JP4731617B2 - Leak detection method - Google Patents

Leak detection method Download PDF

Info

Publication number
JP4731617B2
JP4731617B2 JP2009181147A JP2009181147A JP4731617B2 JP 4731617 B2 JP4731617 B2 JP 4731617B2 JP 2009181147 A JP2009181147 A JP 2009181147A JP 2009181147 A JP2009181147 A JP 2009181147A JP 4731617 B2 JP4731617 B2 JP 4731617B2
Authority
JP
Japan
Prior art keywords
crucible
melt
furnace
leakage
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009181147A
Other languages
Japanese (ja)
Other versions
JP2011032138A (en
JP2011032138A5 (en
Inventor
佑吉 堀岡
Original Assignee
佑吉 堀岡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佑吉 堀岡 filed Critical 佑吉 堀岡
Priority to JP2009181147A priority Critical patent/JP4731617B2/en
Publication of JP2011032138A publication Critical patent/JP2011032138A/en
Publication of JP2011032138A5 publication Critical patent/JP2011032138A5/ja
Application granted granted Critical
Publication of JP4731617B2 publication Critical patent/JP4731617B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体材料、太陽電池として用いるシリコン、或いは、ゲルマニュームやガリュームヒ素の単結晶や多結晶の結晶成長を行う際に、原料融液の漏れを検出する漏洩検出方法に関するものである。   The present invention relates to a leakage detection method for detecting leakage of a raw material melt when a single crystal or polycrystalline crystal of a semiconductor material, silicon used as a solar cell, germanium or gallium arsenide is grown.

半導体用、太陽電池用の結晶成長方法として、チョクラルスキー法(CZ法)やフロートゾーン法(FZ法)が用いられている。また太陽電池用の結晶成長方法としてはチョクラルスキー法(CZ法)とキャスティング法(一方向凝固法(VGF法)が太陽電池生産全生産量を大略2分し、広く使用されている。CZ法は、坩堝内の溶融原料に浸された種結晶を引き上げて結晶を成長させる方法であり、大口径単結晶の成長を行なう上で優れているが、コストは高くなる。そこで、単結晶とする必要が無い場合、すなわち多結晶の成長方法として、キャスティング法が使用されている。   As crystal growth methods for semiconductors and solar cells, the Czochralski method (CZ method) and the float zone method (FZ method) are used. As the crystal growth method for solar cells, the Czochralski method (CZ method) and the casting method (unidirectional solidification method (VGF method)) divide the total production amount of solar cells into approximately two, and are widely used. The method is a method of growing a crystal by pulling up a seed crystal immersed in a molten raw material in a crucible, and is excellent in growing a large-diameter single crystal, but the cost is high. When it is not necessary to perform this, that is, as a method for growing a polycrystal, a casting method is used.

キャスティング法とは、坩堝で溶かした溶融原料を鋳型に供給し、鋳型底部より一方向に凝固させてシリコンインゴットを形成する方法である。なお、坩堝から鋳型への溶融原料の供給には、坩堝の底部に排液口を設け、排液口を塞ぐシリコン原料を溶融させる手法を用いればよい。   The casting method is a method in which a molten raw material melted in a crucible is supplied to a mold and solidified in one direction from the bottom of the mold to form a silicon ingot. For supplying the molten material from the crucible to the mold, a method may be used in which a drainage port is provided at the bottom of the crucible and the silicon material that closes the drainage port is melted.

ところで、チョクラルスキー法(CZ法)とキャスティング法のいずれの方法においても坩堝を使用しているが、プロセス中においてこれらの坩堝にひび割れや破損の生じることがある。例えば、坩堝中に引っ掛かっていた多結晶原料が溶解中に落下し、坩堝を損傷することがある。溶解前の多結晶(特にシリコンの場合)の嵩比重が小さい場合、チャージ(坩堝への原料多結晶組込)を行う場合の原料多結晶間の空間により一層嵩比重が小さくなり、溶解量を坩堝の所定の量に収めることが難しくなるが、坩堝に原料を山盛りにチャージした場合、坩堝の底部が先に溶解し、溶融の容積が減ることによって、溶解中の未溶解多結晶と溶融が切り離れてしまうブリッジ現象が生じることがある。ブリッジ現象で坩堝の上部に引っ掛かっている多結晶原料は、坩堝位置の調整により溶解し易い位置に設定し溶かすこともできるが、この場合、解け始めた多結晶が一気に落下し、坩堝を損傷することがある。この現象は、一方向凝固炉においても生じる。更に、坩堝に入りきれない原料の追いチャージ(追加のチャージ)や、リチャージを行い所定のチャージ量とすることもあるが、この場合、特に多結晶を溶解し、融液の追いチャージやリチャージにおいて、坩堝容器外に漏れる事故の発生が考えられる。そして、坩堝容器外に溶融シリコンが漏れた場合、水冷されたチャンバーベースを溶かし、水が炉内に混入すると、活性の高い溶融シリコンが水と反応し、水素が発生し、水性爆発などの重大な事故につながるおそれがあることから、初期の漏れをいち早く検出することが重要となる。そこで、通常は、炉底部には、炭素繊維加工物であるスピルトレーなる受け皿を設け、事故を最小限に食い止める工夫はされているが、大量チャージでは、漏れた原料を全部安全に受け止める保証はない。   By the way, crucibles are used in both the Czochralski method (CZ method) and the casting method, but these crucibles may be cracked or broken during the process. For example, a polycrystalline raw material caught in the crucible may fall during melting and damage the crucible. When the bulk specific gravity of the polycrystal (particularly in the case of silicon) before melting is small, the bulk specific gravity is further reduced due to the space between the polycrystals of the raw material when charging (incorporating the polycrystalline raw material into the crucible). Although it is difficult to fit the crucible into a predetermined amount, when the raw material is charged to the crucible, the bottom of the crucible dissolves first and the melting volume is reduced, so that undissolved polycrystals and melting during melting are melted. There may be a bridging phenomenon that separates. Polycrystalline raw material caught on the top of the crucible due to bridging phenomenon can be melted by setting it to a position where it can be easily melted by adjusting the crucible position, but in this case, the polycrystalline that has started to melt falls at once and damages the crucible Sometimes. This phenomenon also occurs in a unidirectional solidification furnace. In addition, there may be a follow-up charge (additional charge) of the raw material that cannot fit into the crucible or a recharge to a predetermined charge amount. In this case, in particular, the polycrystal is dissolved, and in the follow-up charge and recharge of the melt. An accident that leaks out of the crucible container is considered. If molten silicon leaks outside the crucible container, the water-cooled chamber base is melted, and when water enters the furnace, the highly active molten silicon reacts with the water, generating hydrogen, causing serious problems such as aqueous explosions. It is important to detect the initial leak as soon as possible because it may lead to a serious accident. Therefore, usually, a spill tray that is a carbon fiber processed product is installed at the bottom of the furnace, and measures are taken to minimize accidents. However, there is no guarantee that all leaked raw materials will be received safely with a large amount of charge. .

そこで、坩堝容器外への溶融シリコンの漏洩を検知するための手法が提案されている。例えば、特開2001−302387号公報には、炉底部に複数の熱電対を設け、融液漏れ時の温度を測定する手法が開示されている。この手法によれば、熱電対の設置された点での温度上昇を検知し、融液の漏れを検知することができる。   Therefore, a technique for detecting leakage of molten silicon outside the crucible container has been proposed. For example, Japanese Patent Application Laid-Open No. 2001-302387 discloses a technique in which a plurality of thermocouples are provided at the furnace bottom and the temperature at the time of melt leakage is measured. According to this method, the temperature rise at the point where the thermocouple is installed can be detected, and the melt leakage can be detected.

特開2001−302387号公報JP 2001-302387 A

しかしながら、炉底部に複数の熱電対を設けたとしても、熱電対の各々は場所的にみれば点情報であり、他の場所における融液の漏洩の有無を示すものとはならないという問題があった。また、仮に熱電対の設置点を相対的に低くし、漏れた融液を熱電対の設置点まで導き、融液の漏れを検出したとしても、漏れ検出の応答が遅れる可能性が高くなる問題もあった。   However, even if a plurality of thermocouples are provided at the bottom of the furnace, each of the thermocouples is point information in terms of location and does not indicate whether or not there is leakage of the melt at other locations. It was. Also, even if the installation point of the thermocouple is relatively lowered, the leaked melt is guided to the installation point of the thermocouple, and the leak of the melt is detected, there is a high possibility that the response of leak detection will be delayed. There was also.

そこで、本発明は、単結晶や多結晶の結晶成長を行う際に、原料融液の漏れを即時に検知できる漏洩検出方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a leakage detection method capable of immediately detecting leakage of a raw material melt when performing single crystal or polycrystalline crystal growth.

本発明に係る漏洩検出方法では、原料を溶融させる坩堝を内包する炉の底部一面に敷設した、前記坩堝の下方において上方の光量の変化を検出する検出手段を用いる。 In the leak detection method according to the present invention, detection means is used which detects a change in the amount of light above the crucible, which is laid on the entire bottom surface of the furnace containing the crucible for melting the raw material.

前記検出手段は、太陽電池セルを用いて形成されたもの、すなわち、太陽電池ウエーハによる光量測定をするものであるIt said detecting means, those formed with the solar cell, i.e., is to the amount of light measured by the solar cell wafer.

本発明に係る漏洩検出方法によれば、単結晶や多結晶の結晶成長を行う際に、坩堝から融液が漏れ出し、或いは溢れ出すと、その融液に起因する光量の変化により、検出手段における発電量が増し、電圧又は電流の変化として現れる。そのため、炉底全体の一部に融液が滴下した場合であっても、瞬時に検出することができる。従って、生産性の向上や、大型結晶の成長時に伴う融液漏れを瞬時に検出し安全への回避作業や、フェイルセイフ制御を行うことが可能となり、結晶成長作業をより安全に行うことができる。なお、本発明に係る漏洩検出方法は、特に融液の量が多い大型結晶の成長や、追いチャージ、坩堝寿命に注意を要する複数回数のリチャージ法を用いる結晶成長法で必須技術となる。 According to the leakage detection method of the present invention, when the crystal leaks from the crucible or overflows when performing crystal growth of a single crystal or polycrystal , the detection means is caused by a change in the amount of light caused by the melt. The amount of power generated in the battery increases and appears as a change in voltage or current. Therefore, even when the melt is dripped onto a part of the entire furnace bottom , it can be detected instantaneously. Therefore, it is possible to improve productivity, instantly detect melt leakage accompanying large crystal growth and perform safe avoidance work and fail-safe control, making crystal growth work safer. . The leakage detection method according to the present invention is an essential technique for the growth of large crystals with a large amount of melt, and the crystal growth method using a recharge method of multiple times that requires careful charging and crucible life.

また、検出手段として太陽電池セルを用いれば、これを直列・並列に配置し、安価に大面積の検出器を構成することができる。更に、レーザカッタを用いて炉底部の形状や構造に合わせて切断し、面取り加工すれば、炉底構造に適合した大面積の検出手段を容易に得ることができる。   Moreover, if a photovoltaic cell is used as a detection means, this can be arrange | positioned in series and parallel, and the detector of a large area can be comprised cheaply. Furthermore, if a laser cutter is used to cut and chamfer in accordance with the shape and structure of the furnace bottom, it is possible to easily obtain a large-area detection means suitable for the furnace bottom structure.

価な太陽電池用ウエーハを用いて、狭い間隔で電極を配置したり、太陽電池ウエーハを炉底部に敷き詰め、それぞれを直列、並列接続し、光量測定や、温度変化による電圧・電流特性の変化をとらえてもよい
Using wafer for cheaper solar cells, or to place the electrodes at a narrow interval, paved solar cell wafer to a bottom portion of the furnace, respectively in series, connected in parallel, the light quantity measurement and, in the voltage-current characteristic due to the temperature change Change may be captured .

本発明に係る漏洩検出方法が採用された炉の実施形態を示すスピルトレーの中心近傍の断面図である。It is sectional drawing of the center vicinity of the spill tray which shows embodiment of the furnace by which the leak detection method based on this invention was employ | adopted. 同スピルトレーが設置された炉底部の平面図である。It is a top view of the furnace bottom part in which the spill tray was installed. 同スピルトレーに面在するセンサ部のレーザトリミングを施す前の状態を示す平面図である。It is a top view which shows the state before performing the laser trimming of the sensor part which faces the spill tray. 短絡型電極で構成されたセンサ部の平面図である。It is a top view of the sensor part comprised by the short circuit type electrode. 本発明に係る漏洩検出方法が採用された炉の他の実施形態を示すスピルトレーの中心近傍の断面図である。It is sectional drawing of the center vicinity of the spill tray which shows other embodiment of the furnace by which the leak detection method based on this invention was employ | adopted. 従来のスピルトレーと電極を示すである。2 shows a conventional spill tray and electrode.

図を参照しながら、本発明に係る漏洩検知方法が採用された結晶成長炉の実施形態について説明する。
この結晶成長炉は、真空チャンバ内に坩堝を収容したもので、炉底には、坩堝の高さ位置を調整するための下軸シャフト5と、坩堝内の原料を溶融させる熱を与えるための電極4が突設されている。また、炉底盤保護のため、漏れた融液の溜めとなるスピルトレー1が設けられている。このスピルトレー1には、電極穴2及び下軸穴3や真空排気穴(図示せず)が設けられており、下軸シャフト5は下軸穴3に、電極4は電極穴2に挿通されている。
An embodiment of a crystal growth furnace in which the leakage detection method according to the present invention is adopted will be described with reference to the drawings.
This crystal growth furnace contains a crucible in a vacuum chamber, and a bottom shaft 5 for adjusting the height position of the crucible and heat for melting the raw material in the crucible are provided at the bottom of the furnace. An electrode 4 is projected. Further, a spill tray 1 serving as a reservoir for the leaked melt is provided for protecting the bottom of the furnace. The spill tray 1 is provided with an electrode hole 2, a lower shaft hole 3, and a vacuum exhaust hole (not shown). The lower shaft 5 is inserted into the lower shaft hole 3, and the electrode 4 is inserted into the electrode hole 2. Yes.

これらスピルトレー1に下軸シャフト5及び電極4を挿通させた構成は、図6に示す従来のスピルトレーと同様であるが、このスピルトレー1は、その内面にセンサ部6が面在している点において、従来のスピルトレーと異なるものとなっている。なお、図6において、図2に示す構造と実質的に同一の部分には同符号が付されている。   The structure in which the lower shaft 5 and the electrode 4 are inserted through these spill trays 1 is the same as the conventional spill tray shown in FIG. 6, but the spill tray 1 has a sensor portion 6 on its inner surface. It is different from the conventional spill tray. In FIG. 6, parts that are substantially the same as the structure shown in FIG.

センサ部6は、本発明の検出手段に相当し、太陽電池セルを組み合わせて形成されている。太陽電池セルは、まず、直列・並列に配置され電気的接合を施され、図3に示す状態とされた後、レーザトリミングによってスピルトレー1の形状に合わせて形成されている。そのため、安価にしかも容易に、炉底構造に適合した大面積のものとすることが可能となっている。また、太陽電池セルはシリコンウエーハに拡散を施し、大量生産されているものであるから、安価で入手できる。   The sensor unit 6 corresponds to the detection means of the present invention, and is formed by combining solar cells. First, the solar cells are arranged in series and in parallel to be electrically joined, and after being brought into the state shown in FIG. 3, the solar cells are formed in accordance with the shape of the spill tray 1 by laser trimming. Therefore, it is possible to make the large area suitable for the furnace bottom structure easily and inexpensively. Moreover, since the photovoltaic cell diffuses a silicon wafer and is mass-produced, it can be obtained at low cost.

スピルトレー1の内面に配置されたセンサ部6は、信号線8aを介しセンサ電極8に接続されている。センサ電極8は真空チャンバの外側に設けられており、信号線8aは真空チャンバの壁材である水冷ジャケット10を貫通するスリーブ9を通し真空チャンバの外側まで導かれている。スリーブ9と信号線8aとの隙間は、真空シール材7で塞がれており真空チャンバ内の気密が保たれている。真空シール材7としては、ハーメチックシールを使用することが好ましい。   The sensor unit 6 disposed on the inner surface of the spill tray 1 is connected to the sensor electrode 8 through a signal line 8a. The sensor electrode 8 is provided outside the vacuum chamber, and the signal line 8a is led to the outside of the vacuum chamber through a sleeve 9 that penetrates a water cooling jacket 10 that is a wall material of the vacuum chamber. The gap between the sleeve 9 and the signal line 8a is closed by the vacuum seal material 7, and the airtightness in the vacuum chamber is maintained. As the vacuum seal material 7, it is preferable to use a hermetic seal.

この結晶成長炉によれば、坩堝から融液が漏れ出し、或いは溢れ出すと、その融液に起因する光量の変化により、センサ部6における発電量が増し、電圧又は電流の変化としてセンサ電極8に現れる。そのため、炉底全体の一部に融液が滴下するような場合であっても、それを瞬時に検出することができる。また、太陽電池セルは、PN接合を有する2極の半導体素子でもあるから、各電極間の順方向電流や逆方向電流の変化を検出しても容易に漏れを高感度で検出することができる。更に、シリコンウエーハ上に狭い間隔で電極を並べたものとすれば、これら電極間の導通を検知することによっても、融液が落下したことを、比較的容易に検出できる。この場合における電極間接続は、例えば、図3のシリコンウエーハ間に薄板状に成長させたゲルマニューム単結晶を挟み、ゲルマニュームの融点近傍まで昇温して接着することにより可能である。なお、センサ電極8の出力を制御装置に入力し、フェイルセイフ制御を行えば、結晶成長作業をより安全に行うことができる。   According to this crystal growth furnace, when the melt leaks out or overflows from the crucible, the amount of power generation in the sensor unit 6 increases due to a change in the amount of light caused by the melt, and the sensor electrode 8 changes as a change in voltage or current. Appear in Therefore, even when the melt is dripped onto a part of the entire furnace bottom, it can be detected instantaneously. Further, since the solar battery cell is also a bipolar semiconductor element having a PN junction, leakage can be easily detected with high sensitivity even if a change in forward current or reverse current between the electrodes is detected. . Furthermore, if the electrodes are arranged at a narrow interval on the silicon wafer, it is relatively easy to detect that the melt has fallen by detecting conduction between these electrodes. In this case, the interelectrode connection can be achieved, for example, by sandwiching a germanium single crystal grown in a thin plate shape between the silicon wafers of FIG. If the output of the sensor electrode 8 is input to the control device and the fail-safe control is performed, the crystal growth operation can be performed more safely.

センサ部6は、太陽電池パネルで構成されるものに制限されず、他の構成のものであってもよい。例えば、図4に示すような、短絡型電極で構成してもよい。この場合、センサ部6が、そこに落下した融液の熱により導通することで、融液の漏洩を検出することになる。または、電極間容量測定を行い、電気的容量の変化や、電極断線によるインピーダンス変化を検知信号とすることもできる。 The sensor unit 6 is not limited to a solar cell panel, and may have other configurations. For example, you may comprise with a short circuit type electrode as shown in FIG. In this case, the sensor section 6 is made conductive by the heat of the melt that has fallen there, so that leakage of the melt is detected. Alternatively, the capacitance between electrodes can be measured, and a change in electrical capacitance or a change in impedance due to electrode disconnection can be used as a detection signal.

センサ部6は、その他、熱量により起電力の変化する素子で構成し、融液の漏出に起因する坩堝外の熱量変化により、融液の漏洩を検出することとしてもよい。その場合、センサ部6は、漏出した融液に直接面する必要もなく、接触する必要もない。そのため、図5に示すように、スピルトレー1下側の炉底板に配置することとしてもよい。   In addition, the sensor unit 6 may be composed of an element whose electromotive force changes depending on the amount of heat, and may detect the leakage of the melt by the change in the amount of heat outside the crucible due to the leakage of the melt. In that case, the sensor unit 6 does not need to directly face and contact the leaked melt. Therefore, as shown in FIG. 5, it is good also as arrange | positioning to the furnace bottom plate of the spill tray 1 lower side.

1 スピルトレー
2 電極穴
3 下軸穴
4 電極
5 下軸シャフト
6 センサ部
7 真空シール材
8 センサ電極
8a 信号線
9 スリーブ
10 水冷ジャケット

DESCRIPTION OF SYMBOLS 1 Spill tray 2 Electrode hole 3 Lower shaft hole 4 Electrode 5 Lower shaft shaft 6 Sensor part 7 Vacuum seal material 8 Sensor electrode 8a Signal line 9 Sleeve 10 Water cooling jacket

Claims (1)

原料を溶融させる坩堝を内包する炉の底部一面に敷設した、前記坩堝の下方において上方の光量の変化を検出する検出手段を用い、前記検出手段は、太陽電池セルを用いて形成されたものであることを特徴とする漏洩検出方法。 A detection means for detecting a change in the amount of light above the crucible is laid on the entire bottom surface of the furnace containing the crucible for melting the raw material, and the detection means is formed using solar cells. leak detection method which is characterized in that.
JP2009181147A 2009-08-04 2009-08-04 Leak detection method Expired - Fee Related JP4731617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009181147A JP4731617B2 (en) 2009-08-04 2009-08-04 Leak detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009181147A JP4731617B2 (en) 2009-08-04 2009-08-04 Leak detection method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011075635A Division JP5517985B2 (en) 2011-03-30 2011-03-30 Leak detection method

Publications (3)

Publication Number Publication Date
JP2011032138A JP2011032138A (en) 2011-02-17
JP2011032138A5 JP2011032138A5 (en) 2011-03-31
JP4731617B2 true JP4731617B2 (en) 2011-07-27

Family

ID=43761586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009181147A Expired - Fee Related JP4731617B2 (en) 2009-08-04 2009-08-04 Leak detection method

Country Status (1)

Country Link
JP (1) JP4731617B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101402843B1 (en) 2013-01-15 2014-06-03 주식회사 엘지실트론 A method for detecting a gas leak in a single crystal grower

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114364A (en) * 1984-06-27 1986-01-22 富岡建工株式会社 Injection of adhesive in gap
JPS62275087A (en) * 1986-05-21 1987-11-30 Kyushu Denshi Kinzoku Kk Device for detecting leakage of melt form crystal pulling up device
JPH0471767A (en) * 1990-07-12 1992-03-06 Toyota Motor Corp Vacuum casting machine with molten metal leakage detection instrument
JPH09218125A (en) * 1996-02-08 1997-08-19 Nippon Steel Corp Molten metal detection method for molten metal refining vessel and judgement method therefor
JP2937104B2 (en) * 1996-02-13 1999-08-23 住友金属工業株式会社 Single crystal pulling device
JP3622468B2 (en) * 1997-12-22 2005-02-23 信越半導体株式会社 Hot water leak detection system for single crystal puller
JP3861561B2 (en) * 2000-04-27 2006-12-20 信越半導体株式会社 Molten water detector, single crystal pulling apparatus and molten metal detection method for single crystal pulling apparatus
JP2006160538A (en) * 2004-12-03 2006-06-22 Shin Etsu Handotai Co Ltd Detector for detecting leakage of melt in single crystal pulling apparatus, single crystal pulling apparatus, and method for detecting leakage of melt
JP4775594B2 (en) * 2007-11-13 2011-09-21 信越半導体株式会社 Method for detecting molten metal leak in single crystal pulling apparatus and single crystal pulling apparatus

Also Published As

Publication number Publication date
JP2011032138A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
Schubert et al. Impact of impurities from crucible and coating on mc-silicon quality—The example of iron and cobalt
KR20120013413A (en) Quality control process for umg-si feedstock
WO2006059453A1 (en) Molten metal leak detector in single crystal lift mechanism and single crystal lift mechanism and molten metal leak detecting method
JP4849083B2 (en) Single crystal puller
JP3861561B2 (en) Molten water detector, single crystal pulling apparatus and molten metal detection method for single crystal pulling apparatus
Schönecker et al. Casting technologies for solar silicon wafers: block casting and ribbon-growth-on-substrate
JP4731617B2 (en) Leak detection method
JP5517985B2 (en) Leak detection method
WO2017019453A1 (en) Systems and methods for low-oxygen crystal growth using a double-layer continuous czochralski process
JP5135467B1 (en) Method for producing polycrystalline silicon ingot
US8900981B2 (en) Method for doping a semiconductor material
Forster et al. Compensation engineering for uniform n-type silicon ingots
Forster et al. Doping engineering to increase the material yield during crystallization of B and P compensated silicon
US20100327890A1 (en) Quality control process for umg-si feedstock
US5843228A (en) Apparatus for preventing heater electrode meltdown in single crystal pulling apparatus
US8975093B2 (en) Complete recrystallization of semiconductor wafers
WO2010127184A1 (en) Quality control process for umg-si feedstock
TWI460318B (en) Method for heat treatment of solid-phase raw material and device and method for manufacturing ingot, processing material and solar cell
JP2011032138A5 (en)
JP5140778B1 (en) Method for producing polycrystalline silicon ingot
CN101949060A (en) Over-temperature protection device of photovoltaic polysilicon ingot furnace
CN106794993B (en) Method for producing polycrystalline silicon ingot, method for producing use of polycrystalline silicon ingot, and polycrystalline silicon ingot
KR101616463B1 (en) Apparatus for growing a sapphire single crystal ingot
JP6095060B2 (en) Method for producing Si polycrystalline ingot
CN104159847B (en) Silicon casting mold, silicon casting method, silicon materials and the manufacture method of solaode

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110117

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees