JP4735500B2 - Production method of hydrogen peroxide by anthraquinone method - Google Patents
Production method of hydrogen peroxide by anthraquinone method Download PDFInfo
- Publication number
- JP4735500B2 JP4735500B2 JP2006267902A JP2006267902A JP4735500B2 JP 4735500 B2 JP4735500 B2 JP 4735500B2 JP 2006267902 A JP2006267902 A JP 2006267902A JP 2006267902 A JP2006267902 A JP 2006267902A JP 4735500 B2 JP4735500 B2 JP 4735500B2
- Authority
- JP
- Japan
- Prior art keywords
- solvent
- hydrogen peroxide
- working solution
- distillation
- crude
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
本発明は、作動溶液中に蓄積する不純物を除去して、効率的に過酸化水素を製造する方法に関する。 The present invention relates to a method for efficiently producing hydrogen peroxide by removing impurities accumulated in a working solution.
現在、工業的な過酸化水素の製造は、アントラキノン類を反応媒体とする方法でアントラキノン法と呼ばれる。アルキル置換基を持つアントラキノンや、アルキル置換基を持つ5,6,7,8−テトラヒドロアントラキノン(以下、両者を「アントラキノン類」と総称することがある)を溶剤に溶解した溶液は、作動溶液と呼ばれる。溶剤は、非極性有機溶媒と極性有機溶媒の2種類の混合物が用いられる。 At present, industrial production of hydrogen peroxide is a method using anthraquinones as a reaction medium and is called an anthraquinone method. A solution in which an anthraquinone having an alkyl substituent or 5,6,7,8-tetrahydroanthraquinone having an alkyl substituent (hereinafter, both may be collectively referred to as “anthraquinones”) is dissolved in a working solution. be called. As the solvent, a mixture of two kinds of a nonpolar organic solvent and a polar organic solvent is used.
アントラキノン法では、アントラキノン類を触媒の存在下で水素により還元する還元工程、生成したアントラヒドロキノン類を酸化してアントラキノン類に再度転化し、同時に過酸化水素を生成させる酸化工程、生成した過酸化水素を水で抽出する抽出工程から構成され、抽出後の作動溶液は、再び還元工程に戻され、循環プロセスを形成する。 In the anthraquinone method, a reduction process in which anthraquinones are reduced with hydrogen in the presence of a catalyst, an oxidation process in which the generated anthrahydroquinones are oxidized and converted back to anthraquinones, and at the same time, hydrogen peroxide is generated. The working solution after extraction is returned to the reduction step again to form a circulation process.
ここで、アントラキノン類が還元・酸化を繰り返すうちに、副生物が生成・蓄積し、過酸化水素の生産性を低下させる原因となっており、またプラントの安定運転の障害にもなっている。この中には、溶剤由来の低沸点の変成物も含まれている。 Here, as the anthraquinones are repeatedly reduced and oxidized, by-products are generated and accumulated, which causes a reduction in the productivity of hydrogen peroxide, and also hinders stable operation of the plant. In this, the low-boiling-point modified product derived from a solvent is also contained.
従来から、種々の副生物の除去・再生方法が提案されている。特許文献1では、還元されたアントラキノン類にアルカリ水溶液で抽出操作を施し、過酸化水素生成に寄与しない無効アントラキノン類を除去する方法が記載されている。この方法のように薬品を用いて処理を行うと、大量のアルカリ廃液が発生する問題がある。 Conventionally, various by-product removal / regeneration methods have been proposed. Patent Document 1 describes a method in which reduced anthraquinones are extracted with an alkaline aqueous solution to remove ineffective anthraquinones that do not contribute to hydrogen peroxide production. When processing is performed using chemicals as in this method, there is a problem that a large amount of alkaline waste liquid is generated.
特許文献2では、同様に薬品による処理を行なうものとして、アルミニウム、アンモニウム等のハロゲン化物の固体または水溶液を用い、100〜170℃にて作動溶液を処理し、無効アントラキノン類を再生する方法が記載されている。特許文献3には、作動溶液をオゾンで処理し、ついでアルカリ金属水酸化物水溶液で抽出し、抽出分離後の作動溶液を活性アルミナまたは活性マグネシアと接触させる方法が記載されている。
特許文献4では、作動溶液中の溶剤を分離する第1段蒸留、次いでアントラキノン類及びモノアントラセン系の軽質物質を分離する第2段蒸留をする際に、留出物の結晶化閉塞を防止する為に第2段蒸留の溜出蒸気を冷溶剤の液膜上で凝縮させる方法が記載されている。この作動溶液中には、溶剤、アントラキノン類、重質分解物(ポリアントラセン)、軽質分解物及び場合によってヒドロキシ化合物を含有するとしている。この方法では、軽質分解物は、ハイドロキノン類の溶解性助剤として有用であるので除去せず、有害な重質分解物のみを除去することを目的としている。
In
以上のように、提案されている技術では、有機溶媒由来の低沸点の変性物を効率良く除去する方法は、報告されていない。溶媒変性物は作動溶液の比重や粘度、表面張力等の物性を変化させてしまうため、作動溶液の還元・酸化・抽出工程の効率低下や安定運転への障害の原因となる。溶剤ロスの少ない環境に配慮したプラントでは、溶剤を環境に排出する量が極少量であり、溶媒変性物も排出されないので蓄積の問題が顕在化する。 As described above, in the proposed technique, a method for efficiently removing a low-boiling modified substance derived from an organic solvent has not been reported. Since the solvent-modified product changes the physical properties such as the specific gravity, viscosity, and surface tension of the working solution, it causes a reduction in efficiency of the reduction / oxidation / extraction process of the working solution and an obstacle to stable operation. In an environment-friendly plant with little solvent loss, the amount of solvent discharged into the environment is very small, and solvent-modified products are not discharged, so the problem of accumulation becomes obvious.
作動溶液中の溶媒変性物の一部は過酸化水素に溶解するため、製品過酸化水素水中に有機不純物として残留し、過酸化水素の品質を低下させる。近年、半導体の集積度が上がる中で、洗浄剤として使われる過酸化水素への要求も厳しくなってきており、過酸化水素中の残留有機物の低減が望まれている。原料となる過酸化水素中の有機物が多い場合は、精製のための吸着樹脂や逆浸透膜の劣化が激しく交換頻度が多くなり問題である。
本発明の目的は、従来技術における上記のような課題を解決し、作動溶液中の溶剤を精製することにより、生産効率を低下させることなく安定に運転を継続することが可能であり、かつ有機物濃度の低減された過酸化水素を製造する方法を提供するものである。 The object of the present invention is to solve the above-mentioned problems in the prior art, and by purifying the solvent in the working solution, it is possible to continue the operation stably without lowering the production efficiency, and the organic matter A method for producing hydrogen peroxide having a reduced concentration is provided.
本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、作動溶液から溶剤を回収し、それにアルカリ化合物を添加して蒸留することにより、溶媒変性物の蓄積を防止し、不純物濃度の低減された過酸化水素を製造できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have recovered the solvent from the working solution, added an alkali compound thereto and distilled it, thereby preventing the accumulation of solvent-modified products, and the impurity concentration It was found that hydrogen peroxide having a reduced amount could be produced, and the present invention was completed.
すなわち、本発明は、アントラキノン法による過酸化水素の製造方法において、
(1)下記A〜Cの少なくとも一つから溶剤を回収し、
(A)作動溶液の一部を蒸留した留出液、
(B)酸化工程の排ガス、
(C)溶剤蒸留工程の留出液、
(2)回収した溶剤にアルカリ化合物を添加して蒸留し、
(3)蒸留で得られた留出液を下記a〜dの少なくとも一つに用いる、
(a)作動溶液の循環ラインに戻す
(b)作動溶液の調製原料
(c)過酸化水素洗浄の溶剤
(d)触媒洗浄の溶剤
ことを特徴とする過酸化水素の製造方法に関するものである。
That is, the present invention relates to a method for producing hydrogen peroxide by an anthraquinone method,
(1) recovering the solvent from at least one of the following AC:
(A) a distillate obtained by distilling a part of the working solution,
(B) Oxidation process exhaust gas,
(C) distillate from the solvent distillation step,
(2) Add an alkali compound to the recovered solvent and distill,
(3) The distillate obtained by distillation is used for at least one of the following a to d.
The present invention relates to a method for producing hydrogen peroxide, characterized in that (a) the working solution is returned to the circulation line, (b) the raw material for preparing the working solution, (c) the solvent for hydrogen peroxide cleaning, and (d) the solvent for catalyst cleaning.
本発明により、作動溶液中に蓄積していた溶媒変性物の除去が可能となり、溶剤ロスの少ない環境に配慮されたプロセスにより、効率的に過酸化水素を製造することができ、また、有機物濃度の低減された過酸化水素水を得ることができる。 According to the present invention, it is possible to remove solvent-denatured substances accumulated in the working solution, and it is possible to efficiently produce hydrogen peroxide by an environment-friendly process with little solvent loss. Can be obtained.
本発明の実施態様の一例である図1のフローによって説明する。作動溶液は、還元工程1、酸化工程2及び抽出工程3を循環しており(ライン10)、抽出工程より粗製過酸化水素水が得られる。
The flow of FIG. 1 which is an example of the embodiment of the present invention will be described. The working solution circulates through the reduction process 1, the
本発明で使用するアントラキノンは、アルキル置換基を有するエチルアントラキノン、t−ブチルアントラキノン、アミルアントラキノンなどが例示される。これらは単独で用いてもよく、2種以上を混合して用いてもよい。また、アルキル置換基を有するテトラヒドロアントラキノンとしては、エチルテトラヒドロアントラキノン、t−ブチルテトラヒドロアントラキノン、アミルテトラヒドロアントラキノンなどが例示される。これらは単独で用いてもよく、2種以上を混合して用いてもよい。 Examples of the anthraquinone used in the present invention include ethyl anthraquinone, t-butylanthraquinone, and amylanthraquinone having an alkyl substituent. These may be used alone or in combination of two or more. Examples of the tetrahydroanthraquinone having an alkyl substituent include ethyltetrahydroanthraquinone, t-butyltetrahydroanthraquinone, amyltetrahydroanthraquinone and the like. These may be used alone or in combination of two or more.
本発明において作動溶液を調製するために用いられる有機溶媒は、特に限定されるものではない。好ましい有機溶媒として、非極性溶媒は芳香族炭化水素が挙げられる。例えばベンゼンまたは炭素数1〜5のアルキル置換基を含むベンゼン誘導体などである。極性溶媒は高級アルコール、カルボン酸エステル、四置換尿素、環状尿素、トリオクチルりん酸などが例示される。 The organic solvent used for preparing the working solution in the present invention is not particularly limited. Preferred organic solvents include aromatic hydrocarbons as nonpolar solvents. For example, benzene or a benzene derivative containing an alkyl substituent having 1 to 5 carbon atoms. Examples of the polar solvent include higher alcohols, carboxylic acid esters, tetrasubstituted ureas, cyclic ureas, and trioctyl phosphoric acid.
溶媒変性物は、主として溶媒成分の酸化物、分解物である。具体的にはカルボン酸類、ポリオール類、フェノール類などが例示される。これらの化合物の一部は、水添工程において触媒被毒物として作用するため、作動溶液中に蓄積すると、触媒活性の悪化による水添効率低下の原因となる。また、これらの溶媒成分変性物は作動溶液の比重や粘度、表面張力等の物性を変化させてしまうため、作動溶液の還元・酸化・抽出工程の効率低下や安定運転への障害の原因となる。作動溶液中の溶媒変性物の一部は過酸化水素に溶解するため、製品過酸化水素水中に有機不純物として残留し、過酸化水素の品質を低下させる。 Solvent-modified products are mainly oxides and decomposition products of solvent components. Specific examples include carboxylic acids, polyols, and phenols. Since some of these compounds act as catalyst poisons in the hydrogenation step, accumulation in the working solution causes a reduction in hydrogenation efficiency due to deterioration in catalyst activity. In addition, these solvent component-modified products change physical properties such as the specific gravity, viscosity, and surface tension of the working solution, which causes a reduction in the efficiency of the reduction / oxidation / extraction process of the working solution and an obstacle to stable operation. . A part of the solvent-modified product in the working solution is dissolved in hydrogen peroxide, so that it remains as an organic impurity in the product hydrogen peroxide water, thereby degrading the quality of hydrogen peroxide.
本発明で処理する溶剤は、アントラキノン類のような溶質(以下、固形分と称する)を含まないものが好ましい。この固形分を含まない溶剤を得る方法としては、以下が例示される。なお、これら処理の原料となる溶剤のことを「粗製溶剤」と称する。また、処理された溶剤を「精製溶剤」と称する。 The solvent to be treated in the present invention preferably does not contain a solute such as anthraquinones (hereinafter referred to as solid content). The following is illustrated as a method of obtaining the solvent which does not contain this solid content. The solvent used as a raw material for these treatments is referred to as “crude solvent”. The treated solvent is referred to as “purified solvent”.
(A)作動溶液の一部を蒸留した留出液
作動溶液蒸留工程7は、作動溶液に蓄積された重質のアントラキノン類変性物を除去することを主な目的として使用される。第1段の蒸留では、大気圧かまたはそれ以下の圧力で作動溶液中の溶媒成分を蒸留し、次いで第2段目の蒸留では、高真空下において溶質であるアントラキノン類を蒸留し、重質のアントラキノン類変性物を除去する。本発明では、第1段目の蒸留により得られた溶剤をアルカリ添加蒸留工程8の原料として使用する。
(A) Distillate obtained by distilling a part of the working solution The working
(B)酸化工程
酸化工程2の排ガスに含まれる溶剤蒸気は回収され、アルカリ添加蒸留工程8の原料として使用する。溶剤回収は、排ガスを冷却して溶剤蒸気を液化して回収する深冷分離法や、溶剤蒸気を活性炭に吸着させて捕集し、スチーミング処理を行うことで脱着させて回収する活性炭吸着法などが用いられる。
(B) Oxidation process The solvent vapor contained in the exhaust gas of the
(C)溶剤蒸留工程
作動溶液から抽出された過酸化水素水には、極微量の作動溶液成分(アントラキノン類など)が含まれており、作動溶液成分の回収と過酸化水素水を精製することを目的として溶剤で洗浄される(過酸化水素洗浄工程5)。また、触媒を入れ替える際に触媒に付着した作動溶液成分を除去する為に溶剤で洗浄される(触媒洗浄工程9)。
(C) Solvent distillation process The hydrogen peroxide solution extracted from the working solution contains a very small amount of working solution components (such as anthraquinones), and the working solution components are recovered and the hydrogen peroxide solution is purified. For the purpose of cleaning with a solvent (hydrogen peroxide cleaning step 5). Moreover, in order to remove the working solution component adhering to the catalyst when replacing the catalyst, it is washed with a solvent (catalyst washing step 9).
このような洗浄溶剤には、少量であるがアントラキノン類が含まれている為、蒸留で溶媒を留出させて濃縮する(溶剤蒸留工程4)。ここでアントラキノン類を除去した留出溶剤は、アルカリ添加蒸留工程8の原料として使用する。 Such a cleaning solvent contains anthraquinones in a small amount, but is concentrated by distilling the solvent by distillation (solvent distillation step 4). The distillate solvent from which the anthraquinones have been removed is used as a raw material for the alkali addition distillation step 8.
アルカリ化合物としては、アルカリ金属の水酸化物、炭酸塩、炭酸水素塩、または、アルカリ土類金属の水酸化物、炭酸塩、炭酸水素塩などが挙げられ、水酸化ナトリウム、水酸化カリウムが好適に用いられる。 Alkali compounds include alkali metal hydroxides, carbonates, bicarbonates, or alkaline earth metal hydroxides, carbonates, bicarbonates, etc., with sodium hydroxide and potassium hydroxide being preferred. Used for.
アルカリ水溶液は、揮発性の無い無機アルカリの溶液でpH10以上、好ましくは12以上が必要である。アルカリ水溶液中のアルカリ量は、処理する粗製溶剤に含まれる酸性物質の量により必要量が変化するので適宜調整されるが、十分に過剰である量として0.3〜5.0%の溶液が好ましく、0.5〜2.0%が好適である。アルカリの濃度が高すぎると中性の溶媒変性物の留出量が増加するので酸性の劣化物を水溶性にするに十分な量として決定される。 The alkaline aqueous solution is a non-volatile inorganic alkali solution and needs to have a pH of 10 or more, preferably 12 or more. The amount of alkali in the aqueous alkali solution is appropriately adjusted because the required amount varies depending on the amount of acidic substance contained in the crude solvent to be treated, but a 0.3 to 5.0% solution is sufficient as an excessive amount. 0.5 to 2.0% is preferable. If the alkali concentration is too high, the amount of distillate of the neutral solvent-modified product increases. Therefore, it is determined as an amount sufficient to make the acidic degradation product water-soluble.
アルカリ水溶液の1部に対して処理できる粗製溶剤の量は、5〜30部が好ましく、8〜15部がさらに好適である。処理量が少ない場合には、アルカリ水溶液の廃水量が増え、廃水処理費用、環境問題などで好ましくない。逆に、処理量を増やしてしまうと精製溶剤への溶媒変性物の混入量が増え、得られる過酸化水素の品質が多少低下する。 The amount of the crude solvent that can be treated with respect to 1 part of the aqueous alkaline solution is preferably 5 to 30 parts, more preferably 8 to 15 parts. When the amount of treatment is small, the amount of wastewater of the alkaline aqueous solution increases, which is not preferable due to wastewater treatment costs and environmental problems. On the contrary, if the processing amount is increased, the amount of the solvent-modified product mixed in the purification solvent increases, and the quality of the obtained hydrogen peroxide is somewhat deteriorated.
蒸留装置は、特に制限はなく、一般的に用いられるバッチ蒸留装置、連続蒸留装置、薄膜蒸留装置などが用いられる。蒸留条件は、作動溶液に用いられている溶媒の種類により適宜選択されるので一概には規定できないが、圧力としては、大気圧が好適であり、温度は、アルカリ水溶液の蒸留する条件として決定される。通常は、100℃程度となる。 The distillation apparatus is not particularly limited, and a commonly used batch distillation apparatus, continuous distillation apparatus, thin film distillation apparatus or the like is used. Distillation conditions are appropriately selected depending on the type of solvent used in the working solution, and thus cannot be specified unconditionally. However, the pressure is preferably atmospheric pressure, and the temperature is determined as the conditions for distilling the alkaline aqueous solution. The Usually, it is about 100 ° C.
運転方法は、予めアルカリ水溶液を釜に仕込んでおいて、粗製溶剤を送液する方法、アルカリ水溶液と粗製溶剤を混合して連続的に送液する方法の何れでもよい。また、水を還流させることにより、アルカリ水溶液を蒸留塔内に留め、粗製溶剤を連続添加することで精製溶剤を連続的に得ることも可能である。留出した水は分離して還流水として戻し、精製溶剤のみを回収する。溶媒変成物が濃縮された缶出液は、中和し活性汚泥の処理を行うことにより環境を汚染することなく廃棄できる。 The operation method may be either a method in which an aqueous alkaline solution is previously charged in a kettle and a crude solvent is fed, or a method in which an alkaline aqueous solution and a crude solvent are mixed and continuously fed. It is also possible to obtain a purified solvent continuously by refluxing water so that the aqueous alkali solution remains in the distillation column and the crude solvent is continuously added. The distilled water is separated and returned as reflux water, and only the purified solvent is recovered. The bottoms concentrated with the solvent modification product can be discarded without neutralizing the environment by neutralizing and treating the activated sludge.
アルカリ添加蒸留8の留出液は、以下a〜dの少なくとも一つに用いることができる。
(a)作動溶液の循環ラインに戻す。
(b)作動溶液の調製工程6の原料とする。
(c)過酸化水素洗浄工程5の溶剤として用いる。
(d)触媒洗浄工程9の洗浄溶剤に用いる。
なお、(a)、(b)は、図1では還元工程前に戻しているが、これに限定されず、酸化工程前、抽出工程前でもよい。
The distillate of the alkali addition distillation 8 can be used for at least one of the following a to d.
(A) Return to the working solution circulation line.
(B) The raw material of the working
(C) Used as a solvent in the hydrogen
(D) Used as a cleaning solvent in the
In addition, although (a) and (b) are returned before the reduction process in FIG. 1, they are not limited to this, and may be before the oxidation process and before the extraction process.
以下、実施例により、本発明について更に詳しく説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited to these.
実施例1(A工程)
(処理原料である粗製溶剤の調製)
還元、酸化、抽出の循環プロセスを有するアントラキノン法による過酸化水素製造装置で使用していた作動溶液15リットルを13kPaの減圧下で蒸留し、粗製溶剤12リットルを得た。この粗製溶剤には、溶媒成分であるプソイドキュメンとジイソブチルカルビノール以外にジメチル安息香酸、アルキルフタル酸無水物、脂肪族カルボン酸類、トリメチルフェノール(TMP)、2,6−ジメチル−2,4−ヘプタンジオール(C9ジオール)などの溶媒変性物を含んでいた。この粗製溶剤を粗製溶剤1と言う。
Example 1 (Process A)
(Preparation of crude solvent as processing raw material)
15 liters of working solution used in an apparatus for producing hydrogen peroxide by anthraquinone method having a circulation process of reduction, oxidation and extraction was distilled under a reduced pressure of 13 kPa to obtain 12 liters of a crude solvent. The crude solvent includes dimethylbenzoic acid, alkylphthalic anhydride, aliphatic carboxylic acids, trimethylphenol (TMP), 2,6-dimethyl-2,4-heptanediol in addition to the solvent components pseudocumene and diisobutylcarbinol. It contained solvent-modified products such as (C9 diol). This crude solvent is referred to as crude solvent 1.
(アルカリ添加蒸留)
蒸留装置(2リットルの攪拌機付き蒸留釜、20cm充填高メラパック精留塔)に1.0%NaOH水溶液1リットルを仕込み、上記の粗製溶剤1を連続的に添加し、加熱して溶剤と水の混合物を留出させた。混合物を静置槽で分液し、留出水は還流水として塔に戻し、留出した精製溶剤のみを回収した。粗製溶剤1を連続的に供給し、総供給量が10リットルになった時点で供給を停止した。なお、留出した精製溶剤を分析し、結果を表1に示す。処理量が多くなると釜に溶媒変性物が濃縮されるため留出側にも一部出てくるようになるが、全体としては高い除去率を保っている。
(Alkali-added distillation)
1 liter of a 1.0% NaOH aqueous solution is charged into a distillation apparatus (distillation tank with 2 liters of stirrer, 20 cm packed high-melapack rectification tower), and the above-mentioned crude solvent 1 is continuously added, heated and heated with solvent and water The mixture was distilled. The mixture was separated in a stationary tank, and the distilled water was returned to the tower as reflux water, and only the distilled purified solvent was recovered. The crude solvent 1 was continuously supplied, and the supply was stopped when the total supply amount reached 10 liters. The distilled purified solvent was analyzed and the results are shown in Table 1. As the amount of treatment increases, the solvent-denatured product is concentrated in the kettle, so that it partially comes out on the distillation side, but the overall removal rate is maintained.
除去率=留出総量÷粗製溶剤含有量
酸価: JIS−K0070により測定
実施例2
(触媒被毒物が除去されているかの確認)
回収した精製溶剤とアントラキノン類から作動溶液を調製し、水素化触媒の活性に与える影響を評価した。水素化触媒の活性の評価はバッチ式の評価装置を用いて行った。反応槽に触媒1重量部と作動溶液20重量部を投入した。反応槽にステンレス製の攪拌羽を取り付け、気密した後、反応系内を水素置換した。1000rpmで攪拌して30分間、単位触媒量当たりの水素吸収量を測定した。反応温度は30℃、反応圧力は常圧に制御した。結果を表2に示す。
Example 2
(Confirmation that catalyst poisons have been removed)
A working solution was prepared from the recovered purified solvent and anthraquinones, and the effect on the activity of the hydrogenation catalyst was evaluated. Evaluation of the activity of the hydrogenation catalyst was performed using a batch type evaluation apparatus. 1 part by weight of catalyst and 20 parts by weight of working solution were charged into the reaction vessel. A stainless steel stirring blade was attached to the reaction tank, and after air-tightness, the reaction system was replaced with hydrogen. The amount of hydrogen absorbed per unit catalyst amount was measured for 30 minutes with stirring at 1000 rpm. The reaction temperature was controlled to 30 ° C., and the reaction pressure was controlled to normal pressure. The results are shown in Table 2.
実施例3(B工程)
酸化塔排ガスを深冷分離法により、溶剤成分を回収した。ここで回収された粗製溶剤2を実施例1と同様の条件でアルカリ添加蒸留を行った。粗製溶剤2を連続的に供給し、総供給量が15リットルになった時点で供給を停止した。留出した精製溶剤を分析し、結果を表3に示す。
Example 3 (Process B)
The solvent component was recovered from the oxidation tower exhaust gas by a cryogenic separation method. The crude solvent 2 recovered here was subjected to alkali addition distillation under the same conditions as in Example 1. The
実施例4(C工程)
過酸化水素洗浄工程で用いた洗浄溶剤を蒸留した留出溶剤を粗製溶剤3とする。粗製溶剤3を実施例1と同様の条件でアルカリ添加蒸留を行った。粗製溶剤3を連続的に供給し、総供給量が15リットルになった時点で供給を停止した。留出した精製溶剤を分析し、結果を表4に示す。
Example 4 (Process C)
The distilling solvent obtained by distilling the cleaning solvent used in the hydrogen peroxide cleaning step is referred to as
実施例5
アルカリ濃度を1.0%NaOH水溶液から0.5%に変え、その他の条件は実施例1と同様にアルカリ添加蒸留を行った。粗製溶剤1を連続的に供給し、総供給量が10リットルになった時点で供給を停止した。留出した精製溶剤を分析し、結果を表5に示す。
Example 5
The alkali concentration was changed from 1.0% NaOH aqueous solution to 0.5%, and other conditions were the same as in Example 1 except that alkali addition distillation was performed. The crude solvent 1 was continuously supplied, and the supply was stopped when the total supply amount reached 10 liters. The purified solvent distilled was analyzed and the results are shown in Table 5.
実施例6
アルカリ濃度を1.0%NaOH水溶液から2.0%に変え、その他の条件は実施例1と同様にアルカリ添加蒸留を行った。粗製溶剤を連続的に供給し、総供給量が10リットルになった時点で供給を停止した。留出した精製溶剤を分析し、結果を表6に示す。
Example 6
The alkali concentration was changed from 1.0% NaOH aqueous solution to 2.0%, and the other conditions were the same as in Example 1 except that alkali addition distillation was performed. The crude solvent was continuously supplied, and the supply was stopped when the total supply amount reached 10 liters. The purified solvent distilled was analyzed, and the results are shown in Table 6.
実施例7
アルカリ濃度を1.0%NaOH水溶液から10.0%に変え、その他の条件は実施例1と同様でアルカリ添加蒸留を行った。粗製溶剤1を連続的に供給し、総供給量が10リットルになった時点で供給を停止した。留出した精製溶剤を分析し、結果を表7に示す。
Example 7
The alkali concentration was changed from 1.0% NaOH aqueous solution to 10.0%, and other conditions were the same as in Example 1, and alkali addition distillation was performed. The crude solvent 1 was continuously supplied, and the supply was stopped when the total supply amount reached 10 liters. The purified solvent distilled was analyzed and the results are shown in Table 7.
比較例1
(通常の蒸留精製)
蒸留装置(2リットルの攪拌機付き蒸留釜、20cm充填高メラパック精留塔)に上記の粗製溶剤1を連続的に添加し、加熱して溶剤を留出させ回収した。総供給量が10リットルになった時点で供給を停止した。留出した精製溶剤を分析し、結果を表8に示す。
Comparative Example 1
(Normal distillation purification)
The above-mentioned crude solvent 1 was continuously added to a distillation apparatus (distiller with 2 liters of stirrer, 20 cm packed high melapack rectification tower), and heated to distill and collect the solvent. The supply was stopped when the total supply amount reached 10 liters. The purified solvent distilled was analyzed and the results are shown in Table 8.
実施例8
実施例1と同様な操作にて粗製溶剤と回収アントラキノンを得た後、粗製溶剤は、アルカリ添加蒸留を行い精製溶剤とした。そして、この精製溶剤と回収アントラキノンを混合し、新たに作動溶液を調製した。水添・酸化・抽出の各工程を備えた小スケールの過酸化水素の製造装置を用いて上記のように調製した作動溶液で運転を行い抽出で得られる濃度40%の過酸化水素を得た。次に、この抽出過酸化水素を実施例4で得られた精製溶剤で洗浄して微量溶解している作動溶液成分を除去した。最後に、洗浄後の過酸化水素を5kPaの減圧下にて濃縮して60%の過酸化水素を得た。この過酸化水素を全炭素分析計で分析した結果、全炭素濃度は、45mg/Lであった。
Example 8
After obtaining the crude solvent and recovered anthraquinone by the same operation as in Example 1, the crude solvent was subjected to alkali addition distillation to obtain a purified solvent. Then, this purified solvent and recovered anthraquinone were mixed to newly prepare a working solution. Using a small-scale hydrogen peroxide production apparatus equipped with hydrogenation, oxidation, and extraction steps, operation was performed with the working solution prepared as described above to obtain hydrogen peroxide having a concentration of 40% obtained by extraction. . Next, this extracted hydrogen peroxide was washed with the purification solvent obtained in Example 4 to remove the working solution component dissolved in a trace amount. Finally, the hydrogen peroxide after washing was concentrated under a reduced pressure of 5 kPa to obtain 60% hydrogen peroxide. As a result of analyzing this hydrogen peroxide with a total carbon analyzer, the total carbon concentration was 45 mg / L.
比較例2
実施例1で使用した未処理の作動溶液を用いて小スケールの過酸化水素の製造装置を運転し、抽出で得られる濃度40%の過酸化水素を得た。次いで、実施例4の原料である粗製溶剤で抽出過酸化水素を洗浄した。最後に、実施例8と同様に5kPaの減圧下にて濃縮して60%の過酸化水素をえた。この過酸化水素を全炭素分析計で分析した結果、全炭素濃度は、175mg/Lであった。
Comparative Example 2
A small-scale hydrogen peroxide production apparatus was operated using the untreated working solution used in Example 1 to obtain hydrogen peroxide having a concentration of 40% obtained by extraction. Next, the extracted hydrogen peroxide was washed with the crude solvent which is the raw material of Example 4. Finally, as in Example 8, the solution was concentrated under a reduced pressure of 5 kPa to obtain 60% hydrogen peroxide. As a result of analyzing this hydrogen peroxide with a total carbon analyzer, the total carbon concentration was 175 mg / L.
1 還元工程
2 酸化工程
3 抽出工程
4 溶剤蒸留工程
5 過酸化水素洗浄工程
6 作動溶液調製工程
7 作動溶液蒸留工程
8 アルカリ添加蒸留工程
9 触媒洗浄工程
10 作動溶液循環ライン
DESCRIPTION OF SYMBOLS 1
Claims (2)
(1)下記A〜Cの少なくとも一つから溶剤を回収し、
(A)作動溶液の一部を蒸留した留出液、
(B)酸化工程の排ガス、
(C)溶剤蒸留工程の留出液、
(2)回収した溶剤にアルカリ化合物を添加して蒸留し、
(3)蒸留で得られた留出液を下記a〜dの少なくとも一つに用いる、
(a)作動溶液の循環ラインに戻す
(b)作動溶液の調製原料
(c)過酸化水素洗浄の溶剤
(d)触媒洗浄の溶剤
ことを特徴とする過酸化水素の製造方法。 In the method for producing hydrogen peroxide by the anthraquinone method,
(1) recovering the solvent from at least one of the following AC:
(A) a distillate obtained by distilling a part of the working solution,
(B) Oxidation process exhaust gas,
(C) distillate from the solvent distillation step,
(2) Add an alkali compound to the recovered solvent and distill,
(3) The distillate obtained by distillation is used for at least one of the following a to d.
(A) Return to working fluid circulation line (b) Preparation raw material of working solution (c) Hydrogen peroxide cleaning solvent (d) Catalyst cleaning solvent
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006267902A JP4735500B2 (en) | 2006-09-29 | 2006-09-29 | Production method of hydrogen peroxide by anthraquinone method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006267902A JP4735500B2 (en) | 2006-09-29 | 2006-09-29 | Production method of hydrogen peroxide by anthraquinone method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008087992A JP2008087992A (en) | 2008-04-17 |
JP4735500B2 true JP4735500B2 (en) | 2011-07-27 |
Family
ID=39372519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006267902A Active JP4735500B2 (en) | 2006-09-29 | 2006-09-29 | Production method of hydrogen peroxide by anthraquinone method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4735500B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105916804A (en) * | 2013-08-23 | 2016-08-31 | 三菱瓦斯化学株式会社 | Method for regenerating working solution used for production of hydrogen peroxide and method for producing hydrogen peroxide using regenerated working solution |
JP6972802B2 (en) * | 2017-09-08 | 2021-11-24 | 三菱瓦斯化学株式会社 | Method for producing hydrogen peroxide |
JP6972801B2 (en) * | 2017-09-08 | 2021-11-24 | 三菱瓦斯化学株式会社 | Preparation method of working solution for hydrogen peroxide production |
CN109019521B (en) * | 2018-10-31 | 2023-07-25 | 湖南百利工程科技股份有限公司 | Hydrogen peroxide concentration and purification device and application thereof in hydrogen peroxide concentration and purification |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000109304A (en) * | 1998-06-18 | 2000-04-18 | Solvay & Cie | Production of hydrogen peroxide aqueous solution, its plant, and hydrogen peroxide aqueous solution |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE791535A (en) * | 1971-11-18 | 1973-05-17 | Oxysynthese | PERFECTED PROCESS FOR MANUFACTURING HYDROGEN PEROXIDE |
BE792900A (en) * | 1971-12-20 | 1973-06-18 | Laporte Industries Ltd | Improvements to the cyclic process for manufacturing hydrogen peroxide |
BE1005199A3 (en) * | 1991-08-27 | 1993-05-25 | Interox Internat Sa | Method for obtaining aqueous solutions of hydrogen peroxide. |
JPH06135705A (en) * | 1992-10-27 | 1994-05-17 | Honshu Paper Co Ltd | Production of hydrogen peroxide |
-
2006
- 2006-09-29 JP JP2006267902A patent/JP4735500B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000109304A (en) * | 1998-06-18 | 2000-04-18 | Solvay & Cie | Production of hydrogen peroxide aqueous solution, its plant, and hydrogen peroxide aqueous solution |
Also Published As
Publication number | Publication date |
---|---|
JP2008087992A (en) | 2008-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04505620A (en) | Extraction method for removing impurities from terephthalic acid filtrate | |
JP2009515967A (en) | Recovery of cumene hydroperoxide decomposition products by distillation | |
JP4735500B2 (en) | Production method of hydrogen peroxide by anthraquinone method | |
JP4760677B2 (en) | Production method of hydrogen peroxide by anthraquinone method | |
WO2007129769A1 (en) | Process for hydrogen peroxide production including step for regeneration of working solution | |
KR100487035B1 (en) | Catalyst Recovery | |
JP5101710B2 (en) | Purification method of ethylene glycol | |
JP6428622B2 (en) | Method for regenerating working solution used for hydrogen peroxide production, and method for producing hydrogen peroxide using regenerated working solution | |
JP5973438B2 (en) | Increasing terephthalic acid purge filtration rate by controlling the percentage of water in the filter feed slurry | |
EP1018500B1 (en) | Process for the isolation of glycols | |
TW201912566A (en) | Method for preparing working solution for hydrogen peroxide production | |
JP5869571B2 (en) | Increasing the terephthalic acid purge filtration rate by controlling the percentage of water in the filter feed slurry | |
JP5973437B2 (en) | Increasing terephthalic acid purge filtration rate by controlling the percentage of water in the filter feed slurry | |
JP2013537548A5 (en) | ||
JP2743217B2 (en) | Method for producing cumene hydroperoxide | |
JP2006045201A (en) | Method for producing high-purity terephthalic acid | |
JP2007269647A (en) | METHOD FOR PURIFYING alpha-METHYLSTYRENE | |
WO2014189786A1 (en) | Pure plant waste water purification and recycle | |
JP2007063153A (en) | Method for recovering acetic acid in process for producing aromatic carboxylic acid | |
JP2009504647A (en) | Method for removing benzoic acid from an oxidant purge stream | |
JP5003172B2 (en) | Purification method of β-phenylethyl alcohol | |
WO2015157009A1 (en) | Pure plant waste water purification and recycle | |
JPH10195016A (en) | Production of high-purity terephthalic acid | |
WO2005115957A1 (en) | Method for producing high purity terephthalic acid | |
WO2006001449A1 (en) | Process for producing high-purity terephthalic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090812 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110223 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110304 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110329 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110411 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4735500 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140513 Year of fee payment: 3 |