JP4727365B2 - Ventilation system design method and building ventilation system - Google Patents

Ventilation system design method and building ventilation system Download PDF

Info

Publication number
JP4727365B2
JP4727365B2 JP2005279930A JP2005279930A JP4727365B2 JP 4727365 B2 JP4727365 B2 JP 4727365B2 JP 2005279930 A JP2005279930 A JP 2005279930A JP 2005279930 A JP2005279930 A JP 2005279930A JP 4727365 B2 JP4727365 B2 JP 4727365B2
Authority
JP
Japan
Prior art keywords
building
ventilation
opening
temperature distribution
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005279930A
Other languages
Japanese (ja)
Other versions
JP2007093044A (en
Inventor
一彦 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2005279930A priority Critical patent/JP4727365B2/en
Publication of JP2007093044A publication Critical patent/JP2007093044A/en
Application granted granted Critical
Publication of JP4727365B2 publication Critical patent/JP4727365B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ventilation (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、換気システムの設計方法および建屋の換気システムに関し、詳しくは、内部に発熱体を収容した建屋における給気手段および排気手段を用いて建屋内部を換気する換気システムの設計方法および建屋の換気システムに関する。   The present invention relates to a ventilation system design method and a building ventilation system, and more particularly, to a ventilation system design method for ventilating an interior of a building using an air supply means and an exhaust means in a building in which a heating element is housed. Relates to the ventilation system.

従来、ごみ溶融炉等の各種発熱機器(発熱体)を収容する建屋の換気設備(換気システム)として、給気ファン(送風機)および給気ダクトを有した給気手段と、排気モニタ等の排気開口(排気口)を有した排気手段を用いたものが知られている(例えば、特許文献1参照)。
特許文献1に記載された換気設備では、建屋の外壁に開口した給気管に送風機が接続され、この送風機を介して吸引された外気が給気ダクトに送り込まれるとともに、給気ダクトの外気吹出口から発熱体に向かって外気が供給されるように構成されている。そして、給気ダクトが発熱体の下方位置において発熱体を囲むように配設されるとともに、外気吹出口が発熱体に向かって上向きに外気を吹き出すように設けられているので、発熱体周辺の熱せられた空気を効率よく上昇させて排気口から排気させることができるようになっている。
このような従来の換気設備は、建屋の室内温度を所定値(例えば、30℃)に固定した条件下で、発熱体の表面温度と室内温度との温度差による熱伝達に基づいて建屋内部の発熱量を算出し、この発熱量に基づき建屋内外の温度差が所定値(例えば、15℃)以下となるように設計されている。そして、従来の換気設備では、室内温度および発熱体の表面温度が固定されているため、外気温の変動(季節や昼夜の気温差)に関わらず、一定の換気量つまり定風量換気となるような設計方法が一般的である。
Conventionally, as a building ventilation facility (ventilation system) that houses various heat generating devices (heating elements) such as a garbage melting furnace, an air supply means having an air supply fan (blower) and an air supply duct, and an exhaust such as an exhaust monitor A device using an exhaust means having an opening (exhaust port) is known (for example, see Patent Document 1).
In the ventilation facility described in Patent Document 1, an air blower is connected to an air supply pipe opened on the outer wall of a building, and outside air sucked through the air blower is sent to an air supply duct, and an outside air outlet of the air supply duct. It is comprised so that external air may be supplied toward a heat generating body from. The air supply duct is disposed so as to surround the heating element at a position below the heating element, and the outside air outlet is provided so as to blow outside air upward toward the heating element. The heated air can be efficiently raised and exhausted from the exhaust port.
Such conventional ventilation equipment is based on the heat transfer due to the temperature difference between the surface temperature of the heating element and the room temperature under the condition that the room temperature of the building is fixed to a predetermined value (for example, 30 ° C.). The calorific value is calculated, and based on the calorific value, the temperature difference inside and outside the building is designed to be a predetermined value (for example, 15 ° C.) or less. In the conventional ventilation equipment, the room temperature and the surface temperature of the heating element are fixed, so that the ventilation volume is constant, that is, constant air volume ventilation, regardless of changes in the outside air temperature (seasonal or daytime / nighttime temperature difference). A general design method is common.

特開平11−248219号公報JP 11-248219 A

しかしながら、従来の換気設備においては、送風機や給気ダクトを有して給気手段が構成されているため、これらを設置するための設備コストや、設置スペースを確保するための建設コストが多大になってしまうという問題がある。さらに、送風機を駆動するための電力が必要となるため、省エネルギー化を阻害するとともに、換気設備のランニングコスト面でも不利になるという問題もある。
さらに、従来の換気設備の設計方法では、室内温度を一定に固定した条件で発熱量を算出しているため、算出した発熱量や内気の温度分布による浮力を適切に評価することが困難で、必ずしも合理的な換気量を設定することができないという問題もある。
However, in the conventional ventilation equipment, since the air supply means is configured with a blower and an air supply duct, the equipment cost for installing these and the construction cost for securing the installation space are enormous. There is a problem of becoming. Furthermore, since electric power for driving the blower is required, there is a problem that energy saving is hindered and the running cost of the ventilation facility is disadvantageous.
Furthermore, in the conventional ventilation equipment design method, the calorific value is calculated under the condition that the room temperature is fixed, so it is difficult to properly evaluate the calculated calorific value and the buoyancy due to the temperature distribution of the inside air. There is also a problem that a reasonable ventilation volume cannot always be set.

本発明の目的は、設備コストや建設コスト、ランニングコストの低減、および換気量を合理的に設定することができる換気システムの設計方法および建屋の換気システムを提供することにある。   An object of the present invention is to provide a ventilation system design method and a building ventilation system capable of rationally setting the facility cost, the construction cost, the running cost, and the ventilation amount.

本発明の請求項1に記載の換気システムの設計方法は、内部に発熱体を収容した建屋における給気手段および排気手段を用いて建屋内部を換気する換気システムの設計方法であって、前記給気手段は、前記建屋の下部に設けられる給気開口から構成され、前記排気手段は、前記建屋の上部に設けられる排気開口から構成され、これらの給気開口および排気開口の各々の開口面積を含んだ開口条件と、建屋内の高さ方向に関する内気の温度分布および温度分布から算出される浮力とに基づいて、前記給気開口から給気されて前記排気開口から排気される換気量を算出する方法であって、建屋内の高さ方向に関する内気の温度分布を仮定する温度分布仮定手順と、内気の温度分布に基づいて、前記建屋内部の高さ方向に関する発熱量分布を算出する発熱量分布算出手順と、算出した発熱量分布に基づいて、前記建屋内部の総発熱量を算出する総発熱量算出手順と、算出した総発熱量に基づいて、必要とされる所要総換気量を算出する所要総換気量算出手順と、算出した所要総換気量に基づいて、内気の温度分布を算出する温度分布算出手順と、前記温度分布算出手順で算出した内気の温度分布が収束したか否かを判断し、収束しない場合には前記発熱量分布算出手順、総発熱量算出手順、所要総換気量算出手順、および温度分布算出手順を繰り返し実行させる第1判断手順と、前記第1判断手順において収束したと判断した内気の温度分布に基づいて、建屋の内気に発生する浮力を算出する浮力算出手順と、前記浮力算出手順で算出した内気の浮力によって得られる駆動力と前記開口条件とに基づいて実換気量を算出する実換気量算出手順と、算出した実換気量が前記所要総換気量算出手順で算出した所要総換気量を上回るか否かを判断し、実換気量が所要総換気量を上回らない場合には、再設定した開口条件に基づいて前記実換気量算出手順に実換気量の算出を実行させる第2判断手順と、を備えたことを特徴とする。 The ventilation system design method according to claim 1 of the present invention is a ventilation system design method for ventilating an interior of a building using an air supply means and an exhaust means in a building in which a heating element is housed. The air means is constituted by an air supply opening provided at the lower part of the building, and the exhaust means is constituted by an exhaust opening provided at the upper part of the building, and the opening area of each of the air supply opening and the exhaust opening is determined. Based on the included opening conditions and the temperature distribution of the inside air in the height direction of the building and the buoyancy calculated from the temperature distribution, the ventilation amount supplied from the supply opening and exhausted from the exhaust opening is calculated. a method of, and inside air temperature distribution assumed temperature distribution assumption instructions on the height direction of the building, based on the temperature distribution of the inside air, to calculate the calorific value distribution regarding the height direction inside the building A calorific value distribution calculating procedure, a total calorific value calculating procedure for calculating the total calorific value in the building based on the calculated calorific value distribution, and a required total ventilation required based on the calculated total calorific value The required total ventilation calculation procedure for calculating the temperature, the temperature distribution calculation procedure for calculating the temperature distribution of the inside air based on the calculated required total ventilation, and whether the temperature distribution of the inside air calculated by the temperature distribution calculation procedure has converged A first determination procedure for repeatedly executing the heat generation amount distribution calculation procedure, the total heat generation amount calculation procedure, the required total ventilation amount calculation procedure, and the temperature distribution calculation procedure; Based on the temperature distribution of the inside air determined to have converged in the procedure, the buoyancy calculation procedure for calculating the buoyancy generated in the inside air of the building, the driving force obtained by the buoyancy of the inside air calculated by the buoyancy calculation procedure, and the opening strip The actual ventilation volume calculation procedure for calculating the actual ventilation volume based on the above, and whether the calculated actual ventilation volume exceeds the required total ventilation volume calculated in the required total ventilation volume calculation procedure, And a second determination procedure for causing the actual ventilation volume calculation procedure to calculate the actual ventilation volume based on the reset opening condition when the required total ventilation volume is not exceeded .

以上の換気システムの設計方法によれば、ごみ溶融炉や焼却炉のような大容量発熱機器が配置された建屋において、高さ方向に関する内気の温度分布を適切に評価し、この温度分布に応じた温度成層による内気の浮力を高精度に算出することができ、浮力によって得られる駆動力を用いて給気開口から外気を給気するとともに排気開口から内気を排気するという置換型重力自然換気システムを構築することができる。従って、従来の換気設備のように、給気手段として送風機および給気ダクトを用いる必要がなく、これらを設置するための設備コストや、設置スペースを確保するための建設コストが低減できるとともに、送風機を駆動するための電力が不要となるため、省エネルギー化を促進しかつランニングコストの抑制を図ることができる。さらに、置換型重力自然換気システムとすることで、発熱体の仕様変更等により発熱量が上昇した場合でも、発熱量の上昇に伴って内気の温度も上昇するため、浮力が増大して換気量が増加するので、機械換気と比較して発熱量の上昇による換気効率低下の影響を抑制することができる。
そして、換気設計において、内気の温度分布を設定することで、実際の建屋内の温度成層状態を高精度にシミュレートすることができ、内気の浮力に基づく換気量を正確に算出することができる。すなわち、本出願人の研究により、建屋内部の総発熱量が周辺温度(外気温や室内温度)に依存し、この周辺温度つまり内気の温度分布は内気の浮力を算出する上で非常に重要であるという知見が得られたため、従来の換気設備における設計のように室内温度を一定に固定した条件で発熱量を算出する場合と比較し、浮力および換気量をより正確に算出することができ、自然換気システムを合理的に設計することができる。
According to the design method of the ventilation system described above, the temperature distribution of the inside air in the height direction is appropriately evaluated in the building where large-capacity heating equipment such as a refuse melting furnace and incinerator is arranged, and the temperature distribution The substitution type gravity natural ventilation system that can calculate the buoyancy of the inside air due to the temperature stratification with high accuracy, and uses the driving force obtained by the buoyancy to supply the outside air from the supply opening and exhaust the inside air from the exhaust opening Can be built. Accordingly, it is not necessary to use a blower and an air supply duct as the air supply means as in the conventional ventilation equipment, and the equipment cost for installing these and the construction cost for securing the installation space can be reduced. since the power for driving the is not necessary, it is possible to promote and running cost of suppressing energy savings. In addition, by adopting a replacement gravity natural ventilation system, even if the heat generation amount increases due to changes in the specifications of the heating element, the temperature of the inside air increases as the heat generation amount increases, so the buoyancy increases and the ventilation amount increases. Therefore, the influence of a decrease in ventilation efficiency due to an increase in calorific value can be suppressed as compared with mechanical ventilation.
In the ventilation design, by setting the temperature distribution of the inside air, the actual temperature stratification state in the building can be simulated with high accuracy, and the ventilation amount based on the buoyancy of the inside air can be accurately calculated. . That is, according to the applicant's research, the total calorific value inside the building depends on the ambient temperature (outside temperature and room temperature), and this ambient temperature, that is, the temperature distribution of the inside air, is very important in calculating the buoyancy of the inside air. Because knowledge was obtained, buoyancy and ventilation volume can be calculated more accurately than when calorific value is calculated under the condition that the room temperature is fixed as in the design of conventional ventilation equipment, Natural ventilation system can be rationally designed.

さらに、第1判断手順によって、内気の温度分布が収束するまで発熱量分布算出手順、総発熱量算出手順、所要総換気量算出手順、および温度分布算出手順を繰り返し実行させることで、実際の建屋内の温度成層状態および浮力による実換気量を正確に算出することができる。ここで、内気の温度分布が収束したことは、繰り返し実行される温度分布算出手順のうち、1度目の温度分布算出手順では、温度分布仮定手順で仮定した内気の温度分布との差または比が所定値以内に収まっていることにより判断され、あるいは2度目以降の温度分布算出手順では、前回の温度分布算出手順で算出された内気の温度分布との差または比が所定値以内に収まっていることにより判断される。
また、内気の温度分布から発熱量分布および総発熱量を算出するとともに所要総換気量を算出し、第2判断手順によって、所要総換気量を実換気量が上回るように開口条件を設定することで、換気効率を確保しつつ合理的な開口条件つまり給気開口および排気開口の各々の開口面積を設定することができる。
Further , the first determination procedure repeatedly executes the calorific value distribution calculation procedure, the total calorific value calculation procedure, the required total ventilation rate calculation procedure, and the temperature distribution calculation procedure until the temperature distribution of the inside air converges. It is possible to accurately calculate the actual ventilation volume due to indoor temperature stratification and buoyancy. Here, the convergence of the temperature distribution of the inside air is that the difference or ratio with the temperature distribution of the inside air assumed in the temperature distribution assumption procedure is the first temperature distribution calculation procedure among the temperature distribution calculation procedures repeatedly executed. Judged by being within the predetermined value, or in the second and subsequent temperature distribution calculation procedures, the difference or ratio with the temperature distribution of the inside air calculated in the previous temperature distribution calculation procedure is within the predetermined value. It is judged by.
In addition, calculate the calorific value distribution and total calorific value from the temperature distribution of the inside air, calculate the required total ventilation, and set the opening condition so that the actual total ventilation exceeds the required total ventilation by the second judgment procedure. Thus, it is possible to set a reasonable opening condition, that is, the opening area of each of the supply opening and the exhaust opening while ensuring ventilation efficiency.

さらに、本発明の請求項に記載の換気システムの設計方法は、請求項1に記載の換気システムの設計方法において、前記建屋内部の高さ方向に関する前記発熱量分布および前記建屋内部の前記総発熱量は、それぞれ式(1)により算出され、この式(1)において、q i は、第i 階層の建屋内部の発熱量、Qは、建屋内部の総発熱量であり、ここで、添字のi は、階または階層(i =1,2,3…)を示し、t j は、発熱体の表面温度、t hi は、建屋のi 階における内気の温度、a ij は、i 階における表面温度tj の発熱体の表面積、αは、熱伝達率、c i は、第i 階層の発熱量のうち室内温度に依存しない成分であることを特徴とする。 Furthermore, the ventilating system design method according to claim 2 of the present invention is the ventilating system design method according to claim 1, wherein the calorific value distribution in the height direction of the building interior and the total of the building interior The calorific value is calculated by the equation (1), where q i is the calorific value of the building inside the i-th floor and Q is the total calorific value of the building, where subscript I represents the floor or hierarchy (i = 1, 2, 3...), T j is the surface temperature of the heating element, t hi is the temperature of the inside air at the i floor of the building, and a ij is at the i floor. The surface area of the heating element at the surface temperature tj, α is the heat transfer coefficient, and c i is a component that does not depend on the room temperature in the amount of heat generated in the i-th layer .

さらに、本発明の請求項に記載の換気システムの設計方法は、請求項1または請求項2に記載の換気システムの設計方法において、前記給気開口および前記排気開口を介して建屋の外に出力される音の大きさが、予め設定した基準値を下回るか否かを判断する第3判断手順を備え、この第3判断手順において建屋の外に出力される音の大きさが基準値を下回らない場合には、再設定した開口条件と、前記給気開口および前記排気開口の少なくとも一方に設ける消音手段の空気抵抗と、を含む算出条件により算出した有効開口面積に基づいて換気量を算出することを特徴とする。
ここで、有効開口面積の算出条件としては、開口条件および消音手段の空気抵抗の他に、給気開口や排気開口に設ける金網等の開口要素による空気抵抗、および給気開口や排気開口の前後における空気の流れの急縮小および急拡大による空気抵抗等が含まれる。また、建設地の騒音規制値が緩い場合や、敷地境界線までの距離が大きい場合など、消音手段を設けなくても騒音の基準値を下回る場合には、消音手段を設けなくてもよい。そして、消音手段を設けない場合であっても、空気の流れの急縮小および急拡大による空気抵抗は生じるため、この空気抵抗を考慮した有効開口面積を算出し、この有効開口面積に基づいた換気量を算出することが望ましい。また、給気開口や排気開口に設ける金網としては、通常の金網でもよく、また格子間隔が15〜20mmの防鳥用の金網(防鳥網)でもよく、さらに格子間隔が6mm以下の防虫防鳥用の金網でもよい。ただし、防虫防鳥用の金網を設けた場合には空気抵抗が大きくなってしまうため、給気開口や排気開口に防鳥用の金網を設けるとともに、開口付近に虫が認知しにくい低誘虫灯を設置することで虫の侵入を防止することが望ましい。
このような構成によれば、給気開口や排気開口に消音手段を設けるとともに、第3判断手順によって、建屋の外に出力される音の大きさが基準値を下回るように開口条件や消音手段を設定することで、基準値を超える音の出力が防止できる。そして、給気開口や排気開口を通過する空気が消音手段や金網等の開口要素、開口前後の急縮小および急拡大によって抵抗を受けたとしても、この空気抵抗を考慮した有効開口面積に基づいて換気量を算出することで、所定の換気効率を確保することができる。
Furthermore, the ventilating system design method according to claim 3 of the present invention is the ventilating system design method according to claim 1 or 2 , wherein the ventilating system design method is provided outside the building via the air supply opening and the exhaust opening. A third determination procedure for determining whether or not the volume of the output sound is lower than a preset reference value, and the volume of the sound output outside the building in the third determination procedure is a reference value; If not lower, the ventilation volume is calculated based on the effective opening area calculated by the calculation condition including the reset opening condition and the air resistance of the silencer provided in at least one of the air supply opening and the exhaust opening. It is characterized by doing.
Here, calculation conditions for the effective opening area include, in addition to the opening condition and the air resistance of the silencer, air resistance by an opening element such as a wire mesh provided in the air supply opening and exhaust opening, and before and after the air supply opening and exhaust opening. Air resistance due to rapid contraction and rapid expansion of the air flow. Further, when the noise regulation value of the construction site is loose, or when the distance to the site boundary is large, the silencer need not be provided when the noise level is below the noise reference value without providing the silencer. Even if the silencer is not provided, air resistance is caused by sudden reduction and expansion of the air flow. Therefore, an effective opening area is calculated in consideration of the air resistance, and ventilation based on the effective opening area is performed. It is desirable to calculate the quantity. Further, the wire mesh provided in the air supply opening and the exhaust opening may be a normal wire mesh, or a bird netting (bird net) having a lattice interval of 15 to 20 mm, and further an insect repellent having a lattice interval of 6 mm or less. It may be a wire mesh for birds. However, if a wire net for insect and bird protection is provided, air resistance increases, so a wire net for bird protection is provided at the air supply opening and exhaust opening, and a low insect light that prevents insects from being recognized near the opening. It is desirable to prevent insects from entering by installing.
According to such a configuration, the silencing means is provided in the air supply opening and the exhaust opening, and the opening condition and the silencing means are set so that the sound output to the outside of the building falls below the reference value by the third determination procedure. By setting, the output of sound exceeding the reference value can be prevented. And even if the air passing through the air supply opening and the exhaust opening is subjected to resistance by the opening element such as the silencer and the wire mesh, sudden reduction and sudden expansion before and after the opening, based on the effective opening area in consideration of this air resistance By calculating the ventilation volume, a predetermined ventilation efficiency can be ensured.

一方、本発明の請求項に記載の建屋の換気システムは、内部に発熱体を収容した建屋を換気する換気システムであって、請求項1から請求項のいずれかに記載の設計方法によって設計された自然換気システムであることを特徴とする。
以上の建屋の換気システムによれば、前述した設計方法における効果と同様の効果、すなわち設備コストや建設コストが低減できるとともに、省エネルギー化を促進しかつランニングコストの抑制を図ることができる置換型重力自然換気システムによって効率的な換気を実施することができる。
On the other hand, the ventilation system for a building according to claim 4 of the present invention is a ventilation system for ventilating a building in which a heating element is housed, and according to the design method according to any one of claims 1 to 3 . It is a natural ventilation system designed.
According to the ventilation system of the building described above, the replacement type gravity that can reduce the equipment cost and the construction cost as well as the effect in the above-described design method, promote the energy saving, and suppress the running cost. Efficient ventilation can be implemented by natural ventilation system.

以上のような本発明の換気システムの設計方法および建屋の換気システムによれば、設備コストや建設コスト、ランニングコストの低減、および換気量を合理的に設定することができる。   According to the ventilation system design method and the building ventilation system of the present invention as described above, the facility cost, the construction cost, the running cost can be reduced, and the ventilation amount can be set rationally.

以下、本発明の実施形態を図面に基づいて説明する。
図1は、本発明の実施形態に係る換気システムを採用したごみ焼却施設の建屋1を示す平面図である。図2は、建屋1の断面図である。図3は、建屋1の外壁2に設けられた給気手段を示す断面図である。
図1〜図3において、建屋1は、外壁2および屋根3で囲まれた内部に発熱体である溶融炉4を収容し、この溶融炉4を設置する主空間1Aと、この主空間1Aと仕切られた機械室や電気室、各種付室等の複数の副空間1Bとを有して構成されている。外壁2の下部には、主空間1Aに外気を導入する給気開口(給気手段)5が設けられ、屋根3には、主空間の内気を屋外に排気する排気開口(排気手段)6を有した排気モニタ7が設けられている。給気開口5の室内側には、図3に示すように、消音手段であるサイレンサ8が仕切板9を介して設置され、このサイレンサ8を通して外気が導入されるとともに、建屋1内の音が屋外に出力されにくくなっている。また、建屋1の主空間1Aには、図2に示すように、通気可能なグレーチング等の床材10で上下に仕切られた複数の階層が形成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a plan view showing a building 1 of a waste incineration facility that employs a ventilation system according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of the building 1. FIG. 3 is a cross-sectional view showing air supply means provided on the outer wall 2 of the building 1.
1 to 3, the building 1 accommodates a melting furnace 4 that is a heating element inside an outer wall 2 and a roof 3, and a main space 1 </ b> A in which the melting furnace 4 is installed; It has a plurality of subspaces 1B such as partitioned machine rooms, electrical rooms, and various attached rooms. An air supply opening (air supply means) 5 for introducing outside air into the main space 1A is provided at the lower part of the outer wall 2, and an exhaust opening (exhaust means) 6 for exhausting the internal air of the main space to the outside is provided on the roof 3. An exhaust monitor 7 is provided. As shown in FIG. 3, a silencer 8 that is a silencer is installed on the indoor side of the air supply opening 5 through a partition plate 9, and outside air is introduced through the silencer 8, and sound in the building 1 is heard. It is difficult to output outdoors. Moreover, in the main space 1A of the building 1, as shown in FIG. 2, a plurality of hierarchies partitioned up and down by a flooring 10 such as a grating that can be ventilated are formed.

このような建屋1は、溶融炉4の発熱により発生する内気の浮力(上昇気流)を駆動力として、給気開口5から外気を給気するとともに昇温された内気を排気開口6から排気する置換型重力自然換気システムによって換気されるようになっている。
以下、換気システムの設計方法について、図4〜図7も参考にして説明する。
図4は、換気システムの設計手順を説明するフローチャートである。図5(A)、(B)は、それぞれ溶融炉4からの発熱および建屋1の内気の温度分布を説明する図である。図6は、内気の温度分布を繰り返し演算により算出する手順を説明する図である。図7(A)〜(C)は、内気の浮力を算出する手順を説明する図である。
Such a building 1 uses outside air buoyancy (updraft) generated by heat generated by the melting furnace 4 as driving force to supply outside air from the supply opening 5 and exhausts the heated inside air from the exhaust opening 6. It is designed to be ventilated by a displacement gravity natural ventilation system.
Hereinafter, the design method of the ventilation system will be described with reference to FIGS.
FIG. 4 is a flowchart for explaining the design procedure of the ventilation system. FIGS. 5A and 5B are diagrams for explaining the heat generation from the melting furnace 4 and the temperature distribution of the inside air of the building 1, respectively. FIG. 6 is a diagram for explaining a procedure for calculating the temperature distribution of the inside air by repeated calculation. FIGS. 7A to 7C are diagrams illustrating a procedure for calculating the buoyancy of inside air.

先ず、図4のステップ0(以下、ステップをSと表記する。S0)において、建屋1および溶融炉4の各種条件および設計に関する初期値を入力しておく。ここで、入力する初期値としては、建屋1内の高さ方向に関する内気の温度分布(thi)を仮定したものが含まれ、すなわち、図4の「プラント機器条件入力」S0には、本発明の温度分布仮定手順が含まれている。また、このS0において入力する初期値には、各階層ごとの溶融炉4の表面温度(tj )や表面積(aij)が含まれている。
次に、S1の「総発熱量算出」(総発熱量算出手順)において、各階層ごとの建屋1内部の発熱量(発熱量分布)および建屋1内部の総発熱量(Q)を次式(1)によって算出する。
First, in step 0 of FIG. 4 (hereinafter, step is expressed as S. S0), initial values related to various conditions and design of the building 1 and the melting furnace 4 are input. Here, the initial value to be input includes an assumption of the temperature distribution (t hi ) of the inside air in the height direction in the building 1, that is, the “plant equipment condition input” S0 in FIG. The inventive temperature distribution assumption procedure is included. In addition, the initial value input in S0 includes the surface temperature (t j ) and the surface area (a ij ) of the melting furnace 4 for each level.
Next, in “total calorific value calculation” (total calorific value calculation procedure) of S1, the calorific value (calorific value distribution) inside the building 1 and the total calorific value (Q) inside the building 1 for each level are expressed by the following formula ( Calculated according to 1).

Figure 0004727365
Figure 0004727365

ここで、
i は、第i 階層の建屋1内部の発熱量、
Qは、建屋1内部の総発熱量をそれぞれ示している。そして、
添字のi は、階または階層(i =1,2,3…)を示す。さらに、
j は、溶融炉4の表面温度(機器表面温度)、
hiは、建屋1のi 階における内気の温度(炉室内温度)、
ijは、i 階における表面温度tj の溶融炉4の表面積、
αは、熱伝達率、
i は、i の発熱量のうち室内温度に依存しない成分をそれぞれ示している。
そして、溶融炉4の表面温度(tj )および内気の温度(thi)は、図5(B)に示すように、溶融炉4の表面温度(tj )を一定とした場合に、内気の温度(thi)は、上階ほど高温になるような分布性状を示し、このグラフにおける溶融炉4の表面温度(tj )と内気の温度(thi)との差分の面積が建屋1内部の発熱量に比例するようになっている。
here,
q i is the calorific value inside the building 1 of the i-th level,
Q shows the total calorific value inside the building 1. And
The subscript i indicates the floor or hierarchy (i = 1, 2, 3 ...). further,
t j is the surface temperature of the melting furnace 4 (equipment surface temperature),
t hi is the temperature of the inside air (the temperature in the furnace) on the i floor of Building 1,
a ij is the surface area of the melting furnace 4 at the surface temperature tj on the i floor,
α is the heat transfer coefficient,
c i denotes each component that is not dependent on the room temperature of the heating value of i.
Then, the surface temperature (t j ) of the melting furnace 4 and the temperature (t hi ) of the inside air are as shown in FIG. 5B when the surface temperature (t j ) of the melting furnace 4 is constant. Temperature (t hi ) shows a distribution property such that the upper floor becomes higher in temperature, and the area of the difference between the surface temperature (t j ) of the melting furnace 4 and the temperature (t hi ) of the inside air in this graph is the building 1 It is proportional to the amount of heat generated inside.

次に、S2の「所要総換気量(M1 )算出」(所要総換気量算出手順)において、建屋1内部の総発熱量(Q)に基づき、必要とされる所要総換気量(M1 )を次式(2)によって算出する。
ここで、
p は、空気の定圧比熱、
Δtは、目標とする内外最大温度差をそれぞれ示している。
この内外最大温度差(Δt)としては、例えば、12℃〜15℃の所定値が設定されている。
Next, in “Required Total Ventilation (M 1 ) Calculation” (Required Total Ventilation Calculation Procedure) of S2, the required total ventilation (M 1 ) required based on the total calorific value (Q) inside the building 1 ) Is calculated by the following equation (2).
here,
C p is the constant pressure specific heat of air,
Δt represents the target internal and external maximum temperature difference.
As this internal / external maximum temperature difference (Δt), for example, a predetermined value of 12 ° C. to 15 ° C. is set.

Figure 0004727365
Figure 0004727365

次に、S3の「内気の温度分布算出」(温度分布算出手順)において、所要総換気量(M1 )に基づき、建屋1内部の内気の温度分布(thi)を次式(3)によって算出する。
ここで、
0 は、外気温度、
k は、k 階の発熱量をそれぞれ示している。
この内気の温度分布(thi)は、各階層ごとの温度成層を前提として算出される。そして、算出された内気の温度分布(thi)に基づいて上述の式(1)によって発熱量分布(qi )を算出する(「発熱量分布算出」S4、発熱量分布算出手順)。
Next, in the “calculation of the temperature distribution of the inside air” (temperature distribution calculation procedure) of S3, the temperature distribution (t hi ) of the inside air inside the building 1 is expressed by the following equation (3) based on the required total ventilation (M 1 ). calculate.
here,
t 0 is the outside air temperature,
q k represents the calorific value of the k-th floor, respectively.
The temperature distribution (t hi ) of the inside air is calculated on the assumption of temperature stratification for each level. Then, based on the calculated temperature distribution (t hi ) of the inside air, the calorific value distribution (q i ) is calculated by the above formula (1) (“calorific value distribution calculation” S4, calorific value distribution calculating procedure).

Figure 0004727365
Figure 0004727365

以上によって内気の温度分布(thi)が算出されれば、算出された温度分布と、上述のS0で仮定した内気の温度分布とを比較し、その差が所定値以内であるか否かによって内気の温度分布(thi)が収束したか否かを判断する(S5、第1判断手順)。
この判断により、内気の温度分布(thi)が収束していれば、次のステップ(S6)を実行し、収束していない場合には、「総発熱量算出」S1に戻って、建屋1内部の総発熱量(Q)をS4で算出した発熱量分布(qi )に基づいて算出するとともに、S2〜S4を再度実行する。これにより、新たな内気の温度分布(thi)が算出され、再度S5において、算出された新たな温度分布と、前回算出した内気の温度分布とを比較し、内気の温度分布(thi)が収束したか否かを判断する。
When the temperature distribution (t hi ) of the inside air is calculated as described above, the calculated temperature distribution is compared with the temperature distribution of the inside air assumed in S0 described above, and depending on whether or not the difference is within a predetermined value. It is determined whether the temperature distribution (t hi ) of the inside air has converged (S5, first determination procedure).
If it is determined that the temperature distribution (t hi ) of the inside air has converged, the next step (S6) is executed. If it has not converged, the process returns to the “total calorific value calculation” S1, and the building 1 The internal total heat generation amount (Q) is calculated based on the heat generation amount distribution (q i ) calculated in S4, and S2 to S4 are executed again. As a result, a new temperature distribution (t hi ) of the inside air is calculated, and in S5 again, the calculated new temperature distribution is compared with the previously calculated temperature distribution of the inside air, and the temperature distribution (t hi ) of the inside air is calculated. Whether or not has converged.

このようなS1〜S4の各ステップは、図6に示すように、内気の温度分布(thi)が収束するまで繰り返される。すなわち、総発熱量、発熱量分布、所要総換気量は、それぞれ内気の温度分布(th )の関数で表され、内気の温度分布(th )自体も温度分布の関数で表されることから、S1〜S4を繰り返し実行することで内気の温度分布(th )が収束し、収束した時点において、発熱量と釣り合う所要換気量が算出されるとともに、釣り合い状態における内気の温度分布(th )が算出されることとなる。
以上のようにして内気の温度分布(th )が算出されれば、この内気の温度分布(th )から算出される空気比重量(γhi)に基づいて、S6の「内気の浮力算出」(浮力算出手順)において、建屋1内部の内気の浮力(F)を次式(4)によって算出する。
Such steps of S1 to S4 are repeated until the temperature distribution (t hi ) of the inside air converges as shown in FIG. That is, the total calorific value, the calorific value distribution, the required total ventilation are each represented by a function of the inside air temperature distribution (t h), the inside air temperature distribution (t h) to itself is represented by a function of the temperature distribution From the above, by repeatedly executing S1 to S4, the temperature distribution (t h ) of the inside air converges, and at the time of convergence, the required ventilation amount that balances the heat generation amount is calculated, and the temperature distribution (t t of the inside air in the balanced state (t h ) will be calculated.
When the temperature distribution (t h ) of the inside air is calculated as described above, based on the specific air weight (γ hi ) calculated from the temperature distribution (t h ) of the inside air, the “buoyancy calculation of the inside air” of S6 is performed. "(Buoyancy calculation procedure), the buoyancy (F) of the inside air in the building 1 is calculated by the following equation (4).

Figure 0004727365
Figure 0004727365

ここで、
Gは、重力加速度、
i は、各階の高さ(炉室内高さ)、
γ0 は、外気比重量、
γhiは、各階の高さhi における空気比重量(炉室内空気比重量)をそれぞれ示している。
すなわち、図7(A)に示すように、内気の温度分布(thi)が上述のように算出されていれば、図7(B)に示すように、温度分布に逆比例する内気の空気比重量(γhi)が算出できる。そして、式(4)で算出される内気の浮力(F)は、図7(C)に示すように、外気比重量(γ0 )と内気の空気比重量(γhi)との差分が描くグラフの面積(図中の斜線部分)に相当するようになっている。
here,
G is the acceleration of gravity,
h i is the height of each floor (furnace chamber height),
γ 0 is the outside air specific weight,
gamma hi shows air ratio by weight in the floor height h i (the furnace chamber air ratio by weight) respectively.
That is, as shown in FIG. 7A, if the temperature distribution (t hi ) of the inside air is calculated as described above, the air of the inside air that is inversely proportional to the temperature distribution as shown in FIG. 7B. The specific weight (γ hi ) can be calculated. Then, the buoyancy (F) of the inside air calculated by the equation (4) is drawn by a difference between the outside air specific weight (γ 0 ) and the inside air specific weight (γ hi ) as shown in FIG. 7C. It corresponds to the area of the graph (the shaded area in the figure).

次に、算出された内気の浮力(F)に基づき、S7の「実換気量(M2 )算出」(実換気量算出手順)において、実換気量(M2 )を算出するが、それに先立ちS8の「開口条件入力」(開口条件入力手順)において、給気開口5および排気開口6の開口条件(開口面積や、サイレンサ8等による局部抵抗係数)や、各階層間の通過の局部抵抗係数を入力しておく。そして、これらの各条件から算出される圧力損失と内気の浮力(F)とから、次式(5)に示す換気回路計算式が成立する。 Then, based on the internal air buoyancy calculated (F), in the S7 "real ventilation (M 2) calculation" (actual ventilation calculation procedure), but it calculates the actual ventilation (M 2), before it In the “opening condition input” (opening condition input procedure) of S8, the opening conditions (opening area, local resistance coefficient by the silencer 8, etc.) of the air supply opening 5 and the exhaust opening 6, and the local resistance coefficient of passage between each layer Enter. And the ventilation circuit calculation formula shown to following Formula (5) is materialized from the pressure loss calculated from each of these conditions, and the buoyancy (F) of inside air.

Figure 0004727365
Figure 0004727365

ここで、
ΔPS は、給気開口5による圧力損失を示し、
ΔPS =1/2・γ0・(ζ0+ζSk)・VSk 2 である。
ΔPR は、建屋1内部の通過による圧力損失を示し、
ΔPR =1/2・Σ(n=1)γRn・ζRn・VRn 2 である。また、
ΔPE は、排気開口6による圧力損失を示し、
ΔPE =1/2・γE・ζE・VE 2 である。また、
ζSkは、k番目の給気開口5の各要素の合計局部抵抗係数、
ζ0 は、単純開口の局部抵抗係数、
ζRnは、建屋1内部のn階層通過の局部抵抗係数、
ζE は、排気開口6の局部抵抗係数、
Skは、k番目の給気開口5の通過風速、
Rnは、n階層通過の風速、
E は、排気開口6の通過風速、
γ0 は、外気空気比重量、
γRnは、n階層での空気比重量、
γE は、排気空気比重量をそれぞれ示している。
here,
ΔP S indicates the pressure loss due to the air supply opening 5,
ΔP S = 1/2 · γ 0 · (ζ 0 + ζ Sk ) · V Sk 2 .
ΔP R indicates the pressure loss due to the passage inside the building 1,
ΔP R = 1/2 · Σ (n = 1) γ Rn · ζ Rn · V Rn 2 Also,
ΔP E indicates the pressure loss due to the exhaust opening 6,
ΔP E = 1/2 · γ E · ζ E · V E 2 . Also,
ζ Sk is the total local resistance coefficient of each element of the k-th supply opening 5,
ζ 0 is the local resistance coefficient of the simple aperture,
ζ Rn is a local resistance coefficient passing through the n-th layer in the building 1,
ζ E is the local resistance coefficient of the exhaust opening 6,
V Sk is the wind speed passing through the kth air supply opening 5;
V Rn is the wind speed passing through the nth floor,
V E is the air velocity passing through the exhaust opening 6,
γ 0 is the outside air specific weight,
γ Rn is the air specific weight in the nth floor ,
γ E indicates the specific weight of the exhaust air.

そして、実換気量(M2 )は、連続の式より次式(6)のように表され、式(5)、式(6)を解くことで実換気量(M2 )が算出される。
ここで、
Skは、k番目の給気開口5の有効開口率、
Rnは、建屋1内部のn階層の有効開口率、
E は、排気開口6の有効開口率、
Skは、k番目の給気開口5の見付開口面積、
Rnは、n階層の床面積、
E は、排気開口6の開口面積をそれぞれ示している。
The actual ventilation amount (M 2 ) is expressed by the following equation (6) from the continuous equation, and the actual ventilation amount (M 2 ) is calculated by solving the equations (5) and (6). .
here,
p Sk is the effective opening ratio of the kth supply opening 5;
p Rn is the effective opening ratio of the n-th floor in the building 1;
p E is the effective opening ratio of the exhaust opening 6;
A Sk is the opening area of the kth supply opening 5;
A Rn is the floor area of n layers,
A E indicates the opening area of the exhaust opening 6.

Figure 0004727365
Figure 0004727365

この式(6)において、各階層の床面積(ARn)およびその有効開口率(pRn)は、プラント機器レイアウトにより決定され、n階層通過の局部抵抗係数(ζRn)は、グレーチング等の床材10によって固有の値となる。また、排気モニタ7の排気開口6の局部抵抗係数(ζE )が排気モニタ7の固有値であり、排気開口6の開口面積(AE )、有効開口率(pE )を所要総換気量(M1 )に基づいて設定すれば、式(6)中で実換気量(M2 )を決定する要因となるのは、給気開口5の開口条件である見付開口面積(ASk)、有効開口率(pSk)および局部抵抗係数(ζSk)となり、実換気量(M2 )は、次式(7)によって算出される。
この式(7)において、
ζkmは、k番目の給気開口5のm番目の構成抵抗体(サイレンサ8等)の局部抵抗係数を示しており、排気開口6の局部抵抗係数(ζSk)としてサイレンサ8等の空気抵抗から決定される局部抵抗係数(ζkm)を用いることとしている。
In this equation (6), the floor area (A Rn ) of each layer and its effective aperture ratio (p Rn ) are determined by the plant equipment layout, and the local resistance coefficient (ζ Rn ) passing through the n layer is determined by grating or the like. It becomes a specific value depending on the flooring 10. Moreover, the local resistance coefficient (ζ E ) of the exhaust opening 6 of the exhaust monitor 7 is an eigenvalue of the exhaust monitor 7, and the opening area (A E ) and the effective opening ratio (p E ) of the exhaust opening 6 are calculated as required total ventilation ( If it is set based on M 1 ), the factor that determines the actual ventilation volume (M 2 ) in equation (6) is the opening area (A Sk ) that is the opening condition of the air supply opening 5, The effective opening ratio (p Sk ) and local resistance coefficient (ζ Sk ) are obtained, and the actual ventilation volume (M 2 ) is calculated by the following equation (7).
In this equation (7),
ζ km indicates the local resistance coefficient of the m-th component resistor (such as the silencer 8) of the k-th air supply opening 5, and the air resistance of the silencer 8 or the like as the local resistance coefficient (ζ Sk ) of the exhaust opening 6 The local resistance coefficient (ζ km ) determined from

Figure 0004727365
Figure 0004727365

以上のようにして算出した実換気量(M2 )が所要総換気量(M1 )を上回っていることをS9(第2判断手順)で確認する。そして、実換気量(M2 )が所要総換気量(M1 )を上回っていれば、S10の「騒音シミュレーション」(第3判断手順)を実行し、建屋1内の音が基準値を超えて外部に出力されないことを確認する。S9において、実換気量(M2 )が所要総換気量(M1 )を上回らなかった場合、またはS10において、外部に出力される音が基準値を超える場合には、S8の「開口条件入力」に戻り、再度、給気開口5の数や開口面積(ASk)、サイレンサ8の仕様を入力し、S7、S9、S10を実行する。この際、前述の式(7)に基づいて、等価開口面積総計(Aeq)を次式(8)のように定義しておく。 It is confirmed in S9 (second judgment procedure) that the actual ventilation volume (M 2 ) calculated as described above exceeds the required total ventilation volume (M 1 ). If the actual ventilation volume (M 2 ) exceeds the required total ventilation volume (M 1 ), the “noise simulation” (third judgment procedure) of S10 is executed, and the sound in the building 1 exceeds the reference value. Confirm that the data is not output to the outside. If the actual ventilation volume (M 2 ) does not exceed the required total ventilation volume (M 1 ) in S9, or if the sound output to the outside exceeds the reference value in S10, the “opening condition input” in S8 ”, The number of the air supply openings 5, the opening area (A Sk ), and the specifications of the silencer 8 are input again, and S7, S9, and S10 are executed. At this time, based on the above equation (7), the total equivalent opening area (A eq ) is defined as the following equation (8).

Figure 0004727365
Figure 0004727365

この式(8)において、等価開口面積総計(Aeq)は、全ての給気開口5を同量の自然給気が可能な単純開口面積(有効開口率pS =1.0、局部抵抗係数ζ0 =1.0)に換算した合計面積であり、プラント機器レイアウトや、騒音条件等が変更になり、給気開口5の開口面積や開口率、局部抵抗係数の変更が必要になった場合に維持すべき値である。例えば、騒音条件が厳しくなって(S10においてNo)、サイレンサ8の減音性能とともに局部抵抗係数が大きくなった場合には、給気開口5の開口面積を大きくするか、別途給気開口5を追加する必要があり、その計算時の指標として等価開口面積総計(Aeq)が用いられる。このような等価開口面積総計(Aeq)を定義しておくことで、開口条件を再入力する際の目安となり、再入力が容易に実行できるようになっている。 In this equation (8), the total equivalent opening area (A eq ) is a simple opening area (effective opening ratio p S = 1.0, local resistance coefficient) in which all the air supply openings 5 can be supplied with the same amount of natural air. ζ 0 = 1.0) is the total area converted, and the plant equipment layout, noise conditions, etc. are changed, and it is necessary to change the opening area, opening ratio, and local resistance coefficient of the supply opening 5 This is the value that should be maintained. For example, when the noise conditions become severe (No in S10) and the local resistance coefficient increases with the sound reduction performance of the silencer 8, the opening area of the air supply opening 5 is increased, or a separate air supply opening 5 is provided. The total equivalent opening area (A eq ) is used as an index at the time of calculation. By defining such an equivalent opening area total (A eq ), it becomes a guide when re-inputting the opening condition, and re-input can be easily executed.

また、図1に示すように、機械換気された副空間1Bを介して主空間1Aに流入する移送流や、強制流導入手段である送風機等が設けられた開口11から強制的に主空間1Aに導入される強制流に関しては、S11の「強制流・移送流入力」(強制流、移送流入力手順)で入力することができるようになっている。そして、強制流や移送流を入力した場合には、本実施形態では詳しく説明しないが、前述の式(1)〜式(3)および式(5)を適宜補正することで、強制流や移送流の影響を評価することができ、浮力の算出や実換気量の算出精度を向上させることができるようになる。   Further, as shown in FIG. 1, the main space 1A is forced from an opening 11 provided with a transfer flow that flows into the main space 1A via the mechanically ventilated subspace 1B, a blower that is a forced flow introducing means, and the like. The forced flow to be introduced can be input in the “forced flow / transfer flow input” (forced flow / transfer flow input procedure) of S11. When a forced flow or a transfer flow is input, although not described in detail in the present embodiment, the forced flow or the transfer is corrected by appropriately correcting the above formulas (1) to (3) and (5). The influence of the flow can be evaluated, and calculation accuracy of buoyancy and actual ventilation can be improved.

このような本実施形態によれば、以下のような効果がある。
(1)すなわち、内気の浮力(F)によって得られる駆動力を用いて給気および排気を実施する置換型重力自然換気システムを採用することで、給気手段として給気開口5だけで済むため、送風機や給気ダクトを用いる必要がなく、これらを設置するための設備コストや、設置スペースを確保するための建設コストが低減できるとともに、送風機を駆動するための電力が不要となるため、省エネルギー化を促進しかつランニングコストの抑制を図ることができる。
According to this embodiment, there are the following effects.
(1) That is, by adopting a substitution type gravity natural ventilation system that performs air supply and exhaust using the driving force obtained by the buoyancy (F) of the inside air, only the air supply opening 5 is required as the air supply means. It is not necessary to use a blower or an air supply duct, and the equipment cost for installing them and the construction cost for securing the installation space can be reduced, and the power for driving the blower becomes unnecessary , so energy saving And the running cost can be reduced.

(2)さらに、換気設計において、内気の温度分布(thi)を繰り返し演算により高精度にシミュレートすることで、内気の浮力(F)に基づく実換気量(M2 )を正確に算出することができ、自然換気システムを合理的に設計することができる。また、所要総換気量(M1 )を実換気量(M2 )が上回るように開口条件を設定することで、換気効率を確保しつつ開口条件つまり給気開口5の開口面積やサイレンサ8の仕様等を合理的かつ経済的に設定することができる。 (2) Further, in the ventilation design, the actual ventilation volume (M 2 ) based on the buoyancy (F) of the inside air is accurately calculated by simulating the temperature distribution (t hi ) of the inside air with high accuracy by repeated calculation. And natural ventilation systems can be rationally designed. Further, by setting the opening condition so that the actual ventilation volume (M 2 ) exceeds the required total ventilation volume (M 1 ), the opening condition, that is, the opening area of the supply opening 5 and the silencer 8 Specifications etc. can be set rationally and economically.

なお、本発明は、前記実施形態に限定されるものではなく、本発明の目的を達成できる他の構成等を含み、以下に示すような変形等も本発明に含まれる。
例えば、前記実施形態においては、ごみ焼却施設について説明し、発熱体としてごみ溶融炉4を採用したが、発熱体としては溶融炉4に限られず、任意の炉や燃焼設備が適用可能である。
また、前記実施形態では、内気の温度分布(thi)が収束するようにS1〜S4を繰り返し実行するようにしたが、S5における収束したか否かの判断は、内気の温度分布に限らず、発熱量によって判断してもよく、また温度分布や発熱量とは別の変数を定義しておき、その変数によって収束したか否かを判断してもよい。
In addition, this invention is not limited to the said embodiment, Including other structures etc. which can achieve the objective of this invention, the deformation | transformation etc. which are shown below are also contained in this invention.
For example, in the above-described embodiment, the waste incineration facility is described, and the refuse melting furnace 4 is adopted as a heating element. However, the heating element is not limited to the melting furnace 4, and any furnace or combustion facility can be applied.
In the above embodiment, S1 to S4 are repeatedly executed so that the temperature distribution (t hi ) of the inside air converges. However, the determination of whether or not it converges in S5 is not limited to the temperature distribution of the inside air. Alternatively, the determination may be made based on the heat generation amount, or a variable different from the temperature distribution or the heat generation amount may be defined, and it may be determined whether or not the convergence is made based on the variable.

その他、本発明を実施するための最良の構成、方法などは、以上の記載で開示されているが、本発明は、これに限定されるものではない。すなわち、本発明は、主に特定の実施形態に関して特に図示され、かつ説明されているが、本発明の技術的思想および目的の範囲から逸脱することなく、以上述べた実施形態に対し、形状、材質、数量、その他の詳細な構成において、当業者が様々な変形を加えることができるものである。
従って、上記に開示した形状、材質などを限定した記載は、本発明の理解を容易にするために例示的に記載したものであり、本発明を限定するものではないから、それらの形状、材質などの限定の一部もしくは全部の限定を外した部材の名称での記載は、本発明に含まれるものである。
In addition, the best configuration, method and the like for carrying out the present invention have been disclosed in the above description, but the present invention is not limited to this. That is, the invention has been illustrated and described with particular reference to certain specific embodiments, but without departing from the spirit and scope of the invention, Various modifications can be made by those skilled in the art in terms of material, quantity, and other detailed configurations.
Therefore, the description limiting the shape, material, etc. disclosed above is an example for easy understanding of the present invention, and does not limit the present invention. The description by the name of the member which remove | excluded the limitation of one part or all of such restrictions is included in this invention.

本発明の実施形態に係る換気システムを採用した施設を示す平面図である。It is a top view which shows the plant | facility which employ | adopted the ventilation system which concerns on embodiment of this invention. 前記施設の断面図である。It is sectional drawing of the said facility. 前記施設の外壁に設けられた給気手段を示す断面図である。It is sectional drawing which shows the air supply means provided in the outer wall of the said facility. 前記換気システムの設計手順を説明するフローチャートである。It is a flowchart explaining the design procedure of the said ventilation system. (A)、(B)は、換気システムの設計における発熱体からの発熱および内気の温度分布を説明する図である。(A), (B) is a figure explaining the heat distribution from a heat generating body in the design of a ventilation system, and the temperature distribution of inside air. 内気の温度分布を繰り返し演算により算出する手順を説明する図である。It is a figure explaining the procedure which calculates the temperature distribution of inside air by a repetitive calculation. (A)〜(C)は、内気の浮力を算出する手順を説明する図である。(A)-(C) is a figure explaining the procedure which calculates the buoyancy of inside air.

符号の説明Explanation of symbols

1…建屋、4…発熱体である溶融炉、5…給気開口(給気手段)、6…排気開口(排気手段)、8…消音手段であるサイレンサ、S1…総発熱量算出手順、S2…所要総換気量算出手順、S3…温度分布算出手順、S4…発熱量分布算出手順、S5…第1判断手順、S6…浮力算出手順、S7…実換気量算出手順、S9…第2判断手順、S10…第3判断手順。   DESCRIPTION OF SYMBOLS 1 ... Building, 4 ... Melting furnace which is a heating element, 5 ... Air supply opening (air supply means), 6 ... Exhaust opening (exhaust means), 8 ... Silencer which is a muffling means, S1 ... Total calorific value calculation procedure, S2 ... required total ventilation amount calculation procedure, S3 ... temperature distribution calculation procedure, S4 ... heat generation amount distribution calculation procedure, S5 ... first determination procedure, S6 ... buoyancy calculation procedure, S7 ... actual ventilation amount calculation procedure, S9 ... second determination procedure , S10: Third determination procedure.

Claims (4)

内部に発熱体を収容した建屋における給気手段および排気手段を用いて建屋内部を換気する換気システムの設計方法であって、
前記給気手段は、前記建屋の下部に設けられる給気開口から構成され、前記排気手段は、前記建屋の上部に設けられる排気開口から構成され、これらの給気開口および排気開口の各々の開口面積を含んだ開口条件と、建屋内の高さ方向に関する内気の温度分布および温度分布から算出される浮力とに基づいて、前記給気開口から給気されて前記排気開口から排気される換気量を算出する方法であって、
建屋内の高さ方向に関する内気の温度分布を仮定する温度分布仮定手順と、
内気の温度分布に基づいて、前記建屋内部の高さ方向に関する発熱量分布を算出する発熱量分布算出手順と、
算出した発熱量分布に基づいて、前記建屋内部の総発熱量を算出する総発熱量算出手順と、
算出した総発熱量に基づいて、必要とされる所要総換気量を算出する所要総換気量算出手順と、
算出した所要総換気量に基づいて、内気の温度分布を算出する温度分布算出手順と、
前記温度分布算出手順で算出した内気の温度分布が収束したか否かを判断し、収束しない場合には前記発熱量分布算出手順、総発熱量算出手順、所要総換気量算出手順、および温度分布算出手順を繰り返し実行させる第1判断手順と、
前記第1判断手順において収束したと判断した内気の温度分布に基づいて、建屋の内気に発生する浮力を算出する浮力算出手順と、
前記浮力算出手順で算出した内気の浮力によって得られる駆動力と前記開口条件とに基づいて実換気量を算出する実換気量算出手順と、
算出した実換気量が前記所要総換気量算出手順で算出した所要総換気量を上回るか否かを判断し、実換気量が所要総換気量を上回らない場合には、再設定した開口条件に基づいて前記実換気量算出手順に実換気量の算出を実行させる第2判断手順と、
を備えたことを特徴とする換気システムの設計方法。
A method for designing a ventilation system for ventilating an interior of a building using an air supply means and an exhaust means in a building containing a heating element therein,
The air supply means includes an air supply opening provided in a lower part of the building, and the exhaust means includes an exhaust opening provided in an upper part of the building. Each of the air supply opening and the exhaust opening is provided. Based on the opening condition including the area and the buoyancy calculated from the temperature distribution and temperature distribution of the inside air in the height direction of the building, the ventilation amount supplied from the supply opening and exhausted from the exhaust opening Is a method of calculating
A temperature distribution assumption procedure that assumes the temperature distribution of the inside air in the height direction of the building;
A calorific value distribution calculation procedure for calculating a calorific value distribution in the height direction of the building based on the temperature distribution of the inside air;
Based on the calculated calorific value distribution, a total calorific value calculation procedure for calculating the total calorific value of the inside of the building,
Based on the calculated total calorific value, the required total ventilation calculation procedure for calculating the required total ventilation required,
A temperature distribution calculation procedure for calculating the temperature distribution of the inside air based on the calculated required total ventilation,
It is determined whether or not the temperature distribution of the inside air calculated by the temperature distribution calculation procedure has converged. If the temperature distribution does not converge, the heat generation amount distribution calculation procedure, the total heat generation amount calculation procedure, the required total ventilation amount calculation procedure, and the temperature distribution A first determination procedure for repeatedly executing the calculation procedure;
A buoyancy calculation procedure for calculating the buoyancy generated in the inside air of the building based on the temperature distribution of the inside air determined to have converged in the first determination procedure;
An actual ventilation amount calculation procedure for calculating an actual ventilation amount based on the driving force obtained by the buoyancy of the inside air calculated in the buoyancy calculation procedure and the opening condition;
Judge whether the calculated actual ventilation exceeds the required total ventilation calculated in the above required total ventilation calculation procedure, and if the actual ventilation does not exceed the required total ventilation, the newly set opening condition A second determination procedure for causing the actual ventilation volume calculation procedure to execute calculation of the actual ventilation volume based on:
A ventilation system design method characterized by comprising:
請求項1に記載の換気システムの設計方法において、The method for designing a ventilation system according to claim 1,
前記建屋内部の高さ方向に関する前記発熱量分布および前記建屋内部の前記総発熱量は、それぞれ式(1)により算出され、The calorific value distribution in the height direction of the building interior and the total calorific value of the building interior are each calculated by equation (1),
Figure 0004727365
Figure 0004727365
この式(1)において、In this equation (1),
q ii は、第i 階層の建屋内部の発熱量、 Is the calorific value inside the i-th floor building,
Qは、建屋内部の総発熱量であり、Q is the total calorific value inside the building,
ここで、添字のi は、階または階層(i =1,2,3…)を示し、Where the subscript i indicates the floor or hierarchy (i = 1, 2, 3 ...)
t jj は、発熱体の表面温度、 Is the surface temperature of the heating element,
t hihi は、建屋のi 階における内気の温度、Is the temperature of the inside air on the i floor of the building,
a ijij は、i 階における表面温度tj の発熱体の表面積、Is the surface area of the heating element at the surface temperature tj on the i-th floor,
αは、熱伝達率、α is the heat transfer coefficient,
c ii は、第i 階層の発熱量のうち室内温度に依存しない成分 Is the component that does not depend on the room temperature of the heat generation of the i-th layer
であることを特徴とする換気システムの設計方法。A method for designing a ventilation system, characterized in that
請求項1または請求項2に記載の換気システムの設計方法において、
前記給気開口および前記排気開口を介して建屋の外に出力される音の大きさが、予め設定した基準値を下回るか否かを判断する第3判断手順を備え、この第3判断手順において建屋の外に出力される音の大きさが基準値を下回らない場合には、再設定した開口条件と、前記給気開口および前記排気開口の少なくとも一方に設ける消音手段の空気抵抗と、を含む算出条件により算出した有効開口面積に基づいて換気量を算出することを特徴とする換気システムの設計方法。
In the designing method of the ventilation system according to claim 1 or 2,
A third determination procedure for determining whether or not the volume of sound output to the outside of the building through the air supply opening and the exhaust opening is lower than a preset reference value; In the case where the volume of sound output outside the building does not fall below a reference value, the reset opening condition and the air resistance of the silencer provided in at least one of the air supply opening and the exhaust opening are included. A design method of a ventilation system, characterized in that a ventilation amount is calculated based on an effective opening area calculated according to a calculation condition.
内部に発熱体を収容した建屋を換気する換気システムであって、
請求項1から請求項3のいずれかに記載の設計方法によって設計された自然換気システムであることを特徴とする建屋の換気システム。
A ventilation system for ventilating a building containing a heating element inside,
A building ventilation system, which is a natural ventilation system designed by the design method according to any one of claims 1 to 3.
JP2005279930A 2005-09-27 2005-09-27 Ventilation system design method and building ventilation system Active JP4727365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005279930A JP4727365B2 (en) 2005-09-27 2005-09-27 Ventilation system design method and building ventilation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005279930A JP4727365B2 (en) 2005-09-27 2005-09-27 Ventilation system design method and building ventilation system

Publications (2)

Publication Number Publication Date
JP2007093044A JP2007093044A (en) 2007-04-12
JP4727365B2 true JP4727365B2 (en) 2011-07-20

Family

ID=37978977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005279930A Active JP4727365B2 (en) 2005-09-27 2005-09-27 Ventilation system design method and building ventilation system

Country Status (1)

Country Link
JP (1) JP4727365B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5928412B2 (en) * 2013-06-19 2016-06-01 Jfeスチール株式会社 Steel plate vertical cooling device and method for producing hot dip galvanized steel plate using the same
JP7133389B2 (en) * 2018-08-16 2022-09-08 大成建設株式会社 Device heat generation calculation method
CN111985026B (en) * 2020-07-27 2024-02-09 西安建筑科技大学 High-efficiency natural ventilation design method for building based on thermal stratification height
JP7484838B2 (en) 2021-07-19 2024-05-16 Jfeエンジニアリング株式会社 Ventilation control device, ventilation system, ventilation control method, and ventilation control program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5469217A (en) * 1977-11-11 1979-06-04 Tomoegumi Iron Works Soundproof building
JPH108581A (en) * 1996-06-20 1998-01-13 Kajima Corp Ventilating method and device
JP2002349937A (en) * 2001-05-24 2002-12-04 Asahi Kasei Corp Ventilation amount of building, and temperature predicting system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07210169A (en) * 1994-01-24 1995-08-11 Nippon Steel Corp Muffler device
JPH11248219A (en) * 1998-02-27 1999-09-14 Nippon Steel Corp Method and facilities for ventilating building with arranged heat generation facilities
JP2002266443A (en) * 2001-03-08 2002-09-18 National House Industrial Co Ltd Ventilating structure for house
JP2003021373A (en) * 2001-07-03 2003-01-24 Shouon Giken Kk Sound-insulating, energy-saving healthy living space system by outdoor air natural circulation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5469217A (en) * 1977-11-11 1979-06-04 Tomoegumi Iron Works Soundproof building
JPH108581A (en) * 1996-06-20 1998-01-13 Kajima Corp Ventilating method and device
JP2002349937A (en) * 2001-05-24 2002-12-04 Asahi Kasei Corp Ventilation amount of building, and temperature predicting system

Also Published As

Publication number Publication date
JP2007093044A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
Awbi Design considerations for naturally ventilated buildings
JP4727365B2 (en) Ventilation system design method and building ventilation system
JP4570280B2 (en) Building ventilation and temperature prediction system
JP5008738B2 (en) Building ventilation and temperature prediction system
Ahmed et al. Optimising louver location to improve indoor thermal comfort based on natural ventilation
Brockett et al. Natural ventilation in single airspace buildings
CN101916970A (en) Indoor ventilation system of transformer substation and design method thereof
Chung et al. Application of CFD in prediction of indoor building thermal performance as an effective pre-design tool towards sustainability
JP2009150643A (en) Natural convection type underfloor heating ventilation system
Jayasree et al. Assessment of air change effectiveness and thermal comfort in a naturally ventilated kitchen with insect-proof screen using CFD
Naïma et al. The traditional house with horizontal opening: a trend towards zero-energy house in the hot, dry climates
Majdoubi et al. Natural ventilation performance of a large greenhouse equipped with insect screens
Haves et al. Use of simulation in the design of a large, naturally ventilated office building
Kolokotroni et al. Ventilation for cooling
JP4595462B2 (en) Computer system for evaluating evacuation safety performance, program, and recording medium recording the program
JPWO2012035659A1 (en) Integrated environmental control system
JP2015045489A (en) Air conditioning system for building
Breesch et al. Uncertainty and sensitivity analysis of the performances of natural night ventilation
JP5008739B2 (en) Building ventilation and temperature prediction system
Khatami The wind-catcher: a traditional solution for a modern problem
Niktash Investigation into two-sided windcatchers used for room ventilation
JP5008740B2 (en) Building ventilation and temperature prediction system
Grant An investigation of the airflow in mushroom growing structures, the development of an improved, three-dimensional solution technique for fluid flow and its evaluation for the modelling of mushroom growing structures
K. Syrios et al. Design considerations for roof-mounted ventilation systems
Zhang et al. Solar Chimney Applications in Buildings. Encyclopedia 2021, 1, 409–422

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070703

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070815

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110413

R150 Certificate of patent or registration of utility model

Ref document number: 4727365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250