JP2728971B2 - X-ray exposure apparatus and X-ray exposure method - Google Patents

X-ray exposure apparatus and X-ray exposure method

Info

Publication number
JP2728971B2
JP2728971B2 JP26534990A JP26534990A JP2728971B2 JP 2728971 B2 JP2728971 B2 JP 2728971B2 JP 26534990 A JP26534990 A JP 26534990A JP 26534990 A JP26534990 A JP 26534990A JP 2728971 B2 JP2728971 B2 JP 2728971B2
Authority
JP
Japan
Prior art keywords
ray
film
mask structure
conductive
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26534990A
Other languages
Japanese (ja)
Other versions
JPH04142023A (en
Inventor
啓子 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP26534990A priority Critical patent/JP2728971B2/en
Publication of JPH04142023A publication Critical patent/JPH04142023A/en
Application granted granted Critical
Publication of JP2728971B2 publication Critical patent/JP2728971B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体製造に好適な、X線マスク構造体を使
用するX線露光装置およびX線露光方法に関する。
Description: TECHNICAL FIELD The present invention relates to an X-ray exposure apparatus and an X-ray exposure method using an X-ray mask structure suitable for semiconductor production.

〔従来の技術〕[Conventional technology]

近年、半導体集積回路の高密度化及び高速化に伴い、
集積回路のパターン線幅が約3年間で70%に縮小される
傾向にある。
In recent years, with the increase in density and speed of semiconductor integrated circuits,
The pattern line width of integrated circuits tends to be reduced to 70% in about three years.

大容量メモリ素子(例えば4MDRAM)の更なる集積化に
より、16Mbit容量のもの等では0.5μmルールのデバイ
ス設計が行われる様になってきた。この為焼付装置も一
層の高性能化が要求され、転写可能な最小線幅が0.5μ
m以下という高性能が要求され始めて来ている。その為
露光光源波長としてX線領域(4乃至20Å)の光を利用
したステツパが開発されつつある。
With the further integration of large-capacity memory elements (for example, 4MDRAM), devices with a 16-Mbit capacity and the like have been designed with a 0.5 μm rule. For this reason, even higher performance is required for printing equipment, and the minimum transferable line width is 0.5μ.
The high performance of less than m is beginning to be required. For this reason, a stepper using light in the X-ray region (4 to 20 °) as the exposure light source wavelength is being developed.

上記X線露光に用いられるX線マスク支持体は、例え
ば、第9図(a),(b)に示す様に、X線透過材より
成るX線透過膜2とこれを緊張保持する為の保持枠1か
らなっており、又、X線マスク構造体は、第10図
(a),(b)に示す様に、上記X線マスク支持体のX
線透過膜2上に所望パターンのX線吸収体3が形成され
たものである。
The X-ray mask support used for the X-ray exposure is, for example, as shown in FIGS. 9 (a) and 9 (b), an X-ray transmission film 2 made of an X-ray transmission material, and a tension-holding film. As shown in FIGS. 10 (a) and (b), the X-ray mask support comprises a holding frame 1.
An X-ray absorber 3 having a desired pattern is formed on a radiation transmitting film 2.

又、上記の如きX線マスク構造体を用いるX線露光装
置は、X線発生源とX線露光領域を区画するチヤンバー
とシリコンウエハ等の被露光部材を所定位置に固定する
ウエハーチヤツクと上記X線マスク構造体を被露光部材
上の所定位置に重ねるマスク把持手段を主要部分として
形成されている。
An X-ray exposure apparatus using the X-ray mask structure as described above comprises an X-ray source, a chamber for partitioning an X-ray exposure area, a wafer chuck for fixing a member to be exposed such as a silicon wafer at a predetermined position, and the X-ray exposure apparatus. A mask holding means for superposing a mask structure on a predetermined position on a member to be exposed is formed as a main part.

〔発明が解決しようとしている問題点〕[Problems to be solved by the invention]

X線露光は上記の如きX線マスク構造体及びX線露光
装置を用いて行われるものであるが、かかる従来のX線
露光方法にあっては以下の様な問題点があった。即ち、
X線露光装置では従来の光にくらべ高エネルギーを持つ
X線を光源として用いるため、マスクから光電子及びオ
ージエ電子が発生したり、更にX線露光装置ではX線の
強度が低下しない様にヘリウム雰囲気となっている場合
があり、この乾燥雰囲気内でX線の露光を行うとマスク
と気体の摩擦による静電気も発生する。本来、X線露光
時はマスク面と被露光部材の間のギヤツプが10μm〜数
10μmの一定値に保たれる必要があるにもかかわらず上
記光電子、オージエ電子及び静電気のためマスク面が帯
電され、マスク面と被露光部材とが接触して放電し、マ
スク面が傷つけられたり、破損を生ずる場合があり、更
に放出される光電子や二次電子等の影響で被露光部材上
のレジストが過剰露光され、微細パターン形成時に寸法
精度等に狂い等を生じる場合がある。
X-ray exposure is performed using the X-ray mask structure and the X-ray exposure apparatus as described above. However, such a conventional X-ray exposure method has the following problems. That is,
Since an X-ray exposure apparatus uses X-rays having higher energy than conventional light as a light source, photoelectrons and Auger electrons are generated from a mask, and a helium atmosphere is used in an X-ray exposure apparatus so that the X-ray intensity does not decrease. When X-ray exposure is performed in this dry atmosphere, static electricity is also generated due to friction between the mask and gas. Originally, at the time of X-ray exposure, the gap between the mask surface and the exposed member was 10 μm to several
Despite the necessity to maintain a constant value of 10 μm, the mask surface is charged due to the photoelectrons, Auger electrons, and static electricity, and the mask surface and the member to be exposed come into contact and are discharged, and the mask surface is damaged. In some cases, the resist on the member to be exposed is overexposed due to the influence of emitted photoelectrons and secondary electrons, and the dimensional accuracy and the like may be deviated when a fine pattern is formed.

従って本発明の目的は上記従来技術の問題点を解決
し、特に帯電防止性や寸法精度に優れたX線露光装置お
よびX線露光方法を提供することである。
Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, and to provide an X-ray exposure apparatus and an X-ray exposure method which are particularly excellent in antistatic properties and dimensional accuracy.

〔問題点を解決するための手段〕[Means for solving the problem]

上記目的は以下の本発明によって達成される。 The above object is achieved by the present invention described below.

即ち、本発明のX線露光装置は、X線発生手段と、X
線被露光部材を所定位置に固定する手段と、X線マスク
構造体を所定位置に固定する把持手段とを有するX線露
光装置において、該X線マスク構造体が導電性を有する
X線透過膜と、該X線透過膜と電気的に接続された導電
性被膜を有する保持枠と、該X線透過膜上に保持された
X線吸収体とを有し、該把持手段が前記X線マスク構造
体の導電性被膜との電気的導通手段を具備していること
を特徴とするものである。
That is, the X-ray exposure apparatus of the present invention comprises an X-ray generation unit,
An X-ray exposure apparatus having means for fixing a member to be exposed at a predetermined position and holding means for fixing an X-ray mask structure at a predetermined position, wherein the X-ray mask structure has a conductive X-ray transmitting film. And a holding frame having a conductive coating electrically connected to the X-ray transmitting film, and an X-ray absorber held on the X-ray transmitting film, wherein the gripping means comprises the X-ray mask. It is characterized by comprising means for electrical conduction with the conductive coating of the structure.

また本発明のX線露光方法は、X線被露光部材にX線
マスク構造体を介してX線を露光するX線露光方法にお
いて、該X線マスク構造体が導電性を有するX線透過膜
と、該X線透過膜と電気的に接続された導電性被膜を有
する保持枠と、該X線透過膜上に保持されたX線吸収体
とを有し、該X線マスク構造体を該X線マスク構造体の
導電性被膜との電気的導通手段を具備した把持手段に固
定した状態で、該X線露光を行うことを特徴とするもの
である。
Further, the X-ray exposure method of the present invention is an X-ray exposure method for exposing a member to be exposed to X-rays through an X-ray mask structure, wherein the X-ray mask structure has conductivity. And a holding frame having a conductive coating electrically connected to the X-ray transmitting film; and an X-ray absorber held on the X-ray transmitting film. The X-ray exposure is carried out in a state where the X-ray exposure is carried out in a state where the X-ray mask structure is fixed to a holding means provided with a means for electrically connecting the conductive film to the conductive film.

以下、本発明について詳述する。 Hereinafter, the present invention will be described in detail.

まず、本発明のX線マスク支持体及びX線マスク構造
体はこのX線透過膜が導電性を有している。本発明にお
いて、X線透過膜に導電性を付与する方法としては、例
えばX線透過膜自体を導電性材料にて形成する方法が挙
げられ、本発明においてはB又はPをドーピングしたS
i、C等が好ましく用いられる。又、X線透過膜表面を
導電膜にて被覆することにより、該X線透過膜に導電性
を付与する方法が挙げられる。上記方法のうち、本発明
においては、X線透過膜表面を導電膜にて被覆すること
によりX線透過膜に導電性を付与する方法が特に好まし
く用いられる。即ち、X線透過膜自体がSi等の導電性材
料にて形成されている場合であっても、そのSi膜表面を
更に導電膜にて被覆することは、例えば、X線マスク構
造体の製造過程にあって、Si膜表面の酸化による導電性
不良を防止する上で好ましく、又、X線透過膜を形成す
る材料として、SiC、SiN等のとりわけ、アライメント光
及びX線の透過性に優れる絶縁材料をも用いることがで
きるので、所望に応じて広範囲での材料選択が可能であ
る。
First, in the X-ray mask support and the X-ray mask structure of the present invention, the X-ray transmitting film has conductivity. In the present invention, as a method of imparting conductivity to the X-ray permeable film, for example, a method of forming the X-ray permeable film itself with a conductive material can be mentioned, and in the present invention, B or P doped S
i, C, etc. are preferably used. Further, a method of coating the surface of the X-ray permeable film with a conductive film to impart conductivity to the X-ray permeable film may be used. Among the above methods, in the present invention, a method of imparting conductivity to the X-ray permeable film by coating the surface of the X-ray permeable film with a conductive film is particularly preferably used. That is, even when the X-ray transmission film itself is formed of a conductive material such as Si, it is necessary to further cover the surface of the Si film with a conductive film, for example, when manufacturing an X-ray mask structure. In the process, it is preferable in order to prevent poor conductivity due to oxidation of the surface of the Si film, and as a material for forming the X-ray transmission film, it is particularly excellent in transmittance of alignment light and X-ray such as SiC and SiN. Since an insulating material can also be used, a wide range of material can be selected as desired.

本発明において、X線透過膜は前記の如く具体的には
Si,C,SiC,SiN,BN,AlN等の無機膜又は該無機膜とポリイ
ミド等の有機膜との複合膜によって形成されるが、X線
耐性、可視光透過率、X線透過率、強度等の点で全て平
均的に優れたSiC,SiNを使用することが好ましく、2μ
m以下の厚さに形成されるのが好ましい。又、X線透過
膜の表面を被覆する導電膜は具体的には、カーボン、A
u,Pt,AiPd等安定な導電性のとれる材料によって形成さ
れるが、X線透過性等の点から特にカーボンを使用する
ことが好ましく、10Å〜100Åの厚さに形成されるのが
好ましい。とりわけ上記導電膜の厚さは極端に薄すぎる
と導電性不良を生じ、一方、極端に厚すぎるとアライメ
ント光及びX線の透過率を低下させてしまう。
In the present invention, the X-ray permeable membrane is specifically as described above.
It is formed of an inorganic film such as Si, C, SiC, SiN, BN, or AlN or a composite film of the inorganic film and an organic film such as polyimide, and has X-ray resistance, visible light transmittance, X-ray transmittance, and intensity. It is preferable to use SiC and SiN, which are excellent in average in all respects, etc.
m or less. In addition, the conductive film covering the surface of the X-ray transmission film is, specifically, carbon, A
It is made of a stable conductive material such as u, Pt, AiPd, etc., and it is particularly preferable to use carbon from the viewpoint of X-ray transparency and the like, and it is preferable to form it with a thickness of 10-100 mm. In particular, when the thickness of the conductive film is extremely small, poor conductivity occurs. On the other hand, when the thickness is too large, the transmittance of alignment light and X-rays is reduced.

更に、本発明のX線マスク支持体及びX線マスク構造
体は、その保持枠が、該X線透過膜と電気的に接続され
た導電性被膜を有している。前記導電性被膜を形成する
材料としては先述のX線透過膜表面に被覆される導電膜
と同様に、カーボン、Au,Pt,AuPd,Cu,Zn等、非磁性体で
あり導電性のとれる材料が用いられ、特に表面酸化が少
ないことからAu,Pt,AuPdを使用することが好ましい。
又、導電性被膜の厚さは前記導電膜と一体成膜される場
合にはその導電性、アライメント光及びX線の透過率の
点から好ましくは10Å〜100Åとされる。或いは、前記
導電膜と独立に成膜される場合には、X線透過膜上に設
けられる導電膜よりも厚く成膜され、後述する電気的導
通手段との接触時における剥離防止効果が付与される。
尚、その厚さは通常、最大でも1mm程度である。
Further, in the X-ray mask support and the X-ray mask structure of the present invention, the holding frame has a conductive coating electrically connected to the X-ray transmitting film. As the material for forming the conductive film, similar to the conductive film coated on the surface of the X-ray transparent film described above, carbon, Au, Pt, AuPd, Cu, Zn, etc. It is preferable to use Au, Pt, or AuPd because of the low surface oxidation.
When the conductive film is formed integrally with the conductive film, the thickness of the conductive film is preferably 10 to 100 ° in view of the conductivity, the transmittance of alignment light and X-rays. Alternatively, when the conductive film is formed independently of the conductive film, the conductive film is formed to be thicker than the conductive film provided on the X-ray transmission film, so that a separation preventing effect at the time of contact with an electrical conduction means described later is provided. You.
The thickness is usually at most about 1 mm.

本発明において、保持枠はX線透過膜を緊張保持する
ものであり保持枠下部に補強枠が付設されている場合に
は、この補強枠をも含める。該保持枠は、具体的には、
石英ガラス、硼硅酸ガラス(パイレツクス)、セラミツ
クス、Si、Ti等の材料を用いて形成される。
In the present invention, the holding frame is for holding the X-ray permeable membrane in tension, and when a reinforcing frame is provided below the holding frame, this reinforcing frame is also included. The holding frame is, specifically,
It is formed using a material such as quartz glass, borosilicate glass (pyrex), ceramics, Si, and Ti.

又、本発明においてX線透過膜上に保持されるX線吸
収体は具体的にAu,Ta,W等のX線の吸収の大きい材料を
用いて、0.5μm〜1.0μmの厚さに形成されるのが好ま
しい。
Further, in the present invention, the X-ray absorber held on the X-ray transmitting film is formed to a thickness of 0.5 μm to 1.0 μm by using a material having a large X-ray absorption such as Au, Ta, W or the like. Preferably.

以上詳述した本発明のX線マスク構造体は、例えば第
1図、第2図及び第3図に示される構造を有している。
まず第1図に示された態様例はX線透過膜2自体が導電
性材料より形成され、且つ保持枠1が該X線透過膜2と
電気的に接続された導電性被膜4aを有するX線マスク構
造体である。尚、同図において3はX線吸収体を示す。
次に第2図に示された態様例はX線透過膜2と保持枠1
とを連続的に覆う導電性の連続被膜4が形成されたX線
マスク構造体である。この様に導電性被膜を連続被膜と
して形成することは、X線マスク構造体作製時のプロセ
スを少なくすることができる等の点で好ましい。
The X-ray mask structure of the present invention described in detail above has, for example, the structure shown in FIG. 1, FIG. 2, and FIG.
First, in the embodiment shown in FIG. 1, the X-ray transmitting film 2 itself is formed of a conductive material, and the holding frame 1 has a conductive coating 4a electrically connected to the X-ray transmitting film 2. It is a line mask structure. In the figure, reference numeral 3 denotes an X-ray absorber.
Next, the embodiment shown in FIG.
Is an X-ray mask structure on which a conductive continuous film 4 continuously covering the X-ray mask is formed. Forming the conductive film as a continuous film in this manner is preferable in that the number of processes for manufacturing the X-ray mask structure can be reduced.

又、第3図に示された態様例は、本発明のX線マスク
構造体の特に好ましい例である。即ち、X線透過膜2が
導電膜4bを有し、且つ保持枠1が該導電膜4bと電気的に
接続された導電性被膜4aを有するX線マスク構造体であ
る。第2図において3はX線吸収体を示す。本態様はX
線透過膜上に導電膜4bを、又、保持枠に導線性被膜4a
を、各々独立に設けたものであるから、導電膜4bと導電
性被膜4aの膜厚をそれぞれ独立に設定できる。即ち、先
述した如く、X線透過膜上の導電膜4bは、X線透過率、
アライメント光透過率の点から、10〜100Å程度が好ま
しいが、保持枠上の導電膜4aは電気的導通手段との接触
及びマスクチヤツクへの着脱による機械的な力がかかる
場合があるので導電膜4bよりも厚く成膜される方が好ま
しい。
The embodiment shown in FIG. 3 is a particularly preferred example of the X-ray mask structure of the present invention. That is, the X-ray mask structure has the X-ray transmission film 2 having the conductive film 4b and the holding frame 1 having the conductive film 4a electrically connected to the conductive film 4b. In FIG. 2, reference numeral 3 denotes an X-ray absorber. This aspect is X
Conductive film 4b on the line permeable film and conductive film 4a on the holding frame
Are provided independently of each other, so that the film thicknesses of the conductive film 4b and the conductive film 4a can be set independently of each other. That is, as described above, the conductive film 4b on the X-ray transmission film has an X-ray transmittance,
From the viewpoint of the alignment light transmittance, it is preferably about 10 to 100 °, but the conductive film 4a on the holding frame may be subjected to a mechanical force due to contact with the electrical conduction means and attachment / detachment to / from the mask check. It is preferable that the film is formed thicker than that.

次に、以上で述べたX線マスク構造体を用いたX線露
光に使用される本発明のX線露光装置について詳述す
る。第4図に本発明装置の概略構成図を示す。本発明装
置はX線発生手段(不図示)と、X線被露光部材12を所
定位置に固定する手段13と、X線マスク構造体14を所定
位置に固定する把持手段15とを有する。上記各手段の配
置関係は第4図に示す如くであり、X線被露光部材の固
定手段13とX線マスク構造体の固定手段15とは、互いに
所望の間隔(ギヤツプ)を有する様に相対向してチヤン
バー11内に配置されており、X線発生手段は、X線(矢
印)がX線マスク構造体14を介してX線被露光部材12に
照射される様に配置されている。又、チヤンバー11内
は、真空から大気圧まで用いることができるが、好まし
くはX線減衰及び熱伝導を考えて圧力100torr程度のヘ
リウム雰囲気とされる。以上述べた基本的構成は、従来
公知のX線露光装置に従ずるものであって良く、更に必
要に応じて公知の付加手段を有するものであって良い。
本発明装置の特徴は、該把持手段15が、X線マスク構造
体14との電気的導通手段を具備している点にある。かか
る導通手段について第5図乃至第7図を用いて詳述す
る。ここで、第5図乃至第7図は、第4図のX線マスク
構造体14及び把持手段15の部分の拡大図である。まず、
第5図及び第6図において25、35はマスクチヤツクであ
り26、36はマスクチヤツクの一部を構成しX線マスク構
造体の位置決めを行う際の基準となるVブロツクと呼ば
れるものである。更にこのVブロツク26、36には、アー
スバネ27、37が設置されており、保持枠21、31の導電性
被膜24、34と接触している。かかる構成を採ることによ
り、X線露光時にX線吸収体23、33から発生する光電子
及びオージエ電子はX線透過膜22、32上に形成された導
電膜24、34に吸収される。さらにかかる電子は保持枠2
1、31の導電性被膜24、34にアースバネ27、37、把持手
段(Vブロツク26、36及びマスクチヤツク25、35)から
チヤンバーへと流れていき、X線マスク構造体の帯電が
防止される。
Next, an X-ray exposure apparatus of the present invention used for X-ray exposure using the above-described X-ray mask structure will be described in detail. FIG. 4 shows a schematic configuration diagram of the apparatus of the present invention. The apparatus of the present invention includes X-ray generating means (not shown), means 13 for fixing the X-ray exposed member 12 at a predetermined position, and gripping means 15 for fixing the X-ray mask structure 14 at a predetermined position. FIG. 4 shows the arrangement relationship of the above-mentioned respective means. The fixing means 13 for the X-ray exposed member and the fixing means 15 for the X-ray mask structure are relatively positioned so as to have a desired interval (gap) therebetween. The X-ray generating means is arranged so that X-rays (arrows) are irradiated to the X-ray exposure member 12 through the X-ray mask structure 14. The chamber 11 can be used from a vacuum to an atmospheric pressure, but is preferably a helium atmosphere at a pressure of about 100 torr in consideration of X-ray attenuation and heat conduction. The basic configuration described above may be in accordance with a conventionally known X-ray exposure apparatus, and may have a known additional unit as necessary.
A feature of the apparatus of the present invention is that the gripping means 15 includes means for electrically connecting to the X-ray mask structure 14. The conduction means will be described in detail with reference to FIGS. 5 to 7 are enlarged views of the X-ray mask structure 14 and the holding means 15 shown in FIG. First,
In FIGS. 5 and 6, reference numerals 25 and 35 denote mask checks, and reference numerals 26 and 36 denote V blocks which constitute a part of the mask check and serve as a reference when positioning the X-ray mask structure. Further, earth springs 27 and 37 are provided on the V blocks 26 and 36, and are in contact with the conductive coatings 24 and 34 of the holding frames 21 and 31, respectively. With this configuration, photoelectrons and Auger electrons generated from the X-ray absorbers 23 and 33 during X-ray exposure are absorbed by the conductive films 24 and 34 formed on the X-ray transmission films 22 and 32. Furthermore, such electrons are in holding frame 2.
Ground springs 27 and 37 and gripping means (V blocks 26 and 36 and mask checks 25 and 35) flow to the conductive coatings 24 and 34 of 1, 31 to the chamber, thereby preventing the X-ray mask structure from being charged.

ここで用いられるアースバネ27、37は、材質はリン青
銅、ステンレス等で表面にAu,Pt,Pdなどの貴金属におお
われているものが表面の腐蝕防止等の点で好ましい。
又、形状はX線マスクと接触する部分をX線マスク面を
傷つけない様に、接触端は曲面になっているが、材質及
び形状は導電性があり、X線マスクを傷つけなければこ
れらの限りではない。
The earth springs 27 and 37 used here are preferably made of phosphor bronze, stainless steel, or the like and covered with a noble metal such as Au, Pt, or Pd from the viewpoint of preventing surface corrosion.
Also, the shape of the contact end is curved so that the part in contact with the X-ray mask does not damage the surface of the X-ray mask. Not as long.

また27、37はアースバネと呼んだがバネ性のないピン
等でもかまわない。
Although 27 and 37 are called earth springs, pins or the like having no spring property may be used.

又、第5図によると保持枠21(21b)の形状が斜面部
を持っているが第6図の様にアースバネ37が保持枠31よ
り高くならず、マスクウエハー間のギヤツプに影響を与
えなければ斜面部を持つ必要はない。
According to FIG. 5, the shape of the holding frame 21 (21b) has a slope, but as shown in FIG. 6, the ground spring 37 does not become higher than the holding frame 31, and the gap between the mask wafers must be affected. It is not necessary to have a slope.

またマスクチヤツク25、35又はVブロツク26、36がス
テンレス又はAlなどの導電性の材料にて形成されている
場合、特にアースバネ27、37がなくとも電子が流れるこ
とができればよい。
When the mask checks 25 and 35 or the V-blocks 26 and 36 are formed of a conductive material such as stainless steel or Al, it is sufficient that electrons can flow without the ground springs 27 and 37 in particular.

更に第7図に示す如く、X線マスク構造体の把持手段
がVブロツクを持たずアースバネ47がマスクチヤツク45
に直接設けられてあっても良い。
Further, as shown in FIG. 7, the holding means for the X-ray mask structure does not have a V-block, and the earth spring 47 has a mask chuck 45.
May be provided directly.

以下、実施例を用いて、本発明を更に詳述する。 Hereinafter, the present invention will be described in more detail with reference to Examples.

〔実施例1〕 第5図に示される本発明のX線マスク構造体28を以下
の様に作製した。保持枠21aとなるSiウエハーをプラズ
マCVD(化学気相合成法)用チヤンバー内にセツトす
る。
Example 1 An X-ray mask structure 28 of the present invention shown in FIG. 5 was produced as follows. The Si wafer to be the holding frame 21a is set in a chamber for plasma CVD (chemical vapor synthesis).

先ず背圧を2×10-6Torr迄引いた後、水素で10%に希
釈されたシランガス10sccmとメタンガス10sccmを供給
し、該Siウエハーの温度を350℃に加熱し、圧力5×10
-3Torrで高周波パワーが50Wを印加して炭化硅素膜を成
膜し、X線透過膜22とした。該X線透過膜22上にめっき
電極となるCrとAuをEB蒸着により連続蒸着し更にその上
に電子線レジストPMMA(OEBR-1000、商品名:東京応化
社製)を塗布し電子線描画装置にて所望のパターンを形
成する。次に、亜硫酸系めっき液(ニユートロネクス30
9、商品名:EEJA製)を用い50℃1mA/cm2の条件にめっき
を行った。その後レジストを専用剥離液で剥離しめっき
電極をRIE(リアクテイブイオンエツチング)装置にてA
rプラズマで剥離しX線吸収体23とした。さらに、Siウ
エハー21aの裏面のSiN膜を所望の窓の大きさにエツチン
グし、該Siウエハーを30wt%KOHにてバツクエツチング
して保持枠21aを形成した。この保持枠21aの下部に更に
パイレツクスガラスからなる補強材21bをエポキシ系接
着剤にて接着した。
After reducing the back pressure to 2 × 10 -6 Torr, 10 sccm of silane gas and 10 sccm of methane gas diluted to 10% with hydrogen were supplied, the temperature of the Si wafer was heated to 350 ° C., and the pressure of 5 × 10 -6 was obtained.
A silicon carbide film was formed by applying a high-frequency power of 50 W at -3 Torr to form an X-ray transmission film 22. An electron beam resist PMMA (OEBR-1000, trade name: manufactured by Tokyo Ohka Co.) is applied on the X-ray transparent film 22 by continuously depositing Cr and Au serving as plating electrodes by EB evaporation on the X-ray transparent film 22. To form a desired pattern. Next, a sulfurous acid plating solution (Neutronex 30
9, trade name: manufactured by EEJA) at 50 ° C. and 1 mA / cm 2 . After that, the resist is stripped with a special stripper, and the plating electrode is removed using an RIE (reactive ion etching) device.
r Exfoliated by plasma to obtain X-ray absorber 23. Further, the SiN film on the back surface of the Si wafer 21a was etched to a desired window size, and the Si wafer was back-etched with 30 wt% KOH to form a holding frame 21a. A reinforcing material 21b made of pyrex glass was further adhered to a lower portion of the holding frame 21a with an epoxy adhesive.

最後に、上記X線マスク構造体を抵抗加熱蒸着機内に
セツトし背圧を2×10-6Torrまで引いた後、カーボンを
2Å/secの速度で蒸着し導電膜24を成膜した。
Finally, the X-ray mask structure was set in a resistance heating evaporator to reduce the back pressure to 2 × 10 −6 Torr, and then carbon was evaporated at a rate of 2 ° / sec to form a conductive film 24.

〔実施例2〕 第7図に示す本発明のX線マスク構造体48を以下の様
に作製した。まず、保持枠41aなるSiウエハーをEB蒸着
機に蒸着マスクとともにセツトする。背圧を2×10-6To
rrまで引き回転させながらCrを2Å/sec、Auを10Å/sec
の速度で部分蒸着を行い導電膜44a形成する。さらに、
上記SiウエハーをプラズマCVD(化学気相合成法)用チ
ヤンバー内にセツトする。
Example 2 An X-ray mask structure 48 of the present invention shown in FIG. 7 was produced as follows. First, the Si wafer serving as the holding frame 41a is set in an EB evaporator together with an evaporation mask. Back pressure 2 × 10 -6 To
While pulling and rotating to rr, Cr 2Å / sec, Au 10Å / sec
The partial deposition is performed at the above speed to form the conductive film 44a. further,
The Si wafer is set in a chamber for plasma CVD (chemical vapor synthesis).

先ず背圧を2×10-6Torr迄引いた後、水素で10%に希
釈されたシランガス10sccmとメタンガス10sccmを供給し
た。該Siウエハーの温度を650℃に加熱し、圧力5×10
-3Torrで高周波パワー50Wを印加して炭化硅素膜を成膜
し、X線透過膜42とした。
First, after the back pressure was reduced to 2 × 10 −6 Torr, 10 sccm of silane gas and 10 sccm of methane gas diluted to 10% with hydrogen were supplied. The temperature of the Si wafer was heated to 650 ° C. and the pressure was 5 × 10
A high frequency power of 50 W was applied at -3 Torr to form a silicon carbide film, which was used as an X-ray transmission film.

次にこれを高周波スパツタ装置にセツトし、背圧を2
×10-6Torrまで引いた後、Arガス5sccmにて圧力1.0×10
-2Torrで高周波パワー200Wを印加してX線透過膜42上に
Ta膜を形成した。更にその上にスパツタリング法により
SiO2を成膜、次いで電子線レジストPMMAを塗布し、電子
線描画装置により所望のパターンに形成した。その後PI
E(リアクテイブイオンエツチング)装置にてCF4を用い
てSiO2をCBrF3ガスを用いてTaをパターニングし、X線
吸収体43とした。さらにSiウエハー41aの裏面のSiC膜を
所望の窓の大きさにエツチングしSiウエハーを30wt%KO
Hにてバツクエツチングし、その後側面及び裏面のSiC膜
を剥離し第7図のような形状とした。
Next, this was set on a high frequency sputter device, and the back pressure was set at 2
After pulling to × 10 -6 Torr, Ar gas is 5sccm and pressure is 1.0 × 10
Applying high frequency power of 200 W at -2 Torr on the X-ray transmitting film 42
A Ta film was formed. Furthermore, by the spattering method on it
An SiO 2 film was formed, then an electron beam resist PMMA was applied, and formed into a desired pattern by an electron beam lithography apparatus. Then PI
An X-ray absorber 43 was obtained by patterning SiO 2 using CF 4 with Ta and using CBrF 3 gas with an E (reactive ion etching) apparatus. Further, the SiC film on the back surface of the Si wafer 41a is etched to a desired window size, and the Si wafer is subjected to 30 wt% KO.
Backing was performed with H, and then the SiC film on the side surface and the back surface was peeled off to obtain a shape as shown in FIG.

その後これをEB蒸着機にセツトし背圧を2×10-6Torr
まで引きAuを1Å/secの速度で蒸着を行い導電膜44bを
形成する。保持枠41の1部である補強体41bは石英ガラ
スからなる。補強体41bは斜面部を持つよう加工されて
おりEB蒸着機にセツトされる。背圧2×10-6Torrまで引
いた後回転されながら5Å/secの速度でPtが蒸着され導
電膜44aが成膜された。最後に補強体41bを41aに接着し
て、X線マスク構造体を完成した。
After that, this was set in the EB vapor deposition machine and the back pressure was set to 2 × 10 -6 Torr
Then, Au is deposited at a rate of 1Å / sec to form a conductive film 44b. The reinforcing member 41b, which is a part of the holding frame 41, is made of quartz glass. The reinforcing member 41b is processed so as to have a slope, and is set in an EB vapor deposition machine. After reducing the back pressure to 2 × 10 −6 Torr, Pt was deposited at a rate of 5 ° / sec while rotating to form a conductive film 44a. Finally, the reinforcing member 41b was bonded to 41a to complete the X-ray mask structure.

〔実施例3〕 第8図に示される本発明のX線マスク構造体58を以下
の様に作製した。
Example 3 An X-ray mask structure 58 of the present invention shown in FIG. 8 was produced as follows.

保持枠51aとなるSiウエハーを熱拡散炉にいれBH4ガス
中にて1100℃の温度をかけ表面B濃度を1020cm-3とす
る。
The Si wafer serving as the holding frame 51a is placed in a thermal diffusion furnace and heated at a temperature of 1100 ° C. in a BH 4 gas to adjust the surface B concentration to 10 20 cm −3 .

上記処理後のSiウエハーを高周波スパツタ装置にセツ
トし背圧を2×10-6Torrまで引いた後、Arガス10sccmに
て圧力10×10-2Torr、基板温度150℃、高周波パワー500
Wを印加してSiウエハー表面にW膜を形成した。その上
に3層レジストの下層となるPIQ(商品名:日立化
成)、上層となるSi含有電子線レジストSNR(商品名:
東洋曹達)を塗布し電子線描画装置にて所望のパターン
を形成した。その後RIE(リアクテイブイオンエツチン
グ)装置にてO2ガスを用いて2層レジストの下層PIQを
パターニングしSF6ガスにてWをエツチングしX線吸収
体53を形成した。
After setting the Si wafer after the above processing in a high frequency sputter device and reducing the back pressure to 2 × 10 −6 Torr, the pressure is 10 × 10 −2 Torr with 10 sccm of Ar gas, the substrate temperature is 150 ° C., and the high frequency power is 500
W was applied to form a W film on the surface of the Si wafer. On top of this, PIQ (trade name: Hitachi Chemical), the lower layer of the three-layer resist, and Si-containing electron beam resist SNR (trade name, the upper layer)
Toyo Soda) was applied, and a desired pattern was formed using an electron beam lithography apparatus. Thereafter, the lower layer PIQ of the two-layer resist was patterned using an O 2 gas using an RIE (reactive ion etching) apparatus, and W was etched using an SF 6 gas to form an X-ray absorber 53.

さらにSiウエハー51aのBが高濃度の面を所望の窓の
大きさにエツチングしSiウエハーをEDP(エテレンジア
ミン46.4mol%,ピロカテコール4mol%、H2O49.6mol
%)118℃にてエツチングを行い第8図のように保持枠5
1aを形成した。
Further, the surface having a high concentration of B of the Si wafer 51a is etched to a desired window size, and the Si wafer is subjected to EDP (46.4 mol% of etherylenediamine, 4 mol% of pyrocatechol, 49.6 mol of H 2 O).
%) Etching was performed at 118 ° C, and the holding frame 5 was used as shown in Fig. 8.
Formed 1a.

次に、上記マスクをEB蒸着装置に蒸着マスクとともに
セツトし背圧を5×10-7Torrまで引いた後、10Å/secの
速度でPtを蒸着し導電膜54を成膜した。
Next, the mask was set in an EB evaporation apparatus together with the evaporation mask, the back pressure was reduced to 5 × 10 −7 Torr, and Pt was evaporated at a rate of 10 ° / sec to form a conductive film.

最後に補強体51b(パイレツクスガラスからなる)を
保持枠51aに接着し、本発明のX線マスク構造体を完成
した。
Finally, a reinforcing member 51b (made of pyrex glass) was bonded to the holding frame 51a, thereby completing the X-ray mask structure of the present invention.

〔実施例4〕 第4図に示されるX線露光装置において、導通手段16
として、第5図乃至第8図に示される如きアースバネを
設けた装置を用い、これに実施例1乃至3で作製したX
線マスク構造体を各々、第5図、第7図、第8図に示す
様にセツトし、X線露光を行った。
Embodiment 4 In the X-ray exposure apparatus shown in FIG.
5 to 8, a device provided with an earth spring as shown in FIGS.
Each of the line mask structures was set as shown in FIGS. 5, 7, and 8, and subjected to X-ray exposure.

X線マスクの最小線幅は0.25μmであり、被露光部材
としては、SiウエハーにAlが蒸着され、さらにその上に
X線レジストRAY-PN(商品名:ヘキスト社製)が塗布さ
れているものを用いた。又、これらのマスク及び被露光
部材にはアライメントマークがほどこされている。
The minimum line width of the X-ray mask is 0.25 μm. As a member to be exposed, Al is deposited on a Si wafer, and an X-ray resist RAY-PN (trade name: manufactured by Hoechst) is applied thereon. Was used. In addition, these masks and the members to be exposed are provided with alignment marks.

マスクはマスクカセツト(不図示)に被露光部材はウ
エハーカセツト(不図示)にセツトされ、搬送系(不図
示)によって運ばれ相対向して配置される。アライメン
トマークによりマスクとウエハーはプロキシミテイギヤ
ツプ50μm、位置精度0.03μm以下に制御されて、マス
クはマスク把持手段15、ウエハーは被露光部材を固定す
る手段13に固定される。
The mask is set on a mask cassette (not shown), and the member to be exposed is set on a wafer cassette (not shown), carried by a transfer system (not shown), and arranged to face each other. The mask and the wafer are controlled by the alignment mark so that the proximity gap is 50 μm and the positional accuracy is 0.03 μm or less. The mask is fixed to the mask holding means 15 and the wafer is fixed to the means 13 for fixing the member to be exposed.

SORから発生したX線はミラーでの反射及びBe窓を通
過することによりほぼ7〜14Åの波長のX線となる。こ
れらのX線が前記マスク及びウエハーのセツトが終了す
るとシヤツター(不図示)があき、1秒露光される。ス
テツプ露光の場合ウエハーがステツプしアライメントか
ら露光までが繰りかえされる。
The X-rays generated from the SOR are converted into X-rays having a wavelength of approximately 7 to 14 ° by being reflected by a mirror and passing through a Be window. When the setting of the mask and the wafer is completed with these X-rays, a shutter (not shown) is opened, and exposure is performed for one second. In the case of step exposure, the wafer is stepped and the steps from alignment to exposure are repeated.

露光結果については、露光終了後、レジストを現像し
パターニングされたレジスト増をEB測長機で評価した。
評価の結果、実施例1乃至3いずれのX線マスク構造体
においても過剰露光がなく線幅精度は最小線幅において
±0.03μm、重ね合わせ精度は±0.1μmに制御され焼
きつけることができた。
Regarding the exposure result, after the exposure was completed, the resist was developed and the increase in the patterned resist was evaluated by an EB length measuring machine.
As a result of the evaluation, in each of the X-ray mask structures of Examples 1 to 3, there was no excessive exposure, and the line width accuracy was controlled to ± 0.03 μm at the minimum line width, and the overlay accuracy was controlled to ± 0.1 μm, and printing was possible.

〔効果〕〔effect〕

以上の様に本発明によれば、X線マスク構造体の保持
枠が導電性被覆をもちこれを把持する手段の少なくとも
一部に導電部を形成し、これらの導電部を必要に応じて
電極的に接続することにより、露光時の帯電が防止さ
れ、又、露光時に発生する光電子やオージエ電子等が有
効に除去されるので、適正且つ寸法精度に優れたX線露
光が実現される。
As described above, according to the present invention, the holding frame of the X-ray mask structure has a conductive coating, and a conductive portion is formed on at least a part of the means for gripping the conductive coating. Such connection prevents charge during exposure and effectively removes photoelectrons, Auger electrons, and the like generated during exposure, thereby realizing X-ray exposure with proper and excellent dimensional accuracy.

【図面の簡単な説明】[Brief description of the drawings]

第1図、第2図及び第3図は本発明のX線マスク構造体
の断面図である。 第4図は本発明によるX線露光装置の断面を図解的に説
明する図である。 第5図、第6図、第7図及び第8図は本発明のX線マス
ク構造体と該X線マスク構造体の把持手段との配置関係
を図解的に説明する図である。 第9図(a),(b)は従来のX線マスク支持体を図解
的に説明する図であり、(b)は(a)のA−A′断面
図である。 第10図(a),(b)は従来のX線マスク構造体を図解
的に説明する図であり、(b)は(a)のB−B′断面
図である。 1,21,31,41,51……保持枠 2,22,32,42,52……X線透過膜 3,23,33,43,53……X線吸収体 4,4a,24,34,44a,54……導電性被膜 4b,44b……導電膜 11……チヤンバー 12……X線被露光部材 13……固定手段 14……X線マスク構造体 15……把持手段 16……導通手段 25,35,45,55……マスクチヤツク 26、36、56……Vブロツク 27,37,47,57……アースバネ
1, 2, and 3 are cross-sectional views of the X-ray mask structure of the present invention. FIG. 4 is a diagram schematically illustrating a cross section of the X-ray exposure apparatus according to the present invention. FIGS. 5, 6, 7, and 8 are diagrams schematically illustrating the positional relationship between the X-ray mask structure of the present invention and the gripping means for the X-ray mask structure. 9 (a) and 9 (b) are diagrams schematically illustrating a conventional X-ray mask support, and FIG. 9 (b) is a cross-sectional view taken along line AA 'of FIG. 9 (a). 10 (a) and 10 (b) are diagrams schematically illustrating a conventional X-ray mask structure, and FIG. 10 (b) is a cross-sectional view taken along the line BB 'of FIG. 10 (a). 1,21,31,41,51 ... holding frame 2,22,32,42,52 ... X-ray permeable film 3,23,33,43,53 ... X-ray absorber 4,4a, 24,34 , 44a, 54 ... conductive film 4b, 44b ... conductive film 11 ... chamber 12 ... X-ray exposed member 13 ... fixing means 14 ... X-ray mask structure 15 ... gripping means 16 ... conductive Means 25,35,45,55 ... Mask check 26,36,56 ... V block 27,37,47,57 ... Earth spring

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/30 531E Continued on the front page (51) Int.Cl. 6 Identification number Reference number in the agency FI Technical display location H01L 21/30 531E

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】X線発生手段と、X線被露光部材を所定位
置に固定する手段と、X線マスク構造体を所定位置に固
定する把持手段とを有するX線露光装置において、該X
線マスク構造体が導電性を有するX線透過膜と、該X線
透過膜と電気的に接続された導電性被膜を有する保持枠
と、該X線透過膜上に保持されたX線吸収体とを有し、
該把持手段が前記X線マスク構造体の導電性被膜との電
気的導通手段を具備していることを特徴とするX線露光
装置。
1. An X-ray exposure apparatus comprising: an X-ray generating means; a means for fixing an X-ray exposed member at a predetermined position; and a gripping means for fixing an X-ray mask structure at a predetermined position.
An X-ray transmission film having a conductive line mask structure, a holding frame having a conductive coating electrically connected to the X-ray transmission film, and an X-ray absorber held on the X-ray transmission film And
An X-ray exposure apparatus, wherein said holding means comprises means for electrically connecting said conductive film of said X-ray mask structure.
【請求項2】上記電気的導通手段が、導電性材料よりな
る該把持手段である請求項1に記載のX線露光装置。
2. An X-ray exposure apparatus according to claim 1, wherein said electric conduction means is said holding means made of a conductive material.
【請求項3】上記電気的導通手段が、該把持手段に付設
された導電部である請求項1に記載のX線露光装置。
3. An X-ray exposure apparatus according to claim 1, wherein said electric conduction means is a conductive portion attached to said holding means.
【請求項4】X線被露光部材にX線マスク構造体を介し
てX線を露光するX線露光方法において、該X線マスク
構造体が導電性を有するX線透過膜と、該X線透過膜と
電気的に接続された導電性被膜を有する保持枠と、該X
線透過膜上に保持されたX線吸収体とを有し、該X線マ
スク構造体を該X線マスク構造体の導電性被膜との電気
的導通手段を具備した把持手段に固定した状態で、該X
線露光を行うことを特徴とするX線露光方法。
4. An X-ray exposure method for exposing a member to be exposed to X-rays through an X-ray mask structure, wherein the X-ray mask structure has a conductive X-ray transmitting film; A holding frame having a conductive coating electrically connected to the permeable membrane;
An X-ray absorber held on a X-ray transparent film, and the X-ray mask structure is fixed to a gripping means provided with means for electrically connecting the X-ray mask structure to a conductive film of the X-ray mask structure. , The X
An X-ray exposure method comprising performing line exposure.
JP26534990A 1990-10-02 1990-10-02 X-ray exposure apparatus and X-ray exposure method Expired - Fee Related JP2728971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26534990A JP2728971B2 (en) 1990-10-02 1990-10-02 X-ray exposure apparatus and X-ray exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26534990A JP2728971B2 (en) 1990-10-02 1990-10-02 X-ray exposure apparatus and X-ray exposure method

Publications (2)

Publication Number Publication Date
JPH04142023A JPH04142023A (en) 1992-05-15
JP2728971B2 true JP2728971B2 (en) 1998-03-18

Family

ID=17415941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26534990A Expired - Fee Related JP2728971B2 (en) 1990-10-02 1990-10-02 X-ray exposure apparatus and X-ray exposure method

Country Status (1)

Country Link
JP (1) JP2728971B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124111A (en) * 2001-08-07 2003-04-25 Nikon Corp Soft x-ray exposure system
JP4725729B2 (en) * 2006-01-19 2011-07-13 株式会社ニコン Multilayer reflection mirror and EUV exposure apparatus
WO2013186929A1 (en) * 2012-06-15 2013-12-19 株式会社ニコン Mask protection device, exposure apparatus, and method for manufacturing device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682604B2 (en) * 1987-08-04 1994-10-19 三菱電機株式会社 X-ray mask
JPH02309A (en) * 1987-12-29 1990-01-05 Canon Inc Mask for x-ray and light exposing method using it

Also Published As

Publication number Publication date
JPH04142023A (en) 1992-05-15

Similar Documents

Publication Publication Date Title
EP0323263B1 (en) X-ray mask support member, X-ray mask, and X-ray exposure process using the X-ray mask
US4837123A (en) Mask structure for lithography, method of preparation thereof and lithographic method
US5096791A (en) Method for preparation of mask for x-ray lithography
JP3148481B2 (en) Stencil mask for optical excitation process
JP2728971B2 (en) X-ray exposure apparatus and X-ray exposure method
JPH0557729B2 (en)
CA1157575A (en) Reducing charging effects in charged-particle-beam lithography
US4902897A (en) Ion beam gun and ion beam exposure device
JP2904145B2 (en) Aperture for charged beam writing apparatus and method of manufacturing the same
US5057388A (en) Method for the preparation of mask for X-ray lithography
JPS62119924A (en) Manufacture of transmitting mask
JP3110955B2 (en) Manufacturing method of mask for charged particle beam exposure
US5048066A (en) X-ray exposure process for preventing electrostatic attraction or contact of X-ray masks
JP2002217094A (en) Mask for electron beam exposure and its manufacturing method
JPS60122944A (en) Manufacture of mask for making pattern
JP3241551B2 (en) Charged particle beam exposure mask and method of manufacturing the same
JP2004311839A (en) Method for manufacturing mask blanks
JP3088671B2 (en) X-ray blank mask and method of manufacturing the same
JP3279181B2 (en) Method of manufacturing mask for X-ray exposure
KR930001433B1 (en) Ion-beam gun
Maldonado et al. Pellicles for X-ray lithography masks
JPH0536590A (en) X-ray mask and manufacture of x-ray mask
JPH02310A (en) Mask for x-ray and light exposing method using it
JPH0794386A (en) Transmission mask for charged beam exposure and its manufacture thereof
JPH02309A (en) Mask for x-ray and light exposing method using it

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees