JP4725729B2 - Multilayer reflection mirror and EUV exposure apparatus - Google Patents

Multilayer reflection mirror and EUV exposure apparatus Download PDF

Info

Publication number
JP4725729B2
JP4725729B2 JP2006011272A JP2006011272A JP4725729B2 JP 4725729 B2 JP4725729 B2 JP 4725729B2 JP 2006011272 A JP2006011272 A JP 2006011272A JP 2006011272 A JP2006011272 A JP 2006011272A JP 4725729 B2 JP4725729 B2 JP 4725729B2
Authority
JP
Japan
Prior art keywords
multilayer
multilayer film
film
mirror
exposure apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006011272A
Other languages
Japanese (ja)
Other versions
JP2007194406A (en
Inventor
雅之 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2006011272A priority Critical patent/JP4725729B2/en
Publication of JP2007194406A publication Critical patent/JP2007194406A/en
Application granted granted Critical
Publication of JP4725729B2 publication Critical patent/JP4725729B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、多層膜反射鏡、及びそれを使用したEUV露光装置に関するものである。   The present invention relates to a multilayer reflector and an EUV exposure apparatus using the same.

半導体集積回路素子の微細化の一層の進展に伴い、紫外線に代わって、波長11〜14nm程度の軟X線を使用する投影リソグラフィの開発が進められている。この技術は、最近ではEUVリソグラフィ(極端紫外線(Extreme Ultraviolet)縮小投影露光)とも呼ばれている。このEUVリソグラフィは、従来の光リソグラフィ(波長190nm程度以上)では実現不可能な、50nm以下の解像力を有するリソグラフィ技術として期待されている。   With further progress in miniaturization of semiconductor integrated circuit elements, development of projection lithography using soft X-rays having a wavelength of about 11 to 14 nm instead of ultraviolet rays is being promoted. This technique is also recently called EUV lithography (Extreme Ultraviolet reduced projection exposure). This EUV lithography is expected as a lithography technique having a resolving power of 50 nm or less, which cannot be realized by conventional optical lithography (wavelength of about 190 nm or more).

この軟X線の波長帯では、透明な物質が存在せず、物質の屈折率が1に非常に近いので、屈折を利用した従来の光学素子は使用できない。それに代わって、全反射を利用した斜入射ミラーや、界面での微弱な反射光の位相を合わせることによりその反射光を多数重畳させて全体としては高い反射率を得る多層膜反射鏡などが使用される。   In this soft X-ray wavelength band, there is no transparent substance, and the refractive index of the substance is very close to 1, so that a conventional optical element utilizing refraction cannot be used. Instead, a grazing incidence mirror that uses total reflection, or a multilayer film reflector that achieves a high reflectivity by superimposing a large number of reflected light by matching the phase of weak reflected light at the interface is used. Is done.

このような多層膜反射鏡においては、入射光の波長帯により、高い反射率を得るのに適した材質が異なる。例えば、13.5nm付近の波長帯では、モリブデン(Mo)層とシリコン(Si)層を基板上に交互に積層したMo/Si多層膜を用いると、直入射で67.5%の反射率を得ることができる。また、11.3nm付近の波長帯では、Mo層とベリリウム(Be)層を基板上に交互に積層したMo/Be多層膜を用いると、直入射で70.2%の反射率を得ることができる。   In such a multilayer-film reflective mirror, the material suitable for obtaining a high reflectance varies depending on the wavelength band of incident light. For example, in the wavelength band near 13.5 nm, using a Mo / Si multilayer film in which a molybdenum (Mo) layer and a silicon (Si) layer are alternately stacked on a substrate, a reflectivity of 67.5% can be obtained at normal incidence. it can. In the wavelength band near 11.3 nm, when a Mo / Be multilayer film in which Mo layers and beryllium (Be) layers are alternately stacked on a substrate is used, a reflectivity of 70.2% can be obtained at normal incidence.

このような多層膜反射鏡は、反射鏡保持機構を介してEUV露光装置の鏡筒に保持されている。一般に多層膜の成膜領域は多層膜反射鏡の基板の反射面の一部だけであり、反射鏡保持機構が反射鏡を鏡筒に保持するのは反射鏡の基板の側面や裏面である。そのため、基板にガラスのような絶縁体を用いた場合、多層膜は鏡筒とは電気的に絶縁された状態にある。   Such a multilayer film reflecting mirror is held by a lens barrel of an EUV exposure apparatus via a reflecting mirror holding mechanism. In general, the film formation region of the multilayer film is only a part of the reflecting surface of the substrate of the multilayer film reflecting mirror, and the reflecting mirror holding mechanism holds the reflecting mirror in the lens barrel on the side surface and the back surface of the reflecting mirror substrate. Therefore, when an insulator such as glass is used for the substrate, the multilayer film is electrically insulated from the lens barrel.

一般に、光が物質に照射されると、物質から電子が放出される。そのため、EUV光が照射されることで次々と光電子が放出され、多層膜はプラスに帯電していく。多層膜がプラスに帯電すると、ある一定の量帯電したのち、部分的な放電が発生したり、あるいは集塵機のように空間中の異物を吸い寄せてしまったりするおそれがある。さらに、他の多層膜から放出された電子が、プラスに帯電した多層膜反射鏡に吸引されて衝突する恐れもある。そこで、多層膜部分を別の導通箇所に導通させ、多層膜部分の帯電を防止する必要がある。   Generally, when a material is irradiated with light, electrons are emitted from the material. Therefore, photoelectrons are emitted one after another when irradiated with EUV light, and the multilayer film is positively charged. When the multilayer film is positively charged, after a certain amount is charged, partial discharge may occur or foreign matter in the space may be sucked in like a dust collector. Further, electrons emitted from other multilayer films may be attracted to and collide with a positively charged multilayer film reflecting mirror. Therefore, it is necessary to conduct the multilayer film portion to another conduction location to prevent the multilayer film portion from being charged.

多層膜の帯電を防止したり、他の多層膜から放出された電子が、多層膜反射鏡に吸引されて衝突することを防止する方法が、特開2003−124111号公報に記載されている。これは、多層膜を接地したり多層膜にマイナスの電位を与えたりするものであり、多層膜が絶縁体である場合には、多層膜の上又は下に導電層を設け、この導電層を接地したり、この導電層にマイナスの電位を与えることも記載されている。
特開2003−124111号公報
Japanese Patent Application Laid-Open No. 2003-124111 discloses a method for preventing charging of a multilayer film or preventing electrons emitted from other multilayer films from being attracted to and collided with a multilayer film reflecting mirror. This is to ground the multilayer film or to apply a negative potential to the multilayer film. When the multilayer film is an insulator, a conductive layer is provided above or below the multilayer film, and the conductive layer is It is also described that it is grounded or a negative potential is applied to the conductive layer.
JP 2003-124111 A

しかし、特許文献1に記載される技術では、多層膜や導電膜に導線を取り付け、この導線を介して、多層膜や導電膜を接地したり、これらにマイナスの電位を与えるものである。   However, in the technique described in Patent Document 1, a conductive wire is attached to a multilayer film or a conductive film, and the multilayer film or the conductive film is grounded or a negative potential is applied to the multilayer film or the conductive film through the conductive wire.

ところが、EUV露光装置に用いるような多層膜反射鏡においては、許される変形が極めて小さい。従って、波面を最良に追い込む調整をした後に、導線等の他の部材が多層膜反射鏡に触れることは、多層膜反射鏡の変形を引き起こす結果となり、光学性能を劣化させる恐れがある。   However, in a multilayer mirror as used in an EUV exposure apparatus, the allowable deformation is extremely small. Therefore, after adjusting the wavefront to make the best adjustment, the contact of the other member such as a conducting wire with the multilayer film reflecting mirror may cause the multilayer film reflecting mirror to be deformed, which may deteriorate the optical performance.

本発明はこのような事情に鑑みてなされたものであり、調整後に光学性能を劣化させることなく、多層膜を接地したり、多層膜に電位を与えたりすることが可能な多層膜反射鏡、及びこの多層膜反射鏡を使用したEUV露光装置を提供することを課題とする。   The present invention has been made in view of such circumstances, and a multilayer film reflector capable of grounding a multilayer film or applying a potential to the multilayer film without deteriorating optical performance after adjustment, It is another object of the present invention to provide an EUV exposure apparatus using the multilayer mirror.

前記課題を解決するための第1の手段は、基板上に多層膜を形成してなる多層膜反射鏡であって、前記基板と前記多層膜の間に導電性膜を有し、当該導電成膜が、前記多層膜反射鏡を保持部材で保持するために前記多層膜反射鏡に設けられた保持部まで延びていることを特徴とする多層膜反射鏡である。   A first means for solving the above problem is a multilayer film reflecting mirror in which a multilayer film is formed on a substrate, and a conductive film is provided between the substrate and the multilayer film. The multilayer film reflecting mirror is characterized in that a film extends to a holding portion provided in the multilayer film reflecting mirror in order to hold the multilayer film reflecting mirror with a holding member.

前記課題を解決するための第2の手段は、前記第1の手段であって、前記導電性膜と前記多層膜との間に、前記導電性膜の表面粗さの影響を低減させるための挿入層を有することを特徴とするものである。   The second means for solving the problem is the first means for reducing the influence of the surface roughness of the conductive film between the conductive film and the multilayer film. It has an insertion layer.

前記課題を解決するための第2の手段は、前記第1の手段又は第2の手段である多層膜反射鏡を有するEUV露光装置であって、前記多層膜反射鏡を保持する保持部材を有し、当該保持部材が接地されていることを特徴とするEUV露光装置である。   A second means for solving the above-mentioned problem is an EUV exposure apparatus having a multilayer film reflecting mirror as the first means or the second means, and has a holding member for holding the multilayer film reflecting mirror. In addition, the EUV exposure apparatus is characterized in that the holding member is grounded.

前記課題を解決するための第3の手段は、前記第1の手段又は第2の手段である多層膜反射鏡を有するEUV露光装置であって、前記多層膜反射鏡を保持する保持部材を有し、当該保持部材にマイナスの電圧が印加されていることを特徴とするEUV露光装置である。   A third means for solving the above-described problem is an EUV exposure apparatus having a multilayer-film reflective mirror which is the first means or the second means, and has a holding member for holding the multilayer-film reflective mirror. The EUV exposure apparatus is characterized in that a negative voltage is applied to the holding member.

本発明によれば、調整後に光学性能を劣化させることなく、多層膜を接地したり、多層膜に電位を与えたりすることが可能な多層膜反射鏡、及びこの多層膜反射鏡を使用したEUV露光装置を提供することができる。   According to the present invention, a multilayer film reflector capable of grounding a multilayer film or applying a potential to the multilayer film without degrading optical performance after adjustment, and an EUV using the multilayer film reflector An exposure apparatus can be provided.

以下、本発明の実施の形態の例を、図を用いて説明する。図1は、本発明の実施の形態の1例である多層膜反射鏡を、EUV露光装置の鏡筒内に取り付けた状態を示す図である。多層膜ミラー11の基板上に多層膜13を形成する前に、あらかじめ導通膜12をスパッタリングにより形成する。導通膜12としては、Ru(ルテニウム)の10nmの単層膜を使用している。   Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a view showing a state in which a multilayer film reflecting mirror, which is an example of an embodiment of the present invention, is mounted in a lens barrel of an EUV exposure apparatus. Before forming the multilayer film 13 on the substrate of the multilayer mirror 11, the conductive film 12 is formed in advance by sputtering. As the conductive film 12, a 10 nm single layer film of Ru (ruthenium) is used.

また、導通膜12は、多層膜ミラー側面の、保持部材14が勘合する部分(保持部)まで延びており、保持部材14が勘合したときに、導電膜12と保持部材14とが接触するようになっている。このようにすることで、多層膜13は、導通膜12を通じて保持部材14まで導通した状態となっている。このようにして、多層膜ミラー11を保持部材14で保持し、この状態のまま光学調整工程を行う。最終的に光学調整が完了した段階においても常に導通がはかられているので、最終工程で導線を取り付けるなどの新たな接触でミラー面形状を劣化させる恐れなく、導通をとることができる。   In addition, the conductive film 12 extends to a portion (holding portion) on the side surface of the multilayer mirror where the holding member 14 is fitted, so that the conductive film 12 and the holding member 14 come into contact when the holding member 14 is fitted. It has become. By doing so, the multilayer film 13 is in a state of being conducted to the holding member 14 through the conduction film 12. In this way, the multilayer mirror 11 is held by the holding member 14, and the optical adjustment process is performed in this state. Even when the optical adjustment is finally completed, the continuity is always maintained, and therefore the continuity can be achieved without fear of degrading the mirror surface shape by a new contact such as attaching a conducting wire in the final process.

保持部材14が一体となった多層膜ミラー11を鏡筒15に保持すると、保持部材14が保持機構(図では鏡筒15と一体となっている)に接触することで、鏡筒15及び装置本体(不図示)への電気的導通をとることができ、多層膜13は接地状態となる。これにより、多層膜ミラー11が、EUV光照射による光電子放出で帯電することがなくなる。本実施の形態では、導通膜12としてRu膜を採用したが、後工程において消滅することなく安定で変化しない導電性の膜であれば、いかなる材料でも使用することができる。   When the multilayer mirror 11 in which the holding member 14 is integrated is held in the lens barrel 15, the holding member 14 comes into contact with a holding mechanism (in the figure, integrated with the lens barrel 15), so that the lens barrel 15 and the device are connected. Electrical conduction to a main body (not shown) can be achieved, and the multilayer film 13 is in a grounded state. This prevents the multilayer mirror 11 from being charged by photoelectron emission caused by EUV light irradiation. In this embodiment, the Ru film is used as the conductive film 12. However, any material can be used as long as it is a conductive film that does not disappear in a subsequent process and does not change.

導通膜12の表面粗さが十分小さくなく、その上に多層膜を成膜したときに反射率が低下する場合には、導電膜12の成膜後、多層膜13を成膜する前に、不図示の、表面粗さ低減のための別の挿入層(例えばSi層)を成膜することが好ましい。例えば、基板の表面粗さは0.2〜0.3nm(RMS)であるが、Ru膜を成膜するとその表面粗さが1nm(RMS)となることがある。このような場合には、Ru膜の表面にSi膜を数nm〜10nm成膜することで、Si膜の表面粗さを0.2〜0.3nm(RMS)とすることができるので、その上に多層膜13を成膜すればよい。   In the case where the surface roughness of the conductive film 12 is not sufficiently small and the reflectance decreases when a multilayer film is formed thereon, after the conductive film 12 is formed, before the multilayer film 13 is formed, It is preferable to form another insertion layer (not shown) for reducing the surface roughness (for example, Si layer). For example, the surface roughness of the substrate is 0.2 to 0.3 nm (RMS), but when a Ru film is formed, the surface roughness may be 1 nm (RMS). In such a case, the surface roughness of the Si film can be set to 0.2 to 0.3 nm (RMS) by forming a Si film on the surface of the Ru film to several nanometers to 10 nm. The film 13 may be formed.

図2は、本発明の実施の形態の1例である多層膜反射鏡を、EUV露光装置の鏡筒内に取り付けた別の例の状態を示す図である。図2において、図1に示された構成要素と同じ構成要素には、同じ符号を付してその説明を省略する。図2における多層膜ミラーは、図1に示すものと同じであり、その保持方法が図1と異なるだけである。   FIG. 2 is a view showing a state of another example in which a multilayer-film reflective mirror which is an example of an embodiment of the present invention is attached in a lens barrel of an EUV exposure apparatus. 2, the same components as those shown in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted. The multilayer mirror in FIG. 2 is the same as that shown in FIG. 1, and only the holding method is different from that in FIG.

保持部材14が一体となった多層膜ミラー11を鏡筒15に保持すると、保持部材14が保持機構(図では鏡筒15と一体となっている)に接触するが、保持部材14は、鏡筒15に絶縁体16を介して取り付けられているので、多層膜13は、鏡筒15及び装置本体(不図示)へは電気的導通がなく、外部回路17にのみ電気的に導通がはかられる。これにより、多層膜13には外部回路17から任意の電位を印加することができる。特に、多層膜13にマイナスの電圧を印加すると、他の反射鏡から放出された電子は、多層膜13で反発されて、多層膜13に衝突せず、鏡筒に衝突する。よって、電子の衝突による多層膜13の損傷を防止することができる。   When the multilayer mirror 11 with the holding member 14 integrated is held by the lens barrel 15, the holding member 14 comes into contact with the holding mechanism (in the figure, integrated with the lens barrel 15). Since the multilayer film 13 is attached to the cylinder 15 via the insulator 16, the multilayer film 13 has no electrical continuity to the lens barrel 15 and the apparatus main body (not shown), and only from the external circuit 17. It is. As a result, an arbitrary potential can be applied to the multilayer film 13 from the external circuit 17. In particular, when a negative voltage is applied to the multilayer film 13, electrons emitted from other reflecting mirrors are repelled by the multilayer film 13 and do not collide with the multilayer film 13 but collide with the lens barrel. Therefore, damage to the multilayer film 13 due to electron collision can be prevented.

本実施の形態では、外部回路17として、任意の電位を印加できる電圧印加回路を用いたが、外部回路は電圧印加回路に限らず、例えば光電流を計測する電流計を設置することもできる。光電流を計測する電流計を設置すれば、EUV光の光量をモニタすることに利用できる。多層膜13で発生した電荷は、電流計を流れてアースに放電されるので、このようにしても、多層膜13の帯電を防ぐことができる。   In the present embodiment, a voltage application circuit that can apply an arbitrary potential is used as the external circuit 17. However, the external circuit is not limited to the voltage application circuit, and for example, an ammeter that measures photocurrent can be installed. If an ammeter that measures the photocurrent is installed, it can be used to monitor the amount of EUV light. Since the charge generated in the multilayer film 13 flows through the ammeter and is discharged to the ground, the multilayer film 13 can be prevented from being charged even in this way.

図3は、本発明の実施の形態の1例であるEUV露光装置の概要を示す図である。光源31から放出されたEUV光32は、コリメータミラーとして作用する凹面反射鏡34を介してほぼ平行光束となり、一対のフライアイミラー35aおよび35bからなるオプティカルインテグレータ35に入射する。   FIG. 3 is a diagram showing an outline of an EUV exposure apparatus which is an example of an embodiment of the present invention. The EUV light 32 emitted from the light source 31 becomes a substantially parallel light beam through a concave reflecting mirror 34 that acts as a collimator mirror, and enters an optical integrator 35 including a pair of fly-eye mirrors 35a and 35b.

こうして、フライアイミラー35bの反射面の近傍、すなわちオプティカルインテグレータ35の射出面の近傍には、所定の形状を有する実質的な面光源が形成される。実質的な面光源からの光は平面反射鏡36により偏向された後、マスクM上に細長い円弧状の照明領域を形成する。ここで、円弧状の照明領域を形成するための開口板は、図示していない。マスクMの表面で反射された光は、その後、投影光学系37の多層膜反射鏡M1、M2、M3、M4、M5、M6で順に反射されて、露光光101として、マスクMの表面に形成されたパターンの像を、ウエハ102上に塗布されたレジスト103上に形成する。   Thus, a substantial surface light source having a predetermined shape is formed in the vicinity of the reflective surface of the fly-eye mirror 35b, that is, in the vicinity of the exit surface of the optical integrator 35. The light from the substantial surface light source is deflected by the plane reflecting mirror 36 and then forms an elongated arc-shaped illumination area on the mask M. Here, an aperture plate for forming an arcuate illumination region is not shown. The light reflected by the surface of the mask M is then reflected in turn by the multilayer reflectors M1, M2, M3, M4, M5, and M6 of the projection optical system 37 and formed as exposure light 101 on the surface of the mask M. An image of the pattern thus formed is formed on the resist 103 coated on the wafer 102.

このEUV露光装置においては、図1、図2に示したような多層膜ミラーを使用し、図1、図2に示したような方法により鏡筒内に保持している。よって、多層膜ミラーの多層膜を接地レベルに保ったり、多層膜に任意の電圧を印加することができる。そして、多層膜ミラーの光学特性の調整後に、他の部材を多層膜ミラーに取り付ける必要がないので、調整後の多層膜ミラーの光学特性の変化を防止することができる。   In this EUV exposure apparatus, a multilayer mirror as shown in FIGS. 1 and 2 is used and held in a lens barrel by the method as shown in FIGS. Therefore, the multilayer film of the multilayer film mirror can be kept at the ground level, or an arbitrary voltage can be applied to the multilayer film. And since it is not necessary to attach another member to a multilayer mirror after adjustment of the optical characteristic of a multilayer mirror, the change of the optical characteristic of the multilayer mirror after adjustment can be prevented.

本発明の実施の形態の1例である多層膜反射鏡を、EUV露光装置の鏡筒内に取り付けた状態を示す図である。It is a figure which shows the state which attached the multilayer-film reflective mirror which is an example of embodiment of this invention in the lens barrel of EUV exposure apparatus. 本発明の実施の形態の1例である多層膜反射鏡を、EUV露光装置の鏡筒内に取り付けた別の例の状態を示す図である。It is a figure which shows the state of another example which attached the multilayer film reflective mirror which is an example of embodiment of this invention in the lens barrel of EUV exposure apparatus. 本発明の実施の形態の1例であるEUV露光装置の概要を示す図である。It is a figure which shows the outline | summary of the EUV exposure apparatus which is an example of Embodiment of this invention.

符号の説明Explanation of symbols

11…多層膜ミラー(基板)、12…多層膜、13…多層膜、14…保持部材、15…鏡筒、16…絶縁体、17…外部回路、31…光源、32…EUV光、33…照明光学系、34…凹面反射鏡、35…オプティカルインテグレータ、35a,35b…フライアイミラー、36…平面反射鏡、37…投影光学系、M…マスク、M1〜M6…多層膜反射鏡、101…露光光、102…ウエハ、103…レジスト、 DESCRIPTION OF SYMBOLS 11 ... Multilayer film mirror (board | substrate), 12 ... Multilayer film, 13 ... Multilayer film, 14 ... Holding member, 15 ... Lens barrel, 16 ... Insulator, 17 ... External circuit, 31 ... Light source, 32 ... EUV light, 33 ... Illumination optical system, 34 ... concave reflecting mirror, 35 ... optical integrator, 35a, 35b ... fly-eye mirror, 36 ... plane reflecting mirror, 37 ... projection optical system, M ... mask, M1-M6 ... multilayer reflector, 101 ... Exposure light, 102 ... wafer, 103 ... resist,

Claims (4)

基板上に多層膜を形成してなる多層膜反射鏡であって、前記基板と前記多層膜の間に導電性膜を有し、当該導電成膜が、前記多層膜反射鏡を保持部材で保持するために前記多層膜反射鏡に設けられた保持部まで延びていることを特徴とする多層膜反射鏡。   A multilayer mirror formed by forming a multilayer film on a substrate, comprising a conductive film between the substrate and the multilayer film, the conductive film holding the multilayer film mirror by a holding member In order to achieve this, the multilayer film reflecting mirror extends to a holding portion provided in the multilayer film reflecting mirror. 請求項1に記載の多層膜反射鏡であって、前記導電性膜と前記多層膜との間に、前記導電性膜の表面粗さの影響を低減させるための挿入層を有することを特徴とする多層膜反射鏡。   2. The multilayer film reflector according to claim 1, further comprising an insertion layer for reducing the influence of surface roughness of the conductive film between the conductive film and the multilayer film. Multi-layer reflector. 請求項1又は請求項2に記載の多層膜反射鏡を有するEUV露光装置であって、前記多層膜反射鏡を保持する保持部材を有し、当該保持部材が接地されていることを特徴とするEUV露光装置。   An EUV exposure apparatus having the multilayer reflector according to claim 1, further comprising a holding member that holds the multilayer reflector, and the holding member is grounded. EUV exposure equipment. 請求項1又は請求項2に記載の多層膜反射鏡を有するEUV露光装置であって、前記多層膜反射鏡を保持する保持部材を有し、当該保持部材にマイナスの電圧が印加されていることを特徴とするEUV露光装置。   3. An EUV exposure apparatus having the multilayer reflector according to claim 1, further comprising a holding member for holding the multilayer reflector, and a negative voltage is applied to the holding member. EUV exposure apparatus characterized by this.
JP2006011272A 2006-01-19 2006-01-19 Multilayer reflection mirror and EUV exposure apparatus Active JP4725729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006011272A JP4725729B2 (en) 2006-01-19 2006-01-19 Multilayer reflection mirror and EUV exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006011272A JP4725729B2 (en) 2006-01-19 2006-01-19 Multilayer reflection mirror and EUV exposure apparatus

Publications (2)

Publication Number Publication Date
JP2007194406A JP2007194406A (en) 2007-08-02
JP4725729B2 true JP4725729B2 (en) 2011-07-13

Family

ID=38449864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006011272A Active JP4725729B2 (en) 2006-01-19 2006-01-19 Multilayer reflection mirror and EUV exposure apparatus

Country Status (1)

Country Link
JP (1) JP4725729B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108942A (en) * 2009-11-19 2011-06-02 Renesas Electronics Corp Reflective exposure mask, method of manufacturing the same, and method of manufacturing semiconductor device
DE102016207307A1 (en) 2016-04-28 2017-11-02 Carl Zeiss Smt Gmbh Optical element and optical arrangement with it

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682604B2 (en) * 1987-08-04 1994-10-19 三菱電機株式会社 X-ray mask
JP2723600B2 (en) * 1989-03-31 1998-03-09 キヤノン株式会社 X-ray exposure apparatus and X-ray exposure method
JP2728971B2 (en) * 1990-10-02 1998-03-18 キヤノン株式会社 X-ray exposure apparatus and X-ray exposure method
JP2003124111A (en) * 2001-08-07 2003-04-25 Nikon Corp Soft x-ray exposure system
JP2005098930A (en) * 2003-09-26 2005-04-14 Nikon Corp Multilayer-film reflector, method for reconditioning it and exposure system

Also Published As

Publication number Publication date
JP2007194406A (en) 2007-08-02

Similar Documents

Publication Publication Date Title
US7501641B2 (en) Dual hemispherical collectors
US11789355B2 (en) Extreme ultraviolet mask and method of manufacturing the same
US11774844B2 (en) Extreme ultraviolet mask and method of manufacturing the same
US6048652A (en) Backside polish EUV mask and method of manufacture
US8451429B2 (en) Dichroic mirror, method for manufacturing a dichroic mirror, lithographic apparatus, semiconductor device and method of manufacturing therefor
JP2006352134A (en) Euv mask and its manufacturing method
KR100589233B1 (en) Lithographic projection apparatus and reflector assembly for use in said apparatus
TW201237565A (en) Lithographic apparatus, spectral purity filter and device manufacturing method
JP4539335B2 (en) Multilayer reflection mirror, EUV exposure apparatus, and contamination removal method in multilayer reflection mirror
KR20110084950A (en) Collector assembly, radiation source, lithographic apparatus and device manufacturing method
WO2006033442A1 (en) Reflective mask, reflective mask manufacturing method and exposure apparatus
KR101423817B1 (en) Illumination optical system, exposure apparatus, and method of manufacturing device
JP4725729B2 (en) Multilayer reflection mirror and EUV exposure apparatus
TWI452440B (en) Multilayer mirror and lithographic apparatus
JP2006177740A (en) Multilayer film mirror and euv exposure apparatus
JP4319642B2 (en) Device manufacturing method
KR20200013567A (en) A mask used for extreme ultraviolet (EUV) photolithgraphy and EUV photography exposure method
JP2003124111A (en) Soft x-ray exposure system
TW202125092A (en) Mask blanks and methods for forming the same
KR20210047593A (en) pellicle for reflective mask
JPS5915380B2 (en) Fine pattern transfer device
JP4005075B2 (en) Lithographic apparatus and device manufacturing method
US20020190642A1 (en) Radiation flux monitor for EUV lithography
JPH06177002A (en) Projection aligner
JP2006210604A (en) Aligner, aligning method, and process for fabricating device having micropattern

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110329

R150 Certificate of patent or registration of utility model

Ref document number: 4725729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250