専用の貯槽1と貯槽2〜4との間でLNGを液移送させるだけであるため、送給ポンプ6等の流量制御が簡単になる。しかも、受け入れ専用の貯槽1に多量のLNGを充填しておき、貯槽1〜4のLNGが所定量減少すると、その都度送給ポンプ6を駆動してLNGを補給することで、ミニマムフローの心配がなくなり、BOGが発生しなくなる。しかも、貯槽2〜4の運転圧力を多用な供給条件ごとに設定できるため、供給圧力が数種ある場合にも送給ポンプ6を数種類持つ必要がない。   As described above, in this embodiment, since the operating pressure of the receiving-only storage tank 1 is set lower than the operating pressure of the lorry 5, the depressurization work before filling is performed on the receiving-only storage tank 1 during filling. In addition, it is not necessary to perform a pressurizing operation after filling, and the above filling operation is simplified. In addition, since the depressurization operation is not performed, BOG does not occur, and it is not necessary to provide facilities for reusing BOG, and the cost is reduced. Moreover, since the LNG is only transferred between the storage tank 1 and the storage tanks 2 to 4 by the feed pump 6, the flow rate control of the feed pump 6 and the like is simplified. In addition, a large amount of LNG is filled in the storage tank 1 dedicated to reception, and when the LNG in the storage tanks 1 to 4 decreases by a predetermined amount, the feed pump 6 is driven each time to replenish the LNG. And no BOG occurs. In addition, since the operating pressures of the storage tanks 2 to 4 can be set for various supply conditions, it is not necessary to have several types of feed pumps 6 even when there are several types of supply pressures.

なお、上記両実施の形態において、各貯槽1〜4の内槽と外槽1a〜4a間の空間にパーライトを充填してもよい。   In both the above embodiments, the pearlite may be filled in the space between the inner tanks of the storage tanks 1 to 4 and the outer tanks 1a to 4a.

本発明の大形極低温液化ガス貯槽装置の一実施の形態を示す説明図である。It is explanatory drawing which shows one Embodiment of the large cryogenic liquefied gas storage tank apparatus of this invention. 従来例を示す説明図である。It is explanatory drawing which shows a prior art example. 他の従来例を示す説明図である。It is explanatory drawing which shows another prior art example.

符号の説明Explanation of symbols

1〜4 貯槽
1a〜4a 外槽
5 ローリー
6 送給ポンプ
10 LNG取出管
1-4 Storage tank 1a-4a Outer tank 5 Raleigh 6 Feed pump 10 LNG take-out pipe

Claims (3)

極低温液化ガスを充填するための3個以上の貯槽を備えた大形極低温液化ガス貯槽装置であって、上記3個以上の貯槽がそれぞれ、内槽と外槽とからなり、それら内槽と外槽との間で真空断熱された内外二重槽で構成され、1個の貯槽が、ローリー搭載のタンク内に収容された極低温液化ガスをタンク内圧と貯槽内圧との差圧を利用して貯槽内に充填する専用の貯槽であり、この専用の貯槽以外の複数の貯槽がそれぞれ、その内圧を所定の圧力に昇圧,保持するための昇圧手段を有している貯槽であり、上記専用の貯槽から極低温液化ガス取出管を上記専用の貯槽以外の複数の貯槽に延ばし、この極低温液化ガス取出管に、上記専用の貯槽から取り出した極低温液化ガスを上記専用の貯槽以外の複数の貯槽に送給して充填するための送給ポンプを、上記専用の貯槽以外の複数の貯槽の複数種類の内圧の種類数未満の数設けたことを特徴とする大形極低温液化ガス貯槽装置。 A large cryogenic liquefied gas storage tank apparatus having three or more storage tanks for filling a cryogenic liquefied gas, wherein the three or more storage tanks are each composed of an inner tank and an outer tank. It is composed of inner and outer double tanks that are vacuum insulated between the outer tank and the outer tank. One storage tank uses the cryogenic liquefied gas stored in the tank equipped with the lorry using the pressure difference between the tank internal pressure and the tank internal pressure. A storage tank dedicated to filling the storage tank, and each of the plurality of storage tanks other than the dedicated storage tank is a storage tank having a pressure increasing means for increasing and holding the internal pressure at a predetermined pressure. The cryogenic liquefied gas extraction pipe is extended from the dedicated storage tank to a plurality of storage tanks other than the dedicated storage tank, and the cryogenic liquefied gas taken out from the dedicated storage tank is transferred to the cryogenic liquefied gas extraction pipe other than the dedicated storage tank. Feeding pump for feeding and filling multiple storage tanks A large cryogenic liquefied gas storage tank and wherein the provided number of fewer than the number of a plurality of types of internal pressure of the plurality of reservoirs other than the dedicated reservoir. 上記専用の貯槽以外の複数の貯槽の内圧がそれぞれ、上記昇圧手段により、互いに異なる圧力に設定されている請求項1記載の大形極低温液化ガス貯槽装置。   2. The large cryogenic liquefied gas storage apparatus according to claim 1, wherein internal pressures of a plurality of storage tanks other than the dedicated storage tank are set to different pressures by the pressure increasing means. 上記送給ポンプの数が、1個である請求項1または2記載の大形極低温液化ガス貯槽装置。   The large cryogenic liquefied gas storage device according to claim 1 or 2, wherein the number of the feed pumps is one.
JP2004199562A 2004-07-06 2004-07-06 Large cryogenic liquefied gas storage system Active JP4738767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004199562A JP4738767B2 (en) 2004-07-06 2004-07-06 Large cryogenic liquefied gas storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004199562A JP4738767B2 (en) 2004-07-06 2004-07-06 Large cryogenic liquefied gas storage system

Publications (2)

Publication Number Publication Date
JP2006022855A JP2006022855A (en) 2006-01-26
JP4738767B2 true JP4738767B2 (en) 2011-08-03

Family

ID=35796283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004199562A Active JP4738767B2 (en) 2004-07-06 2004-07-06 Large cryogenic liquefied gas storage system

Country Status (1)

Country Link
JP (1) JP4738767B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146097A (en) * 1998-11-05 2000-05-26 Ihi Plantec:Kk Pressure dropping method for medium pressure lng storing tank
JP2001226684A (en) * 2000-02-17 2001-08-21 Air Liquide Japan Ltd Gas supply facility

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5421160A (en) * 1993-03-23 1995-06-06 Minnesota Valley Engineering, Inc. No loss fueling system for natural gas powered vehicles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146097A (en) * 1998-11-05 2000-05-26 Ihi Plantec:Kk Pressure dropping method for medium pressure lng storing tank
JP2001226684A (en) * 2000-02-17 2001-08-21 Air Liquide Japan Ltd Gas supply facility

Also Published As

Publication number Publication date
JP2006022855A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
JP5248607B2 (en) Filling tank with pressurized gas
EP0717699B1 (en) System and method for compressing natural gas
JP4526189B2 (en) Method for replacing compressed liquefied gas from containers
JP4526188B2 (en) Method for discharging compressed liquefied natural gas from containers
CN112789443B (en) Method and installation for storing and distributing liquefied hydrogen
US9074730B2 (en) Method for dispensing compressed gases
US20140261863A1 (en) Method for Dispensing Compressed Gases
US20120130549A1 (en) Plant for storing and supplying compressed gas
JP2014111984A (en) Hydrogen station
JP4698301B2 (en) Natural gas supply system and supply method
KR102560637B1 (en) A method for transporting a cryogenic fluid and a transport system for implementing the method
KR101059869B1 (en) Regasification Facility of LNG
JP2009168221A (en) Liquefied natural gas satellite facility
WO2000036334A1 (en) Displacement gas for unloading lng from containers
CN109257936B (en) Apparatus and method for supplying fuel to a power generation unit
JP4738766B2 (en) Large cryogenic liquefied gas storage tank
JP4738767B2 (en) Large cryogenic liquefied gas storage system
JP5130235B2 (en) Hydrogen fuel supply method
KR102276359B1 (en) Safety apparatus of lngc unloading system
KR101479486B1 (en) Lng regasification real-time operating system and operating method
KR102295010B1 (en) gas treatment system and marine structure having the same
US20190249829A1 (en) Liquefied gas regasification system and operation method therefor
WO2008097099A1 (en) Method and device for transport of gas
CN111602000B (en) Method and system for supplying liquefied gas
Knudsen Design and use of a large-scale liquid helium conversion system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110427

R150 Certificate of patent or registration of utility model

Ref document number: 4738767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250