JP4731802B2 - Process for the production of phenol by hydrodeoxylation of benzene-diols - Google Patents

Process for the production of phenol by hydrodeoxylation of benzene-diols Download PDF

Info

Publication number
JP4731802B2
JP4731802B2 JP2003355408A JP2003355408A JP4731802B2 JP 4731802 B2 JP4731802 B2 JP 4731802B2 JP 2003355408 A JP2003355408 A JP 2003355408A JP 2003355408 A JP2003355408 A JP 2003355408A JP 4731802 B2 JP4731802 B2 JP 4731802B2
Authority
JP
Japan
Prior art keywords
catalyst
benzene
reaction
concentration
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003355408A
Other languages
Japanese (ja)
Other versions
JP2004137277A (en
Inventor
レオナルド、ダッローロ
アルベルト、ツェサナ
ロベルト、ブッゾーニ
フランコ、リベッティ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eni SpA
Original Assignee
Eni SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eni SpA filed Critical Eni SpA
Publication of JP2004137277A publication Critical patent/JP2004137277A/en
Application granted granted Critical
Publication of JP4731802B2 publication Critical patent/JP4731802B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/88Use of additives, e.g. for stabilisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/60Platinum group metals with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/881Molybdenum and iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J23/8885Tungsten containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、ベンゼン‐ジオール類の触媒ヒドロデオキシ化(hydrodeoxygenation)によるフェノールの製造方法に関する。   The present invention relates to a process for the production of phenol by catalytic hydrodeoxygenation of benzene-diols.

更に詳しくは、本発明は、周期表のVIB族またはVIII族の元素をベースにした触媒の存在下において水溶液中で行われる、水素でのベンゼン‐ジオール類のヒドロデオキシ化によるフェノールの連続製造方法に関する。   More particularly, the invention relates to a process for the continuous production of phenol by hydrodeoxylation of benzene-diols with hydrogen, carried out in aqueous solution in the presence of a catalyst based on elements of group VIB or VIII of the periodic table. About.

フェノールは、例えばポリカーボネート類または他のフェノール樹脂の生産に用いられる、極めて重要な工業中間体である。   Phenol is a very important industrial intermediate used, for example, in the production of polycarbonates or other phenolic resins.

低価格のベンゼン‐ジオール類は、天然源の誘導体または工業化学処理の副産物として入手しうる。   Low cost benzene-diols are available as natural source derivatives or by-products of industrial chemical processing.

ヒドロデオキシ化反応は当業者によく知られている(例えば、E.Furimsky,CATAL.REV.-SCI.ENG.,25(3),421-458(1983)(非特許文献1)を参照)。   Hydrodeoxylation reactions are well known to those skilled in the art (see, for example, E. Furimsky, CATAL. REV.-SCI. ENG., 25 (3), 421-458 (1983)). .

Furimskyは、ヒドロデオキシ化、特に液体燃料またはモデル化合物の生産のために用いられる原料で行われている反応の分野で公開された産物の合成について記載している。   Furimsky describes hydrodeoxylation, in particular the synthesis of products published in the field of reactions carried out on raw materials used for the production of liquid fuels or model compounds.

ヒドロデオキシ化反応は、これら液体燃料中で酸素の存在が望ましくないため、試薬基質の完全および徹底的なデオキシ化を目的として、実際、燃料の生産向け原料の処理に主に応用されている。これら原料中における酸素分はかなり多く、通常ヒドロキシル、カルボニル、カルボキシル、エーテル、ケトン基などの存在によるものである。最も広く研究された原料の中では、酸素分が主にフェノール基の存在に基づく、炭素の液化に由来する液体が挙げられている(第434頁)。   Since the presence of oxygen in these liquid fuels is undesirable, the hydrodeoxylation reaction is actually applied mainly to the processing of raw materials for the production of fuels for the purpose of complete and thorough deoxygenation of reagent substrates. These raw materials contain a considerable amount of oxygen, usually due to the presence of hydroxyl, carbonyl, carboxyl, ether, ketone groups and the like. Among the most widely studied raw materials, liquids derived from liquefaction of carbon are cited (page 434), where the oxygen content is mainly based on the presence of phenol groups.

ヒドロデオキシ化反応の研究に用いられるモデル化合物の中では、o‐およびp‐クレゾール、ナフトール、フェノール、o‐フェニルフェノールおよび他のフェノール類が挙げられている(表5、第442頁)。   Among the model compounds used to study the hydrodeoxylation reaction, o- and p-cresol, naphthol, phenol, o-phenylphenol and other phenols are listed (Table 5, page 442).

フェノール類は、それら構造の関係から、完全なデオキシ化のために、還元剤の存在に加えて、触媒の存在も要することがある(表2、第429頁)。   Due to their structure, phenols may require the presence of a catalyst in addition to the presence of a reducing agent for complete deoxylation (Table 2, page 429).

ヒドロデオキシ化反応は多くの触媒の存在下で行うことができるが、促進剤としてNiまたはCoと組み合わせてMoまたはWを含有したものの方が有効であると多くの場合に証明された;フェノールタイプの化合物の場合には、ThおよびPt酸化物をベースにした触媒も有用であることが証明された(第444頁)。   Although the hydrodeoxylation reaction can be carried out in the presence of many catalysts, it has often proved more effective to contain Mo or W in combination with Ni or Co as a promoter; phenol type In the case of these compounds, catalysts based on Th and Pt oxides have also proved useful (page 444).

ヒドロデオキシ化反応で観察された欠点の1つとしては、反応に際して形成される水の存在に起因する、触媒の不活性化が挙げられる(第455頁)。   One of the disadvantages observed in the hydrodeoxylation reaction is the deactivation of the catalyst due to the presence of water formed during the reaction (page 455).

E.Furimsky,CATAL.REV.-SCI.ENG.,25(3),421-458(1983)E. Furimsky, CATAL.REV.-SCI.ENG., 25 (3), 421-458 (1983)

発明の概要Summary of the Invention

周期表のVIB族またはVIII族の元素をベースにした触媒の存在下において水素で行われる部分的かつ選択的ヒドロデオキシ化反応に基づく、水溶液中で操作しても高い変換率、選択率および生産率でベンゼン‐ジオール類をフェノールへ変換しうるプロセスが、今般みいだされた。   High conversion, selectivity and production even when operated in aqueous solution, based on partial and selective hydrodeoxylation reactions carried out with hydrogen in the presence of catalysts based on elements of group VIB or VIII of the periodic table A process has now been found that can convert benzene-diols to phenol at a high rate.

ヒドロデオキシ化反応において触媒を阻害する原因物質として水を特定した以前の知見からすれば、これは驚くべき結果である。   This is a surprising result given previous knowledge that water was identified as the causative agent that inhibits the catalyst in the hydrodeoxylation reaction.

更に、デオキシ化に付される基質がベンゼン‐ジオール類からなる当該反応において、溶媒としての水の使用は技術的および経済的双方の観点からみて多くの利点を有している。水は、実際に、溶液中で試薬および生成物の双方を高濃度に保てる。更に、水は反応環境下で試薬および生成物に対して完全に不活性である。反応溶媒として、水は高い熱能力、ひいてはデオキシ化反応のエンタルピーによる温度上昇を抑える性質を有する、という利点も有している。最後に、水は格別に安価である。   Furthermore, in the reaction in which the substrate to be deoxygenated consists of benzene-diols, the use of water as a solvent has many advantages from both a technical and economic point of view. Water can actually keep both reagents and products at high concentrations in solution. Furthermore, water is completely inert to reagents and products in the reaction environment. As a reaction solvent, water also has an advantage that it has a high heat capacity and, in turn, has the property of suppressing the temperature rise due to the enthalpy of the deoxylation reaction. Finally, water is exceptionally cheap.

その最広義の面において、本発明は、250〜500℃の温度、1〜100barの圧力、および周期表のVIB族の元素もしくはそれらの混合物またはVIII族の元素もしくはそれらの混合物をベースにした触媒の存在下において、水溶液中、連続操作で、ベンゼン‐ジオール類を水素でヒドロデオキシ化することによりフェノールを得ることを特徴とする、フェノールの製造方法に関する。   In its broadest aspect, the present invention relates to a catalyst based on a temperature of 250 to 500 ° C., a pressure of 1 to 100 bar, and a group VIB element or a mixture thereof or a group VIII element or a mixture thereof. The present invention relates to a method for producing phenol, characterized in that phenol is obtained by hydrodeoxylation of benzene-diols with hydrogen in an aqueous solution in the presence of

本発明の方法により操作すると、1,2‐ベンゼンジオール(カテコール、以下1,2‐BDと略記される)、1,3‐ベンゼンジオール(レゾルシノール、以下1,3‐BD)、1,4‐ベンゼンジオール(ヒドロキノン、以下1,4‐BD)およびそれらの混合物を高い効率および選択率でフェノールへ変換することが可能である。   When operated according to the method of the present invention, 1,2-benzenediol (catechol, hereinafter abbreviated as 1,2-BD), 1,3-benzenediol (resorcinol, hereinafter 1,3-BD), 1,4- It is possible to convert benzenediol (hydroquinone, hereinafter 1,4-BD) and mixtures thereof to phenol with high efficiency and selectivity.

発明の具体的説明Detailed description of the invention

反応は、250〜500℃、好ましくは300〜450℃の温度、1〜100bar、好ましくは3〜50barの圧力、および0.1〜10h−1、好ましくは0.5〜5h−1の空間速度(WHSV=Weight Hourly Space Velocity、ベンゼン‐ジオール類kg/h/触媒kgとして表示される)において、蒸気相中で行われる。 The reaction is carried out at a temperature of 250 to 500 ° C., preferably 300 to 450 ° C., a pressure of 1 to 100 bar, preferably 3 to 50 bar, and a space velocity of 0.1 to 10 h −1 , preferably 0.5 to 5 h −1 . (WHSV = Weight Hourly Space Velocity, expressed as benzene-diols kg / h / catalyst kg).

特に、反応器の供給物は、5〜60重量%、好ましくは10〜40重量%の濃度で水中ベンゼン‐ジオール類の溶液、およびベンゼン‐ジオール類に対するモル比で2〜50、好ましくは5〜30の水素からなる。   In particular, the reactor feed is a solution of benzene-diols in water at a concentration of 5-60% by weight, preferably 10-40% by weight, and a molar ratio to the benzene-diols of 2-50, preferably 5-50%. It consists of 30 hydrogens.

触媒は、周期表のVIB族またはVIII族の元素をベースにしたヒドロデオキシ化用のものから選択しうる。   The catalyst may be selected from those for hydrodeoxylation based on elements of group VIB or VIII of the periodic table.

触媒がVIB族の元素をベースにしているとき、それはVIII族に属する元素およびリンを促進剤として含有しうる。VIB族の元素は混合物で用いることができ、これらの中ではモリブデンおよびタングステンが好ましい。VIII族の促進剤の中ではニッケル、コバルト、鉄およびルテニウムが好ましく、互いにおよびリンと混合して用いうる。   When the catalyst is based on a Group VIB element, it can contain elements belonging to Group VIII and phosphorus as promoters. Group VIB elements can be used in a mixture, of which molybdenum and tungsten are preferred. Of the Group VIII promoters, nickel, cobalt, iron and ruthenium are preferred and may be used in combination with each other and with phosphorus.

触媒がVIII族の元素をベースにしているとき、それは亜鉛、レニウム、セレン、スズ、ゲルマニウムおよび鉛を促進剤として含有しうる。VIII族の元素は混合物で用いることができ、これらの中ではコバルト、パラジウム、ニッケルおよび白金が好ましい。促進剤は互いに混合してもよい。   When the catalyst is based on a Group VIII element, it can contain zinc, rhenium, selenium, tin, germanium and lead as promoters. Group VIII elements can be used in a mixture, among which cobalt, palladium, nickel and platinum are preferred. Accelerators may be mixed with each other.

活性相は、好ましくはキャリア上に担持される。好ましいキャリアは無機酸化物、例えばアルミナ、シリカ、二酸化チタン、結晶または非結晶アルミノシリケート、一般式F2+ 3+を有する結晶スピネル(F2+にはMg、Fe、Zn、Mn、Niなどがあり、R3+にはAl、Fe、Crなどがある)またはそれらの混合物である。これら物質の典型的表面積は1〜800m/g、好ましくは10〜500m/gであり、孔容量は0.05〜2cm/g、好ましくは0.1〜1.5cm/gである。触媒およびキャリアは、例えば固定床反応器中で、使用に適した形をとってよく、1〜12mmサイズの押出製品、錠剤、球体が目的に適している。 The active phase is preferably supported on a carrier. Preferred carriers are inorganic oxides such as alumina, silica, titanium dioxide, crystalline or amorphous aluminosilicate, crystalline spinel having the general formula F 2+ R 2 3+ O 4 (F 2+ includes Mg, Fe, Zn, Mn, Ni, etc. R 3+ includes Al, Fe, Cr, etc.) or a mixture thereof. The typical surface area of these materials is 1 to 800 m 2 / g, preferably 10 to 500 m 2 / g, and the pore volume is 0.05 to 2 cm 3 / g, preferably 0.1 to 1.5 cm 3 / g. is there. The catalyst and carrier may take a form suitable for use, for example in a fixed bed reactor, extrudates, tablets, spheres of 1-12 mm size are suitable for the purpose.

VIB族の元素をベースにした触媒の場合、その元素は通常1〜50重量%、好ましくは3〜30重量%の濃度でキャリア上に存在する。これら触媒の促進剤は、VIB族の元素に対して通常0.1〜100原子%、好ましくは1〜50%の濃度で存在する。可能な組成にいかなる制限も加えず、またはいかなる優先度も示さないとすれば、これら触媒の例はMo、W、CoMo、NiMo、NiW、FeMo、RuMo、CoMoP、NiMoP、CoWMo、CoWMoPである。   In the case of catalysts based on Group VIB elements, the elements are usually present on the carrier in a concentration of 1 to 50% by weight, preferably 3 to 30% by weight. These catalyst promoters are usually present in a concentration of 0.1 to 100 atomic%, preferably 1 to 50%, relative to the elements of group VIB. Examples of these catalysts are Mo, W, CoMo, NiMo, NiW, FeMo, RuMo, CoMoP, NiMoP, CoWMo, CoWMoP, provided that they do not impose any restrictions on the possible composition or indicate any preference.

反応へ用いられる前に、これらの触媒は、それらの化学的特性を変えるための処理、例えばHS、硫化ジメチル、二硫化ジメチル、硫化炭素または目的のために有用な他の化合物による硫化へ付してもよい。 Prior to being used in the reaction, these catalysts are subjected to treatments to alter their chemical properties, such as H 2 S, dimethyl sulfide, dimethyl disulfide, carbon sulfide or sulfidation with other compounds useful for the purpose. You may attach.

VIII族の元素をベースにした触媒の場合、その元素は通常0.05〜20重量%、好ましくは0.1〜10重量%の濃度でキャリア上に存在する。これら触媒の促進剤は、VIII族の元素に対して通常0.5〜200原子%、好ましくは1〜120%の濃度で存在する。可能な組成にいかなる制限も加えず、またはいかなる優先度も示さないとすれば、これら触媒の例はPt、Pd、Co、Ni、PtZn、PtRe、PtNi、PtSe、PtSn、PtGe、PdPb、PdSnである。   In the case of catalysts based on Group VIII elements, the elements are usually present on the carrier in a concentration of 0.05 to 20% by weight, preferably 0.1 to 10% by weight. These catalyst promoters are usually present at a concentration of 0.5 to 200 atomic percent, preferably 1 to 120 percent, relative to Group VIII elements. Examples of these catalysts are Pt, Pd, Co, Ni, PtZn, PtRe, PtNi, PtSe, PtSn, PtGe, PdPb, PdSn, without any limitation on the possible composition or showing any preference. is there.

本発明の対象触媒は、初期湿潤技術または溶液からの吸収により製造しうる。   The subject catalysts of the present invention can be prepared by incipient wetness techniques or absorption from solution.

前者の方法は、用いられるキャリアの孔容量に等しい、活性相の可溶性前駆体を含有したある容量の溶液による、孔質キャリアの含浸からなる。こうして、溶液中に存在する前駆体がキャリアにより定量的に吸収される。望ましい元素充填量へ達するために、操作は数回繰り返して、それと乾燥とを交互に行う。   The former method consists of impregnating the porous carrier with a volume of solution containing a soluble precursor of the active phase equal to the pore volume of the carrier used. Thus, the precursor present in the solution is quantitatively absorbed by the carrier. To reach the desired element loading, the operation is repeated several times, alternating with it and drying.

第二の方法では、キャリアが分散された溶液から出発して、活性相の前駆体をキャリアへ吸収させる。   In the second method, starting from a solution in which the carrier is dispersed, the active phase precursor is absorbed into the carrier.

用いうる前駆体の中では、七モリブデン酸アンモニウム四水和物、硝酸コバルト六水和物、硝酸ニッケル六水和物、硝酸鉄九水和物、塩化ルテニウム、ヘキサクロロ白金酸の市販溶液(Pt7.7%)が、現技術水準で開示されたものによると挙げられる。   Among the precursors that can be used, commercial solutions of ammonium heptamolybdate tetrahydrate, cobalt nitrate hexahydrate, nickel nitrate hexahydrate, iron nitrate nonahydrate, ruthenium chloride, hexachloroplatinic acid (Pt7. 7%), according to what is disclosed in the current state of the art.

含浸キャリアは化学処理に付してもよく、場合により熱処理と交互に行う。典型的な化学処理は、例えば、85〜95℃でギ酸ナトリウムの溶液による、ヘキサクロロ白金酸で含浸されたキャリアの還元である。   The impregnated carrier may be subjected to chemical treatment, and in some cases, alternately with heat treatment. A typical chemical treatment is, for example, reduction of a carrier impregnated with hexachloroplatinic acid with a solution of sodium formate at 85-95 ° C.

最終熱処理で常に製造を終了する。   Production always ends with final heat treatment.

本発明の態様において、反応は上記のような触媒を含有した断熱固定床反応器内で行われ、そこへは、全モルの水素およびベンゼン‐ジオール類間の比率が2:1〜50:1となるような量で、水素ストリームと一緒に、5〜60重量%の濃度で、ベンゼン‐ジオール類の水溶液を含有したストリームが供給される。供給物は気化されて250〜500℃の温度へ加熱され、圧力は1〜100barに保たれる。反応器を出たストリームは、残留しうるベンゼン‐ジオール類、水溶液中で生成したフェノール、およびリサイクルされる残留水素からなる。   In an embodiment of the invention, the reaction is carried out in an adiabatic fixed bed reactor containing a catalyst as described above, wherein the ratio between total moles of hydrogen and benzene-diols is 2: 1 to 50: 1. A stream containing an aqueous solution of benzene-diols at a concentration of 5 to 60% by weight is fed with the hydrogen stream in such an amount as follows. The feed is vaporized and heated to a temperature of 250-500 ° C. and the pressure is kept at 1-100 bar. The stream exiting the reactor consists of residual benzene-diols, phenol formed in an aqueous solution, and residual hydrogen to be recycled.

本発明の別な態様において、次のものへ導入される前に、反応器の1つを出たストリームを冷却するために、例えばそれを40℃以下に維持して各反応器で温度の上昇を抑えることにより、反応は2以上の断熱固定床反応器で連続して行われる。この態様では、水供給物および水素供給物の双方が単一反応器へ分別供給しうる。冷却用の中間交換器の使用を避けられるため、分別供給は特に有用である。2つの反応器であれば、単一反応器の温度上昇を望ましい値内に保つ上で通常十分である。   In another aspect of the invention, the temperature is increased in each reactor, for example by maintaining it below 40 ° C., in order to cool the stream exiting one of the reactors before being introduced into the next. The reaction is carried out continuously in two or more adiabatic fixed bed reactors. In this embodiment, both the water feed and the hydrogen feed can be fed separately to a single reactor. A fractional feed is particularly useful because it avoids the use of an intermediate exchanger for cooling. Two reactors are usually sufficient to keep the temperature rise of a single reactor within the desired value.

各反応器での温度上昇が40℃を超えないように操作することにより、フェノールへの高い選択率が得られる。   By operating so that the temperature rise in each reactor does not exceed 40 ° C., a high selectivity to phenol is obtained.

図1は、上記のプラント構成によるプロセスの態様に適した装置を概略で示している。   FIG. 1 schematically shows an apparatus suitable for the process aspect of the plant configuration described above.

触媒と最も適切な操作条件が揃えば、ベンゼン‐ジオール類の100%変換率および>95%のフェノール選択率で、何百時間にもわたり反応器を稼働させておくことが可能である。   With the catalyst and the most appropriate operating conditions, the reactor can be operated for hundreds of hours with 100% conversion of benzene-diols and> 95% phenol selectivity.

反応器の稼働時間を延ばすことにより、変換率は減少しがちになるが、選択率は極めて高いままである。望ましい変換度を維持するために、反応温度は250〜500℃の範囲内で漸次増加させうる。   By extending the reactor run time, the conversion rate tends to decrease, but the selectivity remains very high. In order to maintain the desired degree of conversion, the reaction temperature can be gradually increased within the range of 250-500 ° C.

活性の減少原因は、反応で使用中の触媒上における炭質物の沈着である。   The cause of the decrease in activity is carbonaceous deposit on the catalyst in use in the reaction.

本発明の目的のために用いうる触媒は、初期活性を回復する上で、燃焼による上記沈着物の除去のために、現技術水準で知られたものによると、いかなる特別な問題もなしに定期的再生へ付せることが観察された。   The catalyst which can be used for the purposes of the present invention is based on what is known in the state of the art for recovering the initial activity and for the removal of the deposits by combustion, without any special problems. It was observed that it could be subjected to manual regeneration.

再生処理は、触媒が反応向けに加えられた同反応器で行える。再生は、0.1〜20容量%の比率にある酸素および窒素の混合物、および空間速度(GHSV=Gas Hourly Space Velocity、ガス混合物L/h/触媒Lで表示される)=3000÷6000h−1により、400〜550℃の温度および1〜3barの圧力で通常行われる。 The regeneration process can be performed in the same reactor to which a catalyst has been added for the reaction. Regeneration is a mixture of oxygen and nitrogen in a ratio of 0.1-20% by volume, and space velocity (GHSV = Gas Hourly Space Velocity, expressed as gas mixture L / h / catalyst L) = 3000 ÷ 6000 h −1 Is usually carried out at a temperature of 400 to 550 ° C. and a pressure of 1 to 3 bar.

連続プロセスの態様の場合には、反応および再生へ交互に付される2つの反応系を有することが好ましい。   In the case of a continuous process embodiment, it is preferred to have two reaction systems that are alternately subjected to reaction and regeneration.

本発明によるプロセスは、過酸化水素によるベンゼンからフェノールの直接合成のためのプロセス、相当量のベンゼン‐ジオール類の形成に至るプロセス(US06133487およびイタリア特許MI2001A002410)において、フェノールへの全収率を増すために都合よく用いうる。   The process according to the invention increases the overall yield to phenol in a process for the direct synthesis of phenol from benzene with hydrogen peroxide, a process leading to the formation of significant amounts of benzene-diols (US06133487 and Italian patent MI2001A002410). Can be used conveniently.

一部の説明例は、本発明の良い理解のため、およびその態様について示されているが、しかしながら本発明の範囲そのものを制限するものと考えるべきではない。   Some illustrative examples are presented for a better understanding of the invention and for its embodiments, however, they should not be considered as limiting the scope of the invention itself.

触媒の製造例
例1
Mo/Al タイプの触媒
アルミナ(Alumina Spheres 1.0/160 Condea-Sasol、直径=1mm、孔容量=0.45ml/g最小、表面積=150〜170m/g)50gを120℃で一夜乾燥させる。次いで、脱塩水23gに溶解された七モリブデン酸アンモニウム3.45gの溶液で、それらを室温で初期湿潤技術により含浸させる。約2時間のエージング後、サンプルを140℃で3時間乾燥させる。更に2回の含浸/乾燥サイクルを繰返し、次いでサンプルを500℃で8時間焼成させる。計算されたモリブデン分は、製造法に基づくと、Mo=9.6重量%である。
Catalyst production example
Example 1
Mo / Al 2 O 3 type catalytic alumina (Alumina Spheres 1.0 / 160 Condea-Sasol, diameter = 1 mm, pore volume = 0.45 ml / g minimum, surface area = 150-170 m 2 / g) 50 g is dried overnight at 120 ° C. Let They are then impregnated with a solution of 3.45 g of ammonium heptamolybdate dissolved in 23 g of demineralized water at room temperature by incipient wetness techniques. After aging for about 2 hours, the sample is dried at 140 ° C. for 3 hours. Two more impregnation / drying cycles are repeated and the sample is then calcined at 500 ° C. for 8 hours. The calculated molybdenum content is Mo = 9.6% by weight based on the production method.

例2
W/Al タイプの触媒
例1で記載されたものと同様の操作を採用するが、但しモリブデン含有溶液の代わりに、脱塩水26gに溶解された(パラ)タングステン酸アンモニウム1.04gの溶液を用い、エージング時間は2時間ではなく1時間であり、別な含浸/乾燥サイクルが2回ではなく1回のみ行われる。計算されたタングステン分はW=2.9重量%である。
Example 2
A procedure similar to that described in W / Al 2 O 3 type catalyst example 1 is employed, except that 1.04 g of ammonium (para) tungstate dissolved in 26 g of demineralized water instead of the molybdenum-containing solution. Using the solution, the aging time is 1 hour instead of 2 hours, and another impregnation / drying cycle is performed only once rather than twice. The calculated tungsten content is W = 2.9% by weight.

例3
HPA/Al タイプの触媒
例1で記載されたものと同様の操作を採用するが、但しモリブデン含有溶液の代わりに、脱塩水26gに溶解されたリンタングステン酸(Acros、HPO4012 xHO、MW=2880.17、WO82%最小、800℃の最大減量率=17%)1.70gの溶液を用い、エージング時間は2時間ではなく1時間である。計算されたタングステンおよびリン分は、製造法に基づくと、W=6.2重量%、P=0.08重量%である。
Example 3
An operation similar to that described in Example 1 of HPA / Al 2 O 3 type catalyst is employed, except that phosphotungstic acid (Acros, H 3 PO 40) dissolved in 26 g of demineralized water instead of the molybdenum-containing solution. W 12 * xH 2 O, MW = 2880.17, WO 3 82% minimum, 800 ° C. for maximum weight loss rate = 17%) with a solution of 1.70 g, the aging time is 1 hour instead of 2 hours. The calculated tungsten and phosphorus contents are W = 6.2 wt% and P = 0.08 wt% based on the manufacturing method.

例4
CoMo/Al タイプの触媒
例1の触媒の場合と同様の製法を行うが、但し含浸液は七モリブデン酸アンモニウム3.45gおよび硝酸コバルト六水和物2.67gを用いて調製した。計算されたコバルトおよびモリブデン分は、製造法に基づくと、Co=2.7重量%、Mo=9.3重量%である。
Example 4
A CoMo / Al 2 O 3 type catalyst was prepared in the same manner as in Example 1 except that the impregnating solution was prepared using 3.45 g of ammonium heptamolybdate and 2.67 g of cobalt nitrate hexahydrate. The calculated cobalt and molybdenum contents are Co = 2.7 wt% and Mo = 9.3 wt% based on the production method.

例5
CoMoW/Al タイプの触媒
例4の触媒の場合と同様の製造操作を用いるが、但し更に2回の含浸を脱塩水25mlおよび(パラ)タングステン酸アンモニウム1.04gからなる溶液により最終乾燥非焼成触媒で行い、その間に140℃で3時間の乾燥を介在させる。固体物を140℃で3時間乾燥させ、次いで500℃で8時間焼成する。計算されたコバルト、モリブデンおよびタングステン分は、製造法に基づくと、Co=2.6重量%、Mo=9.0重量%、W=2.4重量%である。
Example 5
CoMoW / Al 2 O 3 type catalyst The same production procedure is used as in the case of the catalyst of Example 4, except that two further impregnations are finally dried with a solution of 25 ml of demineralized water and 1.04 g of ammonium (para) tungstate. It is carried out with a non-calcined catalyst, with a 3 hour drying at 140 ° C. in between. The solid is dried at 140 ° C. for 3 hours and then calcined at 500 ° C. for 8 hours. The calculated cobalt, molybdenum and tungsten contents are Co = 2.6% by weight, Mo = 9.0% by weight and W = 2.4% by weight based on the production method.

例6
FeMo/Al タイプの触媒
アルミナ(Alumina Spheres 1.0/160 Condea-Sasol)50gを120℃で一夜乾燥させる。次いで、脱塩水27gに溶解された硝酸鉄九水和物3.79gの溶液で、それらを室温で初期湿潤技術により含浸させる。約1時間のエージング後、サンプルを140℃で3時間乾燥させる。次いで、含浸を七モリブデン酸アンモニウム3.45gおよび脱塩水27gからなる溶液で行い、サンプルを140℃で3時間乾燥させる。更に2回のFe含浸/乾燥‐Mo含浸/乾燥サイクルを繰返し、次いでサンプルを500℃で8時間焼成させる。計算された鉄およびモリブデン分は、製造法に基づくと、Fe=2.5重量%、Mo=9.3重量%である。
Example 6
50 g of FeMo / Al 2 O 3 type catalytic alumina (Alumina Spheres 1.0 / 160 Condea-Sasol) is dried at 120 ° C. overnight. They are then impregnated with a solution of 3.79 g of iron nitrate nonahydrate dissolved in 27 g of demineralized water at room temperature by incipient wetness techniques. After aging for about 1 hour, the sample is dried at 140 ° C. for 3 hours. The impregnation is then carried out with a solution consisting of 3.45 g of ammonium heptamolybdate and 27 g of demineralized water and the sample is dried at 140 ° C. for 3 hours. Two more Fe impregnation / drying-Mo impregnation / drying cycles are repeated and the sample is then calcined at 500 ° C. for 8 hours. The calculated iron and molybdenum contents are Fe = 2.5 wt% and Mo = 9.3 wt% based on the production method.

例7
Co/Al タイプの触媒
例1で記載されたものと同様の操作を採用するが、但し含浸溶液は硝酸コバルト六水和物2.67gを用いて調製した。計算されたコバルト分は、製造法に基づくと、Co=3.1重量%である。
Example 7
A procedure similar to that described in Co / Al 2 O 3 type catalyst example 1 was employed, except that the impregnation solution was prepared using 2.67 g of cobalt nitrate hexahydrate. The calculated cobalt content is Co = 3.1% by weight based on the production method.

例8
Pt/Al タイプの触媒
アルミナ(Alumina Spheres 1.0/160 Condea-Sasol)50gを脱塩水200mlに16時間浸す。排水および各々水約100mlで2回の洗浄後に、回転式エパポレーターフラスコ内でヘキサクロロ白金酸溶液(Pt=7.696%)3.2gを含有した水溶液80ml中にアルミナを懸濁させる。混合液を30℃で2.5時間ゆっくり回転させた後、脱塩水50gに溶解されたギ酸ナトリウム1.0gからなる溶液を加える。ゆっくり回転する回転式エパポレーターフラスコ内で再び、溶液を90分間にわたり85℃へ加熱し、排水し、濾過し、60℃で約5Lの水で洗浄する。それを排水し、120℃で18時間乾燥させる。触媒に関して計算された白金分は、製造法に基づくと、Pt=0.5重量%である。
Example 8
50 g of Pt / Al 2 O 3 type catalytic alumina (Alumina Spheres 1.0 / 160 Condea-Sasol) is immersed in 200 ml of demineralized water for 16 hours. After draining and washing twice with about 100 ml of water each, the alumina is suspended in 80 ml of an aqueous solution containing 3.2 g of hexachloroplatinic acid solution (Pt = 7.696%) in a rotary evaporator flask. The mixture is slowly rotated at 30 ° C. for 2.5 hours and then a solution consisting of 1.0 g of sodium formate dissolved in 50 g of demineralized water is added. Again in the slowly rotating rotary evaporator flask, the solution is heated to 85 ° C. for 90 minutes, drained, filtered and washed with about 5 L of water at 60 ° C. Drain it and dry at 120 ° C. for 18 hours. The platinum content calculated for the catalyst is Pt = 0.5% by weight, based on the production method.

例9
キャリアとして用いられるスピネルの製造
水酸化アンモニウム(32%Carlo Erba)でpH10にされた脱塩水1500mlを5Lガラス中へ注ぐ。塩化マグネシウム203.3gおよび塩化アンモニウム六水和物482.86gからなる、脱塩水で2Lにした第二溶液を、攪拌しながらアンモニア溶液へゆっくり加える。溶液の混合中、水酸化アンモニウムの適切な溶液の添加により、pHを約10の値に保つ。添加終了後、混合液を攪拌下で2時間保ち、固体物を母液中で16時間エージングし、濾過し、洗浄水で中性pHとなるまで洗浄し、120℃で16時間乾燥させる。固体物を400℃で16時間、次いで600℃で更に16時間焼成する。得られた酸化物を粉砕し、18〜35メッシュで篩にかける。
Example 9
Preparation of spinel used as carrier 1500 ml of demineralized water adjusted to pH 10 with ammonium hydroxide (32% Carlo Erba) is poured into 5 L glass. A second solution consisting of 203.3 g magnesium chloride and 482.86 g ammonium chloride hexahydrate, made up to 2 L with demineralized water, is slowly added to the ammonia solution with stirring. During the mixing of the solution, the pH is kept at a value of about 10 by addition of a suitable solution of ammonium hydroxide. After the addition is complete, the mixture is kept under stirring for 2 hours and the solid is aged in the mother liquor for 16 hours, filtered, washed with wash water until neutral pH and dried at 120 ° C. for 16 hours. The solid is calcined at 400 ° C. for 16 hours and then at 600 ° C. for an additional 16 hours. The resulting oxide is crushed and sieved through 18-35 mesh.

PtZnおよびMgAlタイプスピネルの触媒
クロロ白金酸溶液(Pt=2mg/ml)5ml、(塩化亜鉛2.2gを脱塩水50mlに溶解することで調製された)水中ZnClの溶液1mlおよび脱塩水2.5mlからなる溶液で固体物10gを含浸させる。含浸固体物を室温で16時間エージングし、120℃で16時間乾燥させ、500℃で16時間焼成する。計算された白金および亜鉛分は、製造法に基づくと、Pt=0.1重量%、Zn=0.2重量%である。
1. 1 ml of a solution of ZnCl 2 in water (prepared by dissolving 2.2 g of zinc chloride in 50 ml of demineralized water) and 5 ml of catalyst chloroplatinic acid solution (Pt = 2 mg / ml) of PtZn and MgAl type spinel . 10 g of solid material is impregnated with a solution of 5 ml. The impregnated solid is aged at room temperature for 16 hours, dried at 120 ° C. for 16 hours, and calcined at 500 ° C. for 16 hours. The calculated platinum and zinc contents are Pt = 0.1 wt% and Zn = 0.2 wt% based on the production method.

市販触媒
本発明の目的のために、本発明のものとは異なる分野で市販されている触媒が用いうる。
Commercially available catalysts For the purposes of the present invention, catalysts that are commercially available in fields different from those of the present invention can be used.

例えば、製造業者(Engelhard Italiana S.p.A.-Via Siusi 20-20132 Milan-Italy)による技術商工文献で記載されている、アルミナ上に各々担持された、コバルト‐モリブデン‐リンおよびニッケル‐モリブデン‐リンをベースにしたEngelhard ESCATTM H-60およびESCATTM H-50を用いることが可能である。 For example, based on cobalt-molybdenum-phosphorus and nickel-molybdenum-phosphorus, each supported on alumina, described in the technical and commercial literature by the manufacturer (Engelhard Italiana SpA-Via Siusi 20-20132 Milan-Italy) Engelhard ESCAT H-60 and ESCAT H-50 can be used.

例えば、製造業者(Akzo Nobel Chemicals S.p.A.-Via E.Vismara 80-20020 Arese MI-Italy)による技術商工文献で記載されている、コバルト‐モリブデンおよびニッケル‐モリブデンを各々ベースにした触媒Akzo Nobel KF-756およびKF-841も用いうる。   For example, Akzo Nobel KF-756, a catalyst based on cobalt-molybdenum and nickel-molybdenum, respectively, described in the technical and commercial literature by the manufacturer (Akzo Nobel Chemicals SpA-Via E. Vismara 80-20020 Arese MI-Italy) And KF-841 can also be used.

触媒性能の例
例で記載された触媒活性試験を実験装置で行ったが、そこではプロセスの最適な稼働のために採択しうる操作条件を調べることが可能である。装置および操作手順が以下で記載されている。
The catalytic activity test described in the example of catalyst performance was carried out in an experimental apparatus, where it is possible to investigate the operating conditions that can be adopted for optimal operation of the process. The apparatus and operating procedure are described below.

触媒試験:装置および操作手順
ベンゼン‐ジオール類のヒドロデオキシ化反応を、次の特徴:材料=AISI 316Lステンレス鋼、長さ180mm、内径(φint)=11.5mm、外径(φext)=3mmの熱電対外装を有する管状固定床マイクロ反応器内において蒸気相中で行う。反応器は、反応向けに選択した温度に設定しうるオーブン中に置く。
Catalyst Test: Equipment and Operating Procedure Hydrodeoxylation reaction of benzene-diols, the following features: Material = AISI 316L stainless steel, length 180 mm, inner diameter (φ int ) = 11.5 mm, outer diameter (φ ext ) = It is carried out in the vapor phase in a tubular fixed bed microreactor with a 3 mm thermocouple sheath. The reactor is placed in an oven that can be set to the temperature selected for the reaction.

試験に用いられる触媒は<2mmのサイズを有する;工業サイズで生産された市販触媒を用いるとき、それは望ましい寸法まで予め細かくしておく。加える触媒は5.0gであり、それを反応器で2層の粒状石英間に置く。   The catalyst used in the test has a size of <2 mm; when using a commercial catalyst produced in industrial size, it is pre-milled to the desired dimensions. The catalyst added is 5.0 g which is placed in the reactor between two layers of granular quartz.

ベンゼン‐ジオール類の溶液を予熱してから反応器の上部へ加え、次いでそれを気化させて、反応器中(粒状石英の層中)で水素と直接混合してから、触媒と接触させる。液体供給液はHPLCタイプのポンプで投入し、水素の流速は質量流速コントローラーで調節する。   The solution of benzene-diols is preheated and then added to the top of the reactor, which is then vaporized and mixed directly with hydrogen in the reactor (in the layer of granular quartz) before contacting the catalyst. The liquid feed solution is charged with an HPLC type pump, and the hydrogen flow rate is adjusted with a mass flow rate controller.

プラントの圧力は反応器の出口に置かれた調節バルブで制御する。   The plant pressure is controlled by a regulating valve located at the reactor outlet.

活性試験の活性化段階では、試験向けに規定された圧力および流速で、触媒を水素ストリーム中で反応温度まで加熱し、この条件下で1時間維持する。次いで水を供給し、30分間後に、ベンゼン‐ジオール類の水溶液の供給開始で実際の触媒試験を始める。   In the activation phase of the activity test, the catalyst is heated to the reaction temperature in a hydrogen stream at the pressure and flow rate specified for the test and maintained under these conditions for 1 hour. Water is then fed, and after 30 minutes, the actual catalyst test begins with the start of feeding the aqueous solution of benzene-diols.

圧力調節バルブからの流出蒸気の混合物を凝縮させ、反応未精製産物のサンプルを集めて、触媒性能を評価する。   The effluent vapor mixture from the pressure control valve is condensed and a sample of the reaction crude product is collected to assess catalyst performance.

サンプルをガスクロマトグラフィーで分析し、ベンゼン‐ジオール類の変換率およびフェノール選択率を計算することにより触媒性能を評価する。   Samples are analyzed by gas chromatography to evaluate catalyst performance by calculating benzene-diols conversion and phenol selectivity.

活性試験後における触媒の再生を、反応に用いられたものと同様の反応器で行った。操作条件は次のとおりである:温度=450〜550℃、圧力=1〜3bar、酸素濃度=0.1〜20%およびGHSV空間速度=3000÷6000h−1。特に、処理は窒素ストリームのみで始め、そこへ空気の同ストリームを(約1時間で)漸次加える。次いで、窒素ストリームをそれが(約1時間で)最終的に消失するまで漸次減少させ、処理を5〜10時間にわたり続ける。処理終了後に、反応器を窒素ストリームで洗浄し、触媒活性試験を再開してもよい。 The regeneration of the catalyst after the activity test was carried out in the same reactor as that used for the reaction. The operating conditions are as follows: temperature = 450-550 ° C., pressure = 1-3 bar, oxygen concentration = 0.1-20% and GHSV space velocity = 3000 ÷ 6000 h −1 . In particular, the process begins with only a nitrogen stream, to which the same stream of air is gradually added (in about 1 hour). The nitrogen stream is then gradually reduced until it eventually disappears (in about 1 hour) and the process is continued for 5-10 hours. At the end of the treatment, the reactor may be flushed with a nitrogen stream and the catalytic activity test resumed.

下記表は、周期表のVIB族の元素(例10〜23)および周期表のVIII族の元素(例24〜27)をベースにした触媒について、触媒活性の例を示している。略記および記号が表で用いられており、その意味は以下で示されている。   The table below shows examples of catalytic activity for catalysts based on Group VIB elements of the periodic table (Examples 10-23) and Group VIII elements of the Periodic Table (Examples 24-27). Abbreviations and symbols are used in the table, the meanings of which are given below.

例中で用いられている略記および符号
1,2‐BD=1,2‐ベンゼンジオール
1,4‐BD=1,4‐ベンゼンジオール
BD=ベンゼン‐ジオール類
α=供給されるベンゼン‐ジオール類のWHSV
β=触媒試験の開始からの操作時間、ストリームでの時間
Y=反応器で行われた最終再生からの操作時間、ストリームでの時間
δ=1,2‐BD+1,4‐BDの合計に関する変換率
ε=変換された全BDに関する選択率
Abbreviations and symbols used in the examples 1,2-BD = 1,2-benzenediol 1,4-BD = 1,4-benzenediol BD = benzene-diols α = of supplied benzene-diols WHSV
β = operation time from the start of the catalyst test, time in stream Y = operation time from the last regeneration performed in the reactor, time in stream δ = 1, conversion rate for the sum of 1,2-BD + 1,4-BD ε = selectivity for all transformed BDs

Figure 0004731802
Figure 0004731802

Figure 0004731802
Figure 0004731802

Figure 0004731802
Figure 0004731802

Figure 0004731802
Figure 0004731802

Figure 0004731802
Figure 0004731802

Figure 0004731802
Figure 0004731802

Figure 0004731802
Figure 0004731802

Figure 0004731802
Figure 0004731802

Figure 0004731802
Figure 0004731802

Figure 0004731802
Figure 0004731802

Figure 0004731802
Figure 0004731802

Figure 0004731802
Figure 0004731802

Figure 0004731802
Figure 0004731802

Figure 0004731802
Figure 0004731802

Figure 0004731802
Figure 0004731802

Figure 0004731802
Figure 0004731802

Figure 0004731802
Figure 0004731802

Figure 0004731802
Figure 0004731802

2ステップによるベンゼン‐ジオール類のヒドロデオキシ化のための装置の概略を示す図である。FIG. 2 is a schematic diagram of an apparatus for hydrodeoxylation of benzene-diols by two steps.

符号の説明Explanation of symbols

R1 第一反応器
R2 第二反応器
C コンデンサー
S 気液分離器
1 水溶液中ベンゼン‐オール類、R1へ供給
2 R1へ水素供給
2’ 新鮮水素、R1へ供給
2” リサイクル水素、R1へ供給
3 R1を出たストリーム
4 冷却水
5 冷却混合物、R2へ供給
6 リサイクル水素、R2へ供給
7 R2を出たストリーム
8 未精製フェノールの水溶液
9 リサイクル用水素
R1 First reactor R2 Second reactor C Condenser S Gas-liquid separator 1 Benzene-ols in aqueous solution, supplied to R1 2 Hydrogen supplied to R1 2 ′ Fresh hydrogen, supplied to R1 2 ”Recycled hydrogen, supplied to R1 3 Stream 1 exiting R1 Cooling water 5 Cooling mixture, supply to R2 6 Recycled hydrogen, supply to R2 7 Stream exiting R2 8 Aqueous solution of unpurified phenol 9 Hydrogen for recycling

Claims (22)

250〜500℃の温度、1〜100barの圧力、および周期表のVIB族の元素もしくはそれらの混合物またはVIII族の元素もしくはそれらの混合物を含む触媒の存在下において、水溶液中、連続操作で、ベンゼン‐ジオーを水素でヒドロデオキシ化することによりフェノールを得ることを特徴とする、フェノールの製造方法。 Benzene in aqueous solution in a continuous operation in the presence of a catalyst comprising a temperature of 250-500 ° C., a pressure of 1-100 bar, and a group VIB element or mixtures thereof or a group VIII element or mixtures thereof of the periodic table -; and obtaining phenol by hydro deoxygenation by hydrogen Jio Le method of phenol. ベンゼン‐ジオーが、1,2‐ベンゼンジオール、1,3‐ベンゼンジオール、1,4‐ベンゼンジオールまたはそれらの混合物から選択される、請求項1に記載の方法。 Benzene - Jio Le is 1,2-benzenediol, 1,3-benzenediol, is selected from 1,4-benzene diol, or mixtures thereof, The method of claim 1. 反応が、300〜450℃の温度、3〜50barの圧力、およびベンゼン‐ジオールのkg/h/触媒kgとして表わされる0.1〜10h−1の空間速度において、蒸気相中で行われる、請求項1または2に記載の方法。 Reaction temperature of 300 to 450 ° C., a pressure of 3~50Bar, and benzene - at a space velocity of 0.1 to 10 -1, expressed as kg of Jio Le of kg / h / catalyst, carried out in the vapor phase The method according to claim 1 or 2. 反応が0.5〜5h−1の空間速度で行われる、請求項3に記載の方法。 The process according to claim 3, wherein the reaction is carried out at a space velocity of 0.5 to 5 h- 1 . 反応が、触媒を含有した断熱固定床反応器内で行われ、該反応器内に、水素のベンゼン‐ジオールに対するモル比(H /BD比)が2〜50となるような量で、水素と一緒に、ンゼン‐ジオールの濃度5〜60重量%の水溶液を含有した流れが供給される、請求項1〜4のいずれか一項に記載の方法。 The reaction is carried out in an adiabatic fixed bed reactor containing a catalyst, in which hydrogen is added in an amount such that the molar ratio of hydrogen to benzene-diol (H 2 / BD ratio) is 2-50. together with the flow, benzene - Jio Le stream containing a concentration of 5 to 60% by weight aqueous solution of is supplied, the method according to any one of claims 1-4. 水素のベンゼン‐ジオールに対するモル比(H /BD比)が5〜30となるような量で、水素と一緒に、ンゼン‐ジオールの濃度10〜40重量%の水溶液が反応器中へ供給される、請求項5に記載の方法。 Benzene hydrogen - in an amount such that the molar ratio diol (H 2 / BD ratio) of 5 to 30, together with the hydrogen stream, benzene - concentration 10 to 40% by weight aqueous solution of Jio Le is in the reactor The method of claim 5, wherein 供給が気化されて、250〜500℃の温度へ加熱され、圧力が1〜100barの値で保たれる、請求項5または6に記載の方法。 7. A process according to claim 5 or 6, wherein the feed stream is vaporized and heated to a temperature of 250-500 [deg.] C. and the pressure is kept at a value of 1-100 bar. VIB族の元素を含む触媒が、モリブデンおよびタングステンから選択される元素を含有している、請求項1に記載の方法。 The process according to claim 1, wherein the catalyst comprising a Group VIB element contains an element selected from molybdenum and tungsten. VIB族の元素を含む触媒が、促進剤として、VIII族に属する元素、リンまたはそれらの混合物から選択される元素を含有している、請求項1に記載の方法。 The process according to claim 1, wherein the catalyst comprising a group VIB element contains , as a promoter, an element selected from elements belonging to group VIII, phosphorus or mixtures thereof. VIII族の促進剤が、ニッケル、コバルト、鉄およびルテニウムから選択される元素を含有している、請求項9に記載の方法。 The process according to claim 9, wherein the Group VIII promoter contains an element selected from nickel, cobalt, iron and ruthenium. VIII族の元素を含む触媒が、コバルト、パラジウム、ニッケル、白金から選択される元素を含有している、請求項1に記載の方法。 The process according to claim 1, wherein the catalyst comprising a Group VIII element contains an element selected from cobalt, palladium, nickel and platinum. VIII族の元素を含む触媒が、促進剤として、亜鉛、レニウム、セレン、スズ、ゲルマニウムおよび鉛またはそれらの混合物から選択される元素を含有している、請求項1に記載の方法。 The process according to claim 1, wherein the catalyst comprising a Group VIII element contains , as a promoter, an element selected from zinc, rhenium, selenium, tin, germanium and lead or mixtures thereof. 触媒が、アルミナ、シリカ、二酸化チタン、結晶または非結晶アルミノシリケート、結晶スピネルまたはそれらの混合物から選択される担体上に担持されている、請求項9または12に記載の方法。 13. A process according to claim 9 or 12, wherein the catalyst is supported on a support selected from alumina, silica, titanium dioxide, crystalline or amorphous aluminosilicate, crystalline spinel or mixtures thereof . VIB族の元素を含む触媒が1〜50重量%の濃度で担体上に存在し、この触媒の促進剤がVIB族の元素に対して0.1〜100原子%の濃度で存在する、請求項13に記載の方法。 Present in a catalyst comprising a Group VIB element on the carrier at a concentration of 1 to 50 wt%, accelerator of the catalyst is present in a concentration of 0.1 to 100 atomic% with respect to the element of group VIB, claim 13. The method according to 1. VIB族の元素を含む触媒が3〜30重量%の濃度で担体上に存在し、この触媒の促進剤がVIB族の元素に対して1〜50原子%の濃度で存在する、請求項14に記載の方法。 Present in a catalyst comprising a Group VIB elements on the carrier in a concentration of 3-30 wt%, accelerator of the catalyst is present at a concentration of 1 to 50 atomic% with respect to the element of group VIB, in claim 14 The method described. VIII族の元素を含む触媒が0.05〜20重量%の濃度で担体上に存在し、この触媒の促進剤がVIII族の元素に対して0.5〜200原子%の濃度で存在する、請求項13に記載の方法。 The catalyst containing an element of group VIII is present on the support at a concentration of 0.05 to 20 wt%, accelerator of the catalyst is present in a concentration of 0.5 to 200 atomic% with respect to the element of group VIII, The method of claim 13 . VIII族の元素を含む触媒が0.1〜10重量%の濃度で担体上に存在し、この触媒の促進剤がVIII族の元素に対して1〜120原子%の濃度で存在する、請求項16に記載の方法。 Present on the support at a concentration catalyst of 0.1 to 10 wt% including elements of Group VIII, promoter of the catalyst is present at a concentration of 1 to 120 atomic% with respect to the element of group VIII, claim 16. The method according to 16 . 反応が2以上の断熱固定床反応器で連続して行われるものであり、該反応が、各反応器における温度上昇を抑えて40℃以下にするために、1つの反応器を出た流れを次の反応器へ入る前に冷却することにより行われる、請求項1に記載の方法。 The reaction is carried out continuously in two or more adiabatic fixed bed reactors, and the reaction is conducted with a stream exiting one reactor in order to suppress the temperature rise in each reactor to 40 ° C. or less. The process according to claim 1, which is carried out by cooling before entering the next reactor. 反応が水および水素を前記2以上の断熱固定床反応器に供給することにより行われ、供給される水および供給される水素の双方が単一反応器へ分別供給され、各反応器における温度上昇が40℃を超えないように操作する、請求項18に記載の方法。 The reaction is carried out by supplying water and hydrogen to the two or more adiabatic fixed bed reactors, and both the supplied water and the supplied hydrogen are fed separately to each single reactor and the temperature in each reactor. The process according to claim 18 , wherein the operation is carried out such that the rise does not exceed 40 ° C. 反応が、2つの反応器を交互に用いて反応および再生へ交互に付されることにより行われる、請求項18に記載の方法。 19. The method of claim 18 , wherein the reaction is performed by alternately subjecting to reaction and regeneration using two reactors alternately . 前記方法が触媒の再生を含み、該触媒の再生が、触媒、0.1〜20容量%の酸素濃度比率にある酸素および窒素の混合物、およびガス混合物L/h/触媒Lで表わされる3000÷6000h−1の空間速度により、400〜550℃の温度および1〜3barの圧力で燃焼による再生へ付すことにより行われる、請求項1に記載の方法。 Includes a reproduction said method of the catalyst, regeneration of the catalyst, the catalyst, expressed as a mixture of oxygen and nitrogen in the 0.1 to 20 volume% oxygen concentration ratio, and gas mixture of L / h / catalyst L 3000 ÷ the space velocity of 6000h -1, performed by Succoth biasing the regeneration by combustion at a pressure of temperature and 1~3bar of 400 to 550 ° C., the method of claim 1 that. 再生が、触媒が反応向けに置かれた反応器と反応器で行われる、請求項21に記載の方法。 Reproduction, the catalyst is carried out in the reactor and the same reactor placed for reaction, a method according to claim 21.
JP2003355408A 2002-10-15 2003-10-15 Process for the production of phenol by hydrodeoxylation of benzene-diols Expired - Fee Related JP4731802B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT002185A ITMI20022185A1 (en) 2002-10-15 2002-10-15 PROCESS FOR THE PREPARATION OF PHENOL BY HYDRODEXYGENATION OF BENZENDIOLS.
ITMI2002A002185 2002-10-15

Publications (2)

Publication Number Publication Date
JP2004137277A JP2004137277A (en) 2004-05-13
JP4731802B2 true JP4731802B2 (en) 2011-07-27

Family

ID=32040265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003355408A Expired - Fee Related JP4731802B2 (en) 2002-10-15 2003-10-15 Process for the production of phenol by hydrodeoxylation of benzene-diols

Country Status (9)

Country Link
US (1) US6936738B2 (en)
EP (1) EP1411038B1 (en)
JP (1) JP4731802B2 (en)
KR (1) KR100587248B1 (en)
CN (1) CN100366594C (en)
ES (1) ES2431039T3 (en)
IT (1) ITMI20022185A1 (en)
RU (1) RU2336260C2 (en)
TW (1) TWI305770B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20022522A1 (en) * 2002-11-28 2004-05-29 Polimeri Europa Spa INTEGRATED PROCESS FOR THE PREPARATION OF PHENOL FROM BENZENE WITH RECYCLING OF BY-PRODUCTS.
ITMI20050062A1 (en) 2005-01-20 2006-07-21 Polimeri Europa Spa PROCESS FOR THE PREPARATION OF PHENOL
US7964761B2 (en) 2005-05-02 2011-06-21 University Of Utah Research Foundation Processes for catalytic conversion of lignin to liquid bio-fuels and novel bio-fuels
US20090256245A1 (en) * 2008-04-14 2009-10-15 Yong Liu Stacked Micro-Module Packages, Systems Using the Same, and Methods of Making the Same
RU2492922C1 (en) * 2012-04-27 2013-09-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный технический университет" Composition and method of synthesising catalyst of hydroxygenation of oxygen-containing hydrocarbon raw material
CN104837555B (en) * 2012-11-08 2020-07-10 代表Mt创新中心的斯塔米卡邦有限公司 Catalyst for sulfur recovery method for producing hydrogen simultaneously, method for producing same, and sulfur recovery method for producing hydrogen simultaneously using same
CN105622355B (en) * 2014-10-28 2018-11-06 中国科学院大连化学物理研究所 A kind of method of synthesizing phenol class compound
KR101804625B1 (en) 2015-07-22 2017-12-05 고려대학교 산학협력단 Non-noble metal/zirconium phosphate cayalyst for cyclic-hydrocarbon production and Method for cyclic-hydrocarbon using the same
RU2699364C1 (en) * 2019-04-29 2019-09-05 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН) Catalyst, method of its preparation and method for single-step processing of renewable vegetal raw materials for production of ecologically clean components of motor fuel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE849557C (en) * 1944-11-03 1952-09-15 Basf Ag Process for the production of monohydric phenols
JPH08259960A (en) * 1995-03-09 1996-10-08 Texaco Dev Corp Method of hydrodearomatizing hydrocarbon oil in the presenceof zinc-activated carbon-supported metal sulfide catalyst
JP2000176288A (en) * 1998-12-10 2000-06-27 Inst Fr Petrole Catalyst for hydrogen treatment of hydrocarbon feedstock in fixed bed reactor
JP2000296331A (en) * 1999-03-26 2000-10-24 Inst Fr Petrole Hydrogenation treatment catalyst deposited on metal oxide containing two elements of group ivb
WO2002048288A1 (en) * 2000-12-11 2002-06-20 Institut Francais Du Petrole Method for hydrotreatment of a heavy hydrocarbon fraction with switchable reactors and reactors capable of being shorted out

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1296573B1 (en) * 1997-11-27 1999-07-14 Enichem Spa PROCEDURE FOR THE OXIDATION OF AROMATIC TO HYDROXYAROMATIC COMPOUNDS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE849557C (en) * 1944-11-03 1952-09-15 Basf Ag Process for the production of monohydric phenols
JPH08259960A (en) * 1995-03-09 1996-10-08 Texaco Dev Corp Method of hydrodearomatizing hydrocarbon oil in the presenceof zinc-activated carbon-supported metal sulfide catalyst
JP2000176288A (en) * 1998-12-10 2000-06-27 Inst Fr Petrole Catalyst for hydrogen treatment of hydrocarbon feedstock in fixed bed reactor
JP2000296331A (en) * 1999-03-26 2000-10-24 Inst Fr Petrole Hydrogenation treatment catalyst deposited on metal oxide containing two elements of group ivb
WO2002048288A1 (en) * 2000-12-11 2002-06-20 Institut Francais Du Petrole Method for hydrotreatment of a heavy hydrocarbon fraction with switchable reactors and reactors capable of being shorted out

Also Published As

Publication number Publication date
RU2003130259A (en) 2005-04-10
ES2431039T3 (en) 2013-11-22
JP2004137277A (en) 2004-05-13
EP1411038A1 (en) 2004-04-21
KR20040034466A (en) 2004-04-28
EP1411038B1 (en) 2013-08-07
RU2336260C2 (en) 2008-10-20
US20040077906A1 (en) 2004-04-22
ITMI20022185A1 (en) 2004-04-16
CN1502596A (en) 2004-06-09
TW200410928A (en) 2004-07-01
CN100366594C (en) 2008-02-06
TWI305770B (en) 2009-02-01
KR100587248B1 (en) 2006-06-07
US6936738B2 (en) 2005-08-30

Similar Documents

Publication Publication Date Title
Calvino-Casilda et al. Last decade of research on activated carbons as catalytic support in chemical processes
JP6893270B2 (en) Methods of using this to produce improved copper-containing multi-element metal catalysts and bio-based 1,2-propanediols.
BRPI0721357B1 (en) process for preparing acrolein
US20110144388A1 (en) Process for production of glycolic acid
TW200533415A (en) Modified catalysts and process
JP2000061306A (en) Supported catalyst usable in conversion reaction of organic compound
JP4731802B2 (en) Process for the production of phenol by hydrodeoxylation of benzene-diols
JP2006159190A (en) Improved (amm)oxidation catalyst and catalytic (amm)oxidation method for converting lower alkane
EP2297079A1 (en) Process for the production of glycolic acid
Basu et al. A review on catalytic dehydration of glycerol to acetol
JP5072951B2 (en) Method for producing alkylated aromatic compound
Weyrich et al. Dehydrogenation of α-limonene over Ce promoted, zeolite supported Pd catalysts
EP3101000B1 (en) Hydrogenation reaction method
US20200002244A1 (en) Process for Converting Butanol into Propylene
HU180654B (en) Process for producing nitrozo-benzene
Nekkala et al. Lanthanum phosphate: an efficient catalyst for acrylic acid production through lactic acid dehydration
CN102000612A (en) Carrier of nitrobenzene hydrogenation catalyst for making aniline for fluidized bed and preparation method of catalyst
US4313017A (en) Selective hydrogenation of polynuclear aromatic reactants
CN109092295B (en) Isopropyl benzene catalyst and preparation method thereof
Obunai et al. Mo–V–O nanocrystals synthesized in the confined space of a mesoporous carbon
Ramasamy et al. Method of converting ethanol to higher alcohols
RU2205688C1 (en) Catalyst and a method for production of phenol from benzene
RU2722302C1 (en) Heterogeneous catalyst for oxidation of para-xylene to terephthalic acid
RU2720369C1 (en) Catalyst for deoxygenation of biomass components into hydrocarbons and a method for production thereof
US20200156050A1 (en) Dehydrogenation catalysts for converting alkyl aromatic compounds such as ethylbenzene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110105

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110111

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110207

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4731802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees