JP4726277B2 - Automatic headlamp optical axis adjustment device for vehicles - Google Patents

Automatic headlamp optical axis adjustment device for vehicles Download PDF

Info

Publication number
JP4726277B2
JP4726277B2 JP2000161662A JP2000161662A JP4726277B2 JP 4726277 B2 JP4726277 B2 JP 4726277B2 JP 2000161662 A JP2000161662 A JP 2000161662A JP 2000161662 A JP2000161662 A JP 2000161662A JP 4726277 B2 JP4726277 B2 JP 4726277B2
Authority
JP
Japan
Prior art keywords
inclination angle
vehicle
optical axis
axis direction
road surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000161662A
Other languages
Japanese (ja)
Other versions
JP2001341578A (en
Inventor
弘章 奥地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000161662A priority Critical patent/JP4726277B2/en
Publication of JP2001341578A publication Critical patent/JP2001341578A/en
Application granted granted Critical
Publication of JP4726277B2 publication Critical patent/JP4726277B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

PROBLEM TO BE SOLVED: To simplify a system structure that adjusts the optical axis direction of a headlight taking consideration of a static and dynamic change in vehicle attitude, and even a change in occupants during a stop, and the like. SOLUTION: The optical axis direction of a vehicle headlight is adjusted by an actuator driven based on a control angle θact calculated from an estimated road surface inclination θRe obtained, by an estimated pitch angle θpe estimated from the acceleration of a differentiated vehicle speed V and, an absolute inclination θa from one inclinometer disposed in the vehicle. A change, if any, in the absolute inclination θ during a vehicle stop is presumed to be a result of a change in occupants, and the estimated road surface inclination θRe is corrected accordingly. The static and dynamic change in vehicle attitude and even the change in occupants during a stop, and the like are taken into consideration, and the system structure of adjusting the optical axis direction of the headlight can be simplified to realize a cost reduction.

Description

【0001】
【発明の属する技術分野】
本発明は、車両に配設される前照灯による照射の光軸方向を自動的に調整する車両用前照灯光軸方向自動調整装置に関するものである。
【0002】
【従来の技術】
従来、車両の傾き角に対応するピッチ角は、車両の前後の車高値を車高センサにて検出し、これら車高値に基づき求める方法が一般的である。しかし、車高センサは車軸に配設する必要があり、特に、操舵輪である前輪には搭載し難く、かつ、システム構成が複雑であり高価である。
【0003】
そこで、車高センサに代わる傾斜計を用いて車両のピッチ角を求める方法が望まれている。ここで、前照灯の光軸方向を調整するためには、路面傾斜角を考慮して制御する必要があるが、傾斜計からの絶対傾斜角を用いるときには路面傾斜角分の補正が必要となる。
【0004】
これに関連する先行技術文献としては、特開平10−324192号公報、特許第2767220号公報にて開示されたものが知られている。
【0005】
このうち、特開平10−324192号公報には、車両の前後のサスペンションアームとボデーとの間に2個及びボデーに1個の合計3個の傾斜計を用いて坂道等による路面傾斜の影響を回避しつつ車両の前照灯の光軸方向を調整する技術が示されている。また、特許第2767220号公報には、車両の加速度によって車両の動的なピッチ角変化を求め、傾斜計によって坂道での重力に起因する車両の静的な姿勢変化を考慮しつつ車両の前照灯の光軸方向を調整する技術が示されている。
【0006】
【発明が解決しようとする課題】
ところで、前述の先行技術文献のうち前者のものでは、2個の傾斜計を車両のサスペンション部分に配設しており、従来の車高センサを用いたものと同様、搭載上の制約等を受けると共に、傾斜計が3個必要であり高価なシステム構成にならざるを得ないという不具合があった。
【0007】
また、後者のものでは、車両の静的な姿勢変化を考慮することが記載されているが、車両の動的な加減速状態を伴う走行時や停車中の乗員変化等の影響が考慮されておらず、この分に対して調整することは無理であった。
【0008】
そこで、この発明はかかる不具合を解決するためになされたもので、車両の静的及び動的な姿勢変化、かつ、停車中の乗員変化等も考慮しつつ前照灯の光軸方向を調整するためのシステム構成を簡略化しコスト低減を達成可能な車両用前照灯光軸方向自動調整装置の提供を課題としている。
【0009】
【課題を解決するための手段】
請求項1の車両用前照灯光軸方向自動調整装置は、車両の重力方向に対する傾斜情報である絶対傾斜角θaを検出する1つの傾斜計からなる絶対傾斜角検出手段と、前記車両の加速度αを検出する加速度検出手段と、前記絶対傾斜角θaと前記加速度αから推定される車体傾斜角としての推定ピッチ角θpeと路面自体の傾き分の誤差角±θerrorとを含む推定路面傾斜角θReを推定する路面傾斜角推定手段と、前記車両の平地走行時の前記路面傾斜角推定手段で推定された前記推定路面傾斜角θReをゼロとし、前記推定路面傾斜角θReと前記絶対傾斜角検出手段で得た絶対傾斜角θaとの差分に基づき、前記車両の前照灯の制御角θactを算出する制御角演算手段と、前記制御角演算手段で算出された前記制御角θactに基づき、前記前照灯の光軸方向を調整する光軸方向調整手段を具備する。
したがって、1つの絶対傾斜角検出手段による絶対傾斜角θaと加速度検出手段による加速度αから推定される車体傾斜角とから路面傾斜角推定手段で推定された推定路面傾斜角θReによって制御角演算手段で算出された制御角θactに基づき光軸方向調整手段にて車両の前照灯の光軸方向が調整される。このため、車両の静的及び動的な姿勢変化等が考慮され、前照灯の光軸方向を調整するためのシステム構成が簡略化されコスト低減が達成される。
【0010】
請求項2の車両用前照灯光軸方向自動調整装置では、車両の停車中の絶対傾斜角検出手段による絶対傾斜角θaに変化があれば路面傾斜角推定手段によって乗員変化によるものとして路面傾斜角推定手段で推定された推定路面傾斜角θReが補正される。これにより、停車中の乗員変化や積載物変化も考慮され、前照灯の光軸方向が正常に調整される。
【0011】
請求項3の車両用前照灯光軸方向自動調整装置では、車両におけるイグニッションスイッチのオフ直前に絶対傾斜角記憶手段に記憶された絶対傾斜角θaと、次回のイグニッションスイッチのオン時における絶対傾斜角検出手段による絶対傾斜角θaとの差分が乗員変化によるものとして路面傾斜角推定手段で推定された推定路面傾斜角θReが補正される。これにより、イグニッションスイッチのオフ中における乗員変化や積載物変化も考慮され、前照灯の光軸方向が正常に調整される。
【0012】
請求項4の車両用前照灯光軸方向自動調整装置では、異常判定手段によって絶対傾斜角検出手段からの絶対傾斜角θaの変動に基づき車両の走行中または停車中が判定され、この判定と車速とに差異があればシステム異常と判定される。これにより、車両の停車中における乗員変化を正確に知ることができる。
【0013】
請求項5の車両用前照灯光軸方向自動調整装置では、異常判定手段によってシステム異常と判定されたときには、異常発生以前における制御位置まで前照灯の光軸方向を戻したのち制御が停止される。これにより、システム異常時における前照灯の光軸方向の不適切な制御が防止される。
【0014】
請求項6の車両用前照灯光軸方向自動調整装置では、絶対傾斜角検出手段を車両へ組付けたのち、またはシステム異常が発生したのちには、絶対傾斜角θaの初期値が補正される。これにより、絶対傾斜角検出手段の組付後やシステム異常後における絶対傾斜角検出手段からの絶対傾斜角θaが適正値となりその信頼性を向上することができる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を実施例に基づいて説明する。
【0016】
図1は本発明の実施の形態の一実施例にかかる車両用前照灯光軸方向自動調整装置の全体構成を示す概略図である。
【0017】
図1において、車両に配設され周知のABS(Antilock Brake System)で用いられている車輪速センサ11等による車速(車輪速)V、また、車体に配設された傾斜計12にて計測された重力方向に対する傾斜角である絶対傾斜角θa 、その他のセンサ(図示略)から各種センサ信号等が車両に搭載されたECU(Electronic Control Unit:電子制御ユニット)20に入力されている。なお、ECU20、車輪速センサ11及び傾斜計12は便宜上、車両の外部に図示されている。
【0018】
ECU20は、周知の各種演算処理を実行する中央処理装置としてのCPU21、制御プログラムを格納したROM22、各種データを格納するRAM23、B/U(バックアップ)RAM24、入出力回路25及びそれらを接続するバスライン26等からなる論理演算回路として構成されている。
【0019】
そして、ECU20内のCPU21によって、後述するように、車輪速センサ11からの車速V信号、傾斜計12からの絶対傾斜角θa に基づき制御角θactが算出され、車両の左右のヘッドライト(前照灯)30側のアクチュエータ35に入力され、左右のヘッドライト30の光軸方向が自動調整される。
【0020】
図2は図1のヘッドライト30の要部構成を示す断面図である。
【0021】
図2において、ヘッドライト30は主として、ランプ31とそのランプ31を固定するリフレクタ32、そのリフレクタ32を円弧矢印方向に揺動自在に支持する一方の支持部33及びリフレクタ32を支持すると共に可動自在な他方の可動部34、その可動部34を前後矢印方向に駆動するステップモータ等からなるアクチュエータ35にて構成されている。なお、ヘッドライト30の光軸方向は運転者1名が乗車した状態を想定して初期設定されている。
【0022】
次に、本発明の実施の形態の一実施例にかかる車両用前照灯光軸方向自動調整装置で使用されているECU20内のCPU21による平地(発進加速)→坂道(上り・下り:一定速)→平地(減速停止)に対応する各種制御量等の遷移状態を示す図3のタイムチャートを参照し、ヘッドライト30の光軸方向を自動調整するアクチュエータ35を駆動するための制御角θact の算出について説明する。
【0023】
一般に、車両のサスペンションのばね定数は常用域では線形であるため、加速度と停車中からのピッチ角変化とには比例関係があることが知られている。したがって、図3に示すように、平地であれば、加速度のみによる推定ピッチ角θpeは、次式(1)にて求めることができる。ここで、αは車速Vの微分(dV/dt)演算による加速度、Kはばね定数、θp0は停車中のピッチ角である。
【0024】
【数1】
θpe=α・K+θp0 ・・・(1)
【0025】
これに対して、傾斜計12から得られる絶対傾斜角θa は、必ず実際の路面に対する対地ピッチ角θpeと路面自体の傾き分とを含んでいる。即ち、推定路面傾斜角θReには路面自体の傾き分として誤差角±θerrorを含んでいる。したがって、推定路面傾斜角θReは、次式(2)にて得ることができる。
【0026】
【数2】
θRe=θa −θpe ・・・(2)
【0027】
ここで、実際の坂道走行時には、重力に起因する車両姿勢変化があり、上りでは正の誤差角θerror 、下りでは負の誤差角−θerror が生じる。これを補正するには、推定路面傾斜角θRe算出後に、この推定路面傾斜角θReから誤差角±θerror を推定して、この誤差角±θerror 分を補正する必要がある。
【0028】
このようにして、坂道走行時では、推定路面傾斜角θReと絶対傾斜角θa との差分から次式(3)にて制御角θact が算出される。この制御角θact に基づき、アクチュエータ35が駆動されヘッドライト30の光軸方向が自動調整される。
【0029】
【数3】
θact =−(θa −θRe) ・・・(3)
【0030】
また、平地走行時、即ち、推定路面傾斜角θReがほぼ「0」であるときには、傾斜計12の出力としての絶対傾斜角θa が対地傾斜角を示すため、次式(4)にて制御角θact が算出される。この制御角θact に基づき、アクチュエータ35が駆動されヘッドライト30の光軸方向が自動調整される。
【0031】
【数4】
θact =−θa ・・・(4)
【0032】
このように、本実施例の車両用前照灯光軸方向自動調整装置は、車両の重力方向に対する傾斜情報である絶対傾斜角θa を検出する1つの絶対傾斜角検出手段としての傾斜計12と、車両の車輪速センサ11からの車速V信号を微分演算することで加速度αを検出するECU20内のCPU21にて達成される加速度検出手段と、絶対傾斜角θa と加速度αから推定される車体傾斜角としての推定ピッチ角θpeとから推定路面傾斜角θReを求めるECU20内のCPU21にて達成される路面傾斜角推定手段と、路面傾斜角推定手段で得られた推定路面傾斜角θReに基づき、車両のヘッドライト(前照灯)30の制御角θact を算出するECU20内のCPU21にて達成される制御角演算手段と、前記制御角演算手段で算出された制御角θact に基づき、ヘッドライト30の光軸方向を調整するECU20内のCPU21、アクチュエータ35等からなる光軸方向調整手段とを具備するものである。
【0033】
つまり、絶対傾斜角θa と加速度αから推定される推定ピッチ角θpeとから求められた推定路面傾斜角θReによって算出された制御角θact に基づき車両のヘッドライト30の光軸方向が調整される。このため、車両の静的及び動的な姿勢変化等が考慮され、ヘッドライト30の光軸方向を調整するためのシステム構成が簡略化されコスト低減を達成することができる。
【0034】
次に、本発明の実施の形態の一実施例にかかる車両用前照灯光軸方向自動調整装置で使用されているECU20内のCPU21による平地(発進加速)→坂道(上り・下り:一定速)→坂道(下り途中で減速停止ののち停車中に乗員変化)に対応する各種制御量等の遷移状態を示す図4のタイムチャートを参照し、ヘッドライト30の光軸方向を自動調整するアクチュエータ35を駆動するための制御角θact の算出について説明する。
【0035】
坂道走行途中で加減速があったときにも、上式(3)にて制御角θact は同様に算出される。しかし、図4に示すように、停車中に乗員変化があり傾斜計12から得られる絶対傾斜角θa に変化があったときには、以下のような補正が必要となる。即ち、停車中は推定ピッチ角θpeが変化せず、絶対傾斜角θa のみが変化するためである。
【0036】
まず、絶対傾斜角の変化分Δθa に対応する補正がない場合について述べる。
【0037】
推定路面傾斜角の変化分ΔθReは、次式(5)にて求められる(図4に破線にて示す)。ここで、Δθa は停車中の乗員変化による絶対傾斜角の変化分、また、Δθpeは推定ピッチ角の変化分であり「0」と見做すことができる。
【0038】
【数5】
ΔθRe=Δθa −Δθpe=Δθa ・・・(5)
【0039】
したがって、制御角の変化分Δθact は次式(6)にて得られる。
【0040】
【数6】
Δθact =−(Δθa −ΔθRe)=0 ・・・(6)
【0041】
つまり、停車中の乗員変化により対地ピッチ角θp に変化があるにもかかわらず、絶対傾斜角の変化分Δθa が「0」であるため制御が行われず、推定路面傾斜角θReに誤差が生じることとなる。したがって、このように停車中に絶対傾斜角θa に変化があったときには、この絶対傾斜角の変化分Δθa が乗員変化分であるとして、絶対傾斜角の変化分Δθa に対応する補正が必要となるのである。
【0042】
そこで、絶対傾斜角の変化分Δθa に対応する補正がある場合について述べる。
【0043】
停車中に絶対傾斜角θa に変化があったときには、この絶対傾斜角の変化分Δθa が乗員変化分であるとして、図4に実線にて示すように、次式(7)にて推定ピッチ角θpeに補正が加えられる。
【0044】
【数7】
θpe=α・K+(θp0+Δθa ) ・・・(7)
【0045】
これにより、推定路面傾斜角θReが変化せず、次式(8)にて制御角の変化分Δθact が得られ、ヘッドライト30の光軸方向が正常に自動調整される。
【0046】
【数8】
Δθact =−(Δθa −ΔθRe)=−Δθa ・・・(8)
【0047】
ところで、図4に示す、IG−OFF(イグニッションスイッチ−オフ)の時点でECU20が作動状態にない場合には、停車中に乗員変化が行われても、絶対傾斜角の変化分Δθa が検出できず、上述のような補正を行うことができない。即ち、ECU20が絶対傾斜角の変化分Δθa を停車中の乗員変化と認識することができないため、路面傾斜角が分からなくなってしまう。このため、IG−OFF時点でも、ECU20が作動状態にあるよう直接、バッテリ電源(図示略)に接続するか、ECU20内に図示しないEEPROM(Electrical Erasable Programmable ROM)等の不揮発性メモリを搭載し、IG−OFF直前の絶対傾斜角θa0を記憶させ、次回のIG−ON(イグニッションスイッチ−オン)時点における絶対傾斜角θa との差分から次式(9)にて絶対傾斜角の変化分Δθaを求め、この絶対傾斜角の変化分Δθa を停車中の乗員変化として推定ピッチ角θpeに上述と同様な補正を加えるようにする。
【0048】
【数9】
Δθa =θa −θa0 ・・・(9)
【0049】
これにより、推定路面傾斜角θReが変化せず、上式(8)にて制御角の変化分Δθact が停車中の乗員変化時点よりのちのIG−ON時点で得られ、ヘッドライト30の光軸方向が正常に自動調整される。
【0050】
このように、本実施例の車両用前照灯光軸方向自動調整装置は、車両の重力方向に対する傾斜情報である絶対傾斜角θa を検出する1つの絶対傾斜角検出手段としての傾斜計12と、車両の車輪速センサ11からの車速V信号を微分演算することで加速度αを検出するECU20内のCPU21にて達成される加速度検出手段と、絶対傾斜角θa と加速度αから推定される車体傾斜角としての推定ピッチ角θpeとから推定路面傾斜角θReを求めるECU20内のCPU21にて達成される路面傾斜角推定手段と、路面傾斜角推定手段で得られた推定路面傾斜角θReに基づき、車両のヘッドライト30の制御角θact を算出するECU20内のCPU21にて達成される制御角演算手段と、前記制御角演算手段で算出された制御角θact に基づき、ヘッドライト30の光軸方向を調整するECU20内のCPU21、アクチュエータ35等からなる光軸方向調整手段とを具備するものである。
【0051】
また、本実施例の車両用前照灯光軸方向自動調整装置のECU20内のCPU21にて達成される路面傾斜角推定手段は、車両の停車中における絶対傾斜角θa に変化があるときには乗員変化によるものとして、推定路面傾斜角θReを補正するものである。そして、本実施例の車両用前照灯光軸方向自動調整装置は、車両におけるIG−OFF直前の絶対傾斜角θa0を記憶する絶対傾斜角記憶手段としての不揮発性メモリ(EEPROM等)を具備し、ECU20内のCPU21にて達成される路面傾斜角推定手段が、次回のIG−ON時における絶対傾斜角θa と不揮発性メモリに記憶された絶対傾斜角θa0との差分を乗員変化によるものとして、推定路面傾斜角θReを補正するものである。
【0052】
つまり、絶対傾斜角θa と加速度αから推定される推定ピッチ角θpeとから求められた推定路面傾斜角θReによって算出された制御角θact に基づき車両のヘッドライト30の光軸方向が調整される。ここで、車両の停車中における絶対傾斜角θa に変化があるときには乗員変化によるものとして推定路面傾斜角θReが補正される。具体的には、車両におけるIG−OFF直前に不揮発性メモリに記憶された絶対傾斜角θa0と、次回のIG−ON時における絶対傾斜角θa との差分が乗員変化によるものとされる。このため、車両の静的及び動的な姿勢変化、かつ、停車中の乗員変化等も考慮され、ヘッドライト30の光軸方向を調整するためのシステム構成が簡略化されコスト低減を達成することができる。
【0053】
ところで、上記実施例では、加速度αからの推定ピッチ角θpeが推定路面傾斜角θReの推定に非常に重要である。つまり、車速V信号に異常があると全て停車中と判定され、加減速または路面傾斜によるピッチ角変化を全て停車中の乗員変化によるものと誤判定してしまうこととなる。したがって、傾斜計12からの絶対傾斜角θa の変動に基づき車両の走行中または停車中を判定し、この判定と車速V信号とに不一致があればシステム異常と判定し、フェイル(異常)発生以前における制御位置までヘッドライト30の光軸方向を戻したのちに、その制御が停止される。なお、車両の走行中または停車中の判定は、例えば、傾斜計12からの絶対傾斜角θa の数秒間内における変動、ばらつき等に基づき行われる。また、フェイル発生以前における制御位置としては、ヘッドライト30の光軸方向の初期制御位置とする。
【0054】
このような車両用前照灯光軸方向自動調整装置は、絶対傾斜角検出手段としての傾斜計12で検出される絶対傾斜角θa に基づき車両の走行中または停車中を判定し、車輪速センサ11からの車速Vとの差異によりシステム異常を判定するECU20内のCPU21にて達成される異常判定手段を具備するものである。また、ECU20内のCPU21、アクチュエータ35等からなる光軸方向調整手段が、ECU20内のCPU21にて達成される異常判定手段でシステム異常と判定されたときには、異常発生以前における制御位置までヘッドライト30の光軸方向を戻したのち制御を停止するものである。そして、絶対傾斜角検出手段としての傾斜計12は、車両へ組付けたのち、またはシステム異常が発生したのちには、絶対傾斜角θa の初期値を補正するものである。
【0055】
また、上記実施例における傾斜計12は、車体の水平基準に対して正確に組付けられることが望ましいが、実際には組付誤差も生じるため、工場出荷時等で車両が水平であるときに組付誤差分を補正する作業が必要となる。また、車速V信号の異常時やその他のシステム異常で、現在の路面傾斜角θR が一旦、分からなくなると、その後におけるヘッドライト30の光軸方向の自動調整ができなくなるため、一度、車両姿勢を水平にした状態での補正が必要となる。この補正値は不揮発性メモリであるEEPROM等に格納される。
【0056】
この補正値のEEPROM等への書込は以下のような手順にて実行される。
【0057】
車両の運転席等にリセット釦(図示略)を設置し、車両水平位置に停車後、リセット釦を押すことで補正値のEEPROM等への書込みを開始してもよいが、容易に書込みが開始できるようであれば、車両の非水平状態や走行途中等に不適切に補正されることも考えられる。したがって、書込み開始条件として、車速Vが「0」、かつ傾斜計12からの絶対傾斜角θa が所定範囲内、かつリセット信号が「ON」ののち一定時間内にヘッドライト30を「OFF(消灯)」→「ON(点灯)」とし、例えば、書込中は警告灯(Warning Lump)を点滅させて作業者に書込中であることを知らせ、正常に書込完了したときには警告灯を消灯させるようにする。
【0058】
なお、上記実施例における傾斜計12は、半導体式センサのような構成として、ECU20のプリント基板上に配置してもよい。また、車輪速センサ11の代わりに周知の半導体式加速度センサを用い、傾斜計12と共に、ECU20のプリント基板上に配置してもよい。これにより、外部入力信号を必要としないクローズドループ制御システムの構築が可能となる。
【図面の簡単な説明】
【図1】 図1は本発明の実施の形態の一実施例にかかる車両用前照灯光軸方向自動調整装置の全体構成を示す概略図である。
【図2】 図2は図1のヘッドライト30の要部構成を示す断面図である。
【図3】 図3は本発明の実施の形態の一実施例にかかる車両用前照灯光軸方向自動調整装置で使用されているECU内のCPUによる車両の加減速状況と路面変化に対応する各種制御量等の遷移状態を示すタイムチャートである。
【図4】 図4は本発明の実施の形態の一実施例にかかる車両用前照灯光軸方向自動調整装置で使用されているECU20内のCPU21による車両の加減速状況、路面変化及び停車中の乗員変化に対応する各種制御量等の遷移状態を示すタイムチャートである。
【符号の説明】
12 傾斜計
20 ECU(電子制御ユニット)
30 ヘッドライト(前照灯)
35 アクチュエータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle headlamp optical axis direction automatic adjustment device for automatically adjusting the optical axis direction of irradiation by a headlamp disposed in a vehicle.
[0002]
[Prior art]
Conventionally, a pitch angle corresponding to an inclination angle of a vehicle is generally obtained by detecting a vehicle height value before and after the vehicle with a vehicle height sensor and calculating the pitch angle based on these vehicle height values. However, the vehicle height sensor needs to be disposed on the axle. In particular, it is difficult to mount the vehicle height sensor on the front wheel, which is a steering wheel, and the system configuration is complicated and expensive.
[0003]
Therefore, a method for obtaining the vehicle pitch angle using an inclinometer in place of the vehicle height sensor is desired. Here, in order to adjust the optical axis direction of the headlamp, it is necessary to control in consideration of the road surface inclination angle, but when the absolute inclination angle from the inclinometer is used, it is necessary to correct the road surface inclination angle. Become.
[0004]
As prior art documents related to this, those disclosed in Japanese Patent Application Laid-Open No. 10-324192 and Japanese Patent No. 2767220 are known.
[0005]
Among them, in Japanese Patent Application Laid-Open No. 10-324192, the influence of the road surface inclination due to a slope or the like is measured using two inclinometers, two between the suspension arms and the body in front of the vehicle and one on the body. A technique for adjusting the optical axis direction of a headlight of a vehicle while avoiding it is shown. In Japanese Patent No. 2767220, a dynamic pitch angle change of the vehicle is obtained by the acceleration of the vehicle, and a vehicle headlamp is taken into account by taking a static attitude change of the vehicle due to gravity on a slope with an inclinometer. A technique for adjusting the optical axis direction of the lamp is shown.
[0006]
[Problems to be solved by the invention]
By the way, in the former of the above-mentioned prior art documents, two inclinometers are disposed on the suspension part of the vehicle, and are subject to mounting restrictions, etc., similar to those using a conventional vehicle height sensor. At the same time, three inclinometers are necessary, and there is a problem that an expensive system configuration is unavoidable.
[0007]
In the latter case, it is described that a change in the vehicle's static attitude is taken into account, but the influence of changes in the occupant during driving or when the vehicle is stopped is taken into account. It was impossible to adjust for this.
[0008]
Accordingly, the present invention has been made to solve such a problem, and adjusts the optical axis direction of the headlamp while taking into account static and dynamic posture changes of the vehicle and changes in the occupant while the vehicle is stopped. It is an object of the present invention to provide a vehicle headlamp optical axis direction automatic adjustment device that can simplify the system configuration and achieve cost reduction.
[0009]
[Means for Solving the Problems]
The vehicle headlamp optical axis direction automatic adjustment device according to claim 1 is an absolute inclination angle detecting means comprising one inclinometer for detecting an absolute inclination angle θa which is inclination information with respect to the gravity direction of the vehicle, and the acceleration α of the vehicle. An estimated road surface inclination angle θRe, including an acceleration detection means for detecting a vehicle body, an estimated pitch angle θpe as a vehicle body inclination angle estimated from the absolute inclination angle θa and the acceleration α, and an error angle ± θerror corresponding to the inclination of the road surface itself. The estimated road surface inclination angle θRe estimated by the road surface inclination angle estimation means to be estimated and the road surface inclination angle estimation means when the vehicle is traveling on flat ground is set to zero, and the estimated road surface inclination angle θRe and the absolute inclination angle detection means are Based on the obtained difference between the absolute inclination angle θa and the control angle calculation means for calculating the control angle θact of the headlamp of the vehicle, and based on the control angle θact calculated by the control angle calculation means, Light that adjusts the optical axis direction of the lamp It comprises a direction adjusting means.
Therefore, the control angle calculation means uses the estimated road surface inclination angle θRe estimated by the road surface inclination angle estimation means from the absolute inclination angle θa by one absolute inclination angle detection means and the vehicle body inclination angle estimated from the acceleration α by the acceleration detection means. Based on the calculated control angle θact , the optical axis direction of the vehicle headlamp is adjusted by the optical axis direction adjusting means. For this reason, static and dynamic attitude changes of the vehicle are taken into consideration, the system configuration for adjusting the optical axis direction of the headlamp is simplified, and cost reduction is achieved.
[0010]
In the vehicle headlamp optical axis direction automatic adjustment device according to claim 2, if there is a change in the absolute inclination angle θa by the absolute inclination angle detecting means while the vehicle is stopped, the road surface inclination angle is assumed to be due to the occupant change by the road surface inclination angle estimating means. The estimated road surface inclination angle θRe estimated by the estimating means is corrected. Thereby, the passenger | crew change and load change during a stop are also considered, and the optical axis direction of a headlamp is adjusted normally.
[0011]
In the vehicle headlamp optical axis direction automatic adjustment device according to claim 3, the absolute inclination angle θa stored in the absolute inclination angle storage means immediately before the ignition switch of the vehicle is turned off, and the absolute inclination angle when the ignition switch is turned on the next time. The estimated road surface inclination angle θRe estimated by the road surface inclination angle estimation unit is corrected by assuming that the difference from the absolute inclination angle θa by the detection unit is due to occupant change. As a result, occupant changes and load changes while the ignition switch is off are taken into consideration, and the optical axis direction of the headlamp is adjusted normally.
[0012]
In the vehicle headlamp optical axis direction automatic adjustment device according to the fourth aspect, the abnormality determining means determines whether the vehicle is running or stopped based on the variation of the absolute inclination angle θa from the absolute inclination angle detecting means. If there is a difference between the two, it is determined that the system is abnormal. Thereby, it is possible to accurately know the occupant change while the vehicle is stopped.
[0013]
In the vehicular headlamp optical axis direction automatic adjustment device according to the fifth aspect, when the abnormality determination means determines that the system is abnormal, the control is stopped after returning the optical axis direction of the headlamp to the control position before the occurrence of the abnormality. The Thereby, inappropriate control of the optical axis direction of the headlamp when the system is abnormal is prevented.
[0014]
In the vehicle headlamp optical axis direction automatic adjustment device according to claim 6, the initial value of the absolute inclination angle θa is corrected after the absolute inclination angle detecting means is assembled to the vehicle or after a system abnormality occurs. . As a result, the absolute inclination angle θa from the absolute inclination angle detecting means after assembly of the absolute inclination angle detecting means or after the system abnormality becomes an appropriate value, and its reliability can be improved.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples.
[0016]
FIG. 1 is a schematic diagram showing an overall configuration of a vehicular headlamp optical axis direction automatic adjusting apparatus according to an embodiment of the present invention.
[0017]
In FIG. 1, the vehicle speed (wheel speed) V is measured by a wheel speed sensor 11 or the like that is disposed in a vehicle and used in a well-known ABS (Antilock Brake System), and is also measured by an inclinometer 12 disposed in the vehicle body. The absolute tilt angle θa, which is the tilt angle with respect to the direction of gravity, and other sensor signals (not shown) are input to an ECU (Electronic Control Unit) 20 mounted on the vehicle. The ECU 20, the wheel speed sensor 11 and the inclinometer 12 are shown outside the vehicle for convenience.
[0018]
The ECU 20 includes a CPU 21 as a central processing unit that executes various known arithmetic processes, a ROM 22 that stores control programs, a RAM 23 that stores various data, a B / U (backup) RAM 24, an input / output circuit 25, and a bus that connects them. It is configured as a logical operation circuit composed of lines 26 and the like.
[0019]
Then, as will be described later, the control angle θact is calculated by the CPU 21 in the ECU 20 based on the vehicle speed V signal from the wheel speed sensor 11 and the absolute inclination angle θa from the inclinometer 12, and the right and left headlights (headlights) of the vehicle The light is input to the actuator 35 on the 30 side, and the optical axis directions of the left and right headlights 30 are automatically adjusted.
[0020]
FIG. 2 is a cross-sectional view showing a main configuration of the headlight 30 shown in FIG.
[0021]
In FIG. 2, a headlight 30 mainly supports a lamp 31 and a reflector 32 for fixing the lamp 31, a support portion 33 that supports the reflector 32 so as to be swingable in the direction of an arc, and the reflector 32 and is movable. The other movable portion 34, and an actuator 35 including a step motor for driving the movable portion 34 in the front-rear arrow direction. The optical axis direction of the headlight 30 is initially set on the assumption that one driver is in the vehicle.
[0022]
Next, the flat ground (start acceleration) by the CPU 21 in the ECU 20 used in the vehicle headlamp optical axis direction automatic adjustment device according to an example of the embodiment of the present invention → slope (up / down: constant speed) → Calculation of control angle θact for driving actuator 35 that automatically adjusts the optical axis direction of headlight 30 with reference to the time chart of FIG. 3 showing transition states of various control amounts corresponding to flat ground (deceleration stop) Will be described.
[0023]
In general, since the spring constant of a suspension of a vehicle is linear in the normal range, it is known that there is a proportional relationship between acceleration and a change in pitch angle from when the vehicle is stopped. Therefore, as shown in FIG. 3, if it is a flat ground, the estimated pitch angle θpe based only on acceleration can be obtained by the following equation (1). Here, α is the acceleration by the differential (dV / dt) calculation of the vehicle speed V, K is the spring constant, and θp0 is the pitch angle when the vehicle is stopped.
[0024]
[Expression 1]
θpe = α ・ K + θp0 (1)
[0025]
On the other hand, the absolute inclination angle θa obtained from the inclinometer 12 always includes the ground pitch angle θpe with respect to the actual road surface and the inclination of the road surface itself. That is, the estimated road surface inclination angle θRe includes an error angle ± θ error as the inclination of the road surface itself. Therefore, the estimated road surface inclination angle θRe can be obtained by the following equation (2).
[0026]
[Expression 2]
θRe = θa−θpe (2)
[0027]
Here, when the vehicle actually travels on a hill, there is a change in the posture of the vehicle due to gravity, and a positive error angle θ error occurs on the uphill and a negative error angle −θerror occurs on the downhill. In order to correct this, after calculating the estimated road surface inclination angle θRe, it is necessary to estimate the error angle ± θerror from the estimated road surface inclination angle θRe and correct the error angle ± θerror .
[0028]
In this way, when running on a slope, the control angle θact is calculated by the following equation (3) from the difference between the estimated road surface inclination angle θRe and the absolute inclination angle θa. Based on this control angle θact, the actuator 35 is driven and the optical axis direction of the headlight 30 is automatically adjusted.
[0029]
[Equation 3]
θact = − (θa−θRe) (3)
[0030]
Further, when traveling on flat ground, that is, when the estimated road inclination angle θRe is substantially “0”, the absolute inclination angle θa as the output of the inclinometer 12 indicates the ground inclination angle. θact is calculated. Based on this control angle θact, the actuator 35 is driven and the optical axis direction of the headlight 30 is automatically adjusted.
[0031]
[Expression 4]
θact = −θa (4)
[0032]
Thus, the vehicular headlamp optical axis direction automatic adjustment device of the present embodiment includes an inclinometer 12 as one absolute inclination angle detecting means for detecting an absolute inclination angle θa that is inclination information with respect to the gravity direction of the vehicle, Acceleration detecting means achieved by the CPU 21 in the ECU 20 that detects the acceleration α by differentiating the vehicle speed V signal from the vehicle wheel speed sensor 11, and the vehicle body inclination angle estimated from the absolute inclination angle θa and the acceleration α. Based on the estimated road surface inclination angle θre obtained from the estimated road surface inclination angle θre obtained by the CPU 21 in the ECU 20 and the estimated road surface inclination angle θRe obtained from the road surface inclination angle estimation means. Based on the control angle calculation means achieved by the CPU 21 in the ECU 20 for calculating the control angle θact of the headlight (headlight) 30 and the control angle θact calculated by the control angle calculation means. CPU21 in ECU20 for adjusting an optical axis direction of the headlight 30, in which includes an optical axis direction adjusting means comprising an actuator 35 like.
[0033]
That is, the optical axis direction of the headlight 30 of the vehicle is adjusted based on the control angle θact calculated by the estimated road surface inclination angle θRe obtained from the absolute inclination angle θa and the estimated pitch angle θpe estimated from the acceleration α. For this reason, static and dynamic attitude changes of the vehicle are taken into consideration, the system configuration for adjusting the optical axis direction of the headlight 30 is simplified, and cost reduction can be achieved.
[0034]
Next, the flat ground (start acceleration) by the CPU 21 in the ECU 20 used in the vehicle headlamp optical axis direction automatic adjustment device according to an example of the embodiment of the present invention → slope (up / down: constant speed) → Actuator 35 for automatically adjusting the optical axis direction of the headlight 30 with reference to the time chart of FIG. 4 showing transition states of various control amounts and the like corresponding to the slope (deceleration stop on the way down and occupant change while stopping) The calculation of the control angle θact for driving will be described.
[0035]
Even when acceleration / deceleration occurs during running on a slope, the control angle θact is calculated in the same manner using the above equation (3). However, as shown in FIG. 4, when the occupant changes during the stop and the absolute inclination angle θa obtained from the inclinometer 12 changes, the following correction is required. That is, when the vehicle is stopped, the estimated pitch angle θpe does not change and only the absolute inclination angle θa changes.
[0036]
First, the case where there is no correction corresponding to the change Δθa in the absolute tilt angle will be described.
[0037]
A change ΔθRe of the estimated road surface inclination angle is obtained by the following equation (5) (shown by a broken line in FIG. 4). Here, Δθa is a change in the absolute inclination angle due to a change in the occupant while the vehicle is stopped, and Δθpe is a change in the estimated pitch angle, which can be regarded as “0”.
[0038]
[Equation 5]
ΔθRe = Δθa−Δθpe = Δθa (5)
[0039]
Therefore, the change Δθact of the control angle is obtained by the following equation (6).
[0040]
[Formula 6]
Δθact = − (Δθa−ΔθRe) = 0 (6)
[0041]
In other words, despite the change in the ground pitch angle θp due to a change in the occupant while the vehicle is stopped, the change in absolute inclination angle Δθa is “0”, so control is not performed, and an error occurs in the estimated road inclination angle θRe. It becomes. Therefore, when there is a change in the absolute inclination angle θa while the vehicle is stopped, it is necessary to make a correction corresponding to the change Δθa in the absolute inclination angle, assuming that the change Δθa in the absolute inclination angle is an occupant change. It is.
[0042]
Therefore, a case where there is a correction corresponding to the change Δθa in the absolute inclination angle will be described.
[0043]
When there is a change in the absolute inclination angle θa while the vehicle is stopped, it is assumed that the change Δθa in the absolute inclination angle is an occupant change, and as shown by the solid line in FIG. Correction is added to θpe.
[0044]
[Expression 7]
θpe = α · K + (θp0 + Δθa) (7)
[0045]
As a result, the estimated road surface inclination angle θRe does not change, and the change amount Δθact of the control angle is obtained by the following equation (8), and the optical axis direction of the headlight 30 is normally automatically adjusted.
[0046]
[Equation 8]
Δθact = − (Δθa−ΔθRe) = − Δθa (8)
[0047]
Incidentally, when the ECU 20 is not in an operating state at the time of IG-OFF (ignition switch-off) shown in FIG. 4, even if an occupant is changed while the vehicle is stopped, the change Δθa of the absolute inclination angle can be detected. Therefore, the correction as described above cannot be performed. That is, since the ECU 20 cannot recognize the change Δθa in the absolute inclination angle as a change in the occupant while the vehicle is stopped, the road inclination angle is not known. For this reason, even at the time of IG-OFF, the ECU 20 is directly connected to a battery power source (not shown) or a non-volatile memory such as an EEPROM (Electrical Erasable Programmable ROM) is mounted in the ECU 20, The absolute inclination angle θa0 immediately before IG-OFF is stored, and the change Δθa of the absolute inclination angle is obtained from the difference with the absolute inclination angle θa at the next IG-ON (ignition switch-on) time by the following equation (9). Then, the same correction as described above is applied to the estimated pitch angle θpe with the change Δθa of the absolute inclination angle as the occupant change while the vehicle is stopped.
[0048]
[Equation 9]
Δθa = θa−θa0 (9)
[0049]
As a result, the estimated road surface inclination angle θRe does not change, and the control angle change Δθact is obtained at the time of IG-ON after the occupant change time when the vehicle is stopped in the above equation (8). The direction is automatically adjusted normally.
[0050]
Thus, the vehicular headlamp optical axis direction automatic adjustment device of the present embodiment includes an inclinometer 12 as one absolute inclination angle detecting means for detecting an absolute inclination angle θa that is inclination information with respect to the gravity direction of the vehicle, Acceleration detecting means achieved by the CPU 21 in the ECU 20 that detects the acceleration α by differentiating the vehicle speed V signal from the vehicle wheel speed sensor 11, and the vehicle body inclination angle estimated from the absolute inclination angle θa and the acceleration α. Based on the estimated road surface inclination angle θre obtained from the estimated road surface inclination angle θre obtained by the CPU 21 in the ECU 20 and the estimated road surface inclination angle θRe obtained from the road surface inclination angle estimation means. Based on the control angle calculation means achieved by the CPU 21 in the ECU 20 for calculating the control angle θact of the headlight 30 and the control angle θact calculated by the control angle calculation means, CPU21 in ECU20 for adjusting an optical axis direction of the bets 30, in which includes the optical axis direction adjusting means comprising an actuator 35 like.
[0051]
Further, the road surface inclination angle estimation means achieved by the CPU 21 in the ECU 20 of the vehicle headlamp optical axis direction automatic adjustment device of this embodiment is based on changes in the occupant when there is a change in the absolute inclination angle θa while the vehicle is stopped. As an example, the estimated road surface inclination angle θRe is corrected. The vehicular headlamp optical axis direction automatic adjustment device of the present embodiment includes a nonvolatile memory (such as an EEPROM) as absolute inclination angle storage means for storing the absolute inclination angle θa0 immediately before IG-OFF in the vehicle, The road surface inclination angle estimation means achieved by the CPU 21 in the ECU 20 estimates the difference between the absolute inclination angle θa at the next IG-ON and the absolute inclination angle θa0 stored in the non-volatile memory as a occupant change. This corrects the road surface inclination angle θRe.
[0052]
That is, the optical axis direction of the headlight 30 of the vehicle is adjusted based on the control angle θact calculated by the estimated road surface inclination angle θRe obtained from the absolute inclination angle θa and the estimated pitch angle θpe estimated from the acceleration α. Here, when there is a change in the absolute inclination angle θa while the vehicle is stopped, the estimated road surface inclination angle θRe is corrected as a result of the occupant change. Specifically, the difference between the absolute inclination angle θa0 stored in the non-volatile memory immediately before the IG-OFF in the vehicle and the absolute inclination angle θa at the next IG-ON is caused by the occupant change. For this reason, static and dynamic attitude changes of the vehicle, occupant changes while the vehicle is stopped, etc. are taken into consideration, and the system configuration for adjusting the optical axis direction of the headlight 30 is simplified and the cost reduction is achieved. Can do.
[0053]
In the above embodiment, the estimated pitch angle θpe from the acceleration α is very important for estimating the estimated road surface inclination angle θRe. That is, if there is an abnormality in the vehicle speed V signal, it is determined that the vehicle is all stopped, and it is erroneously determined that all changes in pitch angle due to acceleration / deceleration or road surface inclination are due to changes in the occupant. Therefore, it is determined whether the vehicle is running or stopped based on the variation of the absolute inclination angle θa from the inclinometer 12, and if there is a discrepancy between this determination and the vehicle speed V signal, it is determined that the system is abnormal, and before the failure (abnormality) occurs. After returning the optical axis direction of the headlight 30 to the control position at, the control is stopped. Note that the determination of whether the vehicle is running or stopped is made based on, for example, fluctuations and variations in the absolute inclination angle θa from the inclinometer 12 within a few seconds. The control position before the occurrence of the failure is the initial control position of the headlight 30 in the optical axis direction .
[0054]
Such a vehicle headlamp optical axis direction automatic adjusting device determines whether the vehicle is running or stopped based on the absolute inclination angle θa detected by an inclinometer 12 as an absolute inclination angle detecting means, and a wheel speed sensor 11. The abnormality determination means achieved by CPU21 in ECU20 which determines a system abnormality by the difference with the vehicle speed V from is provided. When the optical axis direction adjusting means including the CPU 21, the actuator 35, etc. in the ECU 20 is determined as a system abnormality by the abnormality determining means achieved by the CPU 21 in the ECU 20, the headlight 30 is moved to the control position before the occurrence of the abnormality. The control is stopped after the direction of the optical axis is returned. The inclinometer 12 as the absolute inclination angle detecting means corrects the initial value of the absolute inclination angle θa after being assembled to the vehicle or after a system abnormality occurs.
[0055]
In addition, it is desirable that the inclinometer 12 in the above-described embodiment is accurately assembled with respect to the horizontal reference of the vehicle body. However, since an assembly error actually occurs, when the vehicle is horizontal at the time of factory shipment or the like. Work to correct the assembly error is required. In addition, if the current road surface inclination angle θR is once unknown due to an abnormality in the vehicle speed V signal or other system abnormality, the automatic adjustment of the optical axis direction of the headlight 30 cannot be performed thereafter, so the vehicle posture is once changed. Correction in the horizontal state is required. This correction value is stored in an EEPROM, which is a non-volatile memory.
[0056]
The correction value is written to the EEPROM or the like in the following procedure.
[0057]
A reset button (not shown) is installed in the driver's seat of the vehicle, and after stopping at the vehicle horizontal position, the correction value may be started to be written to the EEPROM by pressing the reset button. If possible, it can be considered that the vehicle is improperly corrected in a non-horizontal state or during traveling. Accordingly, as a write start condition, the headlight 30 is turned “OFF (lights off) within a predetermined time after the vehicle speed V is“ 0 ”, the absolute inclination angle θa from the inclinometer 12 is within a predetermined range, and the reset signal is“ ON ”. ) ”→“ ON (lit) ”, for example, a warning light (Warning Lump) blinks during writing to notify the worker that writing is in progress, and the warning light turns off when writing is completed normally I will let you.
[0058]
The inclinometer 12 in the above embodiment may be arranged on the printed circuit board of the ECU 20 as a configuration like a semiconductor sensor. Further, instead of the wheel speed sensor 11, a known semiconductor acceleration sensor may be used and disposed on the printed circuit board of the ECU 20 together with the inclinometer 12. This makes it possible to construct a closed loop control system that does not require an external input signal.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the overall configuration of a vehicular headlamp optical axis direction automatic adjusting apparatus according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a main configuration of the headlight 30 of FIG.
FIG. 3 corresponds to a vehicle acceleration / deceleration situation and a road surface change by a CPU in an ECU used in the vehicle headlamp optical axis direction automatic adjustment device according to one embodiment of the present invention. It is a time chart which shows transition states, such as various control amounts.
FIG. 4 is a view showing acceleration / deceleration status of a vehicle, a change in road surface, and a stop by a CPU 21 in an ECU 20 used in a vehicle headlamp optical axis direction automatic adjusting device according to an embodiment of the present invention. It is a time chart which shows transition states, such as various control amounts corresponding to a passenger | crew change.
[Explanation of symbols]
12 Inclinometer 20 ECU (Electronic Control Unit)
30 Headlight (headlight)
35 Actuator

Claims (6)

車両の重力方向に対する傾斜情報である絶対傾斜角(θa)を検出する1つの傾斜計からなる絶対傾斜角検出手段と、
前記車両の加速度(α)を検出する加速度検出手段と、
前記絶対傾斜角(θa)と前記加速度(α)から推定される車体傾斜角としての推定ピッチ角(θpe)と路面自体の傾き分の誤差角(±θerror)とを含む推定路面傾斜角(θRe)を推定する路面傾斜角推定手段と、
前記車両の平地走行時の前記路面傾斜角推定手段で推定された前記推定路面傾斜角(θRe)をゼロとし、前記推定路面傾斜角(θRe)と前記絶対傾斜角検出手段で得た絶対傾斜角(θa)との差分に基づき、前記車両の前照灯の制御角(θact)を算出する制御角演算手段と、
前記制御角演算手段で算出された前記制御角(θact)に基づき、前記前照灯の光軸方向を調整する光軸方向調整手段と
を具備することを特徴とする車両用前照灯光軸方向自動調整装置。
Absolute inclination angle detection means comprising one inclinometer for detecting an absolute inclination angle (θa) which is inclination information with respect to the direction of gravity of the vehicle;
Acceleration detecting means for detecting the acceleration (α) of the vehicle;
Estimated road surface inclination angle (θRe) including an estimated pitch angle (θpe) as a vehicle body inclination angle estimated from the absolute inclination angle (θa) and the acceleration ) and an error angle (± θerror) corresponding to the inclination of the road surface itself. ) For estimating the road surface inclination angle,
The estimated road surface inclination angle (θRe) estimated by the road surface inclination angle estimation means when the vehicle is traveling on flat ground is set to zero, and the estimated road surface inclination angle (θRe) and the absolute inclination angle obtained by the absolute inclination angle detection means A control angle calculation means for calculating a control angle (θact) of the headlight of the vehicle based on a difference from (θa) ;
The vehicle headlamp optical axis direction includes an optical axis direction adjusting unit that adjusts the optical axis direction of the headlamp based on the control angle (θact) calculated by the control angle calculation unit. Automatic adjustment device.
前記路面傾斜角推定手段は、前記車両の停車中における前記絶対傾斜角(θa)に変化があるときには乗員変化によるものとして、前記推定路面傾斜角(θRe)の推定値を補正することを特徴とする請求項1に記載の車両用前照灯光軸方向自動調整装置。The road surface inclination angle estimation means corrects the estimated value of the estimated road surface inclination angle (θRe) as a result of occupant change when there is a change in the absolute inclination angle (θa) while the vehicle is stopped. The vehicle headlamp optical axis direction automatic adjustment device according to claim 1. 更に、前記車両におけるイグニッションスイッチのオフ直前の前記絶対傾斜角(θa)を記憶する絶対傾斜角記憶手段を具備し、前記路面傾斜角推定手段は、次回の前記イグニッションスイッチのオン時における前記絶対傾斜角(θa)と前記絶対傾斜角記憶手段に記憶された前記絶対傾斜角(θa)との差分を乗員変化によるものとして、前記推定路面傾斜角(θRe)の推定値を補正することを特徴とする請求項1または請求項2に記載の車両用前照灯光軸方向自動調整装置。Further, the vehicle includes absolute inclination angle storage means for storing the absolute inclination angle (θa) immediately before the ignition switch is turned off in the vehicle, and the road surface inclination angle estimation means is configured to turn on the absolute inclination when the ignition switch is turned on next time. the absolute inclination angle stored in the angle between (.theta.a) the absolute inclination angle storing means the difference between (.theta.a) as by the occupant changes, and characterized in that for correcting the estimated value of the estimated road surface inclination angle ([theta] re) The vehicle headlamp optical axis direction automatic adjustment device according to claim 1 or 2. 更に、前記絶対傾斜角検出手段で検出される前記絶対傾斜角(θa)に基づき前記車両の走行中または停車中を判定し、車速との差異によりシステム異常を判定する異常判定手段を具備することを特徴とする請求項1乃至請求項3の何れか1つに記載の車両用前照灯光軸方向自動調整装置。Furthermore, it comprises an abnormality determining means for determining whether the vehicle is running or stopped based on the absolute inclination angle (θa) detected by the absolute inclination angle detecting means, and determining a system abnormality based on a difference from the vehicle speed. The vehicle headlamp optical axis direction automatic adjustment device according to any one of claims 1 to 3, wherein 前記光軸方向調整手段は、前記異常判定手段でシステム異常と判定されたときには、異常発生以前における制御位置まで前記前照灯の光軸方向を戻したのち制御を停止することを特徴とする請求項4に記載の車両用前照灯光軸方向自動調整装置。The optical axis direction adjusting means stops the control after returning the optical axis direction of the headlamp to the control position before the occurrence of abnormality when the abnormality determining means determines that the system is abnormal. Item 5. The vehicle headlamp optical axis direction automatic adjustment device according to Item 4. 前記絶対傾斜角検出手段は、前記車両へ組付けたのち、またはシステム異常が発生したのちには、前記絶対傾斜角(θa)の初期値を補正することを特徴とする請求項1乃至請求項5の何れか1つに記載の車両用前照灯光軸方向自動調整装置。The absolute inclination angle detecting means corrects an initial value of the absolute inclination angle (θa) after being assembled to the vehicle or after a system abnormality occurs. The vehicle headlamp optical axis direction automatic adjustment device according to any one of 5.
JP2000161662A 2000-05-31 2000-05-31 Automatic headlamp optical axis adjustment device for vehicles Expired - Lifetime JP4726277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000161662A JP4726277B2 (en) 2000-05-31 2000-05-31 Automatic headlamp optical axis adjustment device for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000161662A JP4726277B2 (en) 2000-05-31 2000-05-31 Automatic headlamp optical axis adjustment device for vehicles

Publications (2)

Publication Number Publication Date
JP2001341578A JP2001341578A (en) 2001-12-11
JP4726277B2 true JP4726277B2 (en) 2011-07-20

Family

ID=18665656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000161662A Expired - Lifetime JP4726277B2 (en) 2000-05-31 2000-05-31 Automatic headlamp optical axis adjustment device for vehicles

Country Status (1)

Country Link
JP (1) JP4726277B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3129474A1 (en) * 2021-11-23 2023-05-26 Aml Systems Method and system for estimating a total pitch angle of a motor vehicle.

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168179A (en) * 2002-11-20 2004-06-17 Koito Mfg Co Ltd Irradiating direction control device of head lamp for vehicle
DE102004006133B4 (en) 2004-02-07 2006-11-23 Bayerische Motoren Werke Ag Device for headlight range adjustment of a motor vehicle
JP2008063997A (en) * 2006-09-06 2008-03-21 Toyota Motor Corp Oil consumption detecting device
JP2009161125A (en) * 2008-01-09 2009-07-23 Kanto Auto Works Ltd Optical axis adjusting device of vehicle headlamp
JP5577080B2 (en) * 2009-12-02 2014-08-20 スタンレー電気株式会社 Headlamp optical axis adjustment device
US8858046B2 (en) * 2010-06-28 2014-10-14 Koito Manufacturing Co., Ltd. Control apparatus for vehicle lamp, vehicle lighting system, and vehicle lamp
EP2402212B1 (en) * 2010-07-01 2014-08-06 Koito Manufacturing Co., Ltd. Control device for vehicle lamp, vehicle lamp, and method of controlling vehicle lamp
JP5787649B2 (en) 2010-10-26 2015-09-30 株式会社小糸製作所 Vehicle lamp control device and vehicle lamp system
USRE49776E1 (en) 2010-10-26 2024-01-02 Koito Manufacturing Co., Ltd. Vehicle lamp controller, vehicle lamp system, and vehicle lamp control method
JP6193928B2 (en) * 2010-10-26 2017-09-06 株式会社小糸製作所 Vehicular lamp control device and vehicle attitude angle information calculation method
JP5591067B2 (en) * 2010-11-02 2014-09-17 株式会社小糸製作所 VEHICLE LIGHT CONTROL DEVICE, VEHICLE LIGHT SYSTEM, AND VEHICLE LIGHT CONTROL METHOD
JP5557703B2 (en) * 2010-11-09 2014-07-23 株式会社小糸製作所 Control device for vehicular lamp
JP5761982B2 (en) 2010-12-15 2015-08-12 株式会社小糸製作所 Control device for vehicular lamp
JP5713784B2 (en) 2011-04-22 2015-05-07 株式会社小糸製作所 VEHICLE LIGHT CONTROL DEVICE AND VEHICLE LIGHT SYSTEM
JP5749074B2 (en) * 2011-05-18 2015-07-15 株式会社小糸製作所 VEHICLE LIGHT CONTROL DEVICE AND VEHICLE LIGHT SYSTEM
JP5749081B2 (en) 2011-05-27 2015-07-15 株式会社小糸製作所 Vehicle lamp control device and vehicle lamp system
JP5780839B2 (en) * 2011-06-03 2015-09-16 株式会社小糸製作所 Vehicle lamp control device and vehicle lamp system
JP2013035303A (en) 2011-08-03 2013-02-21 Koito Mfg Co Ltd Sensor mounting structure
JP5678873B2 (en) 2011-11-30 2015-03-04 株式会社デンソー Vehicle headlamp control device
JP6004916B2 (en) * 2012-11-26 2016-10-12 株式会社小糸製作所 Vehicle lamp control device and vehicle lamp system
JP6177105B2 (en) * 2013-11-20 2017-08-09 株式会社小糸製作所 Control device for vehicular lamp
JP6285260B2 (en) * 2014-04-14 2018-02-28 株式会社小糸製作所 Control device for vehicular lamp
JP6326932B2 (en) 2014-04-18 2018-05-23 株式会社デンソー Pitching angle calculation device and optical axis adjustment device
US9704049B2 (en) * 2014-08-04 2017-07-11 Gentex Corporation Driver assist system utilizing an inertial sensor
JP6224177B2 (en) * 2016-06-24 2017-11-01 株式会社小糸製作所 Control device for vehicular lamp

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3129474A1 (en) * 2021-11-23 2023-05-26 Aml Systems Method and system for estimating a total pitch angle of a motor vehicle.
WO2023094452A1 (en) * 2021-11-23 2023-06-01 Aml Systems Method and system for estimating a total pitch angle of a motor vehicle.

Also Published As

Publication number Publication date
JP2001341578A (en) 2001-12-11

Similar Documents

Publication Publication Date Title
JP4726277B2 (en) Automatic headlamp optical axis adjustment device for vehicles
JP3384236B2 (en) Automatic adjustment of headlight optical axis direction for vehicles
US6193398B1 (en) System for automatically adjusting optical axis direction of vehicle headlight
JP3760118B2 (en) Irradiation direction control device for vehicular lamp
JP3168414B2 (en) Optical axis adjustment device for vehicle headlights
JP4655913B2 (en) Wheel vertical acceleration detection device for posture correction of detection value of vertical acceleration sensor
JP2001080409A (en) Auto-leveling device for headlight of automobile
JP4114735B2 (en) Auto-leveling device for automotive headlamps
JP3847972B2 (en) Auto-leveling device for automotive headlamps
JP4036909B2 (en) Vehicle headlamp optical axis automatic adjustment device
JP2010143506A (en) Auto-leveling system for vehicular lamp
JP4002821B2 (en) Irradiation direction control device for vehicular lamp
JP6362815B2 (en) Optical axis control device for headlamps
JP4140125B2 (en) Automatic headlamp optical axis adjustment device for vehicles
JP4145812B2 (en) Auto-leveling device for automotive headlamps
JP2008308091A (en) Vehicle control device
JP2007001340A (en) Vehicle behavior controller
JP3820299B2 (en) Irradiation direction control device for vehicular lamp
JP2004168130A (en) Irradiating direction controller for vehicle headlight
JP4140656B2 (en) Automatic headlamp optical axis adjustment device for vehicles
JP2005067300A (en) Device for automatically adjusting optical axis direction of headlight for vehicle
JP3740889B2 (en) Automatic headlamp optical axis adjustment device for vehicles
JP4059191B2 (en) Automatic headlamp optical axis adjustment device for vehicles
KR20150062323A (en) Adaptive Front-Lightning System of Vehicles
JP4396050B2 (en) Automatic headlamp optical axis adjustment device for vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090901

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091001

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110412

R150 Certificate of patent or registration of utility model

Ref document number: 4726277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term