JP4737369B2 - Manufacturing method of organic EL element - Google Patents

Manufacturing method of organic EL element Download PDF

Info

Publication number
JP4737369B2
JP4737369B2 JP2004307567A JP2004307567A JP4737369B2 JP 4737369 B2 JP4737369 B2 JP 4737369B2 JP 2004307567 A JP2004307567 A JP 2004307567A JP 2004307567 A JP2004307567 A JP 2004307567A JP 4737369 B2 JP4737369 B2 JP 4737369B2
Authority
JP
Japan
Prior art keywords
light emitting
organic
emitting layer
layer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004307567A
Other languages
Japanese (ja)
Other versions
JP2006120473A (en
Inventor
正寛 皆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seiki Co Ltd
Original Assignee
Nippon Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seiki Co Ltd filed Critical Nippon Seiki Co Ltd
Priority to JP2004307567A priority Critical patent/JP4737369B2/en
Publication of JP2006120473A publication Critical patent/JP2006120473A/en
Application granted granted Critical
Publication of JP4737369B2 publication Critical patent/JP4737369B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、異なる発光色を示す複数の発光層を有する有機EL素子の製造方法に関する。   The present invention relates to a method for producing an organic EL element having a plurality of light emitting layers exhibiting different emission colors.

従来、有機EL素子としては、陽極となるITO(Indium Tin Oxide)等からなる透明電極と、正孔注入層、正孔輸送層、発光層及び電子輸送層等からなる有機層と、陰極となるアルミニウム(Al)等からなる非透光性の背面電極と、を順次積層形成して構成されるものが知られており、例えば、特許文献1に開示されるような、前記発光層として少なくとも2種類以上の異なる発光色を示す発光層を積層してなるものが知られている。かかる有機EL素子は、異なる発光色を示す前記発光層を積層することで混色により所定の色の表示光を得ることができ、例えば青色発光層と黄色発光層とを積層することにより白色の表示光を得ることができる。   Conventionally, as an organic EL element, a transparent electrode made of ITO (Indium Tin Oxide) or the like to be an anode, an organic layer made of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, or the like, and a cathode It is known that a non-translucent back electrode made of aluminum (Al) or the like is sequentially stacked and formed. For example, as disclosed in Patent Document 1, at least 2 as the light emitting layer is disclosed. A layered structure of light emitting layers exhibiting more than one kind of different emission colors is known. Such an organic EL element can obtain display light of a predetermined color by mixing the light emitting layers exhibiting different emission colors. For example, a white display can be obtained by stacking a blue light emitting layer and a yellow light emitting layer. Light can be obtained.

また、かかる有機EL素子の製造工程において、蒸着法もしくはスパッタリング法等によって前記電極及び前記各層を形成する場合の真空漕内に、数μm以下の塵やゴミ等の異物が混入することがある。前記透明電極上にこの異物が付着した状態で前記有機層を形成すると、膜厚が10nm〜100nmと非常に薄い前記有機層が部分的に更に薄くなり、この前記有機層上に前記背面電極を形成すると、前記透明電極と前記背面電極とが短絡したり、リークが生じるおそれがあった。かかる問題を解決するために、本願出願人は、特許文献2にて、前記支持基板上に前記有機EL素子を形成した後、所定の酸素濃度を有する窒素雰囲気中にて両電極間に所定の電圧を印加する通電処理を行い、少なくとも前記背面電極の前記透明電極に接触している部分を除去して前記透明電極から剥離させる方法を提案している。
特開平12−68057号公報 特開2003−282249号公報
Further, in the manufacturing process of the organic EL element, foreign matter such as dust or dust having a size of several μm or less may be mixed in a vacuum chamber when the electrodes and the layers are formed by vapor deposition or sputtering. When the organic layer is formed with the foreign matter adhered on the transparent electrode, the very thin organic layer having a thickness of 10 nm to 100 nm is partially further thinned, and the back electrode is formed on the organic layer. When formed, the transparent electrode and the back electrode could be short-circuited or leaked. In order to solve such a problem, the applicant of the present invention disclosed in Patent Document 2 that after forming the organic EL element on the support substrate, a predetermined gap between both electrodes in a nitrogen atmosphere having a predetermined oxygen concentration was obtained. A method is proposed in which an energization process of applying a voltage is performed, and at least a portion of the back electrode in contact with the transparent electrode is removed and peeled off from the transparent electrode.
JP-A-12-68057 JP 2003-282249 A

しかしながら、前記通電処理を施された有機EL素子は、電流密度によって得られる表示光の色度が大きく変化し、目的とする色の表示光を得ることができなくなるという問題点があった。かかる問題点は特に異なる発光色の前記発光層を複数積層した有機EL素子において顕著に表れるものであり、高電流密度で前記有機EL素子を高輝度発光させた時と低電流密度で前記有機EL素子を低輝度発光させた時とで得られる発光色が異なる場合が生じる。これは、前記通電処理を行うことによって、電流密度に対して得られる前記各発光層の発光輝度が、前記各発光層によって異なる度合いで変化することによるものである。   However, the organic EL element that has been subjected to the energization treatment has a problem that the chromaticity of the display light obtained depending on the current density is greatly changed, making it impossible to obtain display light of the target color. Such a problem is particularly prominent in an organic EL element in which a plurality of the light emitting layers having different emission colors are stacked. The organic EL element emits light with high luminance at a high current density and has a low current density. There are cases where the emission color obtained differs depending on when the device emits light with low luminance. This is because the light emission luminance of each light emitting layer obtained with respect to the current density by performing the energization process changes to a different degree depending on each light emitting layer.

