JP4734751B2 - Balanced surface acoustic wave filter - Google Patents

Balanced surface acoustic wave filter Download PDF

Info

Publication number
JP4734751B2
JP4734751B2 JP2001117181A JP2001117181A JP4734751B2 JP 4734751 B2 JP4734751 B2 JP 4734751B2 JP 2001117181 A JP2001117181 A JP 2001117181A JP 2001117181 A JP2001117181 A JP 2001117181A JP 4734751 B2 JP4734751 B2 JP 4734751B2
Authority
JP
Japan
Prior art keywords
electrode
balanced
idt
acoustic wave
surface acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001117181A
Other languages
Japanese (ja)
Other versions
JP2002314370A (en
JP2002314370A5 (en
Inventor
博次 鈴木
直樹 高橋
省三 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2001117181A priority Critical patent/JP4734751B2/en
Publication of JP2002314370A publication Critical patent/JP2002314370A/en
Publication of JP2002314370A5 publication Critical patent/JP2002314370A5/ja
Application granted granted Critical
Publication of JP4734751B2 publication Critical patent/JP4734751B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は弾性表面波フィルタに関し、特に1対の平衡端子間の位相差誤差及び振幅差誤差を改善した平衡型弾性表面波フィルタに関する。
【0002】
【従来の技術】
近年、弾性表面波フィルタ(以下、SAWフィルタと称す)は通信分野で広く利用され、高性能、小型、量産性等の優れた特徴を有することから特に携帯電話機等に多く用いられている。最近の携帯電話機ではデジタル回路とアナログ回路とを非常に小さな空間に収容する必要から、他の回路からのノイズを極力低減する必要がある。このため、RF回路、IF回路の入出力回路を平衡型化して、ノイズを低減する手段が採用されるようになり、RF及びIF回路等に用いられるデバイスにも平衡型化が要求されている。
【0003】
図16(a)は縦1次−3次モードを用いた縦結合1次−3次二重モード表面波フィルタ(以下、二重モードSAWフィルタと称す)を2つ縦続接続した弾性表面波フィルタの電極パターン構成を示す平面図である。圧電基板(図示しない)の主面上に表面波の伝搬方向に沿ってIDT電極101、102、103を近接配置すると共に、該IDT電極101、102、103の両側にグレーティング反射器(以下、反射器と称す)104a、104bを配設して二重モードSAWフィルタF1を形成する。さらに、同一圧電基板上に二重モードSAWフィルタF1に並行して、フィルタF1とほぼ同じ構成のIDT電極101’、102’、103’を近接配置すると共に、それらの両側に反射器104’a、104’bを配設して二重モードSAWフィルタF2を形成する。そして、二重モードSAWフィルタF1及びF2のそれぞれ両側のIDT電極102、103及び102’、103’の圧電基板の中央部寄りのくし形電極同士を、同一圧電基板に形成したリード電極にて接続する。さらに、中央のIDT電極101及び101’の圧電基板の外側寄りのくし形電極をそれぞれ入力端子IN及び出力端子OUTにボンディングワイヤ等を用いて接続すると共に、他のくし形電極を接地して縦続接続型二重モードSAWフィルタを構成する。
【0004】
SAWフィルタF1のIDT電極101、102、103及びSAWフィルタF2のIDT電極101’、102’、103’はそれぞれ互いに間挿し合う複数の電極指を有する一対のくし形電極から形成される。なお、二重モードSAWフィルタF1、F2の帯域幅を広げるために、該フィルタのそれぞれの中央のIDT電極101、101’における最外側のそれぞれの電極指(電極指S1、S2と称す)幅を他より幅広としている。
【0005】
図16(b)は、同図(a)に示した不平衡型の縦続型二重モードSAWフィルタの出力側を平衡型化したもので、入力側の二重モードSAWフィルタF1の構成は同一であるが、出力側のフィルタF2を形成する中央のIDT電極105のそれぞれくし形電極と2つの出力端子OUT1、OUT2とを接続し、平衡型構成としている。
図17(a)、(b)、(c)はそれぞれ、図16(b)に示した入力不平衡−出力平衡型の縦続接続型二重モードSAWフィルタのフィルタ特性、2つの平衡出力端子OUT1、OUT2間の位相差特性、振幅差特性である。中心周波数を942.5MHz、帯域幅を35MHzと設定し、圧電基板に39°Y−X LiTaO3を用い、電極周期λを4.1846μm、電極膜厚hを8.7%λ、中央のIDT電極101、101’を17.5対、両側のIDT電極102、103、102’、103’を11.5対、交差幅を50λ、反射器104a、104b、104’a、104’bの本数を60本と設定した場合のフィルタ特性である。
【0006】
図18はSAWフィルタのフィルタ特性を測定するための回路図であり、SAWフィルタの入出力インピーダンスが共に50Ωのときにはバラン(BALUN、インピーダンス整合器)のインピーダンス比nは1となる。フィルタの出力インピーダンスが50Ωより大きな場合にはnの値を変えて測定する。また、図19は平衡型SAWフィルタの2つの平衡出力端子OUT1、OUT2の位相差、及び振幅差を測定するための回路図であり、SAWフィルタの入出力インピーダンスが共に50Ωのときは、R1、R2は共に25Ωとなり、50Ωより大きな場合にはR1、R2の値を適宜設定すればよい。
【0007】
図20は入出力インピーダンスを互いに異ならせた入力不平衡−出力平衡型の縦続型二重モードSAWフィルタの構成を示す平面図である。即ち、入力側SAWフィルタF1の中央のIDT電極101の対数に比べ、出力側SAWフィルタF2の中央のIDT電極106の対数を異ならせて、入出力インピーダンスを異ならせる。図20の例は出力インピーダンスを高くするためにIDT電極106の対数を少なくした例である。入力側のSAWフィルタF1のIDT電極構成は、図16(a)に示したSAWフィルタF1のIDT電極構成と同様である。出力側のSAWフィルタF2のIDT電極106、107(108は電極の中央に関し、107と対称である)は、SAWフィルタF1の中央のIDT電極101の最外側の電極指S1から順に所定の本数の電極指を、中央のIDT電極101から切り離して、外側のIDT電極102の一方のくし形電極に接続して形成したものである。
【0008】
図21(a)、(b)、(c)はそれぞれ、図20に示した入出力インピーダンスの異なる入力不平衡−出力平衡型の縦続型二重モードSAWフィルタのフィルタ特性、2つの平衡出力端子OUT1、OUT2間の位相差特性、振幅差特性である。中心周波数を942.5MHz、帯域幅を35MHzと設定し、圧電基板に39°Y−X LiTaO3を用い、電極膜厚hを8.7%λ、入力側のSAWフィルタF1の中央のIDT電極101を16.5対、両側のIDT電極102、103を10.5対、交差幅を50λ、反射器104a、104bの本数を60本とし、出力側のSAWフィルタF2の中央のIDT電極106の対数を出力インピーダンスに合わせるように、両端から所定の電極指数を切り離し、その電極指をそれぞれ両側のIDT電極107、108に接続し、交差幅を50λ、反射器109a、109bの本数を60本と設定した場合のフィルタ特性である。
【0009】
【発明が解決しようとする課題】
しかしながら、図16(b)あるいは図20に示したような従来の入力不平衡−出力平衡型の縦続型二重モードSAWフィルタにおいては、図17(b)あるいは21(b)に示したように、2つの平衡出力端子OUT1、OUT2間の位相差は正確に180°とはならず、位相差誤差約10.5°あるいは約6°が発生した。また、OUT1、OUT2間の振幅差は正確に0dBとはならず振幅誤差約1.5dBあるいは約3.3dBが生じ、携帯電話等に用いる場合に受信品質を劣化させるという問題があった。
本発明は上記問題を解決するためになされたものであって、2つの平衡端子間の位相差180°からの位相誤差及び振幅誤差を従来のものより大幅に小さくした入力不平衡−出力平衡型の縦続接続型二重モードSAWフィルタを提供することを目的とする。
【0010】
【課題を解決するための手段】
[適用例1]
圧電基板上に表面波の伝搬方向に沿って中央IDT電極とその両側のIDT電極とからなる3つのIDT電極を近接配置すると共にそれらの両側にグレーティング反射器を配設した1次−3次縦結合二重モード弾性表面波フィルタにおいて、前記中央IDT電極を構成する一方のくし形電極と他方のくし形電極の電極指数が同数であり、前記中央IDT電極を平衡端子に接続したことを特徴とする平衡型弾性表面波フィルタ。
[適用例2]
域幅を広げるための幅広の電極指を前記両側のIDT電極にそれぞれ接続したことを特徴とする適用例1に記載の平衡型弾性表面波フィルタ。
[適用例3]
記両側のIDT電極の一方が他方より奇数本だけ電極指数が多ことを特徴とする適用例1または適用例2に記載の平衡型弾性表面波フィルタ。
[適用例4]
前記幅の電極指と前記中央IDT電極との間に、前記両側のIDT電極の少なくとも一方に接続された奇数本の電極指を設けたことを特徴とする適用例2に記載の平衡型弾性表面波フィルタ。
[適用例5]
前記中央IDT電極と前記両側のIDT電極との間に、前記両側のIDT電極の一方の極性のくし形電極に接続した複数本の電極指を設けたことを特徴とする適用例1乃至4のいずれか一つに記載の平衡型弾性表面波フィルタ。
[適用例6]
前記両側のIDT電極の一方の極性のくし形電極に接続した前記複数本の電極指数が、前記両側のIDT電極の一方と方とで奇数本だけ異なっていることを特徴とする適用例5に記載の平衡型弾性表面波フィルタ。
[適用例7]
前記両側のIDT電極に接続されている電極指のうち、前記中央IDT電極に隣接する電極指が接地されていることを特徴とする適用例1乃至6のいずれか一つに記載の平衡型弾性表面波フィルタ。
[適用例8]
IDT電極とその両側にグレーティング反射器を配置した弾性表面波共振子を適用例1乃至7のいずれか一つに記載の平衡型弾性表面波フィルタの不平衡側の端子に直列接続したことを特徴とする平衡型弾性表面波フィルタ。
[適用例9]
続接続した2つの1次−3次縦結合二重モード弾性表面波フィルタのうち、少なくとも1つが、適用例1乃至8のいずれか一つに記載の平衡型弾性表面波フィルタであることを特徴とする平衡型弾性表面波フィルタ
[適用例10]
DT電極とその両側にグレーティング反射器を配置した弾性表面波共振子を前記縦続接続した2つの1次−3次縦結合二重モード弾性表面波フィルタの段間に少なくとも1つ設け、これを直列接続したことを特徴とする適用例9に記載の平衡型弾性表面波フィルタ。
【0011】
【発明の実施の形態】
以下本発明を図面に示した実施の形態に基づいて詳細に説明する。
図1は本発明に係る入力不平衡−出力平衡型の縦続接続型二重モードSAWフィルタの電極パターン構成を示す平面図であって、圧電基板(図示しない)の主面上に表面波の伝搬方向に沿ってIDT電極1、2、3を近接配置すると共に、該IDT電極1、2、3の両側に反射器4a、4bを配設して二重モードSAWフィルタF1を形成する。さらに、同一圧電基板上にSAWフィルタF1に並行して、それとほぼ同じ構成のIDT電極1’、2’、3’を近接配置すると共に、それらの両側に反射器4’a、4’bを配設して二重モードSAWフィルタF2を形成する。さらに、二重モードSAWフィルタF1及びF2のそれぞれ両側のIDT電極2、3および2’、3’の圧電基板の中央部寄りくし形電極同士を、同一圧電基板上に形成したリード電極にてそれぞれ接続する。そして、SAWフィルタF1の中央IDT電極1の外側寄りのくし形電極を入力端子INにボンディングワイヤ等を用いて接続し、SAWフィルタF2の中央のIDT電極1’のそれぞれのくし形電極を平衡出力端子OUT1、OUT2にボンディングワイヤ等にてそれぞれ接続し、他のくし形電極は接地して、入力不平衡−出力平衡型の縦続型二重モードSAWフィルタを構成する。
【0012】
SAWフィルタF1のIDT電極1、2、3及びSAWフィルタF2のIDT電極1’、2’、3’はそれぞれ互いに間挿し合う複数の電極指を有する一対のくし形電極から形成されている。なお、SAWフィルタF1、F2の帯域幅を広げるために、SAWフィルタF1においては中央のIDT電極1の最外側の電極指S1、S2の幅を他電極指の幅より幅広とし、SAWフィルタF2においては両側のIDT電極2’、3’の最内側の電極指幅S1、S2を幅広としている。
【0013】
本発明の特徴はSAWフィルタF2の電極パターン構成であり、広帯域化をはかるための幅広の電極指S1、S2を中央のIDT電極1’から切り離し、両側のIDT電極2’、3’の一方のくし形電極に接続すると共に、中央のIDT電極1’を形成するそれぞれのくし形電極の電極指数を1本間引くか、増やして同数とし、IDT電極1’の幾何学的対称性を図ったことである。また、幅広の電極指S1、S2を両側のIDT電極2’、3’に移すことにより、中央のIDT電極1’の中央に対して、二重モードSAWフィルタF2の幾何学的対称性を図ったことである。しかし、このままではSAWフィルタF2を伝搬する表面波の位相が180°ずれるので、図16に比べてSAWフィルタF1のIDT電極3において、それぞれのくし形電極の信号と接地とを逆に接続するようにする。
図2(a)、(b)、(c)はそれぞれ、中心周波数を942.5MHz、帯域幅を35MHzとした入力不平衡−出力平衡型の縦続型二重モードSAWフィルタを図1の電極パターンに基づいて試作したフィルタのフィルタ特性、2つの平衡出力端子OUT1、OUT2間の位相差特性及び振幅差特性である。諸定数は図17のときと同様であるが、出力側SAWフィルタF2の中央IDT電極1’の対数を17対とし、それぞれのくし形電極の電極指数を同一に設定した。
図2と図17とを比較すると位相差誤差が約10.5°から約2.5°に縮小し、振幅差誤差が約3.3dBから約0.3dBと大幅に減少していることが判明した。
【0014】
図3は本発明に係る第2の実施例で、図16に示した縦続型二重モードSAWフィルタの入力側のSAWフィルタF1を構成する中央のIDT電極1の最外側の電極指S1、S2を切り離すと共に、電極指を1本間引くか、増やしてそれぞれのくし形電極の本数を同数としたIDT電極5と、中央のIDT電極から切り離したS1、S2を両側のIDT電極2、3にそれぞれ接続してIDT電極6、7とする。そして、出力側のSAWフィルタF2は図1に示したSAWフィルタF2の構成と同一とすることにより、中央のIDT電極それぞれのくし形電極の電極指数は同数となり、対称性が保たれる。さらに、入出力のSAWフィルタとも幅広の電極指S1、S2が両側のIDT電極の接続されているために、2つのSAWフィルタ間のインピーダンス整合が改善される。
【0015】
図4は本発明に係る第3の実施例であって、圧電基板(図示しない)の表面波の伝搬方向に沿って、IDT電極11、12、13を近接配置すると共に、それらの両側に反射器14a、14bを配設して構成した1次−3次縦結合二重モードSAWフィルタである。IDT電極12、13の図中上側のくし形電極を接続して入力とし、中央のIDT電極11のそれぞれのくし形電極を2つの平衡出力端子OUT1、OUT2に接続し、他の電極指は接地する。本発明の特徴は中央のIDT電極11のそれぞれのくし形の電極指数を同数とすると共に、該電極11と外側のIDT電極13との間に位相シフト用の電極指15を設けることにより、表面波の位相を180°シフトすることができることである。
【0016】
図5は本発明に係る第4の実施例の入力不平衡−出力平衡型の縦続接続型二重モードSAWフィルタであって、入力側のSAWフィルタF1には従来の二重モードSAWフィルタを用い、出力側のSAWフィルタF2には図4に示した二重モードSAWフィルタを用いて縦続接続して構成したフィルタである。180°位相シフト用の電極指15を用いることにより、図16に示した外側のIDT電極103と同様に信号、接地構成とすることができる。この点が図1の外側のIDT電極3の構成と異なるところである。
【0017】
図6(a)、(b)、(c)はそれぞれ、図5の電極パターンを用いて試作した入力不平衡−出力平衡型の縦続接続型二重モードSAWフィルタのフィルタ特性、2つの平衡出力端子OUT1、OUT2間の位相差特性、振幅差特性である。諸定数は図17のものとほぼ同様であるが、出力側SAWフィルタF2IDT電極11を17対とし、それぞれのくし形電極の電極指数を同数とした。その結果、位相差特性では位相差誤差8°、振幅特性では振幅差誤差1dBと従来の特性に比べて大幅に改善されていることが分かる。
【0018】
図7は本発明に係る第5の実施例の入力不平衡−出力平衡型の縦続接続型二重モードSAWフィルタであって、図5に示した入力側SAWフィルタF1の中央のIDT電極16の最外側の電極指S1、S2を切り離してIDT電極21とし、外側のIDT電極17、18に接続して、IDT電極22、23として、入力側SAWフィルタF1を形成し、出力側SAWフィルタとして図4に示した平衡型フィルタを用いて縦続接続型二重モードSAWフィルタを構成したものである。この例でも出力側のIDT電極11のそれぞれくし形電極の電極指数は同数で、対称性を保っている。さらに、幅広の電極指S1、S2が共に外側のIDT電極に存在するために、SAWフィルタF1、F2のインピーダンス整合は改善されている。
【0019】
図8は本発明に係る第6の実施例であって、入出力インピーダンスを互いに異にした入力不平衡−出力平衡型の縦続接続型二重モードSAWフィルタである。入力側のSAWフィルタF1は図1に示したSAWフィルタF1を用い、出力側のSAWフィルタF2は図1に示したSAWフィルタF2を元にして、中央のIDT電極1’から左右同数ずつ切り離して中央のIDT電極31とし、切り離した電極指を両側のIDT電極2’、3’の一方のくし形電極の接続して、両側のIDT電極32、33を形成する。中央のIDT電極31の電極対数が減少することにより、出力インピーダンスを増大させることができる。この実施例でも出力側SAWフィルタの中央IDT電極31のそれぞれのくし形電極の電極指数を等しく設定している。この場合もSAWフィルタF2の中央IDT電極31の構成により、位相が180°ずれるため、SAWフィルタF1のIDT電極27の信号、接地の接続は従来のものと逆になっている。
【0020】
図9(a)、(b)、(c)はそれぞれ、図8の電極パターンを用いて試作した入力不平衡−出力平衡型の縦続接続型二重モードSAWフィルタのフィルタ特性、2つの平衡出力端子OUT1、OUT2間の位相差特性、振幅差特性である。位相差特性、振幅特性とも図21に示した従来の特性に比べて、位相差誤差5°、振幅差誤差1.4dBと大幅に改善されていることが分かる。
【0021】
図10は本発明に係る第7の実施例であって、入出力インピーダンスを互いに異にした入力不平衡−出力平衡型の縦続接続型二重モードSAWフィルタである。入力側のSAWフィルタF1として、図3に示した入力側のSAWフィルタF1を用い、出力側のSAWフィルタF2として図8に示した出力側のSAWフィルタF2を用いて構成したフィルタである。IDT電極31のそれぞれのくし形電極の電極指数は同数であると共に、SAWフィルタF1、F2を形成する外側のIDT電極36、37及び32、33に幅広の電極指S1、S2を移したために、インピーダンスの整合が改善される。
【0022】
図11(a)は本発明に係る第8の実施例の入力不平衡−出力平衡型の二重モードSAWフィルタの構成を示す電極パターン図であって、圧電基板上に表面波の伝搬方向に沿って3つのIDT電極45、46、47を近接配置すると共にそれらの両側に反射器48a、48bを配設して1次−3次縦結合二重モードSAWフィルタを構成する。そして、中央IDT電極45のそれぞれのくし形電極の電極指を同一とすると共に、両側のIDT電極46、47の一方の極性のそれぞれのくし形電極に電極指を追加し、追加したそれぞれの電極指の差を奇数本とする。これは両側のIDT電極46、47の位相差を180°異ならせる作用を有する。図11(a)の例ではIDT電極47に180°位相シフト用の電極指49を付加した場合を示している。なお、帯域を広帯域化するために幅広の電極指S1、S2とすることは前述した通りである。
また、図11(b)は本発明に係る第9の実施例の入力不平衡−出力平衡型の縦続接続型二重モードSAWフィルタであって、入力側のSAWフィルタF1として、図16に示した入力側のSAWフィルタF1を用い、出力側のSAWフィルタF2として図11(a)に示したSAWフィルタを用いて構成したフィルタである。また、外側のIDT電極47に180°位相シフト用の電極指49を設けたために、SAWフィルタF1の外側のIDT電極43に従来の構成の電極を用いることができる。
【0023】
図12は本発明に係る第9の実施例であって、入出力インピーダンスを互いに異にした入力不平衡−出力平衡型の縦続接続型二重モードSAWフィルタである。入力側のSAWフィルタF1として、図16に示した入力側のSAWフィルタF1の中央のIDT電極101最外側の電極指S1、S2を切り離し、両側のIDT電極102、103にそれぞれ接続したIDT電極51、52、53を用い、出力側のSAWフィルタF2として図11に示した出力側のSAWフィルタF2を用いて構成したフィルタである。このフィルタの場合も出力IDT電極45のそれぞれのくし形電極の電極指数は同数とし、フィルタのインピーダンス整合もよい。
【0024】
図13は本発明に係る第10の実施例であって、図1に示した入力不平衡−出力平衡型の縦続接続型二重モードSAWフィルタの入力側に、SAW共振子Rを直列接続して有極構成としたフィルタである。SAW共振子Rは縦続接続型二重モードSAWフィルタと同一圧電基板上に形成され、表面波の伝搬方向に沿って、IDT電極55とその両側に反射器56a、56bを配置して構成する。そして、減衰量の増加を必要とする周波数帯にSAW共振子Rの反共振周波数を合わせることにより、所望の周波数における減衰量を増大できるとはよく知られている。このフィルタの場合も出力IDT電極1’のそれぞれのくし形電極の電極指数は同数に設定してある。
【0025】
図14は本発明に係る第11の実施例であって、図1に示した入力不平衡−出力平衡型の縦続接続型二重モードSAWフィルタのSAWフィルタF1とF2との段間に2つのSAW共振子R1、R2を直列接続して構成した有極型のフィルタである。SAW共振子R1、R2は縦続接続型二重モードSAWフィルタと同一圧電基板上に形成され、それらの反共振周波数を減衰量の増加を必要とする周波数帯合わせることにより、所望の周波数の減衰量を増大できる。このフィルタの場合も出力IDT電極1’のそれぞれのくし形電極の電極指数は同数に設定してある。
【0026】
図15は本発明に係る第12の実施例であって、図4に示した二重モードSAWフィルタの入力側にSAW共振子Rを直列接続して構成した有極構成のフィルタである。この例も所望の周波数帯の減衰量を増大させることができると共に、出力IDT電極11のそれぞれのくし形電極の電極指数は同数に設定してある。
【0027】
以上の説明では入力不平衡−出力平衡型の縦続接続型二重モードSAWフィルタを例にして本発明を説明したが、本発明はこれのみに限定するものではなく、入力側の二重モードSAWフィルタを平衡型にした入力−出力平衡型の縦続接続型二重モードSAWフィルタ、入出力を入れ替えた入力平衡−出力不平衡型二重モードSAWフィルタにも適用できることは説明するまでもない。
さらに、有極構成のフィルタについては、図1に示した入力不平衡−出力平衡型の縦続接続型二重モードSAWフィルタを元として、これの入力側にSAW共振子を直列接続した例と、フィルタの段間に2つのSAW共振子を直列接続した例を説明したが、これのみに限らず、図3、図5、図7、図8、図10、図11及び図12に示したフィルタにSAW共振子を直列接続し、有極構成のフィルタができることは説明するまでもない。また、フィルタの段間に2つのSAW共振子を直列接続した例を説明したが、図5、図7、図11及び図12に示したフィルタは分割したSAW共振子を接続し、1つのSAW共振子としてフィルタの段間に設け、それを直列接続して有極構成のフィルタができることは説明するまでもない。
また、圧電基板として39°Y−X LiTaO3を用いて説明したが、他の切断角度でもよく、またニオブ酸リチウム、四硼酸リチウム、ランガサイト等の圧電基板にも本発明が適用できることは説明するまでもない。
【0028】
【発明の効果】
本発明は、以上説明したように構成したので、或る実施例では1対の平衡端子間の位相差誤差及び振幅誤差を大幅に改善できるという優れた効果を表す。また或る実施例ではインピーダンスの改善されるため、パスバンド特性が改善されると共に、1対の平衡端子間の位相差誤差及び振幅誤差を大幅に改善できるという優れた効果を表す。また或る実施例では1対の平衡端子間の位相差誤差及び振幅誤差を大幅に改善できると共に、外側の一方のIDT電極の極性を変えることができ、縦続接続する際に自由度が増すという利点がある。また或る実施例では1対の平衡端子間の位相差誤差及び振幅誤差を大幅に改善できると共に、帯域幅を拡大し、外側のIDT電極の極性を変えることができるという優れた効果を奏す。また或る実施例では1対の平衡端子間の位相差誤差及び振幅誤差を大幅に改善できるという優れた効果を奏す。また或る実施例では入出力インピーダンスが互いに異なる平衡型の縦続接続型二重モードSAWフィルタの位相差誤差及び振幅誤差を大幅に改善できるという優れた効果を奏す。また或る実施例では入出力インピーダンスが互いに異なる平衡型二重SAWモードフィルタの位相差誤差及び振幅誤差を大幅に改善できるという優れた効果と、外側のIDT電極の一方の電極の位相を180°シフトさせるという効果を奏す。また或る実施例では縦続接続型二重モードSAWフィルタの入出力インピーダンスを互いに異ならせ、位相差誤差及び振幅誤差を大幅に改善できると共に、第1の二重モードSAWフィルタの外側のIDT電極を構成するくし形電極の極性を変えたものができるという優れた効果を奏す。また或る実施例では位相差誤差及び振幅誤差を大幅に改善できると共に、有極構成ができるという優れた効果を奏す。また或る実施例では位相差誤差及び振幅誤差を大幅に改善できると共に、有極構成ができるという優れた効果を奏す。
【図面の簡単な説明】
【図1】本発明に係る入力不平衡−出力平衡型の縦続接続型二重モードSAWフィルタの構成を示す平面図である。
【図2】 (a)、(b)、(c)はそれぞれ図1の電極パターンを用いて試作した縦続接続型二重モードSAWフィルタのフィルタ特性、2つの平衡出力端子間の位相差特性、振幅差特性である。
【図3】本発明に係る第2の実施例の入力不平衡−出力平衡型の縦続接続型二重モードSAWフィルタの構成を示す平面図である。
【図4】本発明に係る第3の実施例で、180°位相シフト用の電極指を付加した入力不平衡−出力平衡型の二重モードSAWフィルタの構成を示す平面図である。
【図5】本発明に係る第4の実施例の入力不平衡−出力平衡型の縦続接続型二重モードSAWフィルタの構成を示す平面図である。
【図6】(a)、(b)、(c)はそれぞれ図5の電極パターンを用いて試作した縦続接続型二重モードSAWフィルタのフィルタ特性、2つの平衡出力端子間の位相差特性、振幅差特性である。
【図7】本発明に係る第5の実施例の入力不平衡−出力平衡型の縦続接続型二重モードSAWフィルタの構成を示す平面図である。
【図8】本発明に係る第6の実施例で、入力出力インピーダンスを互いに異にした入力不平衡−出力平衡型の縦続接続型二重モードSAWフィルタの構成を示す平面図である。
【図9】(a)、(b)、(c)はそれぞれ図8の電極パターンを用いて試作したフィルタのフィルタ特性、2つの平衡出力端子間の位相差特性、振幅差特性である。
【図10】本発明に係る第7の実施例で、入力出力インピーダンスを互いに異にした入力不平衡−出力平衡型の縦続接続型二重モードSAWフィルタの構成を示す平面図である。
【図11】本発明に係る第8の実施例で、(a)は入力不平衡−出力平衡型の二重モードSAWフィルタ、(b)は(a)を用いた第9の実施例で入力出力インピーダンスを互いに異にしたフィルタの構成を示す平面図である。
【図12】本発明に係る第10の実施例で、入力出力インピーダンスを互いに異にした入力不平衡−出力平衡型の縦続接続型二重モードSAWフィルタの構成を示す平面図である。
【図13】本発明に係る第11の実施例で、有極構成とした入力不平衡−出力平衡型の縦続接続型二重モードSAWフィルタの構成を示す平面図である。
【図14】本発明に係る第12の実施例で、有極構成とした入力不平衡−出力平衡型の縦続接続型二重モードSAWフィルタの構成を示す平面図である。
【図15】本発明に係る第13の実施例で、有極構成とした入力不平衡−出力平衡型の二重モードSAWフィルタの構成を示す平面図である
【図16】(a)は従来の縦続接続型二重モードSAWフィルタ、(b)は従来の入力不平衡−出力平衡型の縦続接続型二重モードSAWフィルタである。
【図17】(a)、(b)、(c)はそれぞれ図16(b)の電極パターンを用いて試作したフィルタのフィルタ特性、2つの平衡端子間の位相差特性、振幅差特性である。
【図18】SAWフィルタのフィルタ特性を測定するための回路構成である。
【図19】SAWフィルタの2つの平衡端子間の位相差特性、振幅差特性を測定するための回路構成である。
【図20】従来の入力出力インピーダンスを互いに異にした入力不平衡−出力平衡型の縦続接続型二重モードSAWフィルタの構成を示す平面図である。
【図21】(a)、(b)、(c)はそれぞれ図20の電極パターンを用いて試作したフィルタのフィルタ特性、2つの平衡端子間の位相差特性、振幅差特性である。
【符号の説明】
1、2、3、1’、2’、3’、5、6、7、11、12、13、16、17、18、21、22、23、25、26、27、31、32、33、35、36、37、41、42、43、51、52、53、55、57、57’、60・・IDT電極
S1、S2・・広帯域とするための電極指
15・・電極指
4a、4b、4’a、4’b、8a、8b、14a、15b、19a、19b、24a、24b、28a、28b、34a、34b、38a、38b、44a、44b、48a、48b、54a、54b、56a、56b、58a、58b、58’a、58’b、61a、61b・・グレーティング反射器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface acoustic wave filter, and more particularly to a balanced surface acoustic wave filter in which a phase difference error and an amplitude difference error between a pair of balanced terminals are improved.
[0002]
[Prior art]
In recent years, surface acoustic wave filters (hereinafter referred to as SAW filters) have been widely used in the communication field, and are widely used particularly in mobile phones and the like because they have excellent characteristics such as high performance, small size, and mass productivity. In recent mobile phones, it is necessary to accommodate digital circuits and analog circuits in a very small space, and therefore it is necessary to reduce noise from other circuits as much as possible. For this reason, means for reducing noise by making the input / output circuits of the RF circuit and IF circuit balanced is adopted, and the devices used for the RF and IF circuits are also required to be balanced. .
[0003]
FIG. 16A shows a surface acoustic wave filter in which two longitudinally coupled primary-third-order dual-mode surface wave filters (hereinafter referred to as double-mode SAW filters) using longitudinal-first-order-third-order modes are connected in cascade. It is a top view which shows the electrode pattern structure of this. The IDT electrodes 101, 102, 103 are arranged close to each other along the propagation direction of the surface wave on the main surface of the piezoelectric substrate (not shown), and grating reflectors (hereinafter referred to as reflections) are arranged on both sides of the IDT electrodes 101, 102, 103. 104a and 104b are provided to form a dual mode SAW filter F1. Further, IDT electrodes 101 ′, 102 ′, 103 ′ having almost the same configuration as the filter F1 are arranged close to each other on the same piezoelectric substrate in parallel with the dual mode SAW filter F1, and reflectors 104′a are arranged on both sides thereof. , 104′b are provided to form a dual mode SAW filter F2. Then, the comb electrodes near the center of the piezoelectric substrate of the IDT electrodes 102, 103 and 102 ′, 103 ′ on both sides of the dual mode SAW filters F1 and F2 are connected by lead electrodes formed on the same piezoelectric substrate. To do. Further, comb electrodes on the outer side of the piezoelectric substrate of the IDT electrodes 101 and 101 ′ in the center are connected to the input terminal IN and the output terminal OUT using bonding wires, respectively, and the other comb electrodes are connected to the ground. Construct a connected dual mode SAW filter.
[0004]
The IDT electrodes 101, 102, and 103 of the SAW filter F1 and the IDT electrodes 101 ', 102', and 103 'of the SAW filter F2 are each formed of a pair of comb electrodes having a plurality of electrode fingers that are interleaved with each other. In order to widen the bandwidth of the dual mode SAW filters F1 and F2, the widths of the outermost electrode fingers (referred to as electrode fingers S1 and S2) in the IDT electrodes 101 and 101 ′ at the respective centers of the filters are set. It is wider than others.
[0005]
FIG. 16B shows a balanced type output side of the unbalanced cascaded double mode SAW filter shown in FIG. 16A, and the configuration of the input side dual mode SAW filter F1 is the same. However, the comb-shaped electrodes of the central IDT electrode 105 forming the output-side filter F2 and the two output terminals OUT1 and OUT2 are connected to form a balanced configuration.
FIGS. 17A, 17B, and 17C are respectively the filter characteristics of the input unbalanced-output balanced cascaded dual mode SAW filter shown in FIG. 16B, and two balanced output terminals OUT1. , OUT2 phase difference characteristic, amplitude difference characteristic. The center frequency is set to 942.5 MHz, the bandwidth is set to 35 MHz, and the piezoelectric substrate is 39 ° Y-X LiTaOThreeThe electrode period λ is 4.1846 μm, the electrode thickness h is 8.7% λ, the center IDT electrodes 101 and 101 ′ are 17.5 pairs, and the IDT electrodes 102, 103, 102 ′, and 103 ′ on both sides are 11 This is a filter characteristic when .5 pairs, the crossing width is set to 50λ, and the number of reflectors 104a, 104b, 104′a, 104′b is set to 60.
[0006]
FIG. 18 is a circuit diagram for measuring the filter characteristics of the SAW filter. When both the input and output impedances of the SAW filter are 50Ω, the impedance ratio n of the balun (BALUN, impedance matching unit) is 1. When the output impedance of the filter is larger than 50Ω, the value of n is changed and measured. FIG. 19 is a circuit diagram for measuring the phase difference and amplitude difference between the two balanced output terminals OUT1 and OUT2 of the balanced SAW filter. When both the input / output impedances of the SAW filter are 50Ω, R1, R2 is 25Ω, and when it is larger than 50Ω, the values of R1 and R2 may be set as appropriate.
[0007]
FIG. 20 is a plan view showing a configuration of an input unbalanced / output balanced cascaded dual mode SAW filter having different input / output impedances. That is, the input / output impedance is made different by making the number of pairs of the IDT electrodes 106 at the center of the output side SAW filter F2 different from the number of pairs of the IDT electrodes 101 at the center of the input side SAW filter F1. The example of FIG. 20 is an example in which the logarithm of the IDT electrode 106 is reduced in order to increase the output impedance. The IDT electrode configuration of the SAW filter F1 on the input side is the same as the IDT electrode configuration of the SAW filter F1 shown in FIG. The IDT electrodes 106 and 107 (108 is symmetrical with 107 about the center of the electrode) of the SAW filter F2 on the output side are a predetermined number in order from the outermost electrode fingers S1 of the IDT electrode 101 at the center of the SAW filter F1. The electrode finger is formed by separating from the central IDT electrode 101 and connecting to one of the comb electrodes of the outer IDT electrode 102.
[0008]
21 (a), (b) and (c) respectively show the filter characteristics and two balanced output terminals of the input unbalanced / output balanced cascaded dual mode SAW filter having different input / output impedances shown in FIG. These are phase difference characteristics and amplitude difference characteristics between OUT1 and OUT2. The center frequency is set to 942.5 MHz, the bandwidth is set to 35 MHz, and the piezoelectric substrate is 39 ° Y-X LiTaOThreeThe electrode film thickness h is 8.7% λ, the IDT electrode 101 at the center of the SAW filter F1 on the input side is 16.5 pairs, the IDT electrodes 102 and 103 on both sides are 10.5 pairs, the crossing width is 50λ, The number of reflectors 104a and 104b is set to 60, and a predetermined electrode index is separated from both ends so that the logarithm of the IDT electrode 106 at the center of the SAW filter F2 on the output side matches the output impedance. This is a filter characteristic when connected to the IDT electrodes 107 and 108, the crossing width is set to 50λ, and the number of reflectors 109a and 109b is set to 60.
[0009]
[Problems to be solved by the invention]
However, in the conventional input unbalanced / output balanced cascaded dual mode SAW filter as shown in FIG. 16B or FIG. 20, as shown in FIG. 17B or 21B. The phase difference between the two balanced output terminals OUT1 and OUT2 was not exactly 180 °, and a phase difference error of about 10.5 ° or about 6 ° occurred. Further, the amplitude difference between OUT1 and OUT2 does not accurately become 0 dB, and an amplitude error of about 1.5 dB or about 3.3 dB occurs, and there is a problem that reception quality deteriorates when used for a mobile phone or the like.
The present invention has been made to solve the above-mentioned problem, and is an input unbalanced-output balanced type in which the phase error and the amplitude error from the phase difference of 180 ° between the two balanced terminals are significantly smaller than the conventional one. It is an object of the present invention to provide a cascade connection type dual mode SAW filter.
[0010]
[Means for Solving the Problems]
[Application Example 1]
  Along the direction of propagation of surface waves on a piezoelectric substrateIt consists of a central IDT electrode and IDT electrodes on both sidesA primary-third-order longitudinally coupled double mode in which three IDT electrodes are arranged close to each other and grating reflectors are arranged on both sides thereof.BulletSurface acoustic wave filtersThe aboveConfigure the central IDT electrodeOneComb electrodeAnd the other comb electrodeHave the same number of electrode indicesYes, the central IDT electrode was connected to a balanced terminalA balanced surface acoustic wave filter characterized by that.
[Application Example 2]
  bandWide electrode fingers to widen the areaThe bothConnect to the IDT electrode on the sideOctopusAnd featuresAs described in Application Example 1Balanced surface acoustic wave filter.
[Application Example 3]
  in frontOne of the IDT electrodes on both sides has a higher electrode index than the other by an odd numberNoIt is characterized byAs described in Application Example 1 or Application Example 2Balanced surface acoustic wave filter.
[Application Example 4]
  The widthWideElectrode fingers and saidBetween the central IDT electrodeConnected to at least one of the IDT electrodes on both sides.Odd numberThe electrode fingers were providedIt is characterized byAs described in Application Example 2Balanced surface acoustic wave filter.
[Application Example 5]
  SaidCentral IDT electrodeBetween the IDT electrodes on both sides and one of the IDT electrodes on both sides.Provided with multiple electrode fingersIt is characterized byAs described in any one of Application Examples 1 to 4Balanced surface acoustic wave filter.
[Application Example 6]
  SaidOne polarity of IDT electrodes on both sidesNokuDiamond electrodeThe multiple connected to theElectrode fingerofNumber, One of the IDT electrodes on both sidesotherWithOnly an odd numberIs differentIt is characterized byAs described in Application Example 5Balanced surface acoustic wave filter.
[Application Example 7]
  7. The balanced elasticity according to any one of application examples 1 to 6, wherein among the electrode fingers connected to the IDT electrodes on both sides, an electrode finger adjacent to the central IDT electrode is grounded. Surface wave filter.
[Application Example 8]
  A surface acoustic wave resonator in which an IDT electrode and grating reflectors are arranged on both sides thereof is connected in series to a terminal on an unbalanced side of the balanced surface acoustic wave filter according to any one of Application Examples 1 to 7. A balanced surface acoustic wave filter.
[Application Example 9]
  VerticalConnectedAt least one of the two primary-third-order longitudinally coupled double-mode surface acoustic wave filters is the balanced surface acoustic wave filter according to any one of Application Examples 1 to 8.With featuresDoBalanced surface acoustic wave filter.
[Application Example 10]
  IA surface acoustic wave resonator with a DT electrode and grating reflectors on both sidesTwo cascaded primary-cubic longitudinally coupled dual mode bulletsIt is characterized by providing at least one between the stages of the surface acoustic wave filter and connecting them in seriesAs described in Application Example 9Balanced surface acoustic wave filter.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.
FIG. 1 is a plan view showing an electrode pattern configuration of a cascaded double mode SAW filter of input unbalanced / output balanced type according to the present invention, and propagation of surface waves on the principal surface of a piezoelectric substrate (not shown). The IDT electrodes 1, 2, and 3 are arranged close to each other along the direction, and the reflectors 4a and 4b are disposed on both sides of the IDT electrodes 1, 2, and 3 to form the dual mode SAW filter F1. Further, IDT electrodes 1 ', 2', and 3 'having substantially the same configuration are arranged close to each other on the same piezoelectric substrate in parallel with the SAW filter F1, and reflectors 4'a and 4'b are provided on both sides thereof. Arrange to form a dual mode SAW filter F2. Furthermore, the comb electrodes near the center of the piezoelectric substrate of the IDT electrodes 2, 3 and 2 ', 3' on both sides of the dual mode SAW filters F1 and F2 are respectively formed by lead electrodes formed on the same piezoelectric substrate. Connecting. Then, a comb-shaped electrode closer to the outside of the central IDT electrode 1 of the SAW filter F1 is connected to the input terminal IN using a bonding wire or the like, and each comb-shaped electrode of the central IDT electrode 1 ′ of the SAW filter F2 is balanced output. Each of the terminals OUT1 and OUT2 is connected by a bonding wire or the like, and the other comb electrodes are grounded to constitute an input unbalanced / output balanced type cascaded double mode SAW filter.
[0012]
The IDT electrodes 1, 2, and 3 of the SAW filter F1 and the IDT electrodes 1 ', 2', and 3 'of the SAW filter F2 are each formed of a pair of comb electrodes having a plurality of electrode fingers that are interleaved with each other. In order to widen the bandwidth of the SAW filters F1 and F2, in the SAW filter F1, the outermost electrode fingers S1 and S2 of the central IDT electrode 1 are wider than the widths of the other electrode fingers, and the SAW filter F2 Is wide on the innermost electrode finger widths S1 and S2 of the IDT electrodes 2 'and 3' on both sides.
[0013]
A feature of the present invention is the electrode pattern configuration of the SAW filter F2, in which wide electrode fingers S1 and S2 for widening the band are separated from the central IDT electrode 1 ′, and one of the IDT electrodes 2 ′ and 3 ′ on both sides is separated. Connected to the comb-shaped electrode and thinned or increased the electrode index of each comb-shaped electrode forming the central IDT electrode 1 ′ to the same number to achieve geometric symmetry of the IDT electrode 1 ′ It is. Further, by moving the wide electrode fingers S1 and S2 to the IDT electrodes 2 ′ and 3 ′ on both sides, the geometric symmetry of the dual mode SAW filter F2 is achieved with respect to the center of the center IDT electrode 1 ′. That is. However, since the phase of the surface wave propagating through the SAW filter F2 is shifted by 180 ° as it is, the signals of the respective comb electrodes and the ground are connected reversely in the IDT electrode 3 of the SAW filter F1 as compared with FIG. To.
2 (a), 2 (b), and 2 (c) show an input unbalanced-output balanced type cascaded dual mode SAW filter with a center frequency of 942.5 MHz and a bandwidth of 35 MHz, respectively, as shown in FIG. These are the filter characteristics of the filter prototyped based on the above and the phase difference characteristics and amplitude difference characteristics between the two balanced output terminals OUT1 and OUT2. The various constants are the same as in FIG. 17, but the number of pairs of the central IDT electrodes 1 'of the output side SAW filter F2 is set to 17, and the electrode index of each comb electrode is set to be the same.
Comparing FIG. 2 with FIG. 17, the phase difference error is reduced from about 10.5 ° to about 2.5 °, and the amplitude difference error is greatly reduced from about 3.3 dB to about 0.3 dB. found.
[0014]
FIG. 3 shows a second embodiment of the present invention. The outermost electrode fingers S1, S2 of the central IDT electrode 1 constituting the SAW filter F1 on the input side of the cascaded dual mode SAW filter shown in FIG. The IDT electrode 5 in which one electrode finger is thinned out or increased so that the number of each comb electrode is the same number, and S1 and S2 separated from the central IDT electrode are respectively connected to the IDT electrodes 2 and 3 on both sides. The IDT electrodes 6 and 7 are connected. Further, by making the SAW filter F2 on the output side the same as the configuration of the SAW filter F2 shown in FIG. 1, the electrode indices of the comb-shaped electrodes of the central IDT electrodes are the same, and symmetry is maintained. Furthermore, since the wide electrode fingers S1 and S2 are connected to the IDT electrodes on both sides of the input / output SAW filter, impedance matching between the two SAW filters is improved.
[0015]
FIG. 4 shows a third embodiment according to the present invention, in which IDT electrodes 11, 12, and 13 are arranged close to each other along the surface wave propagation direction of a piezoelectric substrate (not shown) and reflected on both sides thereof. It is a primary-third-order longitudinally coupled double mode SAW filter configured by arranging the devices 14a and 14b. The comb electrodes on the upper side of the IDT electrodes 12 and 13 are connected and used as inputs, and the comb electrodes of the center IDT electrode 11 are connected to the two balanced output terminals OUT1 and OUT2, and the other electrode fingers are grounded. To do. A feature of the present invention is that the number of comb-shaped electrode indexes of the central IDT electrode 11 is the same, and an electrode finger 15 for phase shift is provided between the electrode 11 and the outer IDT electrode 13, thereby providing a surface. The phase of the wave can be shifted by 180 °.
[0016]
FIG. 5 shows a cascaded double-mode SAW filter of input unbalance-output balance type according to the fourth embodiment of the present invention. A conventional dual-mode SAW filter is used as the SAW filter F1 on the input side. The output side SAW filter F2 is a filter configured by cascading using the dual mode SAW filter shown in FIG. By using the electrode fingers 15 for 180 ° phase shift, a signal and grounding configuration can be achieved in the same manner as the outer IDT electrode 103 shown in FIG. This point is different from the configuration of the outer IDT electrode 3 in FIG.
[0017]
FIGS. 6A, 6B, and 6C show filter characteristics and two balanced outputs of an input unbalanced-output balanced cascaded dual-mode SAW filter that were prototyped using the electrode pattern of FIG. The phase difference characteristic and the amplitude difference characteristic between the terminals OUT1 and OUT2. The various constants are almost the same as those in FIG. 17, but the output side SAW filter F2IDT electrode 11 is 17 pairs, and the electrode index of each comb electrode is the same number. As a result, it can be understood that the phase difference error is 8 ° in the phase difference characteristic and the amplitude difference error is 1 dB in the amplitude characteristic, which is greatly improved compared to the conventional characteristic.
[0018]
FIG. 7 shows an input unbalanced-output balanced type cascaded dual mode SAW filter according to the fifth embodiment of the present invention, which is the center of the IDT electrode 16 of the input side SAW filter F1 shown in FIG. The outermost electrode fingers S1 and S2 are cut off to form the IDT electrode 21, and connected to the outer IDT electrodes 17 and 18, and the input side SAW filter F1 is formed as the IDT electrodes 22 and 23, and the output side SAW filter is illustrated. A cascaded double mode SAW filter is configured using the balanced filter shown in FIG. Also in this example, the electrode indexes of the comb-shaped electrodes of the IDT electrode 11 on the output side are the same number and maintain symmetry. Furthermore, since the wide electrode fingers S1 and S2 are both present on the outer IDT electrodes, the impedance matching of the SAW filters F1 and F2 is improved.
[0019]
FIG. 8 shows a sixth embodiment of the present invention, which is an input unbalanced / output balanced cascaded double mode SAW filter having different input / output impedances. The SAW filter F1 on the input side uses the SAW filter F1 shown in FIG. 1, and the SAW filter F2 on the output side is separated from the central IDT electrode 1 ′ by the same number on the left and right sides based on the SAW filter F2 shown in FIG. The IDT electrodes 31 and 33 on both sides are formed by connecting the separated electrode fingers to one of the comb electrodes of the IDT electrodes 2 ′ and 3 ′ on both sides. The output impedance can be increased by reducing the number of electrode pairs of the central IDT electrode 31. Also in this embodiment, the electrode index of each comb-shaped electrode of the central IDT electrode 31 of the output side SAW filter is set equal. Also in this case, the phase of the center IDT electrode 31 of the SAW filter F2 is shifted by 180 °, so that the signal and ground connection of the IDT electrode 27 of the SAW filter F1 is reversed from the conventional one.
[0020]
FIGS. 9A, 9B and 9C respectively show the filter characteristics and two balanced outputs of an input unbalanced-output balanced cascaded dual-mode SAW filter manufactured using the electrode pattern of FIG. The phase difference characteristic and the amplitude difference characteristic between the terminals OUT1 and OUT2. It can be seen that both the phase difference characteristic and the amplitude characteristic are significantly improved as compared to the conventional characteristic shown in FIG. 21 with a phase difference error of 5 ° and an amplitude difference error of 1.4 dB.
[0021]
FIG. 10 shows a seventh embodiment of the present invention, which is an input unbalanced / output balanced cascaded double mode SAW filter having different input / output impedances. The input side SAW filter F1 shown in FIG. 3 is used as the input side SAW filter F1, and the output side SAW filter F2 shown in FIG. 8 is used as the output side SAW filter F2. The electrode index of each comb electrode of the IDT electrode 31 is the same, and the wide electrode fingers S1, S2 are moved to the outer IDT electrodes 36, 37 and 32, 33 forming the SAW filters F1, F2. Impedance matching is improved.
[0022]
FIG. 11A is an electrode pattern diagram showing the configuration of an input unbalanced / output balanced dual mode SAW filter according to the eighth embodiment of the present invention, in the propagation direction of the surface wave on the piezoelectric substrate. Three IDT electrodes 45, 46, and 47 are disposed close to each other along with reflectors 48a and 48b on both sides of the three IDT electrodes 45, 46, and 47 to form a primary-third-order longitudinally coupled double mode SAW filter. Then, the electrode fingers of the comb electrodes of the central IDT electrode 45 are made the same, and electrode fingers are added to the comb electrodes of one polarity of the IDT electrodes 46 and 47 on both sides, and the added electrodes An odd number of finger differences. This has the effect of making the phase difference between the IDT electrodes 46 and 47 on both sides different by 180 °. In the example of FIG. 11A, a case where electrode fingers 49 for 180 ° phase shift are added to the IDT electrode 47 is shown. As described above, the wide electrode fingers S1 and S2 are used to widen the band.
FIG. 11B shows an input unbalanced / output balanced cascaded dual mode SAW filter according to the ninth embodiment of the present invention, which is shown as an input side SAW filter F1 in FIG. The filter is configured using the SAW filter F1 on the input side and the SAW filter shown in FIG. 11A as the SAW filter F2 on the output side. Further, since the 180 ° phase shift electrode fingers 49 are provided on the outer IDT electrode 47, the conventional IDT electrode 43 can be used for the outer IDT electrode 43 of the SAW filter F1.
[0023]
FIG. 12 shows a ninth embodiment of the present invention, which is an input unbalanced / output balanced cascaded double mode SAW filter having different input / output impedances. As the input-side SAW filter F1, the outermost electrode fingers S1 and S2 of the center IDT electrode 101 of the input-side SAW filter F1 shown in FIG. 16 are separated, and the IDT electrodes 51 connected to the IDT electrodes 102 and 103 on both sides, respectively. 52, 53, and the output side SAW filter F2 shown in FIG. 11 as the output side SAW filter F2. Also in the case of this filter, the electrode indexes of the comb-shaped electrodes of the output IDT electrode 45 are the same, and the impedance matching of the filter may be good.
[0024]
FIG. 13 shows a tenth embodiment of the present invention, in which a SAW resonator R is connected in series to the input side of the cascaded double mode SAW filter of the input unbalanced-output balanced type shown in FIG. This is a filter with a polar configuration. The SAW resonator R is formed on the same piezoelectric substrate as the cascaded double mode SAW filter, and includes an IDT electrode 55 and reflectors 56a and 56b arranged on both sides thereof along the surface wave propagation direction. It is well known that the attenuation at a desired frequency can be increased by matching the anti-resonance frequency of the SAW resonator R to a frequency band that requires an increase in the attenuation. Also in this filter, the electrode index of each comb-shaped electrode of the output IDT electrode 1 'is set to the same number.
[0025]
FIG. 14 shows an eleventh embodiment according to the present invention, in which two input terminals between two SAW filters F1 and F2 of the input unbalanced / output balanced cascaded dual mode SAW filter shown in FIG. This is a polarized filter configured by connecting SAW resonators R1 and R2 in series. The SAW resonators R1 and R2 are formed on the same piezoelectric substrate as the cascaded double mode SAW filter, and their anti-resonance frequencies are matched to a frequency band that requires an increase in attenuation, thereby reducing the attenuation of a desired frequency. Can be increased. Also in this filter, the electrode index of each comb-shaped electrode of the output IDT electrode 1 'is set to the same number.
[0026]
FIG. 15 shows a twelfth embodiment according to the present invention, which is a filter having a pole configuration in which a SAW resonator R is connected in series on the input side of the dual mode SAW filter shown in FIG. In this example as well, the attenuation of the desired frequency band can be increased, and the electrode index of each comb electrode of the output IDT electrode 11 is set to the same number.
[0027]
In the above description, the present invention has been described by taking the input unbalanced / output balanced cascaded dual mode SAW filter as an example. However, the present invention is not limited to this, and the dual mode SAW on the input side is not limited thereto. Needless to say, the present invention can also be applied to an input-output balanced cascaded double-mode SAW filter with a balanced filter and an input balanced-output unbalanced dual-mode SAW filter with an input / output switched.
Furthermore, with respect to the filter of the polar configuration, based on the input unbalanced-output balanced type cascaded double mode SAW filter shown in FIG. 1, an example in which a SAW resonator is connected in series on the input side thereof, and Although an example in which two SAW resonators are connected in series between filter stages has been described, the present invention is not limited to this, and the filters shown in FIGS. 3, 5, 7, 8, 10, 11 and 12 are also used. Needless to say, a SAW resonator can be connected in series to form a polarized filter. Further, the example in which two SAW resonators are connected in series between the stages of the filter has been described. However, the filters shown in FIGS. 5, 7, 11, and 12 connect one SAW resonator to each other. Needless to say, a filter having a pole configuration can be formed by providing resonators between filter stages and connecting them in series.
Also, as a piezoelectric substrate, 39 ° YX LiTaOThreeHowever, it is needless to say that the present invention can be applied to piezoelectric substrates such as lithium niobate, lithium tetraborate, and langasite.
[0028]
【The invention's effect】
  Since the present invention is configured as described above,In some embodimentsThis represents an excellent effect that the phase difference error and the amplitude error between the pair of balanced terminals can be greatly improved.In some embodiments,Since the impedance is improved, the passband characteristic is improved and the phase difference error and the amplitude error between the pair of balanced terminals can be greatly improved.In some embodiments,The phase difference error and the amplitude error between the pair of balanced terminals can be greatly improved, and the polarity of the outer IDT electrode can be changed, and there is an advantage that the degree of freedom is increased in the cascade connection.In some embodiments,The phase difference error and the amplitude error between the pair of balanced terminals can be greatly improved, the bandwidth can be expanded, and the polarity of the outer IDT electrode can be changed.In some embodiments,There is an excellent effect that the phase difference error and the amplitude error between the pair of balanced terminals can be greatly improved.In some embodiments,The phase difference error and the amplitude error of the balanced cascaded dual mode SAW filter having different input / output impedances can be greatly improved.In some embodiments,An excellent effect that phase difference error and amplitude error of balanced double SAW mode filters having different input / output impedances can be greatly improved, and an effect of shifting the phase of one electrode of the outer IDT electrode by 180 °. .In some embodiments,The input / output impedances of the cascaded dual mode SAW filter can be made different from each other to greatly improve the phase difference error and the amplitude error, and the comb electrode constituting the IDT electrode outside the first dual mode SAW filter can be used. It has an excellent effect of being able to change the polarity.In some embodiments,The phase difference error and the amplitude error can be greatly improved, and an excellent effect is achieved that a polar configuration can be achieved.In some embodiments,The phase difference error and the amplitude error can be greatly improved, and an excellent effect is achieved that a polar configuration can be achieved.
[Brief description of the drawings]
FIG. 1 is a plan view showing a configuration of an input unbalanced-output balanced cascaded dual mode SAW filter according to the present invention.
2 (a), (b), and (c) are filter characteristics of a cascaded double mode SAW filter that is prototyped using the electrode pattern of FIG. 1, respectively, and phase difference characteristics between two balanced output terminals; It is an amplitude difference characteristic.
FIG. 3 is a plan view showing the configuration of a cascaded double mode SAW filter of input unbalanced / output balanced type according to a second embodiment of the present invention.
FIG. 4 is a plan view showing the configuration of an input unbalanced / output balanced dual mode SAW filter to which 180 ° phase shift electrode fingers are added according to a third embodiment of the present invention.
FIG. 5 is a plan view showing the configuration of a cascaded double mode SAW filter of input unbalanced / output balanced type according to a fourth embodiment of the present invention.
6 (a), (b), and (c) are filter characteristics of a cascaded dual-mode SAW filter that is prototyped using the electrode pattern of FIG. 5, respectively, and phase difference characteristics between two balanced output terminals; It is an amplitude difference characteristic.
FIG. 7 is a plan view showing the configuration of a cascaded double mode SAW filter of input unbalanced-output balanced type according to a fifth embodiment of the present invention.
FIG. 8 is a plan view showing a configuration of an input unbalanced-output balanced cascaded double mode SAW filter having different input output impedances in a sixth embodiment of the present invention.
FIGS. 9A, 9B, and 9C are respectively a filter characteristic of a filter manufactured using the electrode pattern of FIG. 8, a phase difference characteristic between two balanced output terminals, and an amplitude difference characteristic.
FIG. 10 is a plan view showing a configuration of an input unbalanced-output balanced cascaded dual mode SAW filter having different input output impedances according to a seventh embodiment of the present invention.
11A is an input unbalanced-output balanced dual-mode SAW filter according to an eighth embodiment of the present invention, and FIG. 11B is an input according to the ninth embodiment using FIG. It is a top view which shows the structure of the filter which mutually made output impedance different.
FIG. 12 is a plan view showing the configuration of an input unbalanced-output balanced cascaded dual mode SAW filter having different input output impedances in the tenth embodiment of the present invention.
FIG. 13 is a plan view showing a configuration of an input unbalanced-output balanced type cascaded double mode SAW filter having a polar configuration in an eleventh embodiment according to the present invention.
FIG. 14 is a plan view showing a configuration of a cascaded double mode SAW filter of input unbalanced / output balanced type having a polar configuration in a twelfth embodiment according to the present invention.
FIG. 15 is a plan view showing a configuration of an input unbalanced-output balanced dual mode SAW filter having a polar configuration in a thirteenth embodiment according to the present invention;
16A is a conventional cascaded double mode SAW filter, and FIG. 16B is a conventional input unbalanced / output balanced cascaded dual mode SAW filter.
FIGS. 17A, 17B, and 17C are respectively a filter characteristic of a filter manufactured using the electrode pattern of FIG. 16B, a phase difference characteristic between two balanced terminals, and an amplitude difference characteristic. .
FIG. 18 is a circuit configuration for measuring the filter characteristics of a SAW filter.
FIG. 19 is a circuit configuration for measuring a phase difference characteristic and an amplitude difference characteristic between two balanced terminals of a SAW filter.
FIG. 20 is a plan view showing a configuration of a conventional input unbalanced / output balanced cascaded double mode SAW filter having different input output impedances.
FIGS. 21A, 21B, and 21C are respectively a filter characteristic of a filter manufactured using the electrode pattern of FIG. 20, a phase difference characteristic between two balanced terminals, and an amplitude difference characteristic.
[Explanation of symbols]
1, 2, 3, 1 ', 2', 3 ', 5, 6, 7, 11, 12, 13, 16, 17, 18, 21, 22, 23, 25, 26, 27, 31, 32, 33 , 35, 36, 37, 41, 42, 43, 51, 52, 53, 55, 57, 57 ', 60 .. IDT electrode
S1, S2 ... Electrode fingers for wide band
15. Electrode fingers
4a, 4b, 4'a, 4'b, 8a, 8b, 14a, 15b, 19a, 19b, 24a, 24b, 28a, 28b, 34a, 34b, 38a, 38b, 44a, 44b, 48a, 48b, 54a, 54b, 56a, 56b, 58a, 58b, 58'a, 58'b, 61a, 61b .. Grating reflector

Claims (8)

圧電基板上に表面波の伝搬方向に沿って中央IDT電極とその両側のIDT電極とからなる3つのIDT電極を近接配置すると共に、それらの両側にグレーティング反射器を配設した1次−3次縦結合二重モード弾性表面波フィルタにおいて、
前記中央IDT電極を構成する一方のくし形電極と他方のくし形電極の電極指数が同数であり、
前記中央IDT電極を平衡端子に接続し、
前記中央IDT電極と前記両側のIDT電極との間に、前記両側のIDT電極の一方の極性のくし形電極に接続した複数本の電極指を設け、
前記複数本の電極指の数が、前記両側のIDT電極の一方と他方とで奇数本だけ異なっていることを特徴とする平衡型弾性表面波フィルタ。
Three to three IDT electrodes comprising a central IDT electrode and IDT electrodes on both sides thereof are arranged close to each other along the propagation direction of the surface wave on the piezoelectric substrate, and a grating reflector is arranged on both sides thereof. In the longitudinally coupled double mode surface acoustic wave filter,
The electrode index of one comb electrode and the other comb electrode constituting the central IDT electrode is the same number,
Connecting the central IDT electrode to a balanced terminal;
Between the central IDT electrode and the IDT electrodes on both sides, a plurality of electrode fingers connected to one polarity comb electrode of the IDT electrodes on both sides are provided,
The balanced surface acoustic wave filter, wherein the number of the plurality of electrode fingers is different by an odd number between one and the other of the IDT electrodes on both sides.
前記複数本の電極指のうち、前記両側のIDT電極と隣り合うそれぞれの電極指が、帯域幅を広げるための幅広の電極指であることを特徴とする請求項1に記載の平衡型弾性表面波フィルタ。 2. The balanced elastic surface according to claim 1 , wherein among the plurality of electrode fingers, each electrode finger adjacent to the IDT electrodes on both sides is a wide electrode finger for widening a bandwidth. Wave filter. 前記両側のIDT電極の一方が他方より奇数本だけ電極指数が多いことを特徴とする請求項1または請求項2に記載の平衡型弾性表面波フィルタ。  3. The balanced surface acoustic wave filter according to claim 1, wherein one of the IDT electrodes on both sides has an odd number of electrode indexes than the other. 前記幅広の電極指と前記中央IDT電極との間に、前記両側のIDT電極のいずれか一方に接続された奇数本の電極指を設けたことを特徴とする請求項2に記載の平衡型弾性表面波フィルタ。Between the wide electrode fingers and the central IDT electrode, balanced according to claim 2, characterized in that a odd number of electrode fingers connected to one hand of the opposite sides of the IDT electrode Surface acoustic wave filter. 前記両側のIDT電極に接続されている電極指のうち、前記中央IDT電極と隣り合う電極指が接地されていることを特徴とする請求項1乃至4のいずれか一項に記載の平衡型弾性表面波フィルタ。  5. The balanced elastic according to claim 1, wherein among the electrode fingers connected to the IDT electrodes on both sides, an electrode finger adjacent to the central IDT electrode is grounded. 6. Surface wave filter. IDT電極とその両側にグレーティング反射器を配置した弾性表面波共振子を請求項1乃至5のいずれか一項に記載の平衡型弾性表面波フィルタの不平衡側の端子に直列接続したことを特徴とする平衡型弾性表面波フィルタ。  6. A surface acoustic wave resonator in which an IDT electrode and grating reflectors are arranged on both sides thereof are connected in series to an unbalanced terminal of the balanced surface acoustic wave filter according to claim 1. A balanced surface acoustic wave filter. 縦続接続した2つの1次−3次縦結合二重モード弾性表面波フィルタのうち、少なくとも1つが、請求項1乃至6のいずれか一項に記載の平衡型弾性表面波フィルタであることを特徴とする平衡型弾性表面波フィルタ。  7. The balanced surface acoustic wave filter according to claim 1, wherein at least one of the two primary-third-order longitudinally coupled double mode surface acoustic wave filters connected in cascade is the balanced surface acoustic wave filter according to claim 1. A balanced surface acoustic wave filter. IDT電極とその両側にグレーティング反射器を配置した弾性表面波共振子を前記縦続接続した2つの1次−3次縦結合二重モード弾性表面波フィルタの段間に少なくとも1つ設け、これを直列接続したことを特徴とする請求項7に記載の平衡型弾性表面波フィルタ。  At least one surface acoustic wave resonator having an IDT electrode and grating reflectors disposed on both sides thereof is provided between two cascaded first-order third-order longitudinally coupled double-mode surface acoustic wave filters, which are connected in series. The balanced surface acoustic wave filter according to claim 7, which is connected.
JP2001117181A 2001-04-16 2001-04-16 Balanced surface acoustic wave filter Expired - Fee Related JP4734751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001117181A JP4734751B2 (en) 2001-04-16 2001-04-16 Balanced surface acoustic wave filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001117181A JP4734751B2 (en) 2001-04-16 2001-04-16 Balanced surface acoustic wave filter

Publications (3)

Publication Number Publication Date
JP2002314370A JP2002314370A (en) 2002-10-25
JP2002314370A5 JP2002314370A5 (en) 2008-05-22
JP4734751B2 true JP4734751B2 (en) 2011-07-27

Family

ID=18967795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001117181A Expired - Fee Related JP4734751B2 (en) 2001-04-16 2001-04-16 Balanced surface acoustic wave filter

Country Status (1)

Country Link
JP (1) JP4734751B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1229916C (en) 2001-04-09 2005-11-30 株式会社村田制作所 Elastic surface wave device and communication device
JP4069917B2 (en) * 2004-09-15 2008-04-02 株式会社村田製作所 Balanced surface acoustic wave filter
DE102005010658A1 (en) * 2005-03-08 2006-09-14 Epcos Ag Duplexer with improved power compatibility
JP4537254B2 (en) 2005-04-28 2010-09-01 富士通メディアデバイス株式会社 Surface acoustic wave filter and duplexer
JP4244057B2 (en) * 2006-08-30 2009-03-25 富士通メディアデバイス株式会社 Balance filter and duplexer
EP2063530B1 (en) 2006-10-31 2013-08-21 Murata Manufacturing Co. Ltd. Surface acoustic wave filter device and duplexer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349590A (en) * 1999-06-03 2000-12-15 Toyo Commun Equip Co Ltd Surface acoustic wave filter
WO2001013514A1 (en) * 1999-08-16 2001-02-22 Epcos Ag Dual-mode surface wave filter with enhanced symmetry and optionally enhanced stop-band attenuation
JP2002330053A (en) * 2001-03-01 2002-11-15 Murata Mfg Co Ltd Surface acoustic wave unit and communication equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3890667B2 (en) * 1997-04-16 2007-03-07 エプソントヨコム株式会社 Vertically coupled double mode SAW filter
JPH11317642A (en) * 1998-03-06 1999-11-16 Toshiba Corp Surface acoustic wave device and communication equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349590A (en) * 1999-06-03 2000-12-15 Toyo Commun Equip Co Ltd Surface acoustic wave filter
WO2001013514A1 (en) * 1999-08-16 2001-02-22 Epcos Ag Dual-mode surface wave filter with enhanced symmetry and optionally enhanced stop-band attenuation
JP2002330053A (en) * 2001-03-01 2002-11-15 Murata Mfg Co Ltd Surface acoustic wave unit and communication equipment

Also Published As

Publication number Publication date
JP2002314370A (en) 2002-10-25

Similar Documents

Publication Publication Date Title
US6759928B2 (en) Surface acoustic wave device with divided interdigital transducers
EP1168613A2 (en) Longitudinally coupled resonator type surface acoustic wave filter and communications apparatus incorporating the same
US6556100B2 (en) Surface acoustic wave filter with a passband formed by a longitudinally coupled filter and a resonator inductance
US6034577A (en) Integrated interdigital electrode saw filter with specified distances between input/output electrodes
US7876176B2 (en) Acoustic wave filter device and duplexer
JP4569713B2 (en) Elastic wave resonator, elastic wave filter, and antenna duplexer using the same
WO2006068086A1 (en) Balance type saw filter
JP4412326B2 (en) Balanced SAW filter
JP3826816B2 (en) Surface acoustic wave device
JP5018894B2 (en) Elastic wave filter device
US6768397B2 (en) Surface acoustic wave filter with balanced and unbalanced terminals
JP2003069385A (en) Surface acoustic wave filter
JP2001217680A (en) Longitudinally coupled surface acoustic wave filter
JP3743341B2 (en) Surface acoustic wave device
JP3985717B2 (en) Surface acoustic wave device and communication device using the same
JPWO2005050837A1 (en) Surface acoustic wave filter
JP4734751B2 (en) Balanced surface acoustic wave filter
US6720847B2 (en) Longitudinally-coupled resonator surface acoustic wave filter and communication apparatus using the same
JP2004048675A (en) Surface acoustic wave device, and communication device containing the same
JP2002064358A (en) Compound surface acoustic wave filter
JPH10294644A (en) Polar surface acoustic wave device
JP3999977B2 (en) Surface acoustic wave filter device
JP3290165B2 (en) Ladder type surface acoustic wave filter
JPWO2006048999A1 (en) Balanced SAW filter
JP2002111444A (en) Coupled surface acoustic wave filter

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080407

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees