JP4733364B2 - Cavity exploration device - Google Patents

Cavity exploration device Download PDF

Info

Publication number
JP4733364B2
JP4733364B2 JP2004161563A JP2004161563A JP4733364B2 JP 4733364 B2 JP4733364 B2 JP 4733364B2 JP 2004161563 A JP2004161563 A JP 2004161563A JP 2004161563 A JP2004161563 A JP 2004161563A JP 4733364 B2 JP4733364 B2 JP 4733364B2
Authority
JP
Japan
Prior art keywords
antenna
cavity
buried pipe
exploration
antenna housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004161563A
Other languages
Japanese (ja)
Other versions
JP2005345118A (en
Inventor
良祐 有岡
孝幸 長岡
雄司 今▲崎▼
博 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Sewerage Service Corp
Airec Engineering Corp
Original Assignee
Tokyo Metropolitan Sewerage Service Corp
Airec Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Sewerage Service Corp, Airec Engineering Corp filed Critical Tokyo Metropolitan Sewerage Service Corp
Priority to JP2004161563A priority Critical patent/JP4733364B2/en
Publication of JP2005345118A publication Critical patent/JP2005345118A/en
Application granted granted Critical
Publication of JP4733364B2 publication Critical patent/JP4733364B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

本発明は、小口径下水管等の小口径の埋設管の周囲に存在する空洞を探査する空洞探査装置に関する。   The present invention relates to a cavity exploration device for exploring a cavity existing around a small-diameter buried pipe such as a small-diameter sewer pipe.

地下水等の作用により埋設管に沿って流れる水の道ができ、周囲の土砂を引き込んで埋設管上部に空洞ができ、又は、埋設管下部が水で洗掘されて埋設管周囲に空洞ができることがある。これらの空洞を探査し、事前に補修することは道路の陥没や埋設管の毀損による事故を未然に防ぐ意味から極めて重要である。   A water path that flows along the buried pipe is created by the action of groundwater, etc., and the surrounding earth and sand are drawn to create a cavity in the upper part of the buried pipe, or the lower part of the buried pipe is scoured with water to create a cavity around the buried pipe. There is. Exploring these cavities and repairing them in advance is extremely important in terms of preventing accidents caused by road collapses or buried pipe damage.

このような空洞の探査においては、公知の地中レーダが用いられてきた。この地中レーダは、電磁波パルスを生成するパルス発生回路とこの電磁波パルスを地中に発射する送信アンテナ、空洞部で反射して帰ってきた反射波を受信する受信アンテナと受信回路を有するアンテナ筐体、パルス発生回路や受信回路を制御する制御装置、受信回路の受信信号に基づいて空洞を表示する探査画像処理装置とから構成され、地表面から空洞の探査を行っていた。   In such exploration of cavities, known underground radars have been used. This subsurface radar includes a pulse generation circuit that generates an electromagnetic wave pulse, a transmission antenna that emits the electromagnetic wave pulse into the ground, a reception antenna that receives a reflected wave reflected back from the cavity, and an antenna housing having a reception circuit. A body, a control device for controlling a pulse generation circuit and a reception circuit, and an exploration image processing device for displaying a cavity based on a reception signal of the reception circuit are used to explore the cavity from the ground surface.

一方、管路内から空洞等を探査する空洞探査装置も用いられている。この空洞探査装置は、例えば電磁波を発射してその反射波から空洞等を探査するレーダ装置を搭載し、大口径埋設管内を移動自在としたレーダ搭載車と、レーダ搭載車を駆動する等の駆動制御を実行する制御装置と、空洞等の位置や距離及び探査画像等を表示出力するディスプレイとにより構成されるものが知られている(例えば、特許文献1参照。)。
特開平10−90433号公報
On the other hand, a cavity exploration device for exploring a cavity or the like from the inside of a pipeline is also used. This cavity exploration device is equipped with, for example, a radar device that emits electromagnetic waves and explores cavities and the like from the reflected waves, and is equipped with a radar-equipped vehicle that is movable within a large-diameter buried pipe, and a drive that drives the radar-equipped vehicle There is known one that includes a control device that performs control and a display that displays and outputs the position and distance of a cavity, a search image, and the like (for example, see Patent Document 1).
JP-A-10-90433

上述の地中レーダ地表面から埋設管周辺の空洞等を探査する地中レーダでは、地中3m程度までの探査が限界であり、しかも埋設管周辺の小さい空洞は埋設管からの反射波に埋もれてしまうほど小さいため、識別は困難であった。   In the above-mentioned ground penetrating radar that explores the cavities around the buried pipe from the ground surface, exploration up to about 3 m underground is the limit, and the small cavity around the buried pipe is buried in the reflected wave from the buried pipe. It was so small that it was difficult to identify.

一方、特許文献1に記載されたものでは、レーダ搭載車により埋設管内を移動するため大口径管内を一方向へと探査する場合にしか用いることができない。したがって、特に道路陥没に影響を与えやすい埋設管上部の空洞を探査するためアンテナ面が埋設管上部に向くように配置されていた。このため、埋設管の周囲全体の状況を把握するにはアンテナ面を少なくとも大口径管路内の両側面および下部に向ける必要がある。この解決策としてアンテナ面を回転させる回転機構を設けることが考えられるが実装上小型化が困難であり、小口径管路内を探査する空洞探査装置では発案されていない。また、埋設管の側面方向を探査する場合にはアンテナ面が埋設管内の側面に向くように装置等を用いて空洞探査装置を90度回転させ、埋設管の下部を探査する場合にはアンテナ面が埋設管内の下側を向くように装置等を用いて空洞探査装置を180度回転させて走行することも考えられる。しかしながら、空洞探査装置全体の小型化や姿勢制御に問題が生じる他、全周方向の探査を行う場合は作業量が4倍になるなどの作業効率上の欠点がある。   On the other hand, what is described in Patent Document 1 can be used only when the inside of a large-diameter pipe is searched in one direction because the radar-equipped vehicle moves through the buried pipe. Therefore, in order to search for a cavity in the upper part of the buried pipe that is particularly susceptible to road depression, the antenna surface is arranged so as to face the upper part of the buried pipe. For this reason, in order to grasp the situation of the entire periphery of the buried pipe, it is necessary to direct the antenna surface to at least both side faces and the lower part in the large-diameter pipe. As a solution to this problem, it is conceivable to provide a rotating mechanism for rotating the antenna surface, but it is difficult to reduce the size for mounting, and it has not been proposed in a cavity exploration device for exploring the inside of a small-diameter pipe. Also, when exploring the side direction of the buried pipe, rotate the cavity exploration device 90 degrees using a device or the like so that the antenna surface faces the side surface in the buried pipe, and when exploring the lower part of the buried pipe, It is also conceivable to travel by rotating the cavity exploration device 180 degrees using a device or the like so that the surface of the buried tube faces downward. However, there are problems in miniaturization and attitude control of the entire cavity exploration device, and there are disadvantages in work efficiency, such as a four-fold increase in the amount of work when exploring in all directions.

さらに、埋設管の敷設状態は一様ではなく管路が水平方向又は垂直方向に曲がっている曲線部が必ず存在する。空洞探査装置は車輪あるいはキャタピラ等無軌道式の走行方式を採用しているため管路内の曲線部を走行するときに空洞探査装置は回転してしまい、この回転によって回転量だけずれた方向の探査をしてしまい正確な探査ができなくなる。この回転を戻す機構は小口径管では発案されていないため、回転を防止しようとすれば曲線部において空洞探査装置が接触せずに走行できる程度の大口径管に適用するしかないが、これでは、小口径管路内を探査することができない。一方、空洞探査装置の直径を埋設管の直径に対して小さくすると、アンテナと管路内面との距離が大きくなり、アンテナと管路内面間で多重反射が生じ電波干渉が起こり埋設管外へ透過する電磁波の絶対量が少なくなる。このため、空洞等からの反射波強度が低下し探査画像処理装置の表示から空洞等の識別が困難になる。この多重反射はレーダの中心周波数が高くなるほど小さい離隔で生じるのでアンテナ昇降機構を設けて管路内面にアンテナ面を極力近接させる必要がある。このような機構を設ける必要があるため、結局空洞探査装置の直径を埋設管の直径に対して小さくすることができなくなってしまう。   Furthermore, the laid state of the buried pipe is not uniform, and there is always a curved portion where the pipe is bent in the horizontal direction or the vertical direction. Since the cavity exploration device employs a trackless traveling system such as a wheel or a caterpillar, the cavity exploration device rotates when traveling on a curved part in the pipeline, and this rotation causes the direction of displacement by a rotation amount. Will not be able to conduct accurate exploration. The mechanism for returning this rotation is not proposed for small-diameter pipes, so if you want to prevent rotation, you can only apply it to large-diameter pipes that can run without contact with the cavity exploration device at the curved part. The inside of the small-diameter pipeline cannot be explored. On the other hand, if the diameter of the cavity exploration device is made smaller than the diameter of the buried pipe, the distance between the antenna and the inner surface of the pipe increases, and multiple reflection occurs between the antenna and the inner face of the pipe, causing radio wave interference and transmitting outside the buried pipe. The absolute amount of electromagnetic waves to be reduced is reduced. For this reason, the intensity of the reflected wave from the cavity or the like decreases, and it becomes difficult to identify the cavity or the like from the display of the exploration image processing apparatus. Since this multiple reflection occurs at smaller intervals as the center frequency of the radar increases, it is necessary to provide an antenna lifting mechanism so that the antenna surface is as close as possible to the inner surface of the pipe. Since it is necessary to provide such a mechanism, after all, the diameter of the cavity exploration device cannot be made smaller than the diameter of the buried pipe.

本発明は上記事情に鑑みてなされたものであって、その目的は、小口径の埋設管において埋設管内部から埋設管全周方向の探査を高精度で、かつ一度の走行で可能にするとともに、この走行により取得した情報から埋設管と空洞等の位置やその分布を明示できる空洞探査装置を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to enable exploration of the entire circumference of the buried pipe from the inside of the buried pipe with high accuracy and a single run in a small diameter buried pipe. An object of the present invention is to provide a cavity exploration device that can clearly indicate the positions and distributions of buried pipes and cavities from the information acquired by this traveling.

本発明は、小口径の埋設管の周囲に存在する空洞を探査する空洞探査装置であって前記埋設管の内径とほぼ同径の円筒形状をなし、外周面の一部が前記埋設管の内壁に摺接して前記埋設管内を移動する、前記埋設管内への導入方向後端から電力線および信号線を有するケーブルが導出されたアンテナ筺体と前記アンテナ筺体を前記埋設管内に導入する導入口から導出された前記ケーブルを介して前記アンテナ筺体に電力を供給し、前記アンテナ筺体から探査信号を受信する制御装置と前記制御装置に接続された探査画像処理装置、および前記ケーブルの繰り出し量を計測する距離計測部とを具備し前記アンテナ筺体の内部に前記アンテナ筐体の全周に亘って固定配置された、前記アンテナ筐体の内周の曲率に合わせた曲面を有する複数対の送信用のアンテナおよび受信アンテナと前記送信アンテナに個別に接続され該アンテナに空洞を探索する電磁波パルスを供給する複数のパルス発生回路と前記受信アンテナに個別に接続され該アンテナで受信した前記パルスの反射波に従う探査信号を出力する複数の受信回路と前記アンテナ筺体の周方向の回転量を検出するローリング計とを具備し前記探査画像処理装置に前記複数の受信回路から伝送された探査信号と、前記ローリング計で計測した回転量計測信号と、前記距離計測部で計測した前記ケーブルの繰り出し量とをもとに、探査対象となる埋設管周辺の空洞部を空洞領域として可視表示する画像出力手段を具備したことを特徴とする。 The present invention is a cavity exploration device for exploring a cavity existing around a buried pipe having a small diameter, having a cylindrical shape that is substantially the same diameter as the inner diameter of the buried pipe, and a part of the outer peripheral surface of the buried pipe. An antenna housing from which a cable having a power line and a signal line is led out from the rear end in the introduction direction into the buried pipe, which is slidably contacted with an inner wall and moved in the buried pipe, and an inlet through which the antenna casing is introduced into the buried pipe A control device that supplies electric power to the antenna housing via the derived cable and receives an exploration signal from the antenna housing, an exploration image processing device connected to the control device, and measures the amount of extension of the cable comprising a distance measuring unit for, in the interior of the antenna housing, the antenna housing of fixedly arranged over the entire circumference, has a curved surface that matches the inner periphery of the curvature of the antenna housing An antenna and the receiving antenna for the transmission of several pairs, a plurality of pulse generating circuit for supplying an electromagnetic wave pulse to search a cavity connected individually the antenna to the transmitting antenna, with the antenna is individually connected to the receiving antenna comprising a plurality of receiving circuits for outputting a search signal according reflection wave of the received said pulse, and rolling meter for detecting the circumferential direction of the rotation of the antenna housing, and to the exploration image processing apparatus, the plurality of receiving Based on the exploration signal transmitted from the circuit, the rotation amount measurement signal measured by the rolling meter, and the amount of feeding of the cable measured by the distance measurement unit, the cavity around the buried pipe to be investigated is determined. An image output means for visual display as a hollow region is provided .

本発明によると、小口径の埋設管において埋設管内部から埋設管全周方向の探査を高精度で、かつ一度の走行で可能にするとともに、この走行により取得した情報から埋設管と空洞等の位置やその分布を明示できる空洞探査装置を提供できる。   According to the present invention, in a buried pipe having a small diameter, it is possible to search the entire circumference of the buried pipe from inside the buried pipe with high accuracy and in one run, and from the information acquired by this run, the buried pipe and the cavity, etc. It is possible to provide a cavity exploration device that can clearly indicate the position and its distribution.

以下、本発明の一実施の形態について図面を参照して説明する。
図1は、空洞探査装置1を用いて地中に埋設された埋設管2の周囲の空洞等の探査を行っている状態を概略的に示す断面図である。この実施の形態では埋設管2の最小内径は150mm(ミリメートル)〜250mm程度とし、数十m(メートル)以上の長距離探査の場合で説明する。
埋設管2は装置挿入用マンホール3、この装置挿入用マンホール3と数十m以上離間して配設された装置搬出用マンホール4が連通している。埋設管2は装置挿入用マンホール3、装置搬出用マンホール4により地上とつながっている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view schematically showing a state in which a cavity or the like around an embedded pipe 2 embedded in the ground is being searched using a cavity searching apparatus 1. In this embodiment, the minimum inner diameter of the buried pipe 2 is about 150 mm (millimeters) to 250 mm, and the case of long-distance exploration of several tens of meters (meters) or more will be described.
The buried pipe 2 communicates with a device insertion manhole 3 and the device insertion manhole 4 which is spaced apart from the device insertion manhole 3 by several tens of meters. The buried pipe 2 is connected to the ground by a manhole 3 for device insertion and a manhole 4 for device carry-out.

埋設管2を移動する円筒形状のアンテナ筐体5は、移動方向と反対側の後部に電力をアンテナ筐体5に供給するとともにアンテナ筐体5から探査情報を送信する電力・通信ケーブル6を接続し、この電力・通信ケーブル6の他端はアンテナ筐体5の電波の送信や受信の制御を行う制御装置7および探査情報等の処理を行い探査画像を表示する探査画像処理装置8と接続している。また、電力・通信ケーブル6は回転ドラム9に巻かれており、アンテナ筐体5の移動とともに回転ドラム9が回転して電力・通信ケーブル6が繰り出されるようになっている。この電力・通信ケーブル6が回転ドラム9から繰り出された移動量を距離計測部10で計測することでアンテナ筐体5の埋設管2内の移動量を計測する。なお、回転ドラム9の回転量はアンテナ筐体5の移動量と比例関係にあるので、この回転量を計測してアンテナ筐体5の移動量に置き換えても良い。また、アンテナ筐体5の移動方向側の前部には牽引用のフック11を装着しており、このフック11にロープ12を係止している。装置挿入用マンホール3から挿入されたアンテナ筐体5は、ロープ12に牽引され埋設管2内を探査しながら移動し、最終的に装置搬出用マンホール4から搬出される。なお、埋設管2周囲の空洞の短距離探査を行う場合にはロープ12により牽引する構成でなくてもアンテナ筐体5を押し込んで移動させるようにしても良い。この実施の形態において空洞探査装置1は、アンテナ筐体5、電力・通信ケーブル6、制御装置7、探査画像処理装置8、回転ドラム9及び距離計測部10により構成している。   A cylindrical antenna housing 5 that moves through the buried pipe 2 is connected to a power / communication cable 6 that supplies power to the antenna housing 5 and transmits search information from the antenna housing 5 to the rear side opposite to the moving direction. The other end of the power / communication cable 6 is connected to a control device 7 that controls transmission and reception of radio waves from the antenna housing 5 and a search image processing device 8 that processes search information and displays a search image. ing. The power / communication cable 6 is wound around a rotary drum 9, and the power / communication cable 6 is drawn out by rotating the rotary drum 9 as the antenna housing 5 moves. The distance of the power / communication cable 6 drawn from the rotating drum 9 is measured by the distance measuring unit 10 to measure the amount of movement of the antenna housing 5 in the buried pipe 2. Since the rotation amount of the rotary drum 9 is proportional to the movement amount of the antenna housing 5, the rotation amount may be measured and replaced with the movement amount of the antenna housing 5. A pulling hook 11 is attached to the front portion of the antenna housing 5 on the moving direction side, and a rope 12 is locked to the hook 11. The antenna housing 5 inserted from the device insertion manhole 3 is pulled by the rope 12 and moves while exploring the buried pipe 2, and is finally carried out from the device carry-out manhole 4. In addition, when short-distance exploration of the cavity around the buried pipe 2 is performed, the antenna housing 5 may be pushed and moved without being pulled by the rope 12. In this embodiment, the cavity exploration device 1 includes an antenna housing 5, a power / communication cable 6, a control device 7, an exploration image processing device 8, a rotating drum 9, and a distance measurement unit 10.

次に、アンテナ筐体5の構成について説明する。図2(a)はアンテナ筐体5の側面図であり、図2(b)は図2(a)におけるA−A切断線における断面図である。この図2においては、埋設管2の内周面とアンテナ筐体5の外周面との位置関係も示している。   Next, the configuration of the antenna housing 5 will be described. 2A is a side view of the antenna housing 5, and FIG. 2B is a cross-sectional view taken along the line AA in FIG. 2A. In FIG. 2, the positional relationship between the inner peripheral surface of the buried pipe 2 and the outer peripheral surface of the antenna housing 5 is also shown.

アンテナ筐体5内には図示のように、埋設管2の全周を探査できるようにアンテナ筐体5の全周方向を8分割し、8個の送信アンテナ13aから13hを配置するとともに、アンテナ筐体5の長手方向で送信アンテナ13と並列する位置に8個の受信アンテナ14aから14hを配置している。このようにアンテナ筐体5の全周に亘って送信アンテナ13aから13h及び受信アンテナ14aから14hを複数対設けている。また、各送信アンテナ13aから13h及び各受信アンテナ14aから14hは埋設管2の内周面形状に合うように、アンテナ筐体5の外周の曲率に合わせた曲面を有している。   As shown in the figure, in the antenna housing 5, the entire circumference of the antenna housing 5 is divided into eight so that the entire circumference of the buried pipe 2 can be searched, and eight transmission antennas 13 a to 13 h are arranged, and the antenna Eight receiving antennas 14 a to 14 h are arranged at positions parallel to the transmitting antenna 13 in the longitudinal direction of the housing 5. Thus, a plurality of pairs of transmission antennas 13a to 13h and reception antennas 14a to 14h are provided over the entire circumference of the antenna housing 5. Further, each of the transmission antennas 13a to 13h and each of the reception antennas 14a to 14h has a curved surface that matches the curvature of the outer periphery of the antenna housing 5 so as to match the inner peripheral surface shape of the buried pipe 2.

送信アンテナ13aから13hにはそれぞれ個別に電磁波パルスを供給するパルス発生回路15aから15hを接続している。なお、パルス発生回路15aから15hを設けなくても1個のパルス発生回路から、例えば図示しない切り替え器を設け制御装置7の制御の下、アンテナ筐体5の全周方向へ順次電磁波パルスを供給する送信アンテナを切り替えるようにしても良い。受信アンテナ14aから14hはそれぞれ個別に受信回路16aから16hと線結している。受信回路16aから16hもパルス発生回路15aから15bの場合と同様に、図示しない切り替え器を用いることで1つとすることができる。   The transmission antennas 13a to 13h are connected to pulse generation circuits 15a to 15h for individually supplying electromagnetic wave pulses. Even without providing the pulse generation circuits 15a to 15h, for example, a switch (not shown) is provided from one pulse generation circuit, and electromagnetic wave pulses are sequentially supplied to the entire circumference of the antenna housing 5 under the control of the control device 7. The transmitting antenna to be switched may be switched. The receiving antennas 14a to 14h are individually connected to the receiving circuits 16a to 16h, respectively. Similarly to the pulse generation circuits 15a to 15b, the reception circuits 16a to 16h can be made one by using a switch (not shown).

ここで、埋設管2の内周面とアンテナ面との離隔について説明する。埋設管2の内周面とアンテナ面との離隔は空洞探査装置1のレーダ性能に大きな影響を及ぼす。埋設管2の内周面とアンテナ面との離隔が大きくなると、各送信アンテナ13aから13hから送信される電磁波パルスのほとんどは埋設管2の内面で反射する。この反射により電波干渉が発生し埋設管2外へ透過する電磁波パルスの絶対量が少なくなる。このため、空洞等からの反射波強度が低下し探査画像処理装置8において表示される探査画像から空洞等の識別が困難になる。この埋設管2の内周面での反射はレーダの中心周波数が高くなるほど小さい離隔で生じる。例えば、埋設管2の内径が150mm〜250mmの場合、8分割したアンテナエレメント長の最大値は50mm〜90mmとなり、レーダの中心周波数は1.7GHz(ギガヘルツ)〜1GHzとなる。この場合、埋設管2の内周面での反射が大きくなる限界値は、実験の結果から15mmから25mmである結果を本発明者は得ている。この実施の形態では埋設管2の内周面とアンテナ面とが最も離隔する上部の距離、レーダの中心周波数を上述の値の範囲としている。したがって、アンテナ筐体5のレーダの性能はほとんど劣化しない。   Here, the separation between the inner peripheral surface of the buried pipe 2 and the antenna surface will be described. The separation between the inner peripheral surface of the buried pipe 2 and the antenna surface greatly affects the radar performance of the cavity exploration device 1. When the distance between the inner peripheral surface of the buried tube 2 and the antenna surface is increased, most of the electromagnetic wave pulses transmitted from the transmitting antennas 13a to 13h are reflected by the inner surface of the buried tube 2. Due to this reflection, radio wave interference occurs, and the absolute amount of electromagnetic wave pulses transmitted to the outside of the buried tube 2 is reduced. For this reason, the intensity of the reflected wave from the cavity or the like decreases, and it becomes difficult to identify the cavity or the like from the search image displayed in the search image processing device 8. The reflection on the inner peripheral surface of the buried pipe 2 occurs at a smaller distance as the center frequency of the radar increases. For example, when the inner diameter of the buried pipe 2 is 150 mm to 250 mm, the maximum value of the antenna element length divided into eight is 50 mm to 90 mm, and the center frequency of the radar is 1.7 GHz (gigahertz) to 1 GHz. In this case, the inventor has obtained a result that the limit value at which the reflection on the inner peripheral surface of the buried pipe 2 becomes large is 15 mm to 25 mm from the result of the experiment. In this embodiment, the distance of the upper part where the inner peripheral surface of the buried pipe 2 and the antenna surface are farthest and the center frequency of the radar are within the above-mentioned range. Therefore, the radar performance of the antenna housing 5 hardly deteriorates.

また、この実施の形態では、埋設管2の内周面とアンテナ面との離隔を上述した限界値以下にするためアンテナ筐体5の断面を円形とし、送信アンテナ13aから13h及び受信アンテナ14aから14hをこの円形の曲率にに合わせた曲面形状としているが、図3に示すような形状としても良い。図3(a)はアンテナ筐体5の側面図であり、図3(b)は図3(a)におけるB−B切断線における断面図である。この図3においては、埋設管2の内周面とアンテナ筐体5の外周面との位置関係も示している。図示のように、アンテナ筐体5の断面を8角形状とし、送信アンテナ13aから13h及び受信アンテナ14aから14hを8角形の各辺に配置した平面形状としている。このように構成してもアンテナ筐体5の場合と同様の結果を得ることができる。なお、アンテナ筐体5の断面は8角形状に限るものではなく、他の多角形状であっても上述の限界値を満たす構成となるものであれば良い。また、アンテナ筐体5を多角形状に分割した場合は、角数が多くなるほど埋設管2の内周面に合わせて送信アンテナ13aから13h及び受信アンテナ14aから14hを配置でき、空洞等の位置に対する探査精度を高めることができる。したがって、より多角にすることが望ましい。なお、アンテナ筐体5の材質は、電磁波が透過するプラスチック製や木製とし、全反射が生じ電磁波が透過しない金属は不適である。   Further, in this embodiment, in order to keep the distance between the inner peripheral surface of the buried pipe 2 and the antenna surface below the limit value described above, the cross section of the antenna housing 5 is circular, and the transmission antennas 13a to 13h and the reception antenna 14a are 14h is a curved surface shape matching the circular curvature, but it may be a shape as shown in FIG. 3A is a side view of the antenna housing 5, and FIG. 3B is a cross-sectional view taken along the line BB in FIG. 3A. In FIG. 3, the positional relationship between the inner peripheral surface of the buried pipe 2 and the outer peripheral surface of the antenna housing 5 is also shown. As shown in the figure, the cross section of the antenna housing 5 is an octagonal shape, and the transmitting antennas 13a to 13h and the receiving antennas 14a to 14h are planar shapes arranged on each side of the octagon. Even if it comprises in this way, the result similar to the case of the antenna housing | casing 5 can be obtained. The cross section of the antenna housing 5 is not limited to an octagonal shape, and any other polygonal shape may be used as long as it satisfies the above limit value. In addition, when the antenna housing 5 is divided into polygonal shapes, the transmission antennas 13a to 13h and the reception antennas 14a to 14h can be arranged in accordance with the inner peripheral surface of the buried pipe 2 as the number of corners increases. Exploration accuracy can be increased. Therefore, it is desirable to make it more polygonal. The material of the antenna housing 5 is made of plastic or wood that transmits electromagnetic waves, and a metal that causes total reflection and does not transmit electromagnetic waves is inappropriate.

図4はアンテナ筐体5内に配置された、アンテナ筐体5の回転量を計測する回転量計測手段であるローリング計17の構成を示す断面図である。ローリング計17は、アンテナ筐体5の内面に一端が固定接続された固定軸18と、この固定軸に嵌合され円周方向に対してその外周を回転自在にした回転軸受19と、回転軸受19の外周に嵌合され重力によって常に鉛直方向を向くように重錘20を下部につり下げたハウジング21及びハウジング21に固定設置するとともに電力・通信ケーブル6と接続している光源22と、光源22と対向した位置に設けられ固定軸18に嵌合固定されたスリット板23とから構成される。
図5はローリング計17の構成要素であるスリット板23を正面側から示す図である。このスリット板23には16個のスリット23aが打ち抜かれている。光源22は、照射するビームがスリット23aを含むスリット板23の円周線上に位置するように配置している。このため、光源22から照射されるビームはスリット23a部分では透過して反射しないが、スリット23a部分以外ではスリット板23に反射する。光源22は、このビームがスリット板23に反射しない(信号無)か、反射したか(信号有)を検出するようになっている。
このような構造であるため、アンテナ筐体5が回転した場合、アンテナ筐体5に固定された固定軸18およびスリット板23はアンテナ筐体5とともに回転する。一方、重錘20を下部に有するハウジング21は常に鉛直下方向を向く。光源22はこのハウジング21に固定設置されているため、鉛直方向を保ち回転が生じない。すなわち、光源22に対してスリット板23は回転することになる。したがって、光源22はスリット板23のスリット23aの有無により信号の有無を検知し、信号有、又は信号無しの数を図示しないカウンタでカウントすることによりアンテナ筐体5の回転量を計測する。この回転量の精度は、スリット板23に設けるスリット23aの数によって定まり、例えば、角度1度の精度を得るためにはスリット23aの数を360とすればよい。また、光源22としては、LED(発光ダイオード)、又はレーザのような指向性が強くビームも小さく絞れるものが高い分解能が得られ最適である。
FIG. 4 is a cross-sectional view showing a configuration of a rolling meter 17 that is a rotation amount measuring unit that measures the amount of rotation of the antenna housing 5 disposed in the antenna housing 5. The rolling meter 17 includes a fixed shaft 18 whose one end is fixedly connected to the inner surface of the antenna housing 5, a rotary bearing 19 that is fitted to the fixed shaft and whose outer periphery is rotatable in the circumferential direction, and a rotary bearing A light source 22 connected to the power / communication cable 6 and a housing 21 in which a weight 20 is suspended in a lower portion so as to be fitted in an outer periphery of the main body 19 so as to always face in a vertical direction by gravity; 22 and a slit plate 23 which is provided at a position opposed to 22 and fixedly fitted to the fixed shaft 18.
FIG. 5 is a view showing the slit plate 23 as a component of the rolling meter 17 from the front side. The slit plate 23 is punched with 16 slits 23a. The light source 22 is disposed so that the irradiated beam is positioned on the circumferential line of the slit plate 23 including the slit 23a. For this reason, the beam irradiated from the light source 22 is transmitted and not reflected at the slit 23a portion, but is reflected at the slit plate 23 at portions other than the slit 23a portion. The light source 22 detects whether the beam is not reflected by the slit plate 23 (no signal) or reflected (signal present).
Due to such a structure, when the antenna housing 5 rotates, the fixed shaft 18 and the slit plate 23 fixed to the antenna housing 5 rotate together with the antenna housing 5. On the other hand, the housing 21 having the weight 20 at the bottom always faces vertically downward. Since the light source 22 is fixedly installed on the housing 21, the vertical direction is maintained and no rotation occurs. That is, the slit plate 23 rotates with respect to the light source 22. Therefore, the light source 22 detects the presence / absence of a signal based on the presence / absence of the slit 23a of the slit plate 23, and measures the amount of rotation of the antenna housing 5 by counting the number of signals present or absent with a counter (not shown). The accuracy of the amount of rotation is determined by the number of slits 23a provided in the slit plate 23. For example, the number of slits 23a may be 360 in order to obtain an accuracy of 1 degree. As the light source 22, an LED (light emitting diode) or a laser having a high directivity and a small beam can be obtained because it can obtain high resolution.

次に、図6から図9を参照して測定手段である距離計測部10について説明する。図6は距離計測部10の正面を示す図であり、図7は距離計測部10を上側から見た断面図であり、図8は距離計測部10の光源31とスリット板29との位置関係を示す図であり、図9は距離計測部10のスリット板29を正面から示す図である。   Next, the distance measuring unit 10 as a measuring unit will be described with reference to FIGS. 6 is a front view of the distance measuring unit 10, FIG. 7 is a cross-sectional view of the distance measuring unit 10 as viewed from above, and FIG. 8 is a positional relationship between the light source 31 and the slit plate 29 of the distance measuring unit 10. FIG. 9 is a diagram showing the slit plate 29 of the distance measuring unit 10 from the front.

図示のように、アンテナ筐体5の移動とともに回転ドラム9に巻かれた電力・通信ケーブル6が繰り出される。このとき電力・通信ケーブル6は距離計測部10内の一対のローラ24a,24b間及び他の一対のローラ25a,25b間を移動する。電力・通信ケーブル6は、ローラ24a,24b間及びローラ25a,25b間で押圧されており、電力・通信ケーブル6が移動すると摩擦により各ローラ24a,24b,25a,25bはそれぞれ回転し、各ローラ24a,24b,25a,25bに固定嵌合された各ローラ固定軸26a,26b,27a,27bも合わせて回転する。これらのローラ固定軸26a,26b,27a,27bのうち任意の1つ、この実施の形態においては、ローラ固定軸26bにスリット板29の中心を固定しているため、スリット板29はローラ固定軸26bの回転と同期して回転する。そのスリット板29の一部が、固定枠30内を通過するようになっている。このスリット板29には16個のスリット29aが打ち抜かれている。光源31は、照射するビームがスリット29aを含むスリット板29の円周線上に位置するように固定枠30にスリット板29に対向して固定設置している。このため、光源31から照射されるビームはスリット29a部分では透過して反射しないが、スリット29a部分以外ではスリット板29に反射する。光源31は、このビームがスリット板29に反射しない(信号無)か、反射したか(信号有)を検出するようになっている。したがって、光源31はスリット板29のスリット29aの有無により信号の有無を検知し、信号有、又は信号無しの数を図示しないカウンタでカウントすることによりローラ固定軸26bの回転数を計測できる。このローラ固定軸26bの回転数は、電力・通信ケーブル6の移動量すなわち、アンテナ筐体5の移動量と比例関係にあり、ローラ固定軸26bの外径が定まれば比例定数も一義的に定まる。すなわち、距離計測部10で計測した回転数からアンテナ筐体5の移動量を計測できる。なお、光源31の照射ビームを受光するようにスリット板29を挟んで固定枠30内の対向した位置に受光素子を設けても信号の検出は可能である。この場合は、光がスリット29aを透過したか(信号有)、透過しないか(信号無)を検出することになる。   As shown in the figure, the power / communication cable 6 wound around the rotating drum 9 is fed out as the antenna housing 5 moves. At this time, the power / communication cable 6 moves between the pair of rollers 24 a and 24 b and the other pair of rollers 25 a and 25 b in the distance measuring unit 10. The power / communication cable 6 is pressed between the rollers 24a, 24b and between the rollers 25a, 25b. When the power / communication cable 6 moves, the rollers 24a, 24b, 25a, 25b rotate by friction, and the rollers Each roller fixing shaft 26a, 26b, 27a, 27b fixedly fitted to 24a, 24b, 25a, 25b also rotates together. Any one of these roller fixing shafts 26a, 26b, 27a, 27b, in this embodiment, since the center of the slit plate 29 is fixed to the roller fixing shaft 26b, the slit plate 29 is a roller fixing shaft. It rotates in synchronization with the rotation of 26b. A part of the slit plate 29 passes through the fixed frame 30. The slit plate 29 is punched with 16 slits 29a. The light source 31 is fixedly installed on the fixed frame 30 so as to face the slit plate 29 so that the irradiated beam is positioned on the circumferential line of the slit plate 29 including the slit 29a. For this reason, the beam irradiated from the light source 31 is transmitted and not reflected at the slit 29a portion, but is reflected at the slit plate 29 at portions other than the slit 29a portion. The light source 31 detects whether the beam is not reflected on the slit plate 29 (no signal) or reflected (signal present). Therefore, the light source 31 can detect the presence or absence of a signal based on the presence or absence of the slit 29a of the slit plate 29, and can count the number of signals present or not by a counter (not shown) to measure the number of rotations of the roller fixed shaft 26b. The number of rotations of the roller fixed shaft 26b is proportional to the amount of movement of the power / communication cable 6, that is, the amount of movement of the antenna housing 5. If the outer diameter of the roller fixed shaft 26b is determined, the proportionality constant is also uniquely determined. Determined. That is, the amount of movement of the antenna housing 5 can be measured from the number of rotations measured by the distance measuring unit 10. Note that signals can be detected even if light receiving elements are provided at opposed positions in the fixed frame 30 with the slit plate 29 interposed therebetween so as to receive the irradiation beam of the light source 31. In this case, it is detected whether the light has passed through the slit 29a (with signal) or not (without signal).

次に、アンテナ筐体5が装置挿入用マンホール3から装置搬出用マンホール4まで埋設管2内を移動したときに得られた受信信号に基づく探査画像処理装置8の探査画像の表示例について説明する。図10は探査画像の円形断面図であり、図11は探査画像の展開図である。なお、探査画像処理装置8は、例えば表示装置が一体化されたコンピュータ装置であり、内部の記憶部に記憶されたプログラムを実行することにより、各受信アンテナ14aから14hから取得した後各受信回路16aから16hによってA/D(アナログ/デジタル)変換した反射波の強度、ローリング計17で計測した回転量を示す回転量情報及び距離計測部10で計測した移動距離を示す移動距離情報とに基づいて画像処理等の処理を行い、円形断面図及び展開図を表示する。   Next, a display example of the search image of the search image processing device 8 based on the received signal obtained when the antenna housing 5 moves in the buried pipe 2 from the device insertion manhole 3 to the device carry-out manhole 4 will be described. . FIG. 10 is a circular cross-sectional view of the search image, and FIG. 11 is a development view of the search image. The exploration image processing device 8 is, for example, a computer device in which a display device is integrated, and each receiving circuit is acquired from each receiving antenna 14a to 14h by executing a program stored in an internal storage unit. Based on the intensity of the reflected wave A / D (analog / digital) converted by 16a to 16h, the rotation amount information indicating the rotation amount measured by the rolling meter 17, and the movement distance information indicating the movement distance measured by the distance measuring unit 10. Then, processing such as image processing is performed, and a circular sectional view and a developed view are displayed.

各受信回路16aから16hから取得した反射強度の情報をローリング計17で計測した回転量を示す回転量情報をもとに、回転位置に基づく補正をすることにより円筒形状をしたアンテナ筐体5の埋設管2内のある地点における探査画像の円形断面図を得ることができる。例えば、図10に示すように、ある地点の埋設管2の下側には空洞が発生していることを視認することができる。したがって、この探査画像処理装置8の円形断面図の表示により、断面方向における埋設管2の周囲における空洞等の発生方向、その領域及び埋設管2からの距離を判定できる。   The antenna housing 5 having a cylindrical shape is obtained by performing correction based on the rotation position based on the rotation amount information indicating the rotation amount obtained by measuring the reflection intensity information obtained from the receiving circuits 16a to 16h by the rolling meter 17. A circular sectional view of the exploration image at a certain point in the buried pipe 2 can be obtained. For example, as shown in FIG. 10, it can be visually recognized that a cavity is generated below the buried pipe 2 at a certain point. Therefore, by the display of the circular sectional view of the exploration image processing device 8, it is possible to determine the generation direction of the cavity or the like around the buried pipe 2 in the cross-sectional direction, its region, and the distance from the buried pipe 2.

このようにして得られた複数のある地点における探査画像の円形断面図を距離計測部10で測定したアンテナ筐体5の移動量を示す移動量情報に基づいて並べ直すことにより埋設管2の周囲の探査画像の展開図を得ることができる。例えば、図11に示すように、図10で視認した埋設管2の下側に発生している空洞が、どの地点からどの地点までなのかを把握することができる。したがって、この探査画像処理装置8の展開図の表示により、埋設管2の位置と空洞等との関係、特に埋設管2の敷設方向における空洞の領域を判定できる。   The surroundings of the buried pipe 2 can be obtained by rearranging the circular cross-sectional views of the search images at a plurality of points thus obtained based on the movement amount information indicating the movement amount of the antenna housing 5 measured by the distance measuring unit 10. A developed view of the exploration image can be obtained. For example, as shown in FIG. 11, it is possible to grasp from which point to which point the cavity generated below the buried pipe 2 visually recognized in FIG. 10. Therefore, the display of the developed image of the exploration image processing device 8 can determine the relationship between the position of the buried pipe 2 and the cavity, and in particular, the cavity area in the laying direction of the buried pipe 2.

このように埋設された小口径の埋設管2において、円筒形状のアンテナ筐体5内に円筒の周方向全体に亘る領域をカバーするように複数対の送信アンテナ13aから13h及び受信アンテナ14aから14hを配置することにより、空洞探査装置1は、埋設管2内から埋設管2の全周の探査を一度の走行で可能にすることができる。   In the buried pipe 2 having a small diameter buried in this way, a plurality of pairs of transmitting antennas 13a to 13h and receiving antennas 14a to 14h are provided so as to cover the entire circumferential direction of the cylinder in the cylindrical antenna housing 5. By arranging the above, the cavity exploration device 1 can enable the exploration of the entire circumference of the buried pipe 2 from within the buried pipe 2 in one run.

また、複数対の送信アンテナ13aから13h及び受信アンテナ14aから14hを埋設管2の内周面に合わせた曲面形状としてアンテナ筐体5内に配置し空洞等を高精度に探査するとともに、ローリング計17によりアンテナ筐体5の回転量、距離計測部10で測定したアンテナ筐体5の移動量に基づいて、探査画像処理装置8は円形断面図、展開図を表示することにより、アンテナ筐体5の姿勢制御機能やアンテナ昇降機構を必要とせず、小口径の埋設管2の周囲に存在する空洞等の正確な位置やその分布を把握できる。この探査画像処理装置8の表示に基づいて空洞等を補修する工事を行うことが可能となり、道路の陥没や埋設管2の毀損による事故を未然に防ぐことができる。   Further, a plurality of pairs of transmitting antennas 13a to 13h and receiving antennas 14a to 14h are arranged in the antenna housing 5 as a curved surface shape matching the inner peripheral surface of the buried pipe 2 to search the cavities and the like with high accuracy, The exploration image processing device 8 displays a circular cross-sectional view and a development view based on the rotation amount of the antenna housing 5 by the distance measurement unit 17 and the movement amount of the antenna housing 5 measured by the distance measuring unit 10. Therefore, it is possible to grasp the exact position and distribution of the cavities existing around the small-diameter buried pipe 2 without requiring the attitude control function and the antenna lifting mechanism. Based on the display of the exploration image processing device 8, it is possible to perform a work for repairing a cavity or the like, and it is possible to prevent an accident due to a road collapse or damage to the buried pipe 2.

なお、この発明は、上述した実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できるものである。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.

本発明の実施の形態における地中に埋設された埋設管の周囲の空洞等の探査を行っている状態を概略的に示す断面図。Sectional drawing which shows schematically the state which is exploring the cavity etc. of the circumference | surroundings of the buried pipe buried in the ground in embodiment of this invention. 同実施の形態におけるアンテナ筐体を示す図。The figure which shows the antenna housing | casing in the embodiment. 同実施の形態における他のアンテナ筐体を示す図。The figure which shows the other antenna housing | casing in the embodiment. 同実施の形態におけるアンテナ筐体内の回転方向の回転量を計測するローリング計の構成を示す断面図。Sectional drawing which shows the structure of the rolling meter which measures the rotation amount of the rotation direction in the antenna housing | casing in the embodiment. 同実施の形態におけるローリング計の構成要素であるスリット板を正面側から示す図。The figure which shows the slit board which is a component of the rolling meter in the embodiment from the front side. 同実施の形態における距離計測部の正面を示す図。The figure which shows the front of the distance measurement part in the embodiment. 同実施の形態における距離計測部を上側から見た断面図。Sectional drawing which looked at the distance measurement part in the embodiment from the upper side. 同実施の形態における距離計測部の光源とスリット板との位置関係を示す図。The figure which shows the positional relationship of the light source and slit plate of the distance measurement part in the embodiment. 同実施の形態における距離計測部のスリット板を正面から示す図。The figure which shows the slit board of the distance measurement part in the embodiment from the front. 同実施の形態における探査画像の円形断面図。The circular sectional view of the search picture in the embodiment. 同実施の形態における探査画像の展開図。The expanded view of the exploration image in the same embodiment.

符号の説明Explanation of symbols

1…空洞探査装置,2…埋設管,3…装置挿入用マンホール,4…装置搬出用マンホール,5…アンテナ筐体,6…電力・通信ケーブル,7…制御装置,8…探査画像処理装置,9…回転ドラム,10…距離計測部,13aから13h…送信アンテナ,14aから14h…受信アンテナ,15aから15h…パルス発生回路,16aから16h…受信回路,17…ローリング計 DESCRIPTION OF SYMBOLS 1 ... Cavity exploration device, 2 ... Embedded pipe, 3 ... Device insertion manhole, 4 ... Device carry-out manhole, 5 ... Antenna housing, 6 ... Power / communication cable, 7 ... Control device, 8 ... Exploration image processing device, DESCRIPTION OF SYMBOLS 9 ... Rotary drum, 10 ... Distance measuring part, 13a to 13h ... Transmitting antenna, 14a to 14h ... Receiving antenna, 15a to 15h ... Pulse generating circuit, 16a to 16h ... Receiving circuit, 17 ... Rolling meter

Claims (2)

小口径の埋設管の周囲に存在する空洞を探査する空洞探査装置であって
前記埋設管の内径とほぼ同径の円筒形状をなし、外周面の一部が前記埋設管の内壁に摺接して前記埋設管内を移動する、前記埋設管内への導入方向後端から電力線および信号線を有するケーブルが導出されたアンテナ筺体と
前記アンテナ筺体を前記埋設管内に導入する導入口から導出された前記ケーブルを介して前記アンテナ筺体に電力を供給し、前記アンテナ筺体から探査信号を受信する制御装置と
前記制御装置に接続された探査画像処理装置、および前記ケーブルの繰り出し量を計測する距離計測部とを具備し
前記アンテナ筺体の内部に
前記アンテナ筐体の全周に亘って固定配置された、前記アンテナ筐体の内周の曲率に合わせた曲面を有する複数対の送信アンテナおよび受信アンテナと
前記送信アンテナに個別に接続され該アンテナに空洞を探索する電磁波パルスを供給する複数のパルス発生回路と
前記受信アンテナに個別に接続され該アンテナで受信した前記パルスの反射波に従う探査信号を出力する複数の受信回路と
前記アンテナ筺体の周方向の回転量を検出するローリング計と
を具備し
前記探査画像処理装置に
前記複数の受信回路から伝送された探査信号と、前記ローリング計で計測した回転量計測信号と、前記距離計測部で計測した前記ケーブルの繰り出し量とをもとに、探査対象となる埋設管周辺の空洞部を空洞領域として可視表示する画像出力手段を具備したことを特徴とする空洞探査装置。
A cavity exploration device for exploring a cavity existing around a small-diameter buried pipe ,
A power line and a signal from the rear end in the direction of introduction into the buried pipe, having a cylindrical shape substantially the same diameter as the inner diameter of the buried pipe, and a part of the outer peripheral surface slidingly contacts the inner wall of the buried pipe and moving in the buried pipe An antenna housing from which a cable having wires is derived ;
A control device for supplying electric power to the antenna housing via the cable led out from an introduction port for introducing the antenna housing into the buried pipe, and receiving an exploration signal from the antenna housing ;
An exploration image processing device connected to the control device, and a distance measuring unit for measuring the amount of feeding of the cable ;
Inside the antenna housing ,
A plurality of pairs of transmission antennas and reception antennas having a curved surface in accordance with the curvature of the inner periphery of the antenna casing, which are fixedly arranged over the entire circumference of the antenna casing;
A plurality of pulse generation circuits that are individually connected to the transmitting antenna and supply electromagnetic pulses for searching the antenna for a cavity ;
A plurality of receiving circuits that are individually connected to the receiving antenna and output a search signal according to the reflected wave of the pulse received by the antenna ;
A rolling meter for detecting the amount of rotation in the circumferential direction of the antenna housing ;
Comprising
In the exploration image processing device ,
Based on the exploration signals transmitted from the plurality of receiving circuits, the rotation amount measurement signal measured by the rolling meter, and the amount of feeding of the cable measured by the distance measurement unit, A cavity exploration device comprising an image output means for visually displaying a cavity portion of the cavity as a cavity region .
前記小口径の埋設管は内径が250mm以下であり、前記送信アンテナおよび受信アンテナはそれぞれ8対のアンテナエレメントで構成され、前記各アンテナエレメントは、前記アンテナ筺体が前記埋設管内に導入された状態にあるとき前記埋設管の内周面に対し25mm以下の間隔で近接していることを特徴とする請求項1に記載の空洞探査装置。 The small-diameter buried tube has an inner diameter of 250 mm or less, the transmitting antenna and the receiving antenna are each composed of eight pairs of antenna elements, and each antenna element is in a state where the antenna housing is introduced into the buried tube. 2. The cavity exploration device according to claim 1, wherein the cavity exploration device is close to the inner peripheral surface of the buried pipe at an interval of 25 mm or less .
JP2004161563A 2004-05-31 2004-05-31 Cavity exploration device Expired - Lifetime JP4733364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004161563A JP4733364B2 (en) 2004-05-31 2004-05-31 Cavity exploration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004161563A JP4733364B2 (en) 2004-05-31 2004-05-31 Cavity exploration device

Publications (2)

Publication Number Publication Date
JP2005345118A JP2005345118A (en) 2005-12-15
JP4733364B2 true JP4733364B2 (en) 2011-07-27

Family

ID=35497662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004161563A Expired - Lifetime JP4733364B2 (en) 2004-05-31 2004-05-31 Cavity exploration device

Country Status (1)

Country Link
JP (1) JP4733364B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5191116B2 (en) * 2006-10-10 2013-04-24 日本信号株式会社 Underground radar
JP5394313B2 (en) * 2010-05-10 2014-01-22 三和機材株式会社 Excavation head rotation speed detector for propulsion method
JP2011257350A (en) * 2010-06-11 2011-12-22 Toshiba Corp Radar device
KR102187110B1 (en) * 2018-11-13 2020-12-04 주식회사 한화 Apparatus and method for controlling devices that process underground search and communication
WO2022190158A1 (en) * 2021-03-08 2022-09-15 日本電信電話株式会社 Search method, search system, control device, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179492A (en) * 1988-12-29 1990-07-12 Oobayashi Doro Kk Method and apparatus for detecting outer periphery of laid underground pipe
JPH03235084A (en) * 1990-02-13 1991-10-21 Katsutoshi Sakai Apparatus for probing outer periphery of pipeline
JPH07198692A (en) * 1993-12-31 1995-08-01 Mutsuo Takamatsu Method and device for underground search
JPH1090433A (en) * 1996-09-19 1998-04-10 Fuji Chichiyuu Joho Kk Hollow detecting device and radar-mounted vehicle
JP2000147137A (en) * 1998-11-05 2000-05-26 Kyushu Electric Power Co Inc Underground radar apparatus of underground excavator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179492A (en) * 1988-12-29 1990-07-12 Oobayashi Doro Kk Method and apparatus for detecting outer periphery of laid underground pipe
JPH03235084A (en) * 1990-02-13 1991-10-21 Katsutoshi Sakai Apparatus for probing outer periphery of pipeline
JPH07198692A (en) * 1993-12-31 1995-08-01 Mutsuo Takamatsu Method and device for underground search
JPH1090433A (en) * 1996-09-19 1998-04-10 Fuji Chichiyuu Joho Kk Hollow detecting device and radar-mounted vehicle
JP2000147137A (en) * 1998-11-05 2000-05-26 Kyushu Electric Power Co Inc Underground radar apparatus of underground excavator

Also Published As

Publication number Publication date
JP2005345118A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
US20190086574A1 (en) Three-dimensional directional transient electromagnetic detection device and method for mining borehole
CN1127666C (en) Locator
US11204436B1 (en) Dual sensed locating systems and methods
US9459374B2 (en) Derivative imaging for subsurface object detection
US5711381A (en) Bore location system having mapping capability
EP2457113B1 (en) Method and system for detecting the proximity of a conductive, buried structure
KR101655936B1 (en) System for confirming position data of underground construction
US11487038B2 (en) Operating method of a metal detector capable of measuring target depth
US20210131615A1 (en) Pipeline Following Sensor Arrangement
KR101267016B1 (en) Singnal apparatus for the survey of buriedstructures by used gpr unit
KR20110058313A (en) Three-dimension electromagnetic induction surveying equipment for surveying of underground facilities
JP4733364B2 (en) Cavity exploration device
US20180299575A1 (en) System For Locating A Utility With A Downhole Beacon
KR102275670B1 (en) A device that calculates the trajectory of the underground pipeline simultaneously with geological exploration in four directions around the underground pipeline
KR101173161B1 (en) Exploration measurement system of underground conduit line
KR102108794B1 (en) Apparatus and method of detecting burried steel pipe and computer readable medium
JPS6013205A (en) Device for detecting position of corrosion of tubular body
JP5815266B2 (en) Embedded object exploration method and buried object exploration device
JP2019094711A (en) Shape evaluation method of underground object and underground object measurement device
KR101953022B1 (en) Location detecting sonde for sewer facility
KR101406777B1 (en) System for confirming position of underground construction
JPH02179492A (en) Method and apparatus for detecting outer periphery of laid underground pipe
JP2003214090A (en) Automatic tracking system for jacking machine in curved jack
KR101173166B1 (en) Exploration measurement measure of underground conduit line
CN215297665U (en) Portable geological radar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4733364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term