JP4731243B2 - Distribution line exploration equipment - Google Patents

Distribution line exploration equipment Download PDF

Info

Publication number
JP4731243B2
JP4731243B2 JP2005226371A JP2005226371A JP4731243B2 JP 4731243 B2 JP4731243 B2 JP 4731243B2 JP 2005226371 A JP2005226371 A JP 2005226371A JP 2005226371 A JP2005226371 A JP 2005226371A JP 4731243 B2 JP4731243 B2 JP 4731243B2
Authority
JP
Japan
Prior art keywords
current signal
phase
transmitter
point
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005226371A
Other languages
Japanese (ja)
Other versions
JP2007040867A (en
Inventor
貴志 横山
紀暁 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Denki Co Ltd
Original Assignee
Osaka Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Denki Co Ltd filed Critical Osaka Denki Co Ltd
Priority to JP2005226371A priority Critical patent/JP4731243B2/en
Publication of JP2007040867A publication Critical patent/JP2007040867A/en
Application granted granted Critical
Publication of JP4731243B2 publication Critical patent/JP4731243B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、建物の分電盤などの配電路の基端とコンセントなどの配電路の末端との間で電気配線上の対応を検査・確認する際に、配線路を正しく判定する配線路探査装置に関するものである。   The present invention is a wiring path exploration that correctly determines a wiring path when inspecting and confirming a correspondence on an electrical wiring between a base end of a distribution path such as a distribution board of a building and a terminal end of the distribution path such as an outlet. It relates to the device.

コンセントなどの配電路の末端に接続された送信器から送出された配電線搬送信号を、分電盤などの配電路の基端に接続された受信器で受信して配線路を特定する配線路探査装置が、従来提案されている(特許文献1〜3)。これらは受信信号の大きさにより送信器が接続されている配線路を特定するものである。
特開平10−213617号公報 特開平10−213618号公報 特開平10−213620号公報
A wiring path that identifies the wiring path by receiving the distribution line carrier signal sent from the transmitter connected to the end of the distribution path such as an outlet with the receiver connected to the base end of the distribution path such as a distribution board Search devices have been proposed in the past (Patent Documents 1 to 3). These specify the wiring path to which the transmitter is connected according to the magnitude of the received signal.
Japanese Patent Laid-Open No. 10-213617 JP-A-10-213618 Japanese Patent Laid-Open No. 10-213620

配電線搬送信号の受信器が、受信信号の大きさにより配電路を判断する場合、図1あるいは図2のような配線路では、その構成および配線路に接続された負荷のインピーダンスの影響によって、配線路の特定が困難であったり、誤った判定をする場合がある。以下詳しく説明する。図1及び図2は分電盤1,2の各分岐回路3a〜3e及び4a〜4eに設けられた遮断器5a〜5e及び6a〜6eがすべてオンとなっている状態を示している。   When the distribution line carrier signal receiver determines the distribution path based on the magnitude of the received signal, in the wiring path as shown in FIG. 1 or FIG. 2, due to the influence of the configuration and the impedance of the load connected to the wiring path, It may be difficult to specify the wiring path or make an incorrect determination. This will be described in detail below. 1 and 2 show a state where all of the circuit breakers 5a to 5e and 6a to 6e provided in the branch circuits 3a to 3e and 4a to 4e of the distribution boards 1 and 2 are turned on.

図1において、遮断器5aのみがオンとなっている場合には、送信器7から送信された電流信号(商用周波数とは異なる所定の周波数の電流信号)は配電路8a及び分岐回路3aを経て受電トランス9の2次側を通って送信器7に戻るという閉回路が形成される。したがって、受信器10は電流信号センサ11a(変流器や磁気センサなど)により電流信号を検出する。この場合、受信器10で検出する電流信号の大きさは送信器7により送信された電流信号と同じ大きさになる。   In FIG. 1, when only the circuit breaker 5a is turned on, a current signal (a current signal having a predetermined frequency different from the commercial frequency) transmitted from the transmitter 7 passes through the distribution path 8a and the branch circuit 3a. A closed circuit is formed that returns to the transmitter 7 through the secondary side of the power receiving transformer 9. Therefore, the receiver 10 detects the current signal by the current signal sensor 11a (current transformer, magnetic sensor, etc.). In this case, the magnitude of the current signal detected by the receiver 10 is the same as the magnitude of the current signal transmitted by the transmitter 7.

遮断器5a及び5dがともにオンとなっている場合には、送信器7から送信された電流信号は分岐回路3d及び配電路8dを通って負荷12にも分流する。したがって、受信器10は電流信号センサ11aのみならず電流信号センサ11dによっても電流信号を検出する。それぞれの電流信号の大きさは受電トランス9と負荷12のインピーダンス比に依存する。多くの場合、受電トランス9のインピーダンスが負荷12のインピーダンスに比べて低いので、電流信号のほとんどは受電トランス9の2次側に流れる。   When both the circuit breakers 5a and 5d are on, the current signal transmitted from the transmitter 7 is also shunted to the load 12 through the branch circuit 3d and the distribution path 8d. Therefore, the receiver 10 detects the current signal not only by the current signal sensor 11a but also by the current signal sensor 11d. The magnitude of each current signal depends on the impedance ratio between the power receiving transformer 9 and the load 12. In many cases, since the impedance of the power receiving transformer 9 is lower than the impedance of the load 12, most of the current signal flows to the secondary side of the power receiving transformer 9.

しかし、受電トランス9のインピーダンスが高い、受電トランス9からの距離が長くて線路のインピーダンスが加わる、負荷12のインピーダンスが大変低い、などの条件によっては、送信器7が送出した電流信号の半分以上が負荷12の接続された分岐回路3d及び配電路8dに流れる場合がある。このような場合、受信器10の電流信号センサ11a,11dにより検出する電流信号の大きさに顕著な差は生じない。   However, depending on conditions such as the impedance of the power receiving transformer 9 being high, the distance from the power receiving transformer 9 being long, the impedance of the line being added, and the impedance of the load 12 being very low, more than half of the current signal sent by the transmitter 7 May flow to the branch circuit 3d and the power distribution path 8d to which the load 12 is connected. In such a case, there is no significant difference in the magnitude of the current signal detected by the current signal sensors 11a and 11d of the receiver 10.

したがって、本来の探査されるべき配線路8a(本線)と探査されるべきでない配線路8d(非本線)でほぼ同じレベルあるいは逆のレベルの電流信号を検出するため、本線の特定が困難となる。   Therefore, since current signals having substantially the same level or opposite levels are detected in the wiring path 8a (main line) that should be searched and the wiring path 8d (non-main line) that should not be searched, it is difficult to specify the main line. .

図2では、比較的近くに設置された、本線が接続されていない分電盤2に受信器10を接続した場合、受電トランス9のインピーダンスが高い、受電トランス9からの距離が長くて線路のインピーダンスが加わる、負荷12のインピーダンスが大変低い、などの条件によっては、誤った配線路13aを本線と誤判定してしまう。   In FIG. 2, when the receiver 10 is connected to the distribution board 2 that is installed relatively close to which the main line is not connected, the impedance of the power receiving transformer 9 is high, the distance from the power receiving transformer 9 is long, and Depending on conditions such as the addition of impedance and the impedance of the load 12 being very low, the wrong wiring path 13a is erroneously determined to be a main line.

(本発明の目的)
本発明の目的は、負荷のインピーダンスの影響を排除して、探査されるべき配電路を誤りなく判定することができる配電路探査装置を提供することである。
(Object of the present invention)
An object of the present invention is to provide a power distribution route searching apparatus that can determine the power distribution route to be searched without error while eliminating the influence of the impedance of the load.

上記目的を達成するために、本発明は、配電路の末端に変調した電流信号を送出する送信器と、配電路の基端にて前記送信器から送出された電流信号を同期検波により受信する受信器とを有し、前記受信器にて受信した電流信号の方向を検出し、前記受信器にて受信した電流信号の方向が、前記送信器での電流信号の方向と同じであると、探査されるべき配電路であると判定し、前記電流信号の方向が反対であると、探査されるべきでない配電路であると判定する配電路探査装置であって前記送信器が、変調し、送出する電流信号の波形を、所定の点が変調による変化点となるものとし、前記受信器が、同期検波により受信した電流信号の波形から送信側での前記変調による変化点に対応する受信側での基準点を算出し、送信側での前記変調による変化点と受信側での前記基準点の位相のずれを位相補正量として、同期検波に用いられる正弦波を位相補正し、該位相補正された正弦波を用いた同期検波により再度電流信号を受信し、前記基準点に対する再度受信した前記電流信号の位相から前記電流信号の方向を検出することを特徴とするものである。 In order to achieve the above object, the present invention receives a transmitter that transmits a modulated current signal at the end of a power distribution path, and receives the current signal transmitted from the transmitter at the base end of the power distribution path by synchronous detection . Having a receiver, detecting the direction of the current signal received by the receiver, and the direction of the current signal received by the receiver being the same as the direction of the current signal at the transmitter, A distribution path exploration device that determines that the distribution path is to be searched, and determines that the current signal is in the opposite direction when the direction of the current signal is opposite , wherein the transmitter modulates the distribution path. The waveform of the current signal to be transmitted is assumed to be a change point by modulation at a predetermined point, and the receiver receives from the waveform of the current signal received by synchronous detection corresponding to the change point by modulation on the transmission side. The reference point on the transmission side is calculated and the change on the transmission side is calculated. The phase difference of the reference point on the receiving side and the phase difference at the receiving side is used as the amount of phase correction, the phase of the sine wave used for synchronous detection is corrected, and the current signal is again generated by synchronous detection using the phase-corrected sine wave. Receiving and detecting the direction of the current signal from the phase of the current signal received again with respect to the reference point .

本発明によれば、負荷のインピーダンスの影響を排除して、探査されるべき配電路を誤りなく判定することができる。   ADVANTAGE OF THE INVENTION According to this invention, the influence of the impedance of a load can be excluded and the distribution path which should be investigated can be determined without an error.

本発明を実施するための最良の形態は後述する実施例に記載の通りである。   The best mode for carrying out the present invention is as described in Examples described later.

本発明の一実施例である配電路探査装置は、図1及び図2に示されるように、コンセントなどの配電路の末端に接続される送信器7と、分電盤1の分岐回路3a〜3eなどの配電路の基端に接続される受信器10を備え、送信器7から送出された配電線搬送信号の電流信号を受信器10で受信して配線路を判定する際、電流信号の方向を特定することで誤りなく配線路の判定を行うものである。   As shown in FIGS. 1 and 2, a distribution line exploration device according to an embodiment of the present invention includes a transmitter 7 connected to the end of a distribution line such as an outlet, and branch circuits 3 a to 3 b of the distribution board 1. A receiver 10 connected to the base end of the distribution path such as 3e, and when the receiver 10 receives the current signal of the distribution line carrier signal sent from the transmitter 7 and determines the wiring path, The wiring path is determined without error by specifying the direction.

図3は、図1や図2の状態で電流信号の位相回転がない場合の電流信号波形及び位相を示す。本線(図1の配電路8a)と非本線(図1の配電路8d)とでは電流信号の方向が逆向きである。つまり、電流信号の位相を比較すると、180度の差があるため、1つの本線と複数の非本線との位相を相対的に比較することで、本線が持つ電流信号の位相は検出しやすいこととなる。   FIG. 3 shows a current signal waveform and phase when there is no phase rotation of the current signal in the state of FIG. 1 or FIG. The direction of the current signal is opposite between the main line (distribution path 8a in FIG. 1) and the non-main line (distribution path 8d in FIG. 1). In other words, there is a difference of 180 degrees when the phase of the current signal is compared, so it is easy to detect the phase of the current signal that the main line has by comparing the phases of one main line and multiple non-main lines relatively. It becomes.

ところが、実際の配電路では、配電路に電気機器(負荷)が接続され、配電路およびこの電気機器のインピーダンス(L:誘導成分、C:容量成分)の影響により、図4のように電流信号の位相は回転し、最大±90度変化する可能性がある。そのため、それぞれの電流信号受信位相の差を比較するだけでは本線と非本線の判定ができない場合が存在することになる。   However, in an actual distribution line, an electric device (load) is connected to the distribution line, and a current signal is generated as shown in FIG. 4 due to the influence of the distribution line and the impedance (L: induction component, C: capacitance component) of the electric device. The phase of can rotate and change up to ± 90 degrees. For this reason, there is a case where the main line and the non-main line cannot be determined only by comparing the difference between the current signal reception phases.

本実施例では、図5に示される送信器7及び図6に示される受信器10の構成により、コンセント側に設置した送信器7から後述する特定の電流信号を送出し、分電盤側に設置した受信器10で配電路毎に電流信号の位相を検出する。受信器10が検出した電流信号の位相は、送信器7から送出された特定の電流信号より算出される基準となる位相と比較されることにより、図7に示されるように、本線と非本線の電流信号領域の位相が区別される。このようにして、本線と非本線を判定するものである。   In this embodiment, the transmitter 7 shown in FIG. 5 and the receiver 10 shown in FIG. 6 are used to send out a specific current signal, which will be described later, from the transmitter 7 installed on the outlet side, and to the distribution board side. The installed receiver 10 detects the phase of the current signal for each distribution path. The phase of the current signal detected by the receiver 10 is compared with a reference phase calculated from the specific current signal transmitted from the transmitter 7, and as shown in FIG. The phases of the current signal regions are distinguished. In this way, the main line and the non-main line are determined.

基準となる位相は、例えば商用周波電圧(50Hzあるいは60Hz)のゼロクロス点に設けても良いが、送信器7、受信器10のハードウエアに起因する誤差の影響があり得るので、これを回避するために特定の信号波形から算出するものである。   The reference phase may be provided, for example, at the zero-cross point of the commercial frequency voltage (50 Hz or 60 Hz). However, this may be affected by errors due to the hardware of the transmitter 7 and the receiver 10, and this is avoided. Therefore, it is calculated from a specific signal waveform.

図5において、14は搬送信号発信回路、15は商用周波同期回路、16は電源回路、17はCPUである。搬送信号発信回路14、商用周波同期回路15及び電源回路16は配電路に接続される。   In FIG. 5, 14 is a carrier signal transmission circuit, 15 is a commercial frequency synchronization circuit, 16 is a power supply circuit, and 17 is a CPU. The carrier signal transmission circuit 14, the commercial frequency synchronization circuit 15, and the power supply circuit 16 are connected to a power distribution path.

図6において、18はバンドパスフィルタ、19は増幅器、20はA/D変換器、21はCPU、22は商用周波同期回路、23は電源回路である。バンドパスフィルタ18は電流信号センサ11a〜11eに接続され、商用周波同期回路22及び電源回路23は配電路に接続される。   In FIG. 6, 18 is a band-pass filter, 19 is an amplifier, 20 is an A / D converter, 21 is a CPU, 22 is a commercial frequency synchronization circuit, and 23 is a power supply circuit. The band pass filter 18 is connected to the current signal sensors 11a to 11e, and the commercial frequency synchronization circuit 22 and the power supply circuit 23 are connected to the power distribution path.

以下に手順の詳細を図8(本線の場合)及び図9(非本線の場合)に示す。   Details of the procedure are shown in FIG. 8 (in the case of the main line) and FIG. 9 (in the case of the non-main line).

図8において、送信器7はプログラムされたタイミングで搬送信号発信回路14を制御し、図8(a)に示される電流信号を形成させ、配電路に重畳させて送出させる。出力される電流信号の波形は、プログラム上にデータとして書き込まれた値により形成される。出力のタイミングは、商用周波同期回路15より得られた商用周波のゼロクロス点を基準としてCPU17内部の演算により決定される。   In FIG. 8, the transmitter 7 controls the carrier signal transmission circuit 14 at a programmed timing to form the current signal shown in FIG. 8A and to send it superimposed on the power distribution path. The waveform of the output current signal is formed by a value written as data on the program. The output timing is determined by calculation inside the CPU 17 with the commercial frequency zero cross point obtained from the commercial frequency synchronization circuit 15 as a reference.

図中A点が位相反転している点である。このA点は、商用周波電圧のゼロクロス点である。電流信号は商用周波数より周波数が高く、図8(a)に示されるように位相反転点Aで位相が180°反転したものである。すなわち、位相変調信号(PSK)である。   The point A in the figure is the point where the phase is reversed. This point A is a zero cross point of the commercial frequency voltage. The current signal has a higher frequency than the commercial frequency, and the phase is inverted by 180 ° at the phase inversion point A as shown in FIG. That is, it is a phase modulation signal (PSK).

送信器7から送出された電流信号は、本線の場合には図6に示される受信器10の電流信号センサ11aにより検出され、バンドパスフィルタ18、増幅器19及びA/D変換器20を通ってCPU21に入力され、CPU21は受信処理を行う。   In the case of the main line, the current signal transmitted from the transmitter 7 is detected by the current signal sensor 11a of the receiver 10 shown in FIG. 6, and passes through the band-pass filter 18, the amplifier 19 and the A / D converter 20. Input to the CPU 21, the CPU 21 performs reception processing.

CPU21は、受信した電流信号にこれと同一周波数である図8(b)の正弦波(sinθ)を乗じることにより同期検波する。その演算結果として図8(c)の波形を得る。   The CPU 21 performs synchronous detection by multiplying the received current signal by the sine wave (sin θ) of FIG. As a result of the calculation, the waveform of FIG. 8C is obtained.

図8(c)の波形をデジタル処理として移動平均し、その結果、図8(d)の波形を得る。   The waveform of FIG. 8C is moving averaged as digital processing, and as a result, the waveform of FIG. 8D is obtained.

図8(d)の波形において、正から負、あるいは負から正への変化点を基準点Bとして定める。   In the waveform of FIG. 8D, a change point from positive to negative or from negative to positive is determined as a reference point B.

基準点Bは、移動平均処理により位相反転点Aがずれた点であり、電流信号の1周期分を移動平均した場合には1/2周期分、2周期分を移動平均したときには1周期分というように定まった量だけ位相反転点Aからずれた点であるため、基準点Bに対する信号波形の位相を算出することができる。   The reference point B is a point where the phase reversal point A is shifted by the moving average process. When the moving average of one period of the current signal is ½ period, when the moving average of two periods is taken, the reference point B is one period. Thus, since the point deviates from the phase inversion point A by a fixed amount, the phase of the signal waveform with respect to the reference point B can be calculated.

ここで、受信電流信号と図8(b)の正弦波(sinθ)との位相差がない場合には図8(d)で得られる波形は±0.5の振幅を持つ波形となるが、位相差が増えると振幅が小さくなり、位相差が±90°で振幅は0となる。このため、受信電流信号波形に正弦波と位相が90°ずれた正弦波(cosθ)をも受信電流信号に乗じて図8(c)に点線で示される波形を得た後、移動平均を行い、図8(d)の波形を得る。   Here, when there is no phase difference between the received current signal and the sine wave (sin θ) of FIG. 8B, the waveform obtained in FIG. 8D is a waveform having an amplitude of ± 0.5. As the phase difference increases, the amplitude decreases, and when the phase difference is ± 90 °, the amplitude becomes zero. Therefore, the received current signal waveform is also multiplied by a sine wave (cos θ) that is 90 ° out of phase with the received current signal to obtain the waveform indicated by the dotted line in FIG. The waveform of FIG. 8D is obtained.

図8(d)では、sinθとcosθを乗じて得られた結果のいずれかから、基準点Bを求めることができる。基準点Bは、送信側の位相反転点Aに対応する受信側の点である。   In FIG. 8D, the reference point B can be obtained from any of the results obtained by multiplying sin θ and cos θ. The reference point B is a point on the reception side corresponding to the phase inversion point A on the transmission side.

上記の手順で得られた基準点Bに基づき、図8(b)で乗じた正弦波に位相補正を行い、図8(e)の位相補正された正弦波を得る。Cは位相補正量である。これを受信電流信号に乗じて得られた図8(f)の波形を、さらに移動平均を行って図8(g)の波形を得る。   Based on the reference point B obtained by the above procedure, phase correction is performed on the sine wave multiplied in FIG. 8B to obtain the phase-corrected sine wave in FIG. C is a phase correction amount. The waveform of FIG. 8 (f) obtained by multiplying this by the received current signal is further subjected to moving average to obtain the waveform of FIG. 8 (g).

図8(g)の波形で、基準点Bから例えば信号1周期分さかのぼった点が正であれば、それは本線で受信した信号であり、負であれば非本線で受信した信号であると判定する。
図8(g)では、基準点Bからさかのぼった点Dで正となっているので、本線と判定する。
In the waveform of FIG. 8 (g), if the point back from the reference point B, for example by one cycle of the signal, is positive, it is a signal received on the main line, and if it is negative, it is determined that the signal is received on the non-main line. To do.
In FIG. 8G, since it is positive at a point D that goes back from the reference point B, it is determined as a main line.

非本線で受信した信号についても、上記の手順を実施し、最終的に図9(g)の波形を得る。   For the signal received on the non-main line, the above procedure is performed to finally obtain the waveform of FIG.

これは、基準点Bからさかのぼった点Dで負となっているので、非本線と判定する。   This is negative at a point D that goes back from the reference point B, so it is determined as a non-main line.

複数の電流信号センサ11a〜11eから受信した電流信号では、それぞれ位相が異なる可能性があり、全てに対してそれぞれの基準点Bを算出し、本線であるか、非本線であるかを判定する。基準点Bをさかのぼる点Dをどの程度にするかは、移動平均化をどの程度行うかにより異なる。図8及び図9の点Dは移動平均化処理を1.5周期行っている例の場合を示す。移動平均化処理を1周期以下とすると、演算結果が不安定(過渡的な数値をとる)になるので、1周期以上の安定した点とするのが良い。   In the current signals received from the plurality of current signal sensors 11a to 11e, the phases may be different from each other, and the respective reference points B are calculated for all, and it is determined whether the current line is a main line or a non-main line. . The degree of the point D that goes back to the reference point B depends on how much the moving average is performed. Points D in FIGS. 8 and 9 show the case where the moving averaging process is performed for 1.5 cycles. When the moving averaging process is set to one cycle or less, the calculation result becomes unstable (takes a transient numerical value). Therefore, a stable point of one cycle or more is preferable.

このように、全ての電流信号の位相(電流の方向)を判定することで、ほぼ同じレベルの電流信号を検出した場合、図2のように本線が接続されていない分電盤2に受信器10を接続した場合にも誤った判定をすることを防止できる。   In this way, when current signals having substantially the same level are detected by determining the phases (current directions) of all current signals, the receiver is connected to the distribution board 2 to which the main line is not connected as shown in FIG. It is possible to prevent erroneous determination even when 10 is connected.

以上の実施例では、電流信号としてゼロクロス点で位相が反転する位相変調信号を用いているが、明らかな変化点を持つ信号であれば良い。例えば、周波数変調信号(FSK)や振幅位相変調信号(QAM)でも良い。   In the above embodiment, the phase modulation signal whose phase is inverted at the zero cross point is used as the current signal. However, any signal having an obvious change point may be used. For example, a frequency modulation signal (FSK) or an amplitude phase modulation signal (QAM) may be used.

本発明の実施例である配電路探査装置と配電路の接続状態の一例を示す配線図である。It is a wiring diagram which shows an example of the connection state of the power distribution circuit investigation apparatus which is an Example of this invention, and a power distribution circuit. 本発明の実施例である配電路探査装置と配電路の接続状態の他の例を示す配線図である。It is a wiring diagram which shows the other example of the connection state of the distribution path search apparatus which is an Example of this invention, and a distribution path. 位相回転がない場合の電流信号の波形及び位相を示す図である。It is a figure which shows the waveform and phase of an electric current signal when there is no phase rotation. 位相回転がある場合の電流信号の波形及び位相を示す図である。It is a figure which shows the waveform and phase of an electric current signal in case there exists phase rotation. 本発明の実施例における送信器の回路構成例を示すブロック図である。It is a block diagram which shows the circuit structural example of the transmitter in the Example of this invention. 本発明の実施例における受信器の回路構成例を示すブロック図である。It is a block diagram which shows the circuit structural example of the receiver in the Example of this invention. 位相回転がある場合の本線と非本線の電流信号領域を示す図である。It is a figure which shows the current signal area | region of a main line | wire and a non-main line | wire in case there exists phase rotation. 本発明の実施例における本線判定時の手順を示す図である。It is a figure which shows the procedure at the time of the main line determination in the Example of this invention. 本発明の実施例における非本線判定時の手順を示す図である。It is a figure which shows the procedure at the time of the non-main line determination in the Example of this invention.

符号の説明Explanation of symbols

1,2 分電盤
3a〜3e,4a〜4e 分岐回路
5a〜5e,6a〜6e 遮断器
7 送信器
8a,8d,13d 配電路
9 受電トランス
10 受信器
11a〜11e 電流信号センサ
12 負荷
1, 2 Distribution board 3a-3e, 4a-4e Branch circuit 5a-5e, 6a-6e Breaker 7 Transmitter 8a, 8d, 13d Power distribution path 9 Power receiving transformer 10 Receiver 11a-11e Current signal sensor 12 Load

Claims (2)

配電路の末端に変調した電流信号を送出する送信器と、配電路の基端にて前記送信器から送出された電流信号を同期検波により受信する受信器とを有し、前記受信器にて受信した電流信号の方向を検出し、前記受信器にて受信した電流信号の方向が、前記送信器での電流信号の方向と同じであると、探査されるべき配電路であると判定し、前記電流信号の方向が反対であると、探査されるべきでない配電路であると判定する配電路探査装置であって
前記送信器は、変調し、送出する電流信号の波形を、所定の点が変調による変化点となるものとし、
前記受信器は、同期検波により受信した電流信号の波形から送信側での前記変調による変化点に対応する受信側での基準点を算出し、送信側での前記変調による変化点と受信側での前記基準点の位相のずれを位相補正量として、同期検波に用いられる正弦波を位相補正し、該位相補正された正弦波を用いた同期検波により再度電流信号を受信し、前記基準点に対する再度受信した前記電流信号の位相から前記電流信号の方向を検出することを特徴とする配電路探査装置。
It has a transmitter for transmitting a current signal modulated at the end of the distribution channel, and a receiver for receiving a synchronous detection current signal transmitted from the transmitter at the proximal end of the distribution channel, at the receiver The direction of the received current signal is detected, and when the direction of the current signal received by the receiver is the same as the direction of the current signal at the transmitter, it is determined that the distribution path is to be explored. A distribution path exploration device that determines that the current signal direction is opposite and that the distribution path should not be explored,
The transmitter modulates and sends a waveform of a current signal to be transmitted, and a predetermined point becomes a change point by the modulation,
The receiver calculates a reference point on the reception side corresponding to the change point by the modulation on the transmission side from the waveform of the current signal received by synchronous detection, and changes the change point by the modulation on the transmission side and the reception side. The phase shift of the reference point is used as a phase correction amount, the phase of the sine wave used for synchronous detection is corrected, the current signal is received again by synchronous detection using the phase corrected sine wave, A distribution path exploration device that detects the direction of the current signal from the phase of the current signal received again .
前記送信器が前記電流信号を位相変調により変調する場合には、前記変調による変化点は位相が反転する点であることを特徴とする請求項1に記載の配電路探査装置。 2. The distribution path exploration device according to claim 1 , wherein when the transmitter modulates the current signal by phase modulation, the change point by the modulation is a point where the phase is inverted .
JP2005226371A 2005-08-04 2005-08-04 Distribution line exploration equipment Active JP4731243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005226371A JP4731243B2 (en) 2005-08-04 2005-08-04 Distribution line exploration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005226371A JP4731243B2 (en) 2005-08-04 2005-08-04 Distribution line exploration equipment

Publications (2)

Publication Number Publication Date
JP2007040867A JP2007040867A (en) 2007-02-15
JP4731243B2 true JP4731243B2 (en) 2011-07-20

Family

ID=37798984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005226371A Active JP4731243B2 (en) 2005-08-04 2005-08-04 Distribution line exploration equipment

Country Status (1)

Country Link
JP (1) JP4731243B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57180304A (en) * 1981-04-28 1982-11-06 Dainichi Nippon Cables Ltd Method of identifying specific line in multistrand laied cable
JPH07113834A (en) * 1993-10-19 1995-05-02 Furukawa Electric Co Ltd:The Cable identifier
JPH0915287A (en) * 1995-06-30 1997-01-17 Kandenko Co Ltd Cable identifying method and device thereof discriminating
JPH10206479A (en) * 1997-01-23 1998-08-07 Hirao Denki Kk Current direction detector
JP2003121420A (en) * 2001-10-18 2003-04-23 Kyosan Electric Mfg Co Ltd Transmitter, detector, cable probe and cable probing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04282469A (en) * 1991-03-11 1992-10-07 Toyo Commun Equip Co Ltd Detecting device of faulty spot of insulation resistance
JP2002162431A (en) * 2000-11-22 2002-06-07 Fuji Electric Co Ltd Fault-point orientation system
JP4527346B2 (en) * 2002-01-21 2010-08-18 光商工株式会社 Insulation state monitoring method and device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57180304A (en) * 1981-04-28 1982-11-06 Dainichi Nippon Cables Ltd Method of identifying specific line in multistrand laied cable
JPH07113834A (en) * 1993-10-19 1995-05-02 Furukawa Electric Co Ltd:The Cable identifier
JPH0915287A (en) * 1995-06-30 1997-01-17 Kandenko Co Ltd Cable identifying method and device thereof discriminating
JPH10206479A (en) * 1997-01-23 1998-08-07 Hirao Denki Kk Current direction detector
JP2003121420A (en) * 2001-10-18 2003-04-23 Kyosan Electric Mfg Co Ltd Transmitter, detector, cable probe and cable probing method

Also Published As

Publication number Publication date
JP2007040867A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
CN100373171C (en) Method and apparatus for digital detection of electromagnetic signal strength and signal direction
JP6373259B2 (en) Signal selection in underground wiring detection
US6411073B1 (en) Method and device for locating a metal line
CN105027456B (en) Method and apparatus for determining the phase that receiver apparatus is connected in polyphase electric power supply system
US20090168857A1 (en) Micro-controller with fsk modem
CN108376805A (en) Battery temperature detects
JP3460587B2 (en) Abnormality detector that detects abnormality of the rotation angle detector
WO2001013132A1 (en) Fault location device and method
JP4731243B2 (en) Distribution line exploration equipment
CN101897163B (en) Wireless communication device and dc offset adjustment method
JPH09149089A (en) Line quality monitoring circuit
JP2006138778A5 (en)
US20120209562A1 (en) Assembly and method for determining an angular position
US9377500B2 (en) Equipment and a plug-in unit of the equipment
JP2008288695A (en) Power line carrier communication system
JP2008042254A (en) Method and apparatus for determining power line phase
JP2009164788A (en) Demodulation device
JPH0326983A (en) Method and apparatus for detecting position of ground embedded pipe
JPH04265890A (en) Method and apparatus for finding space relationship between hidden conductors
JP4329916B2 (en) Train detector
JP2004096645A (en) Quadrature detection receiver
JP2000039335A (en) Rotation angle measuring device of rotor
JPH01154660A (en) Testing method for communication system
JPS58127172A (en) Insulation resistance measuring apparatus for electric line with suppressed stray capacity
JP2825110B2 (en) Interference wave judgment circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4731243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250