JP4140125B2 - Automatic headlamp optical axis adjustment device for vehicles - Google Patents

Automatic headlamp optical axis adjustment device for vehicles Download PDF

Info

Publication number
JP4140125B2
JP4140125B2 JP10785399A JP10785399A JP4140125B2 JP 4140125 B2 JP4140125 B2 JP 4140125B2 JP 10785399 A JP10785399 A JP 10785399A JP 10785399 A JP10785399 A JP 10785399A JP 4140125 B2 JP4140125 B2 JP 4140125B2
Authority
JP
Japan
Prior art keywords
vehicle
optical axis
axis direction
vehicle height
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10785399A
Other languages
Japanese (ja)
Other versions
JP2000142213A (en
Inventor
謙一 西村
弘章 奥地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP10785399A priority Critical patent/JP4140125B2/en
Application filed by Denso Corp filed Critical Denso Corp
Priority to DE69931407T priority patent/DE69931407T2/en
Priority to EP06004374A priority patent/EP1671842B1/en
Priority to DE69927318T priority patent/DE69927318T2/en
Priority to DE69938083T priority patent/DE69938083T2/en
Priority to EP03023671A priority patent/EP1380468B1/en
Priority to EP07023091A priority patent/EP1889747B1/en
Priority to DE69941636T priority patent/DE69941636D1/en
Priority to EP99111611A priority patent/EP0965487B1/en
Priority to US09/333,686 priority patent/US6193398B1/en
Publication of JP2000142213A publication Critical patent/JP2000142213A/en
Application granted granted Critical
Publication of JP4140125B2 publication Critical patent/JP4140125B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To deal with various load conditions at the time of automatically adjusting an optical axis direction of vehicular headlights (head lamps) on the basis of an output from one height sensor. SOLUTION: A rear height value (a displacement amount of height in rear wheel side) is inputted from a height sensor arranged on a rear part of a vehicle to an ECU (an electronic control unit) 20. On the basis of the rear height value, a pitch angle to a horizontal surface in an optical axis direction of headlights 30 is calculated by a plurality of formulas for forecasting a vehicular posture corresponding to a vehicular type and corresponding to load conditions of an occupant load and a trunk load. Thus, the pitch angle corresponding to the load conditions of that time is calculated by the rear height value from one height sensor 11 in preparing a plurality of formulas for forecasting a vehicular posture corresponding to the load conditions beforehand. Accordingly, a necessary adjusting angle for a target optical axis direction can be calculated from the pitch angle to appropriately adjust the optical axis direction of the headlights 30.

Description

【0001】
【発明の属する技術分野】
本発明は、車両に配設される前照灯による照射の光軸方向を自動的に調整する車両用前照灯光軸方向自動調整装置に関するものである。
【0002】
【従来の技術】
従来、車両の前照灯においては、車体の傾きによって前照灯の光軸方向が上向きになると対向車等に眩光を与えたり、光軸方向が下向きになると運転者の遠方視認性が低下することとなるため、前照灯の光軸方向を一定に保持したいという要望がある。
【0003】
【発明が解決しようとする課題】
ところで、荷重負荷による車両姿勢の変化量を一次式で近似した傾き角を用いた光軸制御が知られている。このものでは、「乗員荷重のみ」または「乗員荷重及びトランク荷重50kgまで」等の限られた荷重条件では前照灯の光軸方向を車両姿勢に一致させることが可能である。ところが、前述のものでは、乗員荷重とトランク荷重との組合わせによる多様な荷重条件には対処できないという不具合があった。
【0004】
そこで、この発明はかかる不具合を解決するためになされたもので、簡単なシステムで安価な車両用前照灯光軸方向自動調整装置の提供を目的とし、特に、車両の前照灯の光軸方向を1つの車高センサからの出力に基づいて自動的に調整する際、多様な荷重条件に対処可能な車両用前照灯光軸方向自動調整装置の提供を課題としている。
【0005】
【課題を解決するための手段】
請求項1の車両用前照灯光軸方向自動調整装置によれば、傾き角演算手段で1つの車高センサからの出力に基づき前照灯の光軸方向の水平面に対する傾き角が、乗員荷重とトランク荷重との荷重条件に対応し傾きが異なる複数の車両姿勢に分けた予測式を用いて算出され、この傾き角に基づき光軸方向調整手段で前照灯の光軸方向が調整される。このため、例えば、車両タイプ等に対応させ乗員荷重とトランク荷重との荷重条件に対応した複数の車両姿勢の予測式を予め用意しておくことで1つの車高センサからの出力値が検出されれば、そのときの荷重条件に対応する傾き角が算出され、その傾き角から必要な目標光軸方向調整角度が算出でき前照灯の光軸方向がそのときの荷重条件に対応して適切に調整されるという効果が得られる。
【0006】
請求項2の車両用前照灯光軸方向自動調整装置では、傾き角演算手段によって車高センサ以外のセンサ出力に対応した複数の車両姿勢に分けた複数の予測式からそのときの荷重条件に対応した予測式が択一される。このため、車両タイプ等に加えてそのときの複雑な荷重条件の変化に対応してより適切な光軸方向の調整制御が実施できるという効果が得られる。
【0007】
請求項3の車両用前照灯光軸方向自動調整装置によれば、傾き角演算手段で1つの車高センサからの出力、記憶手段にシステム誤差情報として記憶された車高センサの取付けに伴う誤差や車両の他の要因に基づく種々の誤差に基づき前照灯の光軸方向の水平面に対する傾き角が、乗員荷重とトランク荷重との荷重条件に対応し傾きが異なる複数の車両姿勢に分けた予測式を用いて算出され、この傾き角に基づき光軸方向調整手段で前照灯の光軸方向が調整される。このため、例えば、車両タイプやオプション装備等に対応させ乗員荷重とトランク荷重との荷重条件に対応した複数の車両姿勢の予測式を予め用意しておき、1つの車高センサで検出された出力値にシステム誤差情報が加味されることで、そのときの荷重条件に対応する傾き角が算出され、その傾き角から必要な目標光軸方向調整角度が算出でき前照灯の光軸方向がそのときの荷重条件に対応して適切に調整されるという効果が得られる。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態を実施例に基づいて説明する。
〈実施例1〉
図1は本発明の実施の形態の第1実施例にかかる車両用前照灯光軸方向自動調整装置の全体構成を示す概略図である。
【0009】
図1において、車両の後部の運転席側または助手席側の車軸には車高センサ11が取付けられている。この車高センサ11からは後輪側の車軸と車体との相対変位量(車高の変位量)としてのリヤ車高値(後輪側の車高の変位量:以下、
『リヤ車高測定値』とも言う)HR、その他のセンサ(図示略)から各種センサ信号等が車両に搭載されたECU(Electronic Control Unit:電子制御ユニット)20に入力されている。なお、ECU20は便宜上、車両の外部に図示されている。
【0010】
ECU20は、周知の中央処理装置としてのCPU21、制御プログラムを格納したROM22、各種データを格納するRAM23、B/U(バックアップ)RAM24、入出力回路25及びそれらを接続するバスライン26等からなる論理演算回路として構成されている。このECU20からの出力信号が車両のヘッドライト(前照灯)30側のアクチュエータ35に入力され、後述するように、ヘッドライト30の光軸方向が調整される。
【0011】
図2は図1のヘッドライト30の要部構成を示す断面図である。
【0012】
図2において、ヘッドライト30は主として、ランプ31とそのランプ31を固定するリフレクタ32、そのリフレクタ32を円弧矢印方向に揺動自在に支持する一方の支持部33及びリフレクタ32を支持すると共に可動自在な他方の可動部34、その可動部34を前後矢印方向に駆動するステップモータ等からなるアクチュエータ35にて構成されている。なお、ヘッドライト30の光軸方向は運転者1名が乗車した状態を想定して初期設定されている。
【0013】
次に、本発明の実施の形態の第1実施例にかかる車両用前照灯光軸方向自動調整装置で使用されているECU20内のCPU21における多様な荷重条件に対処する光軸方向の調整制御の処理手順を示す図3のフローチャートに基づいて説明する。なお、この制御ルーチンは所定時間毎にCPU21にて繰返し実行される。また、図3の制御ルーチンを実行する際には、車両タイプに対応して図4、図5または図6のうち何れの予測式のテーブルを用いるかが予め決定されており、その車両タイプに必要なテーブルが予めROM22内に格納されている。
【0014】
ここで、図4はリヤ車高値〔mm〕に基づきピッチ角〔°〕を算出する荷重条件に対応し傾きが異なる1次式をつなげた折れ線で2つの車両姿勢に分けた予測式を示すテーブルであり、トランク荷重がリヤサスペンションより後ろ側にかかるセダンタイプやワゴンタイプ等に対応している。また、図5はリヤ車高値〔mm〕に基づきピッチ角〔°〕を算出する荷重条件に対応し傾きが異なる1次式をつなげた折れ線で2つの車両姿勢に分けた予測式の変形例を示すテーブルであり、トランク荷重がリヤサスペンション上にかかる1BOXタイプや軽自動車等に対応している。そして、図6はフロント車高値〔mm〕に基づきピッチ角〔°〕を算出する荷重条件に対応し傾きが異なる1次式をつなげた折れ線で2つの車両姿勢に分けた予測式を示すテーブルであり、トランク荷重がフロントサスペンションにかかるミッドシップ車やRR(リヤエンジン/リヤドライブ)車等に対応している。本実施例では、セダンタイプを想定しそれに対応する図4のテーブルが予めROM22内に格納されているものとする。
【0015】
図3において、ステップS101で、車高センサ11からのリヤ車高値(リヤ車高測定値)HRが読込まれる。次にステップS102に移行して、ステップS101で読込まれたリヤ車高値HRが、図4に破線にて示す乗員荷重領域とトランク荷重領域とを分けるリヤ車高値ha (=−9〔mm〕)以上であるかが判定される。ステップS102の判定条件が成立、即ち、リヤ車高値HRがリヤ車高値ha 以上と大きく乗員荷重領域(図4の右側の斜線で囲まれた領域)にあるときにはステップS103に移行し、2つの車両姿勢に分けた予測式のうちステップS101で読込まれたリヤ車高値HRが代入された一方の予測式f0(HR)によりピッチ角θpが算出される。
【0016】
一方、ステップS102の判定条件が成立せず、即ち、リヤ車高値HRがリヤ車高値ha 未満と小さくトランク荷重領域(図4の左側の斜線で囲まれていない領域)にあるときにはステップS104に移行し、ステップS101で読込まれたリヤ車高値HRが代入された他方の予測式f1(HR)によりピッチ角θpが算出される。このとき、図4において、乗員荷重領域の予測式を示す実線を延長したトランク荷重領域における従来の一点鎖線にて示す予測式では「菱形黒塗」記号にて示す実際の荷重条件から大きく逸脱してしまうが、本発明として示すトランク荷重領域で傾きを変えた実線では実際の荷重条件に略一致されている。なお、図4に示す「菱形黒塗」記号は全席に乗員乗車状態のとき、「四角白抜」記号は運転席に乗員乗車状態のときの荷重条件による実測値である。
【0017】
ステップS103またはステップS104でピッチ角θpが算出されたのちステップS105に移行し、ピッチ角θpに対して対向車に眩光を与えることのない目標光軸方向調整角度θT (≒−θp)が算出される。次にステップS106に移行して、ステップS105で算出された目標光軸方向調整角度θT に基づきアクチュエータ35が駆動され、本ルーチンを終了する。なお、アクチュエータ35に対する制御速度設定等については省略されている。
【0018】
このように、本実施例の車両用前照灯光軸方向自動調整装置は、車両の後部に配設され、車高の変位量を検出する1つの車高センサ11と、車高センサ11からの出力であるリヤ車高値HRに基づき、車両の車室内における乗員乗車状態にて決まる乗員荷重と車両のトランク内における荷物積載状態にて決まるトランク荷重との荷重条件に対応し傾きが異なる2つ(複数)の車両姿勢に分けた予測式を用い、車両のヘッドライト(前照灯)30の光軸方向の水平面に対する傾き角に対応するピッチ角θpを算出するECU20内のCPU21にて達成される傾き角演算手段と、前記傾き角演算手段で算出されたピッチ角θpに基づく目標光軸方向調整角度θT によりヘッドライト30の光軸方向を調整するECU20内のCPU21にて達成される光軸方向調整手段とを具備するものである。
【0019】
したがって、ECU20内のCPU21で1つの車高センサ11からの出力であるリヤ車高値HRに基づきヘッドライト30の光軸方向の水平面に対する傾き角に対応するピッチ角θpがそのときの乗員荷重とトランク荷重との荷重条件に対応し傾きが異なる2つの車両姿勢に分けた予測式f0(HR),f1(HR)を用いて算出され、このピッチ角θpに基づきヘッドライト30の光軸方向が調整される。このため、例えば、車両タイプ等に対応させ乗員荷重とトランク荷重との荷重条件に対応し傾きが異なる2つの車両姿勢に分けた予測式を予め用意しておくことで1つの車高センサ11からのリヤ車高値HRが検出されれば、そのときの荷重条件に対応するピッチ角θpが算出され、そのピッチ角θpから必要な目標光軸方向調整角度θT が算出できヘッドライト30の光軸方向がそのときの荷重条件に対応して適切に調整されることとなる。
【0020】
次に、本発明の実施の形態の第1実施例にかかる車両用前照灯光軸方向自動調整装置で使用されているECU20内のCPU21における多様な荷重条件に対処する光軸方向の調整制御の処理で、図7に示す2つの車両姿勢に分けた予測式を車高センサ11以外のセンサ出力に対応して3つ有するテーブルを用いたときについて説明する。
【0021】
図7は上述の図4と同様、車両タイプとしてトランク荷重がリヤサスペンションより後ろ側にかかるセダンタイプやワゴンタイプ等に対応し、他のセンサ信号に基づき択一される2つの車両姿勢に分けた予測式を車高センサ以外のセンサ出力に対応してA,B,Cと3つ有するテーブルを示す。ここで、他のセンサ信号とは車両の助手席に設けられ助手席への乗車を検知する助手席センサ(図示略)やトランク負荷を測定する負荷センサ(図示略)や周知のG(加速度)センサからのセンサ信号である。つまり、車両タイプに対応させ2つの車両姿勢に分けた予測式を3つ有するテーブルをECU20のROM22内に予め格納しておき、複雑な実際の荷重条件の変化に応じて予測式を選択し切替えることでピッチ角θpが算出できるため、より正確な車両姿勢が予測でき、より適切な光軸方向の調整制御を実施することができることとなる。
【0022】
このように、本変形例の車両用前照灯光軸方向自動調整装置は、ECU20のCPU21にて達成される傾き角演算手段が2つ(複数)の車両姿勢に分けた予測式を車両に配設された車高センサ11以外のセンサ出力に対応して3つ(複数)有し、車高センサ11以外のセンサ出力によって択一するものである。したがって、車両タイプ等に対応し2つの車両姿勢に分けた予測式の3つからそのときの荷重条件に対応した予測式を選択することができる。このため、車両タイプ等に加えてそのときの複雑な荷重条件の変化に対応してより適切な光軸方向の調整制御を実施することができる。
〈実施例2〉
図8は本発明の実施の形態の第2実施例にかかる車両用前照灯光軸方向自動調整装置の全体構成を示す概略図である。
【0023】
図8において、上述の実施例における図1の概略構成図との相違点は、システム誤差情報を予め記憶しておく記憶媒体としてEEPROM29等の書換可能な不揮発性メモリを備え、このEEPROM29がECU20に内蔵されていることのみである。なお、EEPROM29はECU20の外部に接続されていてもよい。このため、他の構成については同一符号及び同一記号を付し、その詳細な説明を省略する。また、ヘッドライトの要部構成についても上述の実施例における図2の断面図と同じであり、その詳細な説明も省略する。ここで、システム誤差情報とは、車両への車高センサ11の取付け誤差やフロント・リヤサスペンションのばね定数の誤差、車両の仕様の違いによる重量の誤差や重心の位置の誤差等で傾き角の算出に影響を与える因子である。
【0024】
次に、本発明の実施の形態の第2実施例にかかる車両用前照灯光軸方向自動調整装置で使用されているECU20内のCPU21におけるシステム誤差情報を考慮し多様な荷重条件に対処する光軸方向の調整制御の処理手順を示す図9のフローチャートに基づき、図10、図11及び図12を参照して説明する。なお、この制御ルーチンは所定時間毎にCPU21にて繰返し実行される。
【0025】
ここで、図10は標準の車両の特性に対応するシステム誤差情報が考慮される以前の予測式(細い実線)と、車高センサ11の車両への取付け誤差によりリヤ車高値換算で−20〔mm〕ずれたときのシステム誤差情報が考慮された予測式(太い実線)とを示すテーブルである。また、図11は標準の車両の特性に対応するシステム誤差情報が考慮される以前の予測式(細い実線)と、フロント・リヤサスペンションのばね定数の誤差により予測式の傾きが変化したときのシステム誤差情報が考慮された予測式(太い実線)とを示すテーブルである。そして、図12は車高センサ11の車両への取付け誤差や車両の他の要因に基づく種々の誤差からなるシステム誤差情報が考慮された5つの予測式を示すテーブルである。なお、図10、図11及び図12に示すテーブルにおける「菱形黒塗」記号は全席に乗員乗車状態のとき、「四角白抜」記号は運転席に乗員乗車状態のときの荷重条件による実測値であり、標準の車両の特性に対応する予測式は予めROM22内に格納されている。
【0026】
図9において、ステップS201で、車高センサ11からのリヤ車高値(リヤ車高測定値)HRが読込まれる。次にステップS202に移行して、システム誤差情報が読込まれる。次にステップS203に移行して、ステップS201で読込まれたリヤ車高値HRが、ステップS202で読込まれたシステム誤差情報に基づく補正ゲインα、補正量(オフセット量)Δhにて(α*HR−Δh)と更新される。
【0027】
ここで、図10に細い実線にてシステム誤差情報が考慮される以前の予測式として示すように、単純に車高センサ11の取付け誤差によりリヤ車高値HR換算で−20〔mm〕ずれて取付けられているだけのときには、図10に太い実線にてシステム誤差情報が考慮された予測式として示すように、その誤差分(補正量Δh)が補正されることで「菱形黒塗」記号及び「四角白抜」記号にて示す実際の荷重条件に略一致されている。また、図11に細い実線にてシステム誤差情報が考慮される以前の予測式として示すように、車高センサ11の取付け誤差やフロント・リヤサスペンションのばね定数の誤差により予測式の傾きが変化されたときには、図11に太い実線にてシステム誤差情報が考慮された予測式として示すように、その誤差分(補正ゲインαや補正量Δh)が補正されることで「菱形黒塗」記号及び「四角白抜」記号にて示す実際の荷重条件に略一致されている。
【0028】
次にステップS204に移行して、ステップS203で更新されたリヤ車高値HRが、更に、図12に破線にて示す乗員荷重領域とトランク荷重領域とを分けるリヤ車高値ha (=−9〔mm〕)以上であるかが判定される。ステップS204の判定条件が成立、即ち、リヤ車高値HRがリヤ車高値ha 以上と大きく乗員荷重領域(図12の右側の斜線で囲まれた領域)にあるときにはステップS205に移行し、2つの車両姿勢に分けた5つの予測式fxi(HR),(i=1,2,…,5)から択一され、その予測式にステップS203で更新されたリヤ車高値HRが代入されピッチ角θpが算出される。
【0029】
一方、ステップS204の判定条件が成立せず、即ち、リヤ車高値HRがリヤ車高値ha 未満と小さくトランク荷重領域(図12の左側の斜線で囲まれていない領域)にあるときにはステップS206に移行し、2つの車両姿勢に分けた5つの予測式fyi(HR),(i=1,2,…,5)から択一され、その予測式にステップS203で更新されたリヤ車高値HRが代入されピッチ角θpが算出される。このとき、図12において、システム誤差情報が考慮され選択された予測式では「菱形黒塗」記号及び「四角白抜」記号にて示す実際の荷重条件に略一致されている。
【0030】
ステップS205またはステップS206でピッチ角θpが算出されたのちステップS207に移行し、ピッチ角θpに対して対向車に眩光を与えることのない目標光軸方向調整角度θT (≒−θp)が算出される。次にステップS208に移行して、ステップS207で算出された目標光軸方向調整角度θT に基づきアクチュエータ35が駆動され、本ルーチンを終了する。なお、アクチュエータ35に対する制御速度設定等については省略されている。
【0031】
このように、本実施例の車両用前照灯光軸方向自動調整装置は、車両の後部に配設され、車高の変位量を検出する1つの車高センサ11と、車高センサ11の取付けに伴う誤差や車両の他の要因に基づく種々の誤差をシステム誤差情報として予め記憶する記憶手段としてのEEPROM29と、車高センサ11からの出力であるリヤ車高値HRとEEPROM29に記憶されたシステム誤差情報とに基づき、車両の車室内における乗員乗車状態にて決まる乗員荷重と車両のトランク内における荷物積載状態にて決まるトランク荷重との荷重条件に対応し傾きが異なる2つ(複数)の車両姿勢に分けた予測式を用い、車両のヘッドライト(前照灯)30の光軸方向の水平面に対する傾き角に対応するピッチ角θpを算出するECU20内のCPU21にて達成される傾き角演算手段と、前記傾き角演算手段で算出されたピッチ角θpに基づく目標光軸方向調整角度θT によりヘッドライト30の光軸方向を調整するECU20内のCPU21にて達成される光軸方向調整手段とを具備するものである。
【0032】
したがって、ECU20内のCPU21で1つの車高センサ11からの出力であるリヤ車高値HRとEEPROM29に記憶されたシステム誤差情報とに基づきヘッドライト30の光軸方向の水平面に対する傾き角に対応するピッチ角θpがそのときの乗員荷重とトランク荷重との荷重条件に対応し傾きが異なる2つの車両姿勢に分けた予測式fxi(HR),fyi(HR)を用いて算出され、このピッチ角θpに基づきヘッドライト30の光軸方向が調整される。このため、例えば、車両タイプ等に対応させ乗員荷重とトランク荷重との荷重条件に対応し傾きが異なる2つの車両姿勢に分けた予測式を予め用意しておき、1つの車高センサ11からのリヤ車高値HRにシステム誤差情報が加味されることで、そのときの荷重条件に対応するピッチ角θpが算出され、そのピッチ角θpから必要な目標光軸方向調整角度θT が算出できヘッドライト30の光軸方向がそのときの荷重条件に対応して適切に調整されることとなる。
【0033】
ところで、上記実施例では、荷重条件に対応する複数の車両姿勢に分けた予測式として乗員荷重領域とトランク荷重領域との2つの領域に分けたテーブルを用いるとしたが、本発明を実施する場合には、これに限定されるものではなく、同じ乗員荷重領域、トランク荷重領域においても、荷重負荷位置によって車両姿勢が異なる場合は、更に細分化し、3つ以上の領域に分けたテーブルとしてもよい。また、予測式は荷重条件に対応し傾きが異なる1次式をつなげた折れ線としているが、高次式、指数関数等の任意の関数を用いることができる。このとき、予測式が高次式であっても、プログラム簡略化のため領域を多数に分けそれぞれの領域を1次式で近似するようにしてもよい。更に、リヤ車高値HRが変化してもピッチ角θpが変化しないような車両タイプにおいては、予測式を定数(0次式)としてもよい。
【0034】
また、上記実施例では、複数の車両姿勢に分けた予測式のテーブルを用いリヤ車高値HRからピッチ角θpを算出しているが、例えば、リヤ車高値からフロント車高値を推定したのちピッチ角を算出するようにしてもよい。
【図面の簡単な説明】
【図1】 図1は本発明の実施の形態の第1実施例にかかる車両用前照灯光軸方向自動調整装置の全体構成を示す概略図である。
【図2】 図2は図1のヘッドライトの要部構成を示す断面図である。
【図3】 図3は本発明の実施の形態の第1実施例にかかる車両用前照灯光軸方向自動調整装置で使用されているECU内のCPUにおける多様な荷重条件に対処する光軸方向の調整制御の処理手順を示すフローチャートである。
【図4】 図4は本発明の実施の形態の第1実施例にかかる車両用前照灯光軸方向自動調整装置で用いられるリヤ車高値に基づきピッチ角を算出する2つの車両姿勢に分けた予測式を示すテーブルである。
【図5】 図5は本発明の実施の形態の第1実施例にかかる車両用前照灯光軸方向自動調整装置で用いられるリヤ車高値に基づきピッチ角を算出する他の2つの車両姿勢に分けた予測式を示すテーブルである。
【図6】 図6は本発明の実施の形態の第1実施例にかかる車両用前照灯光軸方向自動調整装置で用いられるフロント車高値に基づきピッチ角を算出する2つの車両姿勢に分けた予測式を示すテーブルである。
【図7】 図7は本発明の実施の形態の第1実施例にかかる車両用前照灯光軸方向自動調整装置で用いられるリヤ車高値及び他のセンサ出力に基づきピッチ角を算出する2つの車両姿勢に分けた予測式を車高センサ以外のセンサ出力に対応して3つ示すテーブルである。
【図8】 図8は本発明の実施の形態の第2実施例にかかる車両用前照灯光軸方向自動調整装置の全体構成を示す概略図である。
【図9】 図9は本発明の実施の形態の第2実施例にかかる車両用前照灯光軸方向自動調整装置で使用されているECU内のCPUにおけるシステム誤差情報を考慮し多様な荷重条件に対処する光軸方向の調整制御の処理手順を示すフローチャートである。
【図10】 図10は本発明の実施の形態の第2実施例にかかる車両用前照灯光軸方向自動調整装置で用いられる標準の車両の特性に対応するシステム誤差情報が考慮される以前の予測式と、車高センサの車両への取付け誤差によるシステム誤差情報が考慮された予測式とを示すテーブルである。
【図11】 図11は本発明の実施の形態の第2実施例にかかる車両用前照灯光軸方向自動調整装置で用いられる標準の車両の特性に対応するシステム誤差情報が考慮される以前の予測式と、フロント・リヤサスペンションのばね定数の誤差により予測式の傾きが変化したときのシステム誤差情報が考慮された予測式とを示すテーブルである。
【図12】 図12は本発明の実施の形態の第2実施例にかかる車両用前照灯光軸方向自動調整装置で用いられる車高センサの車両への取付け誤差や車両の他の要因に基づく種々の誤差からなるシステム誤差情報が考慮された5つの予測式を示すテーブルである。
【符号の説明】
11 車高センサ
20 ECU(電子制御ユニット)
30 ヘッドライト(前照灯)
35 アクチュエータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle headlamp optical axis direction automatic adjustment device for automatically adjusting the optical axis direction of irradiation by a headlamp disposed in a vehicle.
[0002]
[Prior art]
Conventionally, in a vehicle headlamp, when the optical axis direction of the headlamp is upward due to the inclination of the vehicle body, glare is given to an oncoming vehicle or the like, and when the optical axis direction is downward, the driver's distance visibility decreases. Therefore, there is a demand for keeping the optical axis direction of the headlamp constant.
[0003]
[Problems to be solved by the invention]
By the way, optical axis control using an inclination angle obtained by approximating a change amount of a vehicle posture due to a load by a linear expression is known. In this case, it is possible to make the optical axis direction of the headlamp coincide with the vehicle posture under limited load conditions such as “only occupant load” or “up to 50 kg of occupant load and trunk load”. However, the above-described one has a problem that it cannot cope with various load conditions due to the combination of the occupant load and the trunk load.
[0004]
Accordingly, the present invention has been made to solve such a problem, and an object thereof is to provide an inexpensive vehicle headlamp optical axis direction automatic adjustment device with a simple system, and in particular, the optical axis direction of a vehicle headlamp. It is an object of the present invention to provide a vehicle headlamp optical axis direction automatic adjustment device that can cope with various load conditions when automatically adjusting the vehicle head based on the output from one vehicle height sensor.
[0005]
[Means for Solving the Problems]
According to the vehicle headlamp optical axis direction automatic adjusting device of claim 1, the tilt angle calculating means determines the tilt angle of the headlamp with respect to the horizontal plane in the optical axis direction based on the output from one vehicle height sensor as the occupant load. It is calculated using a prediction formula divided into a plurality of vehicle postures having different inclinations corresponding to the load condition with the trunk load, and the optical axis direction of the headlamp is adjusted by the optical axis direction adjusting means based on the inclination angle. For this reason, for example, the output value from one vehicle height sensor is detected by preparing in advance a plurality of vehicle posture prediction formulas corresponding to the vehicle type or the like and corresponding to the load conditions of the occupant load and the trunk load. Then, the tilt angle corresponding to the load condition at that time is calculated, and the necessary target optical axis direction adjustment angle can be calculated from the tilt angle, and the optical axis direction of the headlamp is appropriate for the load condition at that time. The effect of being adjusted is obtained.
[0006]
In the vehicle headlamp optical axis direction automatic adjustment device according to claim 2, the inclination angle calculation means corresponds to the load condition at that time from a plurality of prediction expressions divided into a plurality of vehicle postures corresponding to sensor outputs other than the vehicle height sensor. The selected prediction formula is selected. For this reason, in addition to a vehicle type etc., the effect that the adjustment control of a more suitable optical axis direction can be implemented corresponding to the change of the complicated load condition at that time is acquired.
[0007]
According to the vehicle headlight optical axis direction automatic adjustment device of claim 3, the error from the attachment of the vehicle height sensor stored as the system error information in the output from the single vehicle height sensor by the inclination angle calculation means and the storage means. The angle of inclination of the headlight with respect to the horizontal plane in the optical axis direction is divided into multiple vehicle postures with different inclinations corresponding to the load conditions of the occupant load and trunk load based on various errors based on the vehicle and other factors of the vehicle The optical axis direction of the headlamp is adjusted by the optical axis direction adjusting means based on this inclination angle. For this reason, for example, a plurality of vehicle attitude prediction formulas corresponding to the vehicle type and optional equipment corresponding to the load conditions of the occupant load and the trunk load are prepared in advance, and the output detected by one vehicle height sensor is prepared. By adding system error information to the value, the tilt angle corresponding to the load condition at that time is calculated, and the required target optical axis direction adjustment angle can be calculated from the tilt angle, and the optical axis direction of the headlamp is The effect that it adjusts appropriately according to the load condition at the time is acquired.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples.
<Example 1>
FIG. 1 is a schematic diagram showing the overall configuration of a vehicular headlamp optical axis direction automatic adjusting apparatus according to a first example of an embodiment of the present invention.
[0009]
In FIG. 1, a vehicle height sensor 11 is attached to the axle on the driver seat side or the passenger seat side at the rear of the vehicle. From the vehicle height sensor 11, the rear vehicle height value (the displacement amount of the rear wheel side vehicle height: the amount of displacement of the rear wheel side:
Various sensor signals and the like are input to an ECU (Electronic Control Unit) 20 mounted on the vehicle from HR and other sensors (not shown). The ECU 20 is shown outside the vehicle for convenience.
[0010]
The ECU 20 is a logic composed of a CPU 21 as a known central processing unit, a ROM 22 storing a control program, a RAM 23 storing various data, a B / U (backup) RAM 24, an input / output circuit 25, a bus line 26 connecting them, and the like. It is configured as an arithmetic circuit. An output signal from the ECU 20 is input to the actuator 35 on the headlight (headlight) 30 side of the vehicle, and the optical axis direction of the headlight 30 is adjusted as will be described later.
[0011]
FIG. 2 is a cross-sectional view showing a main configuration of the headlight 30 shown in FIG.
[0012]
In FIG. 2, a headlight 30 mainly supports a lamp 31 and a reflector 32 for fixing the lamp 31, a support portion 33 that supports the reflector 32 so as to be swingable in the direction of an arc, and the reflector 32 and is movable. The other movable portion 34, and an actuator 35 including a step motor for driving the movable portion 34 in the front-rear arrow direction. The optical axis direction of the headlight 30 is initially set on the assumption that one driver is in the vehicle.
[0013]
Next, the adjustment control in the optical axis direction corresponding to various load conditions in the CPU 21 in the ECU 20 used in the automatic headlamp optical axis direction adjustment device for a vehicle headlamp according to the first example of the embodiment of the present invention will be described. The processing procedure will be described with reference to the flowchart of FIG. This control routine is repeatedly executed by the CPU 21 every predetermined time. Further, when executing the control routine of FIG. 3, it is determined in advance which table of prediction formulas of FIG. 4, FIG. 5, or FIG. 6 is to be used corresponding to the vehicle type. Necessary tables are stored in the ROM 22 in advance.
[0014]
Here, FIG. 4 is a table showing a prediction formula divided into two vehicle postures by a broken line connecting primary equations having different inclinations corresponding to the load condition for calculating the pitch angle [°] based on the rear vehicle height value [mm]. It corresponds to the sedan type or wagon type where the trunk load is behind the rear suspension. Further, FIG. 5 shows a modified example of the prediction formula divided into two vehicle postures by a broken line connecting primary equations having different inclinations corresponding to the load condition for calculating the pitch angle [°] based on the rear vehicle height [mm]. This table corresponds to a 1BOX type, a light vehicle, or the like in which a trunk load is applied to the rear suspension. FIG. 6 is a table showing a prediction formula divided into two vehicle postures by a broken line connecting primary equations having different inclinations corresponding to the load condition for calculating the pitch angle [°] based on the front vehicle height [mm]. Yes, it corresponds to midship vehicles and RR (rear engine / rear drive) vehicles where the trunk load is applied to the front suspension. In the present embodiment, it is assumed that a sedan type is assumed and the corresponding table of FIG. 4 is stored in the ROM 22 in advance.
[0015]
In FIG. 3, the rear vehicle height value (rear vehicle height measurement value) HR from the vehicle height sensor 11 is read in step S101. Next, the process proceeds to step S102, where the rear vehicle height value HR read in step S101 is a rear vehicle height value ha (= -9 [mm]) that divides the occupant load region and the trunk load region indicated by broken lines in FIG. It is determined whether this is the case. When the determination condition of step S102 is satisfied, that is, when the rear vehicle height value HR is larger than the rear vehicle height value ha and is in the occupant load region (the region surrounded by the hatched area on the right side of FIG. 4), the process proceeds to step S103. The pitch angle θp is calculated by one prediction formula f0 (HR) into which the rear vehicle height value HR read in step S101 is substituted among the prediction formulas divided into postures.
[0016]
On the other hand, if the determination condition in step S102 is not satisfied, that is, if the rear vehicle height value HR is small and less than the rear vehicle height value ha, and the vehicle is in the trunk load region (the region not surrounded by the slanted line on the left side of FIG. Then, the pitch angle θp is calculated from the other prediction formula f1 (HR) into which the rear vehicle height value HR read in step S101 is substituted. At this time, in FIG. 4, the prediction formula indicated by the one-dot chain line in the trunk load region in which the solid line indicating the prediction formula of the passenger load region is extended greatly deviates from the actual load condition indicated by the “diamond black” symbol. However, the solid line in which the slope is changed in the trunk load region shown as the present invention substantially matches the actual load condition. Note that the “diamond black paint” symbol shown in FIG. 4 is an actual measurement value based on the load condition when all the seats are in the occupant riding state, and the “square square” symbol is an occupant riding state in the driver seat.
[0017]
After the pitch angle θp is calculated in step S103 or step S104, the process proceeds to step S105, and the target optical axis direction adjustment angle θT (≈−θp) that does not give glare to the oncoming vehicle with respect to the pitch angle θp is calculated. The Next, the process proceeds to step S106, where the actuator 35 is driven based on the target optical axis direction adjustment angle θT calculated in step S105, and this routine is terminated. The control speed setting for the actuator 35 is omitted.
[0018]
Thus, the vehicle headlamp optical axis direction automatic adjustment device of the present embodiment is disposed at the rear of the vehicle, and includes one vehicle height sensor 11 that detects the amount of displacement of the vehicle height, and the vehicle height sensor 11. Two different slopes corresponding to the load conditions of the occupant load determined by the occupant riding state in the vehicle interior and the trunk load determined by the baggage loaded state in the vehicle trunk based on the output rear vehicle height HR ( This is achieved by the CPU 21 in the ECU 20 that calculates the pitch angle θp corresponding to the inclination angle of the headlight (headlight) 30 of the vehicle with respect to the horizontal plane in the optical axis direction using a prediction formula divided into a plurality of vehicle postures. This is achieved by the inclination angle calculating means and the CPU 21 in the ECU 20 that adjusts the optical axis direction of the headlight 30 by the target optical axis direction adjustment angle θT based on the pitch angle θp calculated by the inclination angle calculating means. Is intended to and a that the optical axis direction adjusting means.
[0019]
Therefore, the pitch angle θp corresponding to the inclination angle of the headlight 30 with respect to the horizontal plane in the optical axis direction based on the rear vehicle height value HR that is the output from one vehicle height sensor 11 by the CPU 21 in the ECU 20 is the passenger load and trunk at that time. Calculated using prediction formulas f0 (HR) and f1 (HR) divided into two vehicle postures corresponding to load conditions and different inclinations, and the optical axis direction of the headlight 30 is adjusted based on the pitch angle θp. Is done. For this reason, for example, by preparing in advance a prediction formula that is divided into two vehicle postures corresponding to the vehicle type or the like and corresponding to the load conditions of the occupant load and the trunk load and having different inclinations, the vehicle height sensor 11 If the rear vehicle height value HR is detected, the pitch angle θp corresponding to the load condition at that time is calculated, and the necessary target optical axis direction adjustment angle θT can be calculated from the pitch angle θp, so that the optical axis direction of the headlight 30 can be calculated. Is appropriately adjusted in accordance with the load condition at that time.
[0020]
Next, the adjustment control in the optical axis direction corresponding to various load conditions in the CPU 21 in the ECU 20 used in the automatic headlamp optical axis direction adjustment device for a vehicle headlamp according to the first example of the embodiment of the present invention will be described. A case where a table having three prediction expressions divided into two vehicle postures shown in FIG. 7 corresponding to sensor outputs other than the vehicle height sensor 11 in the processing will be described.
[0021]
FIG. 7 corresponds to the sedan type or the wagon type in which the trunk load is behind the rear suspension as in FIG. 4 and is divided into two vehicle postures that are selected based on other sensor signals. The table which has three prediction formulas A, B, and C corresponding to sensor outputs other than a vehicle height sensor is shown. Here, the other sensor signals are provided in the passenger seat of the vehicle and detect a passenger in the passenger seat (not shown), a load sensor (not shown) for measuring a trunk load, and a well-known G (acceleration). It is a sensor signal from a sensor. That is, a table having three prediction formulas corresponding to the vehicle type and divided into two vehicle postures is stored in advance in the ROM 22 of the ECU 20, and the prediction formula is selected and switched in accordance with a complicated change in actual load conditions. Thus, since the pitch angle θp can be calculated, a more accurate vehicle posture can be predicted, and more appropriate adjustment control in the optical axis direction can be performed.
[0022]
Thus, in the vehicle headlamp optical axis direction automatic adjustment device of this modification, the prediction formula in which the tilt angle calculation means achieved by the CPU 21 of the ECU 20 is divided into two (plural) vehicle postures is arranged in the vehicle. There are three (a plurality) corresponding to sensor outputs other than the installed vehicle height sensor 11, and the sensor outputs other than the vehicle height sensor 11 are selected. Therefore, the prediction formula corresponding to the load condition at that time can be selected from three prediction formulas corresponding to the vehicle type or the like and divided into two vehicle postures. For this reason, in addition to the vehicle type and the like, more appropriate adjustment control in the optical axis direction can be performed in response to a complicated change in load conditions at that time.
<Example 2>
FIG. 8 is a schematic diagram showing an overall configuration of a vehicular headlamp optical axis direction automatic adjusting apparatus according to a second example of the embodiment of the present invention.
[0023]
8 is different from the schematic configuration diagram of FIG. 1 in the above-described embodiment in that a rewritable nonvolatile memory such as an EEPROM 29 is provided as a storage medium for storing system error information in advance, and the EEPROM 29 is provided in the ECU 20. It is only built-in. Note that the EEPROM 29 may be connected to the outside of the ECU 20. For this reason, the same reference numerals and symbols are assigned to other configurations, and detailed descriptions thereof are omitted. Further, the configuration of the main part of the headlight is also the same as the cross-sectional view of FIG. 2 in the above-described embodiment, and detailed description thereof is also omitted. Here, the system error information is an error in mounting the height sensor 11 on the vehicle, an error in the spring constants of the front and rear suspensions, an error in weight due to a difference in vehicle specifications, an error in the position of the center of gravity, etc. It is a factor that affects the calculation.
[0024]
Next, the light which copes with various load conditions in consideration of the system error information in the CPU 21 in the ECU 20 used in the vehicle headlamp optical axis direction automatic adjusting device according to the second example of the embodiment of the present invention. Based on the flowchart of FIG. 9 which shows the processing procedure of the adjustment control of an axial direction, it demonstrates with reference to FIG.10, FIG11 and FIG.12. This control routine is repeatedly executed by the CPU 21 every predetermined time.
[0025]
Here, FIG. 10 shows a prediction formula (thin solid line) before the system error information corresponding to the characteristics of the standard vehicle is taken into account, and −20 [ mm] is a table showing a prediction formula (thick solid line) in consideration of system error information at the time of deviation. FIG. 11 shows a prediction formula before the system error information corresponding to the characteristics of the standard vehicle is taken into account (thin solid line) and a system when the slope of the prediction formula changes due to an error in the spring constant of the front and rear suspensions. It is a table which shows the prediction formula (thick solid line) in which error information was considered. FIG. 12 is a table showing five prediction formulas that take into account system error information including various errors based on errors in mounting the vehicle height sensor 11 on the vehicle and other factors of the vehicle. In the tables shown in FIG. 10, FIG. 11 and FIG. 12, the “diamond black” symbol is an actual measurement value based on the load condition when all the seats are in the occupant riding state, and the “square square” symbol is the passenger seating in the driver seat. The prediction formula corresponding to the standard vehicle characteristic is stored in the ROM 22 in advance.
[0026]
In FIG. 9, the rear vehicle height value (rear vehicle height measurement value) HR from the vehicle height sensor 11 is read in step S201. In step S202, system error information is read. Next, the process proceeds to step S203, where the rear vehicle height value HR read in step S201 is the correction gain α and the correction amount (offset amount) Δh based on the system error information read in step S202 (α * HR− Δh).
[0027]
Here, as shown in FIG. 10 as a prediction formula before the system error information is taken into consideration with a thin solid line, it is simply shifted by −20 [mm] in terms of the rear vehicle height value HR due to the mounting error of the vehicle height sensor 11. As shown in FIG. 10 as a prediction formula in which system error information is taken into consideration with a thick solid line in FIG. 10, the error (correction amount Δh) is corrected so that the “diamond black” symbol and the “ The actual load condition indicated by the “white square” symbol is approximately the same. Further, as shown in FIG. 11 as a prediction formula before the system error information is taken into consideration with a thin solid line, the inclination of the prediction formula is changed by the mounting error of the vehicle height sensor 11 and the spring constant error of the front and rear suspensions. In this case, as shown in FIG. 11 as a prediction formula in which system error information is taken into consideration with a thick solid line, the error (correction gain α and correction amount Δh) is corrected, and the “diamond black” symbol and “ The actual load condition indicated by the “white square” symbol is approximately the same.
[0028]
Next, the process proceeds to step S204, where the rear vehicle height value HR updated in step S203 is further divided into a rear vehicle height value ha (= −9 [mm] that divides the occupant load region and the trunk load region shown by broken lines in FIG. ]) Or more is determined. When the determination condition of step S204 is satisfied, that is, when the rear vehicle height value HR is larger than the rear vehicle height value ha and is in the occupant load region (the region surrounded by the hatched line on the right side of FIG. 12), the process proceeds to step S205. It is selected from five prediction formulas fxi (HR), (i = 1, 2,..., 5) divided into postures, and the rear vehicle height value HR updated in step S203 is substituted into the prediction formula, and the pitch angle θp is set. Calculated.
[0029]
On the other hand, if the determination condition in step S204 is not satisfied, that is, the rear vehicle height value HR is small and less than the rear vehicle height value ha, the process proceeds to step S206 when the vehicle is in the trunk load region (the region not surrounded by the hatched area on the left side in FIG. Then, one of the five prediction formulas fyi (HR), (i = 1, 2,..., 5) divided into two vehicle postures is selected, and the rear vehicle height value HR updated in step S203 is substituted into the prediction formula. The pitch angle θp is calculated. At this time, in FIG. 12, the prediction formula selected in consideration of the system error information substantially matches the actual load condition indicated by the “diamond black paint” symbol and the “square square” symbol.
[0030]
After the pitch angle θp is calculated in step S205 or step S206, the process proceeds to step S207, and the target optical axis direction adjustment angle θT (≈−θp) that does not give glare to the oncoming vehicle with respect to the pitch angle θp is calculated. The Next, the process proceeds to step S208, where the actuator 35 is driven based on the target optical axis direction adjustment angle θT calculated in step S207, and this routine ends. The control speed setting for the actuator 35 is omitted.
[0031]
As described above, the vehicle headlamp optical axis direction automatic adjustment device of the present embodiment is disposed at the rear portion of the vehicle, and includes one vehicle height sensor 11 that detects the amount of displacement of the vehicle height, and attachment of the vehicle height sensor 11. EEPROM 29 as storage means for preliminarily storing various errors based on the error caused by the vehicle and other factors of the vehicle as system error information, and the rear vehicle height value HR as the output from the vehicle height sensor 11 and the system error stored in the EEPROM 29 Based on the information, two (plural) vehicle postures with different inclinations corresponding to the load conditions of the occupant load determined by the occupant riding state in the vehicle interior and the trunk load determined by the luggage loading state in the vehicle trunk CP in ECU20 which calculates pitch angle (theta) p corresponding to the inclination angle with respect to the horizontal surface of the optical axis direction of the headlight (headlamp) 30 of a vehicle using the prediction formula divided into (2). The CPU 21 in the ECU 20 that adjusts the optical axis direction of the headlight 30 by the inclination angle calculating means achieved in 21 and the target optical axis direction adjustment angle θT based on the pitch angle θp calculated by the inclination angle calculating means. And an optical axis direction adjusting means to be achieved.
[0032]
Therefore, the pitch corresponding to the tilt angle of the headlight 30 with respect to the horizontal plane in the optical axis direction based on the rear vehicle height value HR that is output from one vehicle height sensor 11 and the system error information stored in the EEPROM 29 by the CPU 21 in the ECU 20. The angle θp is calculated using the prediction formulas fxi (HR) and fyi (HR) divided into two vehicle postures having different inclinations corresponding to the load conditions of the occupant load and the trunk load at that time, and the pitch angle θp Based on this, the optical axis direction of the headlight 30 is adjusted. For this reason, for example, a prediction formula divided into two vehicle postures corresponding to the vehicle type or the like and corresponding to the load conditions of the occupant load and the trunk load and having different inclinations is prepared in advance. By adding system error information to the rear vehicle height value HR, a pitch angle θp corresponding to the load condition at that time is calculated, and a necessary target optical axis direction adjustment angle θT can be calculated from the pitch angle θp. The optical axis direction is appropriately adjusted in accordance with the load condition at that time.
[0033]
By the way, in the said Example, although the table divided | segmented into two area | regions of a passenger | crew load area | region and a trunk load area | region was used as a prediction type | formula divided | segmented into the several vehicle attitude | position corresponding to load conditions, when implementing this invention However, the present invention is not limited to this, and even in the same occupant load area and trunk load area, if the vehicle posture differs depending on the load position, the table may be further divided into three or more areas. . Moreover, although the prediction formula is a broken line that connects linear equations having different slopes corresponding to the load conditions, any function such as a high-order equation or an exponential function can be used. At this time, even if the prediction formula is a high-order formula, it is possible to divide the area into a large number and approximate each area with a linear formula for simplifying the program. Further, in a vehicle type in which the pitch angle θp does not change even if the rear vehicle height value HR changes, the prediction formula may be a constant (0th order formula).
[0034]
In the above embodiment, the pitch angle θp is calculated from the rear vehicle height value HR using a prediction table divided into a plurality of vehicle postures. For example, after estimating the front vehicle height value from the rear vehicle height value, the pitch angle May be calculated.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an overall configuration of a vehicular headlamp optical axis direction automatic adjusting apparatus according to a first example of an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a main configuration of the headlight of FIG.
FIG. 3 is an optical axis direction that copes with various load conditions in the CPU in the ECU used in the vehicle headlamp optical axis direction automatic adjusting device according to the first example of the embodiment of the present invention; It is a flowchart which shows the process sequence of this adjustment control.
FIG. 4 is divided into two vehicle postures for calculating the pitch angle based on the rear vehicle height value used in the vehicle headlamp optical axis direction automatic adjusting device according to the first example of the embodiment of the present invention. It is a table which shows a prediction formula.
FIG. 5 shows two other vehicle postures for calculating the pitch angle based on the rear vehicle height value used in the vehicle headlamp optical axis direction automatic adjusting device according to the first example of the embodiment of the invention. It is a table which shows the divided | segmented prediction formula.
FIG. 6 is divided into two vehicle postures for calculating the pitch angle based on the front vehicle height value used in the vehicle headlamp optical axis direction automatic adjusting device according to the first example of the embodiment of the present invention. It is a table which shows a prediction formula.
FIG. 7 is a diagram showing two examples of calculating the pitch angle based on the rear vehicle height value and other sensor outputs used in the vehicle headlamp optical axis direction automatic adjusting device according to the first example of the embodiment of the invention; It is a table which shows three prediction formulas divided into vehicle postures corresponding to sensor outputs other than the vehicle height sensor.
FIG. 8 is a schematic diagram showing an overall configuration of a vehicular headlamp optical axis direction automatic adjusting apparatus according to a second example of the embodiment of the present invention.
FIG. 9 shows various load conditions in consideration of system error information in the CPU in the ECU used in the vehicle headlamp optical axis direction automatic adjusting apparatus according to the second example of the embodiment of the present invention. 7 is a flowchart showing a processing procedure of adjustment control in the optical axis direction to cope with the above.
FIG. 10 is a diagram before system error information corresponding to characteristics of a standard vehicle used in a vehicle headlamp optical axis direction automatic adjusting apparatus according to a second example of the embodiment of the present invention is taken into consideration; It is a table | surface which shows a prediction formula and the prediction formula in which the system error information by the attachment error to the vehicle of a vehicle height sensor was considered.
FIG. 11 is a system error information before the system error information corresponding to the characteristic of the standard vehicle used in the vehicle headlamp optical axis direction automatic adjustment device according to the second example of the embodiment of the present invention is considered; It is a table which shows a prediction formula and a prediction formula which considered system error information when the inclination of a prediction formula changed with the error of the spring constant of a front and rear suspension.
FIG. 12 is based on a mounting error of the vehicle height sensor used in the vehicle headlamp optical axis direction automatic adjusting device for a vehicle according to the second example of the embodiment of the present invention and other factors of the vehicle; It is a table which shows five prediction formulas in which the system error information which consists of various errors was considered.
[Explanation of symbols]
11 Vehicle height sensor 20 ECU (electronic control unit)
30 Headlight (headlight)
35 Actuator

Claims (3)

車両の前部または後部に配設され、車高の変位量を検出する1つの車高センサと、
前記車高センサからの出力に基づき、前記車両の車室内における乗員乗車状態にて決まる乗員荷重と前記車両の荷物積載状態にて決まるトランク荷重との荷重条件に対応した傾きが異なる複数の車両姿勢に分けた予測式を選択し切り替えることで、前記車両の前照灯の光軸方向の水平面に対する傾き角を算出する傾き角演算手段と、
前記傾き角演算手段で算出された前記傾き角に基づき前記前照灯の光軸方向を調整する光軸方向調整手段と
を具備することを特徴とする車両用前照灯光軸方向自動調整装置。
A vehicle height sensor disposed at the front or rear of the vehicle for detecting the amount of vehicle height displacement;
Based on the output from the vehicle height sensor, a plurality of vehicle postures having different inclinations corresponding to the load conditions of an occupant load determined by an occupant riding state in the vehicle interior of the vehicle and a trunk load determined by a baggage loading state of the vehicle An inclination angle calculating means for calculating an inclination angle with respect to a horizontal plane in the optical axis direction of the headlight of the vehicle by selecting and switching the prediction formula divided into
An automotive headlamp optical axis direction automatic adjusting device, comprising: an optical axis direction adjusting unit that adjusts an optical axis direction of the headlamp based on the tilt angle calculated by the tilt angle calculating unit.
前記傾き角演算手段は、前記複数の車両姿勢に分けた予測式を前記車両に配設された前記車高センサ以外のセンサ出力に対応して複数有し、前記車高センサ以外のセンサ出力によって択一することを特徴とする請求項1に記載の車両用前照灯光軸方向自動調整装置。The inclination angle calculation means has a plurality of prediction formulas divided into the plurality of vehicle postures corresponding to sensor outputs other than the vehicle height sensor disposed in the vehicle, and is based on sensor outputs other than the vehicle height sensor. The vehicle headlamp optical axis direction automatic adjustment device according to claim 1, wherein the vehicle headlamp optical axis direction automatic adjustment device is selected. 車両の前部または後部に配設され、車高の変位量を検出する1つの車高センサと、
前記車高センサの取付けに伴う誤差や前記車両の他の要因に基づく種々の誤差をシステム誤差情報として予め記憶する記憶手段と、
前記車高センサからの出力と前記記憶手段に記憶された前記システム誤差情報とに基づき、車両の車室内における乗員乗車状態にて決まる乗員荷重と前記車両の荷物積載状態にて決まるトランク荷重との荷重条件に対応し、傾きが異なる複数の車両姿勢に分けた予測式を選択し切り替えることで、前記車両の前照灯の光軸方向の水平面に対する傾き角を算出する傾き角演算手段と、
前記傾き角演算手段で算出された前記傾き角に基づき前記前照灯の光軸方向を調整する光軸方向調整手段と
を具備することを特徴とする車両用前照灯光軸方向自動調整装置。
A vehicle height sensor disposed at the front or rear of the vehicle for detecting the amount of vehicle height displacement;
Storage means for preliminarily storing, as system error information, various errors based on errors associated with the mounting of the vehicle height sensor and other factors of the vehicle;
Based on the output from the vehicle height sensor and the system error information stored in the storage means, an occupant load determined by the occupant riding state in the vehicle cabin and a trunk load determined by the baggage loading state of the vehicle An inclination angle calculating means for calculating an inclination angle with respect to a horizontal plane in the optical axis direction of the headlight of the vehicle by selecting and switching a prediction formula divided into a plurality of vehicle postures having different inclinations corresponding to the load conditions ;
An automotive headlamp optical axis direction automatic adjusting device, comprising: an optical axis direction adjusting unit that adjusts an optical axis direction of the headlamp based on the tilt angle calculated by the tilt angle calculating unit.
JP10785399A 1998-06-16 1999-04-15 Automatic headlamp optical axis adjustment device for vehicles Expired - Lifetime JP4140125B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP10785399A JP4140125B2 (en) 1998-08-31 1999-04-15 Automatic headlamp optical axis adjustment device for vehicles
EP99111611A EP0965487B1 (en) 1998-06-16 1999-06-15 System for automatically adjusting optical axis direction of vehicle headlight
DE69927318T DE69927318T2 (en) 1998-06-16 1999-06-15 Method for automatically controlling the direction of the optical axis of a motor vehicle headlight
DE69938083T DE69938083T2 (en) 1998-06-16 1999-06-15 System for automatically controlling the direction of the optical axes of a motor vehicle headlight
EP03023671A EP1380468B1 (en) 1998-06-16 1999-06-15 System for automatically adjusting optical axis direction of a headlight of a vehicle
EP07023091A EP1889747B1 (en) 1998-06-16 1999-06-15 System for automatically adjusting optical axis direction of vehicle headlight
DE69931407T DE69931407T2 (en) 1998-06-16 1999-06-15 System for automatically adjusting the direction of the optical axis of a headlamp of a vehicle
EP06004374A EP1671842B1 (en) 1998-06-16 1999-06-15 System for automatically adjusting optical axis direction of vehicle headlight
DE69941636T DE69941636D1 (en) 1998-06-16 1999-06-15 System for automatically adjusting the direction of an optical axis of a vehicle headlight
US09/333,686 US6193398B1 (en) 1998-06-16 1999-06-16 System for automatically adjusting optical axis direction of vehicle headlight

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-244782 1998-08-31
JP24478298 1998-08-31
JP10785399A JP4140125B2 (en) 1998-08-31 1999-04-15 Automatic headlamp optical axis adjustment device for vehicles

Publications (2)

Publication Number Publication Date
JP2000142213A JP2000142213A (en) 2000-05-23
JP4140125B2 true JP4140125B2 (en) 2008-08-27

Family

ID=26447830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10785399A Expired - Lifetime JP4140125B2 (en) 1998-06-16 1999-04-15 Automatic headlamp optical axis adjustment device for vehicles

Country Status (1)

Country Link
JP (1) JP4140125B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3931495B2 (en) * 1999-08-02 2007-06-13 日産自動車株式会社 Vehicle pitch angle calculation device
JP4457754B2 (en) 2003-08-28 2010-04-28 株式会社デンソー Automatic headlamp optical axis adjustment device for vehicles
JP4424067B2 (en) 2003-08-28 2010-03-03 株式会社デンソー Automatic headlamp optical axis adjustment device for vehicles
JP5392221B2 (en) * 2010-10-04 2014-01-22 三菱自動車工業株式会社 Headlight optical axis adjustment device
JP5392222B2 (en) * 2010-10-04 2014-01-22 三菱自動車工業株式会社 Headlight optical axis adjustment device
USRE49776E1 (en) * 2010-10-26 2024-01-02 Koito Manufacturing Co., Ltd. Vehicle lamp controller, vehicle lamp system, and vehicle lamp control method
JP5934627B2 (en) * 2012-10-16 2016-06-15 株式会社デンソー Vehicle headlamp control device
WO2023058629A1 (en) * 2021-10-04 2023-04-13 株式会社小糸製作所 Leveling control device and lamp system
WO2023058628A1 (en) * 2021-10-06 2023-04-13 株式会社小糸製作所 Leveling control device and lamp system

Also Published As

Publication number Publication date
JP2000142213A (en) 2000-05-23

Similar Documents

Publication Publication Date Title
JP3384236B2 (en) Automatic adjustment of headlight optical axis direction for vehicles
US6193398B1 (en) System for automatically adjusting optical axis direction of vehicle headlight
JP4726277B2 (en) Automatic headlamp optical axis adjustment device for vehicles
US6572248B2 (en) Apparatus for automatically adjusting optical axis of vehicle headlights
JP3168414B2 (en) Optical axis adjustment device for vehicle headlights
JP3760118B2 (en) Irradiation direction control device for vehicular lamp
US6693380B2 (en) Auto leveling apparatus of vehicle headlamp
JP4140125B2 (en) Automatic headlamp optical axis adjustment device for vehicles
JP2000062525A (en) Illuminating direction control device for vehicular lighting fixture
JP3847972B2 (en) Auto-leveling device for automotive headlamps
JP2010143506A (en) Auto-leveling system for vehicular lamp
US10604062B2 (en) Headlight adjusting system comprising gyroscopes
JP3850943B2 (en) Irradiation direction control device for vehicular lamp
JP2001318149A (en) Front information detecting device for vehicle
CN109153351B (en) Optical axis control device for headlamp
JP4424067B2 (en) Automatic headlamp optical axis adjustment device for vehicles
JP2008247210A (en) Auto leveling device
AU2008245165B2 (en) Apparatus for automatically adjusting optical-axes direction of headlights of a vehicle
JP3820299B2 (en) Irradiation direction control device for vehicular lamp
JP2010143425A (en) Auto-leveling system for vehicular lamp
JP6916038B2 (en) Vehicle lighting control device and vehicle lighting system
JP3931495B2 (en) Vehicle pitch angle calculation device
JP4396050B2 (en) Automatic headlamp optical axis adjustment device for vehicles
KR20150062323A (en) Adaptive Front-Lightning System of Vehicles
JP2005067300A (en) Device for automatically adjusting optical axis direction of headlight for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140620

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term