図5は、前記発光層として黄色発光層と青色発光層と積層形成してなる従来の有機EL素子における前記通電処理前後の表示光の色度と電流密度との関係を示す図である。図5におけるCIE色度座標のx値及びy値は所定の基準値を0とした場合の値を示している。なお、前記黄色発光層は、例えば出光興産株式会社製のIDE120からなるホスト材料に例えばナフタセン誘導体からなる黄色発光を示す発光材料をドープして形成されており、さらに例えばα−NPD等の正孔輸送性材料を加えられている。前記青色発光層は、前記黄色発光層と同様のホスト材料に例えば出光興産株式会社製のBD102からなる青色発光を示す発光材料をドープして形成されており、さらに前記正孔輸送性材料を加えられている。図5(a)において、特性S5は、前記通電処理前の前記従来の有機EL素子における表示光のCIE色度座標のx値と電流密度との関係を示しており、特性S6は、前記通電処理後の前記従来の有機EL素子における表示光のCIE色度座標のx値のと電流密度との関係を示している。また、図5(b)において、特性S7は、前記通電処理前の前記従来の有機EL素子における表示光のCIE色度座標のy値と電流密度との関係を示しており、特性S8は、前記通電処理後の前記従来の有機EL素子における表示光のCIE色度座標のy値と電流密度との関係を示している。図5に示すように、前記通電処理後の前記従来の有機EL素子は、特に電流密度に対する表示光のCIE色度座標のx値の色度変化量Δx、すなわち電流密度を変化させた場合の表示光のCIE色度座標のx値の最大値と最小値との差が前記通電処理前よりも大きく、低電流密度による発光駆動時と高電流密度による発光駆動時とで得られる発光色が異なっている。   FIG. 5 is a diagram showing the relationship between the chromaticity of display light and the current density before and after the energization process in a conventional organic EL device in which a yellow light emitting layer and a blue light emitting layer are stacked as the light emitting layer. The x value and y value of the CIE chromaticity coordinates in FIG. 5 indicate values when a predetermined reference value is 0. The yellow light-emitting layer is formed, for example, by doping a host material made of IDE120 manufactured by Idemitsu Kosan Co., Ltd. with a light-emitting material showing yellow light emission made of, for example, a naphthacene derivative, and further, for example, holes such as α-NPD Transportable materials have been added. The blue light-emitting layer is formed by doping a host material similar to the yellow light-emitting layer with, for example, a light-emitting material showing blue light emission made of BD102 made by Idemitsu Kosan Co., Ltd., and further adding the hole transporting material. It has been. In FIG. 5A, a characteristic S5 indicates a relationship between an x value of CIE chromaticity coordinates of display light and a current density in the conventional organic EL element before the energization process, and a characteristic S6 indicates the energization. The relationship between the x value of the CIE chromaticity coordinate of the display light and the current density in the conventional organic EL element after processing is shown. In FIG. 5B, a characteristic S7 indicates the relationship between the y value of the CIE chromaticity coordinates of the display light and the current density in the conventional organic EL element before the energization process, and the characteristic S8 is The relationship between the y value of the CIE chromaticity coordinate of the display light and the current density in the conventional organic EL element after the energization process is shown. As shown in FIG. 5, the conventional organic EL element after the energization processing is particularly when the chromaticity change amount Δx of the x value of the CIE chromaticity coordinates of the display light with respect to the current density, that is, when the current density is changed. The difference between the maximum value and the minimum value of the x value of the CIE chromaticity coordinates of the display light is larger than that before the energization process, and the emission color obtained by the light emission driving at the low current density and the light emission driving at the high current density is obtained. Is different.

本発明は、このような問題に鑑み、有機EL素子形成後に所定の電圧を印加する通電処理を行う場合であっても、電流密度にかかわらず目的とする発光色を得ることが可能な有機EL素子の製造方法を提供することを目的とする。   In view of such a problem, the present invention is an organic EL device capable of obtaining a target luminescent color regardless of the current density even when an energization process of applying a predetermined voltage is performed after the organic EL element is formed. An object is to provide a method for manufacturing an element.

本発明は、前記課題を解決するために、発光色の異なる複数の発光層を少なくとも有する有機層を一対の電極で挟持してなる有機EL素子の製造方法であって、
電流密度に対する表示光の色度変化量が0.02より大きい値となるように前記各発光層を形成する工程と、前記両電極及び前記有機層形成後に前記両電極間に所定の電圧を印加する通電処理を行う工程と、を少なくとも含んでなり、
前記各発光層を形成する工程において、前記各発光層をホスト材料に発光材料を混合して形成し、または、前記各発光層をホスト材料に発光材料を混合しさらに正孔輸送性材料あるいは電子輸送性材料を加えて形成し、前記各発光層のうち少なくとも発光波長が短い発光層の膜厚、前記各発光層のうち少なくとも発光波長が短い発光層に含まれる前記発光材料の濃度、前記各発光層のうち少なくとも発光波長が短い発光層に含まれる前記正孔輸送性材料の濃度、前記各発光層のうち少なくとも発光波長が短い発光層に含まれる前記電子輸送性材料の濃度、あるいはこれらの組み合わせにより電流密度に対する前記表示光の色度変化量を調整し、
前記通電処理を行う工程において、前記有機層を50℃以上に加熱して前記通電処理を行い、一方の電極の他方の電極に接触している部分を除去して前記他方の電極から剥離させることを特徴とする。
In order to solve the above-mentioned problems, the present invention provides a method for producing an organic EL element comprising an organic layer having at least a plurality of light-emitting layers having different emission colors and sandwiched between a pair of electrodes.
A step of forming each light emitting layer so that the amount of change in chromaticity of display light with respect to the current density is greater than 0.02, and a predetermined voltage is applied between the electrodes after the formation of the electrodes and the organic layer. and performing energization processing for, Ri name contains at least a
In the step of forming each light emitting layer, each light emitting layer is formed by mixing a light emitting material with a host material, or each light emitting layer is mixed with a light emitting material with a host material, and further a hole transporting material or electron Formed by adding a transport material, the thickness of the light emitting layer having at least a short emission wavelength among the light emitting layers, the concentration of the light emitting material contained in the light emitting layer having at least a short emission wavelength among the light emitting layers, The concentration of the hole transporting material contained in the light emitting layer having a short emission wavelength among the light emitting layers, the concentration of the electron transporting material contained in the light emitting layer having a short emission wavelength among the light emitting layers, or these By adjusting the amount of change in chromaticity of the display light with respect to the current density,
In the step of performing the energization processing, performs the energization processing by heating the organic layer over 50 ° C., Ru and remove a portion in contact with the other electrode of the one electrode is peeled from the other electrode It is characterized by that.

また、前記通電処理後の電流密度に対する前記表示光の色度変化量が0.02以下となるように前記通電処理を行うことを特徴とする。   Further, the energization process is performed such that the chromaticity change amount of the display light with respect to the current density after the energization process is 0.02 or less.

また、前記通電処理を行う工程において、前記両電極間に所定の電圧を逆バイアス方向に印加することを特徴とする。   Further, in the step of performing the energization process, a predetermined voltage is applied between the electrodes in the reverse bias direction.

また、前記通電処理を行う工程において、前記通電処理を所定の酸素濃度を有する窒素雰囲気中で行うことを特徴とする。   Further, in the step of performing the energization process, the energization process is performed in a nitrogen atmosphere having a predetermined oxygen concentration.

本発明は、異なる発光色を示す複数の発光層を有する有機EL素子の製造方法に関するものであり、有機EL素子形成後に所定の電圧を印加する通電処理を行う場合であっても、電流密度にかかわらず目的とする発光色を得ることが可能となる。   The present invention relates to a method for manufacturing an organic EL element having a plurality of light emitting layers exhibiting different luminescent colors, and even when an energization process of applying a predetermined voltage is performed after the organic EL element is formed, the current density is adjusted. Regardless, it is possible to obtain a target emission color.

以下、セグメント型の有機ELパネルに本発明を適用した実施形態を添付の図面に基いて説明する。   Hereinafter, an embodiment in which the present invention is applied to a segment type organic EL panel will be described with reference to the accompanying drawings.

図1において、有機ELパネルは、有機EL素子1を透光性の支持基板2上に配設してなるものである。有機EL素子1は、透光性の第一電極3と、絶縁層4と、有機層5と、第二電極6と、から主に構成されている。また、支持基板2上には有機EL素子1を気密的に覆うように封止部材7が配設されている。かかる有機ELパネルは、有機EL素子1の発光を支持基板2側から取り出し、後述する第一の発光層の黄色発光と第二の発光層の青色発光との補色によって白色の表示光を得るものである。   In FIG. 1, the organic EL panel is formed by arranging an organic EL element 1 on a translucent support substrate 2. The organic EL element 1 mainly includes a translucent first electrode 3, an insulating layer 4, an organic layer 5, and a second electrode 6. Further, a sealing member 7 is disposed on the support substrate 2 so as to cover the organic EL element 1 in an airtight manner. Such an organic EL panel takes out light emitted from the organic EL element 1 from the support substrate 2 side, and obtains white display light by a complementary color of yellow light emission of a first light emitting layer and blue light emission of a second light emitting layer described later. It is.

支持基板2は、長方形形状からなる透光性のガラス基板である。   The support substrate 2 is a translucent glass substrate having a rectangular shape.

第一電極3は、陽極となるものであり、支持基板2上にITO等の導電性材料をスパッタリング法等の手段によって膜厚50〜200nmの層状に形成し、フォトリソグラフィー法等によって例えば日の字型の表示意匠に応じてパターニングしてなるもので、日の字型の表示セグメント部3aと、個々の表示セグメント3aからそれぞれ引き出し成形されたリード部3bと、リード部3bの終端部に設けられる電極部3cとを備えている。なお、電極部3cは、支持基板2の一辺に集中的に配設されている。   The first electrode 3 serves as an anode, and a conductive material such as ITO is formed on the support substrate 2 in a layered form with a film thickness of 50 to 200 nm by means such as sputtering, and the photolithography method or the like is used for example. It is formed by patterning according to the character-shaped display design, and is provided at the day-shaped display segment portion 3a, the lead portion 3b that is drawn from each display segment 3a, and the terminal portion of the lead portion 3b. Electrode portion 3c. The electrode portion 3c is concentrated on one side of the support substrate 2.

絶縁層4は、ポリイミド系やフェノール系等の絶縁材料からなるもので、スパッタリング法等の手段によって層状に形成し、フォトリソグラフィー法等の手段によって支持基板2上の非発光個所に所定の形状にて形成される。絶縁層4は、表示セグメント3aに対応した窓部4aと、第二電極6の後述する電極部に対応する切り欠き部4bとを有し、発光領域の輪郭を鮮明に表示するため、第一電極3の表示セグメント3aの周縁部と若干重なるように窓部4aが形成され、また、第一電極3と第二電極6との絶縁を確保するためにリード部3b上を覆うように配設される。   The insulating layer 4 is made of an insulating material such as polyimide or phenol, and is formed in a layer shape by means such as sputtering, and is formed into a predetermined shape on a non-light emitting portion on the support substrate 2 by means such as photolithography. Formed. The insulating layer 4 has a window portion 4a corresponding to the display segment 3a and a notch portion 4b corresponding to an electrode portion to be described later of the second electrode 6, and displays the outline of the light emitting region clearly. A window 4a is formed so as to slightly overlap the peripheral edge of the display segment 3a of the electrode 3, and is disposed so as to cover the lead 3b in order to ensure insulation between the first electrode 3 and the second electrode 6. Is done.

有機層5は、第一電極3及び絶縁層4上に絶縁層4における窓部4aの形成箇所に対応するように所定の大きさをもって形成されるものであり、図2に示すように、正孔輸送層5a,第一の発光層5b,第二の発光層5c,電子輸送層5d及び電子注入層5eを蒸着法等の手段によって順次積層形成してなるものである。   The organic layer 5 is formed with a predetermined size on the first electrode 3 and the insulating layer 4 so as to correspond to the location of the window 4a in the insulating layer 4, and as shown in FIG. The hole transport layer 5a, the first light emitting layer 5b, the second light emitting layer 5c, the electron transport layer 5d, and the electron injection layer 5e are sequentially laminated by means such as vapor deposition.

正孔輸送層5aは、第一電極3から正孔を取り込むとともに正孔を発光層5cへ伝達する機能を有し、例えばα−NPD等の正孔輸送性材料を蒸着法等の手段によって膜厚10〜60nmの層状に形成してなるものである。   The hole transport layer 5a has a function of taking holes from the first electrode 3 and transmitting the holes to the light emitting layer 5c. For example, a hole transport material such as α-NPD is formed into a film by means such as vapor deposition. It is formed in a layer shape having a thickness of 10 to 60 nm.

第一の発光層5bは、正孔及び電子の輸送が可能であり、正孔移動度が電子移動度よりも高い正孔輸送性の特性を有する有機材料である例えば出光興産株式会社製のIDE120からなるホスト材料に、正孔輸送層5aを構成する前記正孔輸送性材料と、電子と正孔との再結合に反応して発光する機能を有し黄色発光を示す例えばナフタセン誘導体からなる第一の発光材料と、を共蒸着等の手段によって混合し、例えば膜厚20nm程度の層状に形成してなる。   The first light emitting layer 5b is an organic material that is capable of transporting holes and electrons and has a hole transport property that is higher than the electron mobility. For example, IDE120 manufactured by Idemitsu Kosan Co., Ltd. A host material composed of, for example, a naphthacene derivative having a function of emitting light in response to recombination of electrons and holes, and the above-described hole transporting material constituting the hole transport layer 5a. One luminescent material is mixed by means such as co-evaporation, and formed into a layer having a thickness of, for example, about 20 nm.

第二の発光層5cは、正孔及び電子の輸送が可能であり、第一の発光層5bと同様の前記ホスト材料に、正孔輸送層5aを構成する前記正孔輸送性材料と、電子と正孔との再結合に反応して発光する機能を有し第一の発光層5bの黄色発光よりも発光波長の短い青色発光を示す例えば出光興産株式会社製のBD102からなる第二の発光材料と、を共蒸着等の手段によって混合し、例えば膜厚30nm程度の第一の発光層5bよりも厚い層状に形成してなる。また、第二の発光層5cは、層全体における前記正孔輸送性材料の濃度が、図5に示した前記従来の有機EL素子の前記青色発光層全体における前記正孔輸送性材料の濃度よりも例えば20パーセント以上高くなっている。   The second light-emitting layer 5c is capable of transporting holes and electrons, and the same host material as the first light-emitting layer 5b is combined with the hole-transporting material constituting the hole-transporting layer 5a and the electrons. Second light emission composed of, for example, BD102 manufactured by Idemitsu Kosan Co., Ltd., which has a function of emitting light in response to recombination of light and holes and exhibits blue light emission having a shorter emission wavelength than the yellow light emission of the first light emitting layer 5b. The material is mixed by means such as co-evaporation, and is formed into a layer thicker than the first light emitting layer 5b having a thickness of, for example, about 30 nm. Further, in the second light emitting layer 5c, the concentration of the hole transporting material in the entire layer is higher than the concentration of the hole transporting material in the entire blue light emitting layer of the conventional organic EL element shown in FIG. For example, it is 20% or more higher.

電子輸送層5dは、電子を第二の発光層5cへ伝達する機能を有し、例えばキレート系化合物であるアルミキノリノール(Alq3)等の電子輸送性材料を蒸着法等の手段によって膜厚20〜60nmの層状に形成してなる。   The electron transport layer 5d has a function of transmitting electrons to the second light-emitting layer 5c. For example, an electron transport material such as aluminum quinolinol (Alq3), which is a chelate compound, has a thickness of 20 to 20 by means of a vapor deposition method or the like. It is formed in a 60 nm layer.

電子注入層5eは、第二電極6から電子を注入する機能を有し、例えばフッ化リチウム(LiF)等を蒸着法等の手段によって膜厚略1nmの層状に形成してなる。   The electron injection layer 5e has a function of injecting electrons from the second electrode 6. For example, lithium fluoride (LiF) or the like is formed in a layer shape having a film thickness of about 1 nm by means such as vapor deposition.

第二電極6は、陰極となるものであり、アルミニウム(Al)やマグネシウム銀(Mg:Ag)等の導電性材料を蒸着法等の手段によって膜厚50〜200nmの層状に形成してなるものであり、支持基板2の一辺に設けられるリード部6aと電気的に接続してなる。なお、リード部6aの終端部には、電極部(引き出し部)6bが設けられ、リード部6a及び電極部6bは第一電極3と同材料により形成される。   The second electrode 6 serves as a cathode, and is formed by forming a conductive material such as aluminum (Al) or magnesium silver (Mg: Ag) into a layer having a thickness of 50 to 200 nm by means such as vapor deposition. And electrically connected to a lead portion 6 a provided on one side of the support substrate 2. Note that an electrode portion (leading portion) 6b is provided at the end portion of the lead portion 6a, and the lead portion 6a and the electrode portion 6b are formed of the same material as the first electrode 3.

封止部材7は、例えばガラス材料からなる平板部材に凹部7aをサンドブラスト、切削及びエッチング等の適宜方法で形成してなるものである。封止部材7は、凹部7aを取り囲むようにして形成される支持部7bを例えば紫外線硬化性エポキシ樹脂からなる接着剤(図示しない)を介し支持基板2上に気密的に配設することで、封止部材7と支持基板2とで有機EL素子1を封止する。封止部材7は、第一電極3の電極部3cおよび第二電極6の電極部6bが外部に露出するように支持基板2よりも若干小さめに構成されている。   The sealing member 7 is formed by forming a concave portion 7a in a flat plate member made of, for example, a glass material by an appropriate method such as sandblasting, cutting, and etching. The sealing member 7 is airtightly disposed on the support substrate 2 via an adhesive (not shown) made of, for example, an ultraviolet curable epoxy resin, with the support portion 7b formed so as to surround the recess 7a. The organic EL element 1 is sealed with the sealing member 7 and the support substrate 2. The sealing member 7 is configured to be slightly smaller than the support substrate 2 so that the electrode portion 3c of the first electrode 3 and the electrode portion 6b of the second electrode 6 are exposed to the outside.

次に、図3を用いて、有機EL素子1及び有機ELパネルの製造方法を説明する。   Next, the manufacturing method of the organic EL element 1 and the organic EL panel will be described with reference to FIG.

まず、支持基板2上にITO等の導電性材料をスパッタリング法等の手段によって膜厚50〜200nmの層状に形成し、さらにフォトリソグラフィー法等によって表示意匠に応じてパターニングして、表示セグメント部3a,リード部3b及び電極部3cを備え陽極となる第一電極3を形成する(図3(a)参照)。なお、このとき、リード部6a及び電極部6bを第一電極3と同材料により形成する。   First, a conductive material such as ITO is formed on the support substrate 2 in a layer shape having a film thickness of 50 to 200 nm by means such as sputtering, and is further patterned according to the display design by the photolithography method or the like, thereby displaying the display segment portion 3a. The first electrode 3 having the lead portion 3b and the electrode portion 3c and serving as an anode is formed (see FIG. 3A). At this time, the lead portion 6 a and the electrode portion 6 b are formed of the same material as the first electrode 3.

次に、ポリイミド系やフェノール系等の絶縁材料をスパッタリング法等の手段によって層状に形成し、フォトリソグラフィー法等の手段によって第一電極3の表示セグメント3aに対応する個所と第二電極6の電極部6bに対応する個所とを除去して窓部4a及び切り欠き部4bを有する絶縁層4を形成する(図3(b)参照)。   Next, an insulating material such as polyimide or phenol is formed into a layer by means of sputtering or the like, and the portion corresponding to the display segment 3a of the first electrode 3 and the electrode of the second electrode 6 by means of photolithography or the like The insulating layer 4 having the window portion 4a and the cutout portion 4b is formed by removing the portion corresponding to the portion 6b (see FIG. 3B).

次に、第一電極3及び絶縁層4上に絶縁層4における窓部4aの形成箇所に対応するように所定の大きさをもって有機層5を形成する(図3(c)参照)。具体的に、正孔輸送層5a,第一の発光層5b,第二の発光層5c,電子輸送層5d及び電子注入層5eを蒸着法等の手段によって順次積層して有機層5を形成する。まず、前記正孔輸送性材料を蒸着法等の手段によって膜厚10〜60nmの層状に形成して、正孔輸送層5aを得る。次に、前記ホスト材料,前記正孔輸送性材料及び前記第一の発光材料を共蒸着等の手段によって混合し、例えば膜厚20nm程度の層状に形成して、第一の発光層5bを得る。次に、前記ホスト材料,前記正孔輸送性材料及び前記第二の発光材料を共蒸着法等の手段によって混合し、例えば膜厚30nm程度の層状に形成して、第二の発光層5cを得る。この第一,第二の発光層5b,5cを形成する工程において、本実施形態は、第二の発光層5cを、層全体における前記正孔輸送性材料の濃度が図5に示した前記従来の有機EL素子の前記青色発光層全体における前記正孔輸送性材料の濃度よりも20パーセント以上高くななるように前記正孔輸送性材料を混合させる。前記正孔輸送性材料を多く混合することによって、第二の発光層5cは、前記従来の有機EL素子の前記青色発光層よりも発光ピーク強度を大きくすることができ、後述する有機EL素子1の表示光の電流密度に対するCIE色度座標における色度変化量を調整することが可能となっている。本実施形態においては、第二の発光層5bの発光ピーク強度を大きくすることによって、後述する通電処理前において有機EL素子1の表示光の電流密度に対するCIE色度座標のx値の色度変化量が0.02より大きく(さらに好ましくは0.03より大きく)なるように調整されている。第一,第二の発光層5b,5c形成後、前記電子輸送性材料を蒸着法等の手段によって膜厚20〜60nmの層状に形成し、電子輸送層5dを得る。さらに、例えばフッ化リチウム(LiF)等を蒸着法等の手段によって膜厚約1nmの層状に形成し、電子注入層5eを得る。   Next, the organic layer 5 having a predetermined size is formed on the first electrode 3 and the insulating layer 4 so as to correspond to the location of the window 4a in the insulating layer 4 (see FIG. 3C). Specifically, the hole transport layer 5a, the first light-emitting layer 5b, the second light-emitting layer 5c, the electron transport layer 5d, and the electron injection layer 5e are sequentially stacked by means such as vapor deposition to form the organic layer 5. . First, the hole transport material is formed into a layer having a film thickness of 10 to 60 nm by means such as vapor deposition to obtain the hole transport layer 5a. Next, the host material, the hole transporting material, and the first light emitting material are mixed by means such as co-evaporation, and formed into a layer having a thickness of about 20 nm, for example, to obtain the first light emitting layer 5b. . Next, the host material, the hole transporting material, and the second light emitting material are mixed by means of a co-evaporation method or the like to form a layer having a film thickness of, for example, about 30 nm, and the second light emitting layer 5c is formed. obtain. In the step of forming the first and second light emitting layers 5b and 5c, in the present embodiment, in the second light emitting layer 5c, the concentration of the hole transporting material in the entire layer is as shown in FIG. The hole transport material is mixed so as to be 20 percent or more higher than the concentration of the hole transport material in the entire blue light emitting layer of the organic EL element. By mixing a large amount of the hole transporting material, the second light emitting layer 5c can have a light emission peak intensity larger than that of the blue light emitting layer of the conventional organic EL element. It is possible to adjust the chromaticity change amount in the CIE chromaticity coordinates with respect to the current density of the display light. In the present embodiment, by increasing the light emission peak intensity of the second light emitting layer 5b, the chromaticity change of the x value of the CIE chromaticity coordinates with respect to the current density of the display light of the organic EL element 1 before energization processing described later is performed. The amount is adjusted to be greater than 0.02 (more preferably greater than 0.03). After the formation of the first and second light emitting layers 5b and 5c, the electron transporting material is formed into a layer having a film thickness of 20 to 60 nm by means such as vapor deposition to obtain the electron transport layer 5d. Further, for example, lithium fluoride (LiF) or the like is formed into a layer having a film thickness of about 1 nm by means such as vapor deposition to obtain the electron injection layer 5e.

次に、アルミニウム(Al)やマグネシウム銀(Mg:Ag)等の導電性材料を蒸着法等の手段によって膜厚50〜200nmの層状に形成し、陰極となる第二電極6を得る(図3(d)参照)。なお、第二電極6は、支持基板2の一辺に設けられる電極部6bを接続される。   Next, a conductive material such as aluminum (Al) or magnesium silver (Mg: Ag) is formed into a layer having a film thickness of 50 to 200 nm by means such as vapor deposition to obtain the second electrode 6 serving as a cathode (FIG. 3). (See (d)). The second electrode 6 is connected to an electrode portion 6 b provided on one side of the support substrate 2.

次に、凹部7aと支持部7bとを有する封止部材7を、支持部7bを例えば紫外線硬化性エポキシ樹脂からなる接着剤8を介し支持基板2上に気密的に配設し、接着剤8に紫外線を照射して硬化させ、封止部材7と支持基板2とで有機EL素子1を封止する(図3(e)参照)。このとき、第一電極3の電極部3cおよび第二電極6の電極部6bが外部に露出するように封止部材7が支持基板2上に配設される。   Next, the sealing member 7 having the recess 7a and the support 7b is hermetically disposed on the support substrate 2 via the adhesive 8 made of, for example, an ultraviolet curable epoxy resin. The organic EL element 1 is sealed with the sealing member 7 and the support substrate 2 (see FIG. 3E). At this time, the sealing member 7 is disposed on the support substrate 2 so that the electrode portion 3c of the first electrode 3 and the electrode portion 6b of the second electrode 6 are exposed to the outside.

支持基板2上に有機EL素子1を形成した後、有機EL素子1を50℃以上に加熱し、所定の酸素濃度を有する窒素雰囲気中にて第一,第二電極3,6間に15V以上の電圧を逆バイアス方向に印加する通電処理を行う。前記通電処理によって、少なくとも前記背面電極の前記透明電極に接触している部分を除去して前記透明電極から剥離させる。以上の工程によって、有機EL素子1を有する有機ELパネルが得られる。なお、前記通電処理は、後述する有機EL素子1のCIE色度座標のx値及びy値の電流密度に対する色度変化量が前記通電処理後に0.02以下となるように電圧値,有機EL素子1の加熱温度及び電圧の印加時間等を調整して行われる。   After forming the organic EL element 1 on the support substrate 2, the organic EL element 1 is heated to 50 ° C. or higher and 15 V or higher between the first and second electrodes 3 and 6 in a nitrogen atmosphere having a predetermined oxygen concentration. An energization process is performed in which a voltage of 1 is applied in the reverse bias direction. By the energization process, at least a portion of the back electrode that is in contact with the transparent electrode is removed and separated from the transparent electrode. Through the above steps, an organic EL panel having the organic EL element 1 is obtained. Note that the energization process is performed so that the chromaticity change amount with respect to the current density of the x-value and y-value of the CIE chromaticity coordinates of the organic EL element 1 to be described later is 0.02 or less after the energization process. This is performed by adjusting the heating temperature of the element 1 and the voltage application time.

図4は、本実施形態の有機EL素子1における前記通電処理前後の表示光の色度と電流密度との関係を示す図である。なお、前記通電処理は図5における前記従来の有機EL素子に対して行った条件と同様であるものとする。また、図4におけるCIE色度座標のx値及びy値は所定の基準値を0とした場合の値を示している。図4(a)において、特性S1は、前記通電処理前の有機EL素子1における表示光のCIE色度座標のx値と電流密度との関係を示しており、特性S2は、前記通電処理後の有機EL素子1における表示光のCIE色度座標のx値と電流密度との関係を示している。また、図4(b)において、特性S3は、前記通電処理前の有機EL素子1における表示光のCIE色度座標のy値と電流密度との関係を示しており、特性S4は有機EL素子1の前記通電処理後の表示光のCIE色度座標のy値と電流密度との関係を示している。図4(a)に示すように、前記通電処理前の有機EL素子1は、電流密度に対する表示光のCIE色度座標におけるx値の色度変化量Δx、すなわち電流密度を変化させた場合の表示光のCIE色度座標のx値の最大値と最小値との差が0.03よりも大きくなっているものの、前記通電処理後の有機EL素子1は、電流密度に対する色度変化量Δxが0.02以下となっている。したがって、前記通電処理後の有機EL素子1は、低電流密度による発光駆動時と高電流密度による発光駆動時とで得られる発光色はほぼ同様であり、色の変化を使用者が認識しない程度に抑制することが可能となっている。本願発明者は、異なる発光波長の発光層を複数有する有機EL素子において、前記通電処理を行うことによって、長波長の発光層の発光効率が向上し、特に低電流密度による発光駆動時の発光輝度が前記通電処理前よりも高くなる傾向を見いだした。これに対し、短波長の発光層の発光効率は前記通電処理を行った後でも長波長の発光層程には向上せず、低電流密度による発光駆動時の発光輝度も長波長の発光層と同様には高くならない。本実施形態は、第一の発光層5bよりも短波長の発光を示す第二の発光層5cに、従来のように前記通電処理前の電流密度に対する表示光の色度変化量を抑制する場合よりも多量の前記正孔輸送性材料を混合させ、第二の発光層5cの発光効率を予め向上させておくことによって、上述のように前記通電処理後に電流密度に対する表示光の色度変化量が抑制された有機EL素子1を得ることが可能となっている。   FIG. 4 is a diagram showing the relationship between the chromaticity of the display light and the current density before and after the energization process in the organic EL element 1 of the present embodiment. The energization process is the same as that performed for the conventional organic EL element in FIG. Further, the x value and y value of the CIE chromaticity coordinates in FIG. 4 indicate values when a predetermined reference value is set to zero. In FIG. 4A, the characteristic S1 indicates the relationship between the x value of the CIE chromaticity coordinates of the display light and the current density in the organic EL element 1 before the energization process, and the characteristic S2 is after the energization process. The relationship between the x value of the CIE chromaticity coordinate of the display light and the current density in the organic EL element 1 is shown. In FIG. 4B, a characteristic S3 indicates the relationship between the y value of the CIE chromaticity coordinates of the display light and the current density in the organic EL element 1 before the energization process, and the characteristic S4 indicates the organic EL element. 1 shows the relationship between the y value of the CIE chromaticity coordinates of the display light after the energization process 1 and the current density. As shown in FIG. 4A, the organic EL element 1 before the energization process is obtained when the chromaticity change amount Δx of the x value in the CIE chromaticity coordinates of the display light with respect to the current density, that is, the current density is changed. Although the difference between the maximum value and the minimum value of the x value of the CIE chromaticity coordinates of the display light is larger than 0.03, the organic EL element 1 after the energization process has the chromaticity change amount Δx with respect to the current density. Is 0.02 or less. Therefore, the organic EL element 1 after the energization process has substantially the same emission color when emitting light with a low current density and when emitting light with a high current density, and the user does not recognize the color change. It is possible to suppress it. The inventor of the present application improves the light emission efficiency of the light emitting layer having a long wavelength by performing the energization process in the organic EL element having a plurality of light emitting layers having different light emission wavelengths, and particularly the light emission luminance at the time of light emission driving with a low current density Has been found to be higher than before the energization treatment. On the other hand, the light emission efficiency of the short wavelength light emitting layer does not improve as much as that of the long wavelength light emitting layer even after the energization treatment, and the light emission luminance at the time of light emission driving at a low current density is the same as that of the long wavelength light emitting layer. Similarly, it will not be high. In the present embodiment, the second light emitting layer 5c that emits light having a shorter wavelength than the first light emitting layer 5b suppresses the chromaticity change amount of the display light with respect to the current density before the energization processing as in the conventional case. The amount of change in chromaticity of display light with respect to the current density after the energization treatment as described above is obtained by mixing a larger amount of the hole transporting material and improving the luminous efficiency of the second light emitting layer 5c in advance. It is possible to obtain the organic EL element 1 in which is suppressed.

本実施形態における有機EL素子1の製造方法は、発光色の異なる第一,第二の発光層5b,5cを少なくとも有する有機層5を一対の第一,第二電極3,6で挟持してなる有機EL素子1の製造方法であって、電流密度に対する前記通電処理前の表示光の色度変化量が0.02より大きい値となるように第一,第二の発光層5b,5cを形成する工程と、第一,第二電極3,6及び有機層5形成後に第一,第二電極3,6間に所定の電圧を印加する通電処理を行う工程と、を少なくとも含んでなるものである。また、前記通電処理後の電流密度に対する表示光の色度変化量が0.02以下となるように前記通電処理を行うものである。また、前記通電処理を行う工程において、第一,第二電極3,6間に所定の電圧を逆バイアス方向に印加するものである。また、前記通電処理を行う工程において、前記通電処理を所定の酸素濃度を有する窒素雰囲気中で行うものである。また、前記通電処理を行う工程において、有機層5を含む有機EL素子1を50℃以上に加熱して前記通電処理を行うものである。   In the manufacturing method of the organic EL element 1 in the present embodiment, the organic layer 5 having at least the first and second light emitting layers 5 b and 5 c having different emission colors is sandwiched between the pair of first and second electrodes 3 and 6. The first and second light emitting layers 5b and 5c are formed so that the amount of change in chromaticity of the display light before the energization process with respect to the current density is greater than 0.02. And a step of performing an energization process of applying a predetermined voltage between the first and second electrodes 3 and 6 after the first and second electrodes 3 and 6 and the organic layer 5 are formed. It is. Further, the energization process is performed so that the chromaticity change amount of the display light with respect to the current density after the energization process is 0.02 or less. In the step of performing the energization process, a predetermined voltage is applied in the reverse bias direction between the first and second electrodes 3 and 6. Further, in the step of performing the energization process, the energization process is performed in a nitrogen atmosphere having a predetermined oxygen concentration. Further, in the step of performing the energization process, the energization process is performed by heating the organic EL element 1 including the organic layer 5 to 50 ° C. or more.

かかる製造方法により、有機EL素子1は、前記通電処理による第一,第二の発光層5b,5cの発光効率の変化に予め対応するために前記通電処理前の電流密度に対する表示光の色度変化量Δxを0.02よりも大きくしておくことによって、前記通電処理後の電流密度に対する表示光の色度変化量Δxを0.02以下とすることができ、低電流密度による電流密度の値にかかわらず得られる発光色をほぼ同様とし、表示光の色の変化を使用者が認識しない程度に抑制することが可能となる。   With this manufacturing method, the organic EL element 1 has the chromaticity of the display light with respect to the current density before the energization process in order to cope with the change in the light emission efficiency of the first and second light emitting layers 5b and 5c by the energization process in advance. By setting the change amount Δx to be larger than 0.02, the chromaticity change amount Δx of the display light with respect to the current density after the energization process can be made 0.02 or less, and the current density due to the low current density can be reduced. Regardless of the value, the luminescent color obtained can be made substantially the same, and the change in the color of the display light can be suppressed to the extent that the user does not recognize it.

また、第一,第二の発光層5b,5cに前記正孔輸送性材料を加える場合、発光波長が短い第二の発光層5cに含まれる前記正孔輸送性材料の濃度によって、前記通電処理によって発光効率の変化しやすい第一の発光層5bの発光効率の変化に対応して、前記通電処理によって発光効率が向上しにくい第二の発光層5cの発光ピーク強度を予め大きくすることができ、容易に前記通電処理前の電流密度に対する表示光の色度変化量を調整することができる。   When the hole transporting material is added to the first and second light emitting layers 5b and 5c, the energization treatment is performed depending on the concentration of the hole transporting material contained in the second light emitting layer 5c having a short emission wavelength. Corresponding to the change in the light emission efficiency of the first light emitting layer 5b, the light emission efficiency of which easily changes, the emission peak intensity of the second light emitting layer 5c, which is difficult to improve the light emission efficiency by the energization treatment, can be increased in advance. The amount of change in chromaticity of display light with respect to the current density before the energization process can be easily adjusted.

なお、本実施形態においては、発光波長が短い第二の発光層5cに含まれる前記正孔輸送性材料の濃度によって、第二の発光層5cの発光ピーク強度を予め大きくして前記通電処理前の電流密度に対する表示光の色度変化量を調整するものであったが、他の方法として、発光波長が短い第二の発光層5cの膜厚や前記第二の発光材料の濃度によって前記通電処理前の電流密度に対する表示光の色度変化量を調整するものであってもよく、また、前記正孔輸送性材料の濃度,第二の発光層5cの膜厚及び前記第二の発光材料の濃度を組み合わせて前記通電処理前の電流密度に対する表示光の色度変化量を調整するものであってもよい。具体的に、第二の発光層5cの膜厚を、従来のように前記通電処理前に電流密度に対する表示光の色度変化量を0.02以下とする場合よりも薄くすることによって、第二の発光層5cの発光ピーク強度を前記従来の有機EL素子の前記青色発光層よりも予め大きくすることができる。また、第二の発光層5cに含まれる前記第二の発光材料の濃度を、従来のように前記通電処理前に電流密度に対する表示光の色度変化量を0.02以下とする場合よりも高くすることによって、第二の発光層5cの発光ピーク強度を前記従来の有機EL素子の前記青色発光層よりも予め大きくすることができる。   In the present embodiment, the emission peak intensity of the second light emitting layer 5c is increased in advance according to the concentration of the hole transporting material contained in the second light emitting layer 5c having a short emission wavelength, before the energization treatment. The amount of change in chromaticity of the display light with respect to the current density is adjusted, but as another method, the energization is performed according to the film thickness of the second light emitting layer 5c having a short emission wavelength or the concentration of the second light emitting material. The amount of change in chromaticity of display light relative to the current density before processing may be adjusted, and the concentration of the hole transporting material, the thickness of the second light emitting layer 5c, and the second light emitting material. The amount of change in chromaticity of the display light with respect to the current density before the energization process may be adjusted by combining the densities of the above. Specifically, the thickness of the second light emitting layer 5c is made thinner than the conventional case where the chromaticity change amount of the display light with respect to the current density is 0.02 or less before the energization processing as in the prior art. The emission peak intensity of the second light emitting layer 5c can be made larger in advance than the blue light emitting layer of the conventional organic EL element. Further, the concentration of the second light-emitting material contained in the second light-emitting layer 5c is set to be lower than that in the case where the chromaticity change amount of the display light with respect to the current density is 0.02 or less before the energization processing as in the prior art. By making it higher, the emission peak intensity of the second light emitting layer 5c can be made larger in advance than the blue light emitting layer of the conventional organic EL element.

また、本実施形態においては、第一,第二の発光層5b,5cに前記正孔輸送性材料が加えられるものであったが、有機EL素子に備えられる発光色の異なる複数の発光層にそれぞれアルミキノリノール(Alq3)等の電子輸送性材料が加えられる場合、前記各発光層のうち発光波長の短い発光層の前記電子輸送性材料の濃度によって、通電処理前の電流密度に対する有機EL素子の表示光の色度変化量を調整するものであってもよい。具体的に、発光波長の短い前記発光層に含まれる前記電子輸送性材料の濃度を、従来のように前記通電処理前に電流密度に対する表示光の色度変化量を0.02以下とする場合よりも高くすることによって、予め発光波長の短い前記発光層の発光ピーク強度を大きくすることができ、通電処理前の電流密度に対する有機EL素子の表示光の色度変化量が0.02より大きくなるように調整することが可能となる。   In the present embodiment, the hole transporting material is added to the first and second light emitting layers 5b and 5c. However, the organic EL element includes a plurality of light emitting layers having different emission colors. When an electron transporting material such as aluminum quinolinol (Alq3) is added to each of the light emitting layers, the concentration of the electron transporting material in the light emitting layer having a short light emission wavelength among the light emitting layers, the organic EL element with respect to the current density before the energization treatment. The amount of change in chromaticity of display light may be adjusted. Specifically, when the concentration of the electron transporting material contained in the light emitting layer having a short emission wavelength is set to 0.02 or less of the chromaticity change amount of the display light with respect to the current density before the energization processing as in the past. The emission peak intensity of the light emitting layer having a short emission wavelength can be increased in advance, and the chromaticity change amount of the display light of the organic EL element with respect to the current density before the energization treatment is greater than 0.02. It becomes possible to adjust so that it becomes.

また、本実施形態はセグメント型の有機EL素子1を備える有機ELパネルに本発明の有機EL素子の製造方法を適用したが、本発明の有機EL素子の製造方法は、ドットマトリクス型の有機EL素子にも適用可能である。また、本実施形態である有機ELパネルは、透光性の第一電極3を備え、有機EL素子1の発光を支持基板2側から取り出し、所定の表示を行うものであったが、本発明の有機EL素子の製造方法は、有機層上の第二電極を透光性の導電材料で形成し、封止部材側から光を採りだして所定の表示を行ういわゆるトップエミッション型の有機ELパネルにも適用可能である。   Moreover, although this embodiment applied the manufacturing method of the organic EL element of this invention to the organic EL panel provided with the segment type organic EL element 1, the manufacturing method of the organic EL element of this invention is a dot matrix type organic EL. It can also be applied to elements. In addition, the organic EL panel according to the present embodiment is provided with the translucent first electrode 3 and takes out the light emitted from the organic EL element 1 from the support substrate 2 side to perform a predetermined display. The organic EL element manufacturing method includes a so-called top emission type organic EL panel in which the second electrode on the organic layer is formed of a light-transmitting conductive material, and a predetermined display is performed by taking out light from the sealing member side. It is also applicable to.

また、本実施形態において、有機EL素子1は、第一,第二の発光層5b,5cの2つの発光層を備える構成であったが、本発明における有機EL素子は、三層以上の発光層を備えるものであってもよい。   In the present embodiment, the organic EL element 1 is configured to include two light emitting layers, the first and second light emitting layers 5b and 5c. However, the organic EL element in the present invention emits three or more layers. A layer may be provided.

本発明の実施形態である有機ELパネルを示す図。The figure which shows the organic electroluminescent panel which is embodiment of this invention. 同上の有機EL素子の有機層を示す拡大断面図。The expanded sectional view which shows the organic layer of an organic EL element same as the above. 同上の有機ELパネルの製造工程を示す図。The figure which shows the manufacturing process of an organic electroluminescent panel same as the above. 同上の有機EL素子の表示光の色度と電流密度との関係を示す図。The figure which shows the relationship between the chromaticity of the display light of an organic EL element same as the above, and current density. 従来の有機EL素子の表示光の色度と電流密度との関係を示す図。The figure which shows the relationship between the chromaticity of the display light of a conventional organic EL element, and current density.

符号の説明Explanation of symbols

1 有機EL素子
2 支持基板
3 第一電極
4 絶縁層
5 有機層
5a 正孔輸送層
5b 第一の発光層
5c 第二の発光層
5d 電子輸送層
5e 電子注入層
5f 第三の発光層
5g 第四の発光層
6 第二電極
DESCRIPTION OF SYMBOLS 1 Organic EL element 2 Support substrate 3 1st electrode 4 Insulating layer 5 Organic layer 5a Hole transport layer 5b 1st light emitting layer 5c 2nd light emitting layer 5d Electron transport layer 5e Electron injection layer 5f 3rd light emitting layer 5g 1st Four light emitting layers 6 Second electrode

Claims (4)

発光色の異なる複数の発光層を少なくとも有する有機層を一対の電極で挟持してなる有機EL素子の製造方法であって、
電流密度に対する表示光の色度変化量が0.02より大きい値となるように前記各発光層を形成する工程と、前記両電極及び前記有機層形成後に前記両電極間に所定の電圧を印加する通電処理を行う工程と、を少なくとも含んでなり、
前記各発光層を形成する工程において、前記各発光層をホスト材料に発光材料を混合して形成し、または、前記各発光層をホスト材料に発光材料を混合しさらに正孔輸送性材料あるいは電子輸送性材料を加えて形成し、前記各発光層のうち少なくとも発光波長が短い発光層の膜厚、前記各発光層のうち少なくとも発光波長が短い発光層に含まれる前記発光材料の濃度、前記各発光層のうち少なくとも発光波長が短い発光層に含まれる前記正孔輸送性材料の濃度、前記各発光層のうち少なくとも発光波長が短い発光層に含まれる前記電子輸送性材料の濃度、あるいはこれらの組み合わせにより電流密度に対する前記表示光の色度変化量を調整し、
前記通電処理を行う工程において、前記有機層を50℃以上に加熱して前記通電処理を行い、一方の電極の他方の電極に接触している部分を除去して前記他方の電極から剥離させることを特徴とする有機EL素子の製造方法。
A method for producing an organic EL element, wherein an organic layer having at least a plurality of light emitting layers having different emission colors is sandwiched between a pair of electrodes,
A step of forming each light emitting layer so that the amount of change in chromaticity of display light with respect to the current density is greater than 0.02, and a predetermined voltage is applied between the electrodes after the formation of the electrodes and the organic layer. and performing energization processing for, Ri name contains at least a
In the step of forming each light emitting layer, each light emitting layer is formed by mixing a light emitting material with a host material, or each light emitting layer is mixed with a light emitting material with a host material, and further a hole transporting material or electron Formed by adding a transport material, the thickness of the light emitting layer having at least a short emission wavelength among the light emitting layers, the concentration of the light emitting material contained in the light emitting layer having at least a short emission wavelength among the light emitting layers, The concentration of the hole transporting material contained in the light emitting layer having a short emission wavelength among the light emitting layers, the concentration of the electron transporting material contained in the light emitting layer having a short emission wavelength among the light emitting layers, or these By adjusting the amount of change in chromaticity of the display light with respect to the current density,
In the step of performing the energization processing, performs the energization processing by heating the organic layer over 50 ° C., Ru and remove a portion in contact with the other electrode of the one electrode is peeled from the other electrode The manufacturing method of the organic EL element characterized by the above-mentioned.
前記通電処理後の電流密度に対する前記表示光の色度変化量が0.02以下となるように前記通電処理を行うことを特徴とする請求項1に記載の有機EL素子の製造方法。 2. The method of manufacturing an organic EL element according to claim 1, wherein the energization process is performed such that a chromaticity change amount of the display light with respect to a current density after the energization process is 0.02 or less. 前記通電処理を行う工程において、前記両電極間に所定の電圧を逆バイアス方向に印加することを特徴とする請求項1に記載の有機EL素子の製造方法。 2. The method of manufacturing an organic EL element according to claim 1, wherein, in the step of performing the energization process, a predetermined voltage is applied between the electrodes in a reverse bias direction. 前記通電処理を行う工程において、前記通電処理を所定の酸素濃度を有する窒素雰囲気中で行うことを特徴とする請求項1に記載の有機EL素子の製造方法。
2. The method of manufacturing an organic EL element according to claim 1, wherein in the step of performing the energization process, the energization process is performed in a nitrogen atmosphere having a predetermined oxygen concentration.
JP2004307567A 2004-10-22 2004-10-22 Manufacturing method of organic EL element Expired - Fee Related JP4737369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004307567A JP4737369B2 (en) 2004-10-22 2004-10-22 Manufacturing method of organic EL element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004307567A JP4737369B2 (en) 2004-10-22 2004-10-22 Manufacturing method of organic EL element

Publications (2)

Publication Number Publication Date
JP2006120473A JP2006120473A (en) 2006-05-11
JP4737369B2 true JP4737369B2 (en) 2011-07-27

Family

ID=36538169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004307567A Expired - Fee Related JP4737369B2 (en) 2004-10-22 2004-10-22 Manufacturing method of organic EL element

Country Status (1)

Country Link
JP (1) JP4737369B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5358964B2 (en) * 2008-02-08 2013-12-04 株式会社デンソー Manufacturing method of organic EL element
KR101499234B1 (en) 2008-06-27 2015-03-05 삼성디스플레이 주식회사 Organic light emitting device, method of manufacturing the same and shadow mask therefor
KR102096051B1 (en) 2013-03-27 2020-04-02 삼성디스플레이 주식회사 Substrate formed thin film transistor array and organic light emitting diode display

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093577A (en) * 2000-09-18 2002-03-29 Denso Corp Aging method of organic el device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093577A (en) * 2000-09-18 2002-03-29 Denso Corp Aging method of organic el device

Also Published As

Publication number Publication date
JP2006120473A (en) 2006-05-11

Similar Documents

Publication Publication Date Title
CN100565970C (en) Organnic electroluminescent device manufacture method and Organnic electroluminescent device
US8227816B2 (en) Organic light emitting display device
EP2128911A2 (en) Organic light emitting display device
US10230065B2 (en) Organic EL element having reflective interface transport layers
JP4479250B2 (en) Display device manufacturing method and display device
JP4887473B2 (en) ORGANIC EL ELEMENT, ORGANIC EL DISPLAY USING SAME, AND METHOD FOR PRODUCING ORGANIC EL DISPLAY
WO2007102390A1 (en) Organic el display device
WO2020194411A1 (en) Light-emitting element and light-emitting device
JP2005157353A (en) Organic field light emitting element provided with low resistance wiring
JPH03141588A (en) Electroluminescent device
JP4737369B2 (en) Manufacturing method of organic EL element
CN110199402B (en) Light emitting diode, manufacturing method thereof, display substrate and display device
JP2005038763A (en) Organic el panel
JP3891430B2 (en) Organic EL light emitting device and method
JP2006173050A (en) Organic el element
TW202139498A (en) Organic EL device capable of reducing driving voltage and enhancing leakage resistance
JP3743005B2 (en) Organic EL panel
WO2015190550A1 (en) Organic element
KR100571004B1 (en) Filed organic electroluminescent display device
JP4441863B2 (en) Organic EL device
JP4747868B2 (en) Manufacturing method of electro-optical device
WO2010110034A1 (en) Organic el element
JP2007335590A (en) Organic el element
JP4752457B2 (en) Organic EL device
JP2006127969A (en) Organic el element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110419

R150 Certificate of patent or registration of utility model

Ref document number: 4737369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees