JP4724556B2 - Mirror surface finishing cutting method and mirror surface finishing cutting device - Google Patents

Mirror surface finishing cutting method and mirror surface finishing cutting device Download PDF

Info

Publication number
JP4724556B2
JP4724556B2 JP2005374751A JP2005374751A JP4724556B2 JP 4724556 B2 JP4724556 B2 JP 4724556B2 JP 2005374751 A JP2005374751 A JP 2005374751A JP 2005374751 A JP2005374751 A JP 2005374751A JP 4724556 B2 JP4724556 B2 JP 4724556B2
Authority
JP
Japan
Prior art keywords
cutting
workpiece
feed
predetermined
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005374751A
Other languages
Japanese (ja)
Other versions
JP2007175796A (en
Inventor
義幸 金子
直彦 鈴木
清栄 三屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takamatsu Machinery Co Ltd
Original Assignee
Takamatsu Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takamatsu Machinery Co Ltd filed Critical Takamatsu Machinery Co Ltd
Priority to JP2005374751A priority Critical patent/JP4724556B2/en
Publication of JP2007175796A publication Critical patent/JP2007175796A/en
Application granted granted Critical
Publication of JP4724556B2 publication Critical patent/JP4724556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、被加工物の表面に対して切削加工を施して鏡面仕上げを行う鏡面仕上げ切削加工方法及び鏡面仕上げ切削加工装置に関する。 The present invention relates to a mirror finish machining method and mirror finish cutting device for performing mirror finishing by facilities cutting to the surface of the workpiece.

従来より、被加工物の表面に対して切削加工を施す際には、例えばNC旋盤などの切削加工装置が用いられている(例えば、特許文献1参照)。この切削加工装置は、切削工具を送り方向(すなわち、Z軸方向)に移動自在に支持するための第1支持手段と、切削工具を送り方向と実質上垂直な切込み方向(すなわち、X軸方向)に移動自在に支持するための第2支持手段と、切削工具を送り方向に往復移動させるための第1駆動モータと、切削工具を切込み方向に往復移動させるための第2駆動モータと、第1及び第2駆動モータをそれぞれ作動制御するためのコントローラと、を備えている。この切削加工装置による切削加工方法では、コントローラによって第1及び第2駆動モータがそれぞれ所要の通りに作動制御されることによって切削工具が送り方向に移動され、これにより所定方向に回転される被加工物の表面に対して例えば鏡面仕上げ加工などの切削加工が施される。   Conventionally, a cutting device such as an NC lathe has been used when cutting the surface of a workpiece (for example, see Patent Document 1). The cutting apparatus includes a first support means for supporting the cutting tool so as to be movable in the feed direction (that is, the Z-axis direction), and a cutting direction (that is, the X-axis direction) that is substantially perpendicular to the feed direction. ), A second drive means for reciprocating the cutting tool in the feed direction, a second drive motor for reciprocating the cutting tool in the cutting direction, And a controller for controlling the operation of each of the first and second drive motors. In the cutting method using this cutting apparatus, the cutting tool is moved in the feed direction by the first and second drive motors being controlled by the controller as required, and thus the workpiece to be rotated is rotated in a predetermined direction. The surface of the object is subjected to a cutting process such as a mirror finishing process.

特開2002−166301号公報JP 2002-166301 A

しかしながら、上述のような従来の切削加工装置による切削加工方法では、次のような問題が生じる。すなわち、被加工物の表面に対して切削加工を行うと、切削工具の切削刃部の形状が被加工物の表面に残ることによって被加工物の表面に小さな凹凸が存在するようになり、被加工物の表面を鏡面仕上げに加工することが困難であるという問題がある。   However, the following problems occur in the cutting method using the conventional cutting apparatus as described above. That is, when cutting is performed on the surface of the work piece, the shape of the cutting blade portion of the cutting tool remains on the surface of the work piece, so that small irregularities are present on the surface of the work piece, There is a problem that it is difficult to process the surface of the workpiece into a mirror finish.

本発明の目的は、被加工物の表面に対して鏡面仕上げ加工を施すことができる鏡面仕上げ切削加工方法及び鏡面仕上げ切削加工装置を提供することである。 The objective of this invention is providing the mirror surface finishing cutting method and the mirror surface finishing cutting apparatus which can perform a mirror surface finishing process with respect to the surface of a workpiece.

本発明の請求項1に記載の鏡面仕上げ切削加工方法では、切削工具を所定の送り方向に送ることにより、回転される被加工物の表面に対して切削加工を施して鏡面仕上げを行う鏡面仕上げ切削加工方法であって、
切削開始位置より前記所定の送り方向に所定の送り速度fで前記切削工具を送り、所定の切込み量でもって前記被加工物に対して一次切削加工を行い、その後に、前記切削開始位置から前記所定の送り方向に送りの位相を距離f/2だけずらして前記所定の送り方向に前記所定の送り速度fで前記切削工具を送り、前記所定の切込み量でもって前記被加工物に対して二次切削加工を行うことを特徴とする。
In the mirror surface finishing cutting method according to claim 1 of the present invention, the mirror surface finishing is performed by performing cutting processing on the surface of the rotating workpiece by feeding the cutting tool in a predetermined feeding direction. A cutting method,
The cutting tool is fed from the cutting start position in the predetermined feed direction at a predetermined feed speed f , and a primary cutting process is performed on the workpiece with a predetermined cutting amount. The phase of the feed is shifted by a distance f / 2 in the predetermined feed direction, and the cutting tool is fed at the predetermined feed speed f in the predetermined feed direction. Next cutting is performed.

また、本発明の請求項に記載の鏡面仕上げ切削加工方法では、前記二次切削加工の後に三次切削加工が更に行われ、前記三次切削加工では、前記切削開始位置から前記所定の送り方向に送りの位相を距離f/4又は3f/4だけずらして、前記所定の送り方向に前記送り速度fで前記切削工具を送って前記所定の切込み量でもって前記被加工物に対して切削加工を行い、更に前記切削開始位置から前記所定の送り方向に送りの位相を距離3f/4又はf/4だけずらして、前記所定の送り方向に前記送り速度fで前記切削工具を送って前記所定の切込み量でもって前記被加工物に対して切削加工を行うことを特徴とする。 Further, in the mirror finish cutting method according to claim 2 of the present invention, tertiary cutting is further performed after the secondary cutting, and in the tertiary cutting, in the predetermined feed direction from the cutting start position. The feed phase is shifted by a distance f / 4 or 3f / 4, the cutting tool is fed at the feed speed f in the predetermined feed direction, and the workpiece is cut by the predetermined cut amount. Further, the phase of the feed is shifted from the cutting start position in the predetermined feed direction by a distance 3f / 4 or f / 4, and the cutting tool is fed at the feed speed f in the predetermined feed direction to the predetermined feed direction. Cutting is performed on the workpiece with a cutting depth.

また、本発明の請求項に記載の鏡面仕上げ切削加工装置では、切削工具を所定の送り方向に支持する第1支持手段と、前記切削工具を前記送り方向に対して実質上垂直な切込み方向に支持する第2支持手段と、前記切削工具を前記送り方向に往復移動させるための第1駆動手段と、前記切削工具を前記切込み方向に往復移動させるための第2駆動手段と、前記第1及び第2駆動手段をそれぞれ作動制御するための作動制御手段と、切削加工条件を演算するための加工条件演算手段と、を備え、前記切削工具を前記送り方向に送ることにより、回転される被加工物の表面に対して切削加工を施す鏡面仕上げ切削加工装置であって、
一次切削加工が設定されると、前記加工条件演算手段は一次切削加工条件を演算し、この演算された前記一次切削加工条件に基づき前記作動制御手段が前記第1及び第2駆動手段を作動制御することにより一次切削加工が行われ、この一次切削加工では、切削開始位置より前記送り方向に送り速度fで前記切削工具が送られて所定の切込み量でもって前記被加工物に対して切削加工が行われ、
また二次切削加工が設定されると、前記加工条件演算手段は前記一次切削加工条件及び二次切削加工条件を演算し、この演算された前記一次切削加工条件に基づき前記作動制御手段が前記第1及び第2駆動手段を作動制御することにより前記一次切削加工が行われ、その後に、演算された前記二次切削加工条件に基づき前記作動制御手段が前記第1及び第2駆動手段を作動制御することにより二次切削加工が行われ、この二次切削加工では、前記切削開始位置から前記送り方向に送りの位相を距離f/2だけずらして前記送り方向に前記送り速度fで前記切削工具が送られて、前記所定の切込み量でもって前記被加工物に対して切削加工が行われることを特徴とする。
In the mirror finish cutting apparatus according to claim 3 of the present invention, a first support means for supporting the cutting tool in a predetermined feed direction, and a cutting direction substantially perpendicular to the feed direction of the cutting tool. Second support means for supporting the cutting tool, first driving means for reciprocating the cutting tool in the feed direction, second driving means for reciprocating the cutting tool in the cutting direction, and the first And an operation control means for controlling the operation of each of the second drive means and a machining condition calculation means for calculating the cutting conditions, and the workpiece to be rotated by sending the cutting tool in the feed direction. A mirror finish cutting device that performs cutting on the surface of a workpiece,
When primary cutting is set, the machining condition calculation means calculates primary cutting conditions, and the operation control means controls the first and second drive means based on the calculated primary cutting conditions. In this primary cutting process, the cutting tool is fed at a feed speed f in the feed direction from the cutting start position, and the workpiece is cut with a predetermined depth of cut. Is done,
When the secondary cutting is set, the machining condition calculation means calculates the primary cutting condition and the secondary cutting condition, and the operation control means determines the first cutting condition based on the calculated primary cutting condition. The primary cutting is performed by controlling the operation of the first and second drive means, and then the operation control means controls the operation of the first and second drive means based on the calculated secondary cutting conditions. In this secondary cutting, the cutting tool shifts the feed phase in the feed direction from the cutting start position by a distance f / 2 at the feed speed f in the feed direction. Is sent, and the workpiece is cut with the predetermined depth of cut.

さらに、本発明の請求項に記載の鏡面仕上げ切削加工装置では、三次切削加工の設定が可能であり、三次切削加工が設定されると、前記加工条件演算手段は前記一次切削加工条件、前記二次切削加工条件及び三次切削加工条件を演算し、この演算された前記一次切削加工条件に基づき前記一次切削加工が行われ、その後に、演算された前記二次切削加工条件に基づき前記二次切削加工が行われ、更にその後に、演算された前記三次切削加工条件に基づき前記作動制御手段が前記第1及び第2駆動手段を作動制御することにより三次切削加工が行われ、この三次切削加工では、前記切削開始位置から前記送り方向に送りの位相を距離f/4又は3f/4だけずらして前記送り方向に前記送り速度fで前記切削工具が送られて、前記所定の切込み量でもって前記被加工物に対して切削加工が行われ、更に、前記切削開始位置から前記送り方向に送りの位相を距離3f/4又はf/4だけずらして前記送り方向に前記送り速度fで前記切削工具が送られて、前記所定の切込み量でもって前記被加工物に対して切削加工が行われることを特徴とする。 Further, in the mirror finish cutting apparatus according to claim 4 of the present invention, setting of tertiary cutting is possible, and when the tertiary cutting is set, the processing condition calculation means is configured to set the primary cutting processing condition, A secondary cutting process condition and a tertiary cutting process condition are calculated, the primary cutting process is performed based on the calculated primary cutting process condition, and then the secondary cutting process is performed based on the calculated secondary cutting process condition. After the cutting process is performed, the operation control unit controls the first and second driving units based on the calculated tertiary cutting process condition, and the tertiary cutting process is performed. Then, the phase of the feed is shifted from the cutting start position in the feed direction by a distance f / 4 or 3f / 4, and the cutting tool is fed at the feed speed f in the feed direction, and the predetermined cutting is performed. The workpiece is cut by a quantity, and the feed speed f is shifted in the feed direction by shifting the feed phase in the feed direction from the cutting start position by a distance 3f / 4 or f / 4. The cutting tool is sent, and the workpiece is cut with the predetermined depth of cut.

本発明の請求項1に記載の鏡面仕上げ切削加工方法によれば、切削開始位置より所定の送り速度で切削工具を送って所定の切込み量でもって一次切削加工が行われた後に、切削開始位置から所定の送り方向に送りの位相をずらして、所定の送り速度で切削工具を送って所定の切込み量でもって二次切削加工を行うので、一次切削加工において生成される切削工具の切削刃部による小さな突部が二次切削加工によって切削され、これにより被加工物の表面粗さを非常に小さくすることができ、被加工物の表面に鏡面仕上げ加工を施すことが可能となる。特に、二次切削加工における被加工物に対する切削工具の切込み量は、一次切削加工における被加工物に対する切削工具の切込み量と等しいので、二次切削加工においては切削工具が被加工物の表面の突部を切削し、これによって被加工物の表面粗さを非常に小さくすることができる。
また、一次切削加工では、切削開始位置より送り速度fで切削工具を送って被加工物に対して切削加工を行い、また二次切削加工では、切削開始位置から送りの位相を距離f/2だけずらして送り速度fで切削工具を送って被加工物に対して切削加工を行うので、一次切削加工において生成される被加工物の表面の小さな突部の最も大きい部位が二次切削加工によって切削され、これにより被加工物の表面粗さを非常に小さくすることができる。
According to the mirror finish cutting method of the first aspect of the present invention, the cutting tool is fed at a predetermined feed rate from the cutting start position, and after the primary cutting is performed with a predetermined depth of cut, the cutting start position Since the cutting phase is shifted from the feed direction to the feed direction, the cutting tool is fed at the feed speed and the secondary cutting is performed with the cut depth, the cutting blade part of the cutting tool generated in the primary cutting process The small protrusion due to is cut by the secondary cutting process, whereby the surface roughness of the workpiece can be made very small, and the surface of the workpiece can be subjected to mirror finishing. In particular, the cutting depth of the cutting tool with respect to the workpiece in the secondary cutting process is equal to the cutting depth of the cutting tool with respect to the workpiece in the primary cutting process. By cutting the protrusion, the surface roughness of the workpiece can be made very small.
In primary cutting, a cutting tool is sent from the cutting start position at a feed rate f to perform cutting on the workpiece. In secondary cutting, the feed phase is set to a distance f / 2 from the cutting start position. Since the workpiece is cut by feeding the cutting tool at a feed rate f with a shift of f, the largest part of the small protrusion on the surface of the workpiece generated in the primary cutting is obtained by the secondary cutting. The surface roughness of the workpiece can be greatly reduced by cutting.

また、本発明の請求項に記載の鏡面仕上げ切削加工方法によれば、二次切削加工の後に行われる三次切削加工では、切削開始位置から送りの位相を距離f/4又は3f/4だけずらして切削工具を送り速度fで送って切削加工を行うことにより、二次切削加工において生成される被加工物の表面の一対の小さな突部のうち一方の最も大きい部位が切削され、また、切削開始位置から送りの位相を距離3f/4又はf/4だけずらして切削工具を送り速度fで送って切削加工を行うことにより、被加工物の表面の一対の小さな突部のうち他方の最も大きい部位が切削される。したがって、二次切削加工における一対の小さな突部が三次切削加工によってそれぞれ切削されることにより、被加工物の表面粗さをより小さくすることができる。 According to the mirror finish cutting method according to claim 2 of the present invention, in the tertiary cutting performed after the secondary cutting, the feed phase is set to the distance f / 4 or 3f / 4 from the cutting start position. By shifting the cutting tool at a feed speed f and performing cutting, the largest part of one of the pair of small protrusions on the surface of the workpiece generated in the secondary cutting is cut, By cutting the feed phase from the cutting start position by the distance 3f / 4 or f / 4 and feeding the cutting tool at the feed speed f, the other of the pair of small protrusions on the surface of the workpiece is processed. The largest part is cut. Therefore, the surface roughness of the workpiece can be further reduced by cutting the pair of small protrusions in the secondary cutting process by the tertiary cutting process.

また、本発明の請求項に記載の鏡面仕上げ切削加工装置によれば、二次切削加工が設定されると、切削開始位置より送り速度fで切削工具が送られて一次切削加工が行われ、その後に、切削開始位置から送りの位相を距離f/2だけずらして送り速度fで切削工具が送られて二次切削加工が行われるので、一次切削加工において生成される切削工具の切削刃部による小さな突部が二次切削加工によって切削され、これにより被加工物の表面粗さを非常に小さくすることができ、被加工物の表面に鏡面仕上げ加工を施すことが可能となる。また、二次切削加工が設定されると、一次切削加工及び二次切削加工がこの順に自動的に行われるので、比較的短時間で且つ効率的に被加工物に対する鏡面仕上げ加工を行うことが可能となる。 Further, according to the mirror finish cutting apparatus according to claim 3 of the present invention, when the secondary cutting is set, the cutting tool is sent from the cutting start position at the feed speed f to perform the primary cutting. Thereafter, the cutting phase is shifted from the cutting start position by the distance f / 2 and the cutting tool is sent at the feeding speed f to perform the secondary cutting, so that the cutting blade of the cutting tool generated in the primary cutting is performed. A small protrusion by the portion is cut by secondary cutting, whereby the surface roughness of the workpiece can be made extremely small, and the surface of the workpiece can be mirror-finished. Further, when the secondary cutting is set, the primary cutting and the secondary cutting are automatically performed in this order, so that the mirror finish processing can be efficiently performed on the workpiece in a relatively short time. It becomes possible.

さらに、本発明の請求項に記載の鏡面仕上げ切削加工装置によれば、三次切削加工が設定されると、一次切削加工及び二次切削加工の後に三次切削加工が施され、この三次切削加工では、切削開始位置から送りの位相を距離f/4又は3f/4だけずらして送り速度fで切削工具を送って切削加工を行うことにより、二次切削加工において生成される切削工具の切削刃部による一対の小さな突部のうち一方が切削され、更に、切削開始位置から送りの位相を距離3f/4又はf/4だけずらして送り速度fで切削工具を送って切削加工を行うことにより、上記一対の小さな突部のうち他方が切削される。したがって、二次切削加工により被加工物の表面に残存する一対の小さな突部が三次切削加工によりそれぞれ切削されることによって、被加工物の表面粗さをより小さくして非常にきれいな鏡面仕上げ加工を施すことが可能となる。また、三次切削加工が設定されると、一次切削加工、二次切削加工及び三次切削加工がこの順に自動的に行われるので、比較的短時間で且つ効率的に被加工物に対する鏡面仕上げ加工を行うことが可能となる。 Furthermore, according to the mirror finish cutting apparatus of claim 4 of the present invention, when the tertiary cutting is set, the tertiary cutting is performed after the primary cutting and the secondary cutting, and this tertiary cutting is performed. Then, the cutting blade of the cutting tool generated in the secondary cutting process is performed by shifting the phase of the feed from the cutting start position by the distance f / 4 or 3f / 4 and sending the cutting tool at the feed speed f. One of a pair of small protrusions by the part is cut, and further, the cutting phase is shifted from the cutting start position by a distance 3f / 4 or f / 4, and the cutting tool is sent at a feeding speed f to perform cutting. The other of the pair of small protrusions is cut. Therefore, a pair of small protrusions remaining on the surface of the work piece by the secondary cutting process are cut by the third cutting process, thereby reducing the surface roughness of the work piece and achieving a very clean mirror finish. Can be applied. In addition, when tertiary cutting is set, primary cutting, secondary cutting and tertiary cutting are automatically performed in this order, so that mirror finishing can be efficiently performed on the workpiece in a relatively short time. Can be done.

以下、添付図面を参照して、本発明に従う鏡面仕上げ切削加工方法及び鏡面仕上げ切削加工装置の一実施形態について説明する。図1は、本発明の一実施形態による鏡面仕上げ切削加工装置の概略図であり、図2は、図1の鏡面仕上げ切削加工装置を用いて、被加工物に対して一次切削加工を施した状態を示す概略断面図であり、図3は、図1の鏡面仕上げ切削加工装置を用いて、被加工物に対して二次切削加工を施した状態を示す概略断面図であり、図4は、図1の鏡面仕上げ切削加工装置を用いて、被加工物に対して三次切削加工を施した状態を示す概略断面図であり、図5は、図1の鏡面仕上げ切削加工装置の制御系を簡略的に示すブロック図であり、図6は、図1の鏡面仕上げ切削加工装置による切削加工方法の流れを示すフローチャートであり、図7は、図6のフローチャートにおける切削加工の流れを示すフローチャートである。 Hereinafter, with reference to the accompanying drawings, an embodiment of a mirror finish cutting method and a mirror finish cutting apparatus according to the present invention will be described. FIG. 1 is a schematic view of a mirror finish cutting apparatus according to an embodiment of the present invention, and FIG. 2 is used to perform primary cutting on a workpiece using the mirror finish cutting apparatus of FIG. FIG. 3 is a schematic cross-sectional view showing a state, and FIG. 3 is a schematic cross-sectional view showing a state in which the workpiece is subjected to secondary cutting using the mirror finish cutting apparatus of FIG. , using a mirror finish cutting apparatus of FIG. 1 is a schematic sectional view showing a state subjected to tertiary cutting the workpiece, FIG. 5, the control system of the mirror finish cutting apparatus of FIG. 1 FIG. 6 is a simplified block diagram, FIG. 6 is a flowchart showing the flow of the cutting method by the mirror finish cutting apparatus of FIG. 1, and FIG. 7 is a flowchart showing the flow of cutting in the flowchart of FIG. is there.

図1〜図5を参照して、図示の鏡面仕上げ切削加工装置2(以下、「切削加工装置」とも称する)は、例えばNC旋盤などから構成され、加工装置本体4と、切削工具6を送り方向に支持する第1支持手段8と、切削工具6を送り方向に対して実質上垂直な切込み方向に支持する第2支持手段10と、切削工具6を送り方向に往復移動させるための第1駆動手段12と、切削工具6を切込み方向に往復移動させるための第2駆動手段14と、切削工具6による被加工物16に対する切削加工を制御するための制御手段18と、を有している。以下、鏡面仕上げ切削加工装置2の各構成要素について詳細に説明する。 Referring to FIGS. 1 to 5, the illustrated mirror finish cutting apparatus 2 (hereinafter also referred to as “cutting apparatus”) is constituted by, for example, an NC lathe or the like, and sends a processing apparatus body 4 and a cutting tool 6. First support means 8 for supporting the cutting tool 6, second support means 10 for supporting the cutting tool 6 in a cutting direction substantially perpendicular to the feeding direction, and first for reciprocating the cutting tool 6 in the feeding direction. The driving means 12, the second driving means 14 for reciprocating the cutting tool 6 in the cutting direction, and the control means 18 for controlling the cutting of the workpiece 16 by the cutting tool 6 are provided. . Hereinafter, each component of the mirror surface finishing cutting apparatus 2 will be described in detail.

加工装置本体4の一端部には主軸部20が設けられ、この主軸部20の内部には軸受(図示せず)を介して主軸(図示せず)が回転自在に支持されている。主軸の一端部には、複数のチャック爪(図示せず)を有するチャック手段22が設けられており、この複数のチャック爪には、加工すべき例えば丸棒状(又は、円筒状)の被加工物16が着脱自在にチャッキング保持される。また、主軸の他端部には、例えば電動モータなどから構成される主駆動手段24(図5参照)が駆動連結されており、主駆動手段24が回転すると、主駆動手段24からの回転駆動力が主軸及びチャック手段22を介して被加工物16に伝達されて被加工物16が回転される。   A main shaft portion 20 is provided at one end of the processing apparatus main body 4, and a main shaft (not shown) is rotatably supported in the main shaft portion 20 via a bearing (not shown). A chuck means 22 having a plurality of chuck claws (not shown) is provided at one end of the main shaft, and the plurality of chuck claws are to be machined, for example, in a round bar shape (or cylindrical shape). The object 16 is chucked and held detachably. Further, a main driving means 24 (see FIG. 5) configured by, for example, an electric motor is drivingly connected to the other end portion of the main shaft. When the main driving means 24 rotates, the main driving means 24 rotates. The force is transmitted to the workpiece 16 through the main shaft and the chuck means 22, and the workpiece 16 is rotated.

第1支持手段8は、加工装置本体4の上端部に設けられた案内支持レール26から構成されている。この案内支持レール26は、送り方向(所謂Z軸方向であって、図1〜図4において左右方向)に延びており、この案内支持レール26には移動用テーブル28が移動自在に支持されている。   The first support means 8 includes a guide support rail 26 provided at the upper end of the processing apparatus body 4. The guide support rail 26 extends in the feed direction (the so-called Z-axis direction and the left-right direction in FIGS. 1 to 4), and a moving table 28 is movably supported by the guide support rail 26. Yes.

第2支持手段10は、移動用テーブル28の上端部に設けられた支持機構30から構成されている。この支持機構30は、切込み方向(所謂X軸方向であって、図1において紙面に対して垂直方向、図2〜図4において上下方向)に延びており、この支持機構30には刃物テーブル32が移動自在に支持されている。刃物テーブル32の上端部には、被加工物16を切削加工するための切削工具6が取り付けられており、本実施形態では、切削工具6の切削刃部6a(すなわち、被加工物16の表面に作用して切削加工を施す部分)は三角形状に構成されている(図2〜図4参照)。   The second support means 10 includes a support mechanism 30 provided at the upper end of the moving table 28. The support mechanism 30 extends in the cutting direction (the so-called X-axis direction, the direction perpendicular to the paper surface in FIG. 1 and the vertical direction in FIGS. 2 to 4). Is supported movably. A cutting tool 6 for cutting the workpiece 16 is attached to the upper end portion of the blade table 32. In this embodiment, the cutting blade portion 6a of the cutting tool 6 (that is, the surface of the workpiece 16). The portion that acts on and cuts is configured in a triangular shape (see FIGS. 2 to 4).

第1駆動手段12は、例えば電動モータなどから構成され、駆動伝達手段(図示せず)を介して移動用テーブル28と駆動連結されている。第1駆動手段12が所定方向(又は、所定方向と反対方向)に回転することにより、移動用テーブル28が図1中の矢印Pで示す方向(又は、矢印Qで示す方向)に移動され、これによって切削工具6が送り方向(又は、戻し方向)に往復移動される。   The first drive means 12 is composed of, for example, an electric motor, and is drivingly connected to the moving table 28 via a drive transmission means (not shown). When the first driving means 12 rotates in a predetermined direction (or a direction opposite to the predetermined direction), the moving table 28 is moved in the direction indicated by the arrow P in FIG. 1 (or in the direction indicated by the arrow Q), Thereby, the cutting tool 6 is reciprocated in the feed direction (or the return direction).

第2駆動手段14は、例えば電動モータなどから構成され、駆動伝達手段(図示せず)を介して刃物テーブル32と駆動連結されている。第2駆動手段14が所定方向(又は、所定方向と反対方向)に回転することにより、刃物テーブル32が図1において紙面裏側(又は、紙面表側)、図2〜図4において上方向(又は、下方向)に移動され、これによって切削工具6が切込み方向(又は、戻し方向)に往復移動される。   The second drive means 14 is composed of an electric motor, for example, and is drivingly connected to the blade table 32 via a drive transmission means (not shown). When the second driving means 14 rotates in a predetermined direction (or in a direction opposite to the predetermined direction), the blade table 32 is back side (or front side) in FIG. 1, and upward direction (or in FIGS. 2 to 4). The cutting tool 6 is reciprocated in the cutting direction (or the returning direction).

制御手段18は、例えばNC制御装置などから構成されており、作動制御手段34、加工次数設定手段36、加工条件演算手段38、記憶手段40、カウンタ42及び加工完了判定手段44を含んでいる。また、この制御手段18に関連して入力手段46が設けられており、この入力手段46は、例えば液晶パネルスイッチや操作キーボードなどから構成され、この入力手段46を入力操作することにより、例えば被加工物16の外形寸法データ、送り速度及び切込み量(後述する)などの加工情報や設定すべき切削加工次数Nが入力される。   The control means 18 is composed of, for example, an NC control device, and includes an operation control means 34, a machining order setting means 36, a machining condition calculation means 38, a storage means 40, a counter 42, and a machining completion determination means 44. In addition, an input means 46 is provided in association with the control means 18. The input means 46 is composed of, for example, a liquid crystal panel switch, an operation keyboard, and the like. Machining information such as the external dimension data of the workpiece 16, feed speed and cutting depth (described later) and the cutting order N to be set are input.

作動制御手段34は、主駆動手段24、第1駆動手段12及び第2駆動手段14をそれぞれ後述するようにして作動制御する。作動制御手段34により主駆動手段24の回転速度を制御することによって、被加工物16の回転速度n(rev/min)が制御され、作動制御手段34により第1駆動手段12の回転速度を制御することによって、切削工具6が送り方向に移動される際の送り速度f(mm/rev)(すなわち、送りのリード)が制御され、また作動制御手段34により第2駆動手段14を制御することによって、切削工具6の切込み量d(mm)が制御される。ここで、送り速度は、被加工物16の1rev(回転)当たりの送り方向への切削工具6の移動距離であり、また切込み量は、加工前の被加工物16の表面より切込み方向に切削工具6を切り込む距離である。   The operation control unit 34 controls the operation of the main drive unit 24, the first drive unit 12, and the second drive unit 14 as described later. The rotation speed n (rev / min) of the workpiece 16 is controlled by controlling the rotation speed of the main drive means 24 by the operation control means 34, and the rotation speed of the first drive means 12 is controlled by the operation control means 34. Thus, the feed speed f (mm / rev) (that is, the feed lead) when the cutting tool 6 is moved in the feed direction is controlled, and the second drive means 14 is controlled by the operation control means 34. Thus, the cutting amount d (mm) of the cutting tool 6 is controlled. Here, the feed speed is the moving distance of the cutting tool 6 in the feed direction per 1 rev (rotation) of the workpiece 16, and the cutting amount is cut in the cutting direction from the surface of the workpiece 16 before machining. This is the distance at which the tool 6 is cut.

加工次数設定手段36は、入力手段46により入力された切削加工次数Nに基づき、切削加工次数N=1,N=2又はN=3を設定する。後述するように、加工次数設定手段36により切削加工次数N=1が設定されると、一次切削加工が設定され、被加工物16に対して一次切削加工が行われ、加工次数設定手段36により切削加工次数N=2が設定されると、二次切削加工が設定され、被加工物16に対して一次切削加工及び二次切削加工がこの順に行われ、また加工次数設定手段36により切削加工次数N=3が設定されると、三次切削加工が設定され、被加工物16に対して一次切削加工、二次切削加工及び三次切削加工がこの順に行われる。   The machining order setting means 36 sets the cutting order N = 1, N = 2 or N = 3 based on the cutting order N input by the input means 46. As will be described later, when the cutting order N = 1 is set by the cutting order setting means 36, the primary cutting is set, the primary cutting is performed on the workpiece 16, and the cutting order setting means 36 When the cutting order N = 2 is set, secondary cutting is set, and the workpiece 16 is subjected to primary cutting and secondary cutting in this order, and the machining order setting means 36 performs cutting. When the order N = 3 is set, a tertiary cutting process is set, and a primary cutting process, a secondary cutting process, and a tertiary cutting process are performed on the workpiece 16 in this order.

加工条件演算手段38は、入力手段46により入力された加工情報(すなわち、被加工物16の外形寸法データなど)に基づき、被加工物16の回転速度n(rev/min)、切削工具6の送り速度f(mm/rev)、切削工具6の切込み量d(mm)、第1切削開始位置(すなわち、一次切削加工の始点)、切削終了位置(すなわち、切削加工の終点)などを演算設定し、また、二次切削加工又は三次切削加工において切削工具6が送り方向に移動される際の送りの位相(すなわち、二次切削加工又は三次切削加工の始点の第1切削開始位置に対するずれ量)などの切削加工条件を演算設定する。また、加工条件演算手段38は、設定された切削加工次数Nに基づき、一次切削加工からN次切削加工までの間に行われる切削回数M=2N−1(すなわち、切削工具6の送り方向の往復回数)を演算設定する。ここで、被加工物16の回転速度n(rev/min)及び切削工具6の送り速度f(mm/rev)については、これらが所定の関係を保つように(すなわち、回転速度n及び送り速度fが同期するように)して演算設定される。 The machining condition calculation unit 38 is based on the machining information input by the input unit 46 (that is, the external dimension data of the workpiece 16, etc.), the rotational speed n (rev / min) of the workpiece 16, and the cutting tool 6. Calculation setting of feed rate f (mm / rev), cutting depth d (mm) of cutting tool 6, first cutting start position (namely, starting point of primary cutting), cutting end position (namely, end point of cutting), etc. In addition, the phase of the feed when the cutting tool 6 is moved in the feed direction in the secondary cutting or tertiary cutting (that is, the amount of deviation from the first cutting start position of the starting point of the secondary or tertiary cutting) ) And other cutting conditions. Further, the machining condition calculation means 38 is based on the set cutting order N, and the number of times of cutting M = 2 N−1 performed between the primary cutting and the N-th cutting (that is, the feed direction of the cutting tool 6). Is calculated and set. Here, the rotational speed n (rev / min) of the workpiece 16 and the feed speed f (mm / rev) of the cutting tool 6 are maintained so as to maintain a predetermined relationship (that is, the rotational speed n and the feed speed). The calculation is set so that f is synchronized.

記憶手段40には、加工条件演算手段38により演算設定された切削加工条件が記憶される。カウンタ42は、切削回数(すなわち、切削工具6の送り方向の往復回数)をカウントし、また加工完了判定手段44は、加工条件演算手段38により演算設定された切削回数Mとカウンタ42のカウント値とを対比して、切削加工が設定された切削加工次数Nだけ行われたか否かを判定する。   The storage means 40 stores cutting conditions calculated and set by the machining condition calculation means 38. The counter 42 counts the number of times of cutting (that is, the number of reciprocations of the cutting tool 6 in the feed direction), and the machining completion determination unit 44 calculates the cutting number M calculated and set by the machining condition calculation unit 38 and the count value of the counter 42. In contrast, it is determined whether or not cutting has been performed for the set cutting order N.

次に、図6及び図7をも参照して、本実施形態の切削加工装置2による切削加工方法の流れについて説明する。まず、加工次数設定手段36により切削加工次数N=1(一次切削加工)が設定された場合の切削加工方法の流れについて図2、図6及び図7に基づき説明する。被加工物16に対して切削加工が行われる前の状態においては、切削工具6は、被加工物16よりも離隔した所定の待機位置に位置付けられている。加工装置本体4のチャック手段22に加工すべき例えば丸棒状(又は、円筒状)の被加工物16を取り付け、入力手段46を入力操作することにより所定の加工情報(被加工物16の外形寸法データなど)及び切削加工次数N=1をそれぞれ入力する(ステップS1,S2)。このように入力手段46により切削加工次数N=1が入力されると、加工次数設定手段36は切削加工次数N=1を設定し(ステップS3)、これにより一次切削加工が設定され、加工条件演算手段38は、入力手段46により入力された加工情報に基づき、被加工物16の回転速度n(rev/min)、切削工具6の送り速度f(mm/rev)、切削工具6の切込み量d(mm)、切削回数M=1(=2)、第1切削開始位置及び切削終了位置などの一次切削加工条件などを自動的に演算設定し、このように演算設定された一次切削加工条件は、記憶手段40に切削加工データとして記憶される(ステップS4)。そして、このように演算設定された一次切削加工条件に基づき、被加工物16に対する一次切削加工が次のようにして行われる(ステップS5)。 Next, the flow of the cutting method performed by the cutting apparatus 2 according to the present embodiment will be described with reference to FIGS. 6 and 7 as well. First, the flow of the cutting method when the cutting order N = 1 (primary cutting) is set by the processing order setting means 36 will be described based on FIG. 2, FIG. 6 and FIG. In a state before cutting is performed on the workpiece 16, the cutting tool 6 is positioned at a predetermined standby position separated from the workpiece 16. For example, a round bar-shaped (or cylindrical) workpiece 16 to be processed is attached to the chuck means 22 of the processing apparatus main body 4, and predetermined processing information (external dimensions of the workpiece 16 is obtained by operating the input means 46. Data) and the cutting order N = 1 are input (steps S1 and S2). When the cutting order N = 1 is thus input by the input means 46, the machining order setting means 36 sets the cutting order N = 1 (step S3), whereby the primary cutting is set and the processing conditions are set. The calculation means 38 is based on the machining information input by the input means 46, the rotational speed n (rev / min) of the workpiece 16, the feed speed f (mm / rev) of the cutting tool 6, and the cutting amount of the cutting tool 6. The primary cutting conditions such as d (mm), the number of times of cutting M = 1 (= 2 0 ), the first cutting start position and the cutting end position are automatically calculated and set. The conditions are stored as cutting data in the storage means 40 (step S4). Based on the primary cutting conditions set in this way, the primary cutting is performed on the workpiece 16 as follows (step S5).

作動制御手段34は、演算設定された一次切削加工条件に基づき、主駆動手段24、第1駆動手段12及び第2駆動手段14をそれぞれ所要の通りに制御し、これにより被加工物16が所定方向に回転速度n(rev/min)で回転され(ステップS5−1)、また移動用テーブル28及び刃物テーブル32がそれぞれ所要の通りに移動されることにより切削工具6が待機位置から第1切削開始位置(すなわち、被加工物16の一端部)(図2参照)へ移動される(ステップS5−2)。   The operation control means 34 controls the main drive means 24, the first drive means 12 and the second drive means 14 as required based on the calculated primary cutting conditions, whereby the workpiece 16 is predetermined. Is rotated at a rotational speed n (rev / min) in the direction (step S5-1), and the cutting table 6 is moved from the standby position to the first cutting position by moving the moving table 28 and the cutter table 32 as required. It is moved to the start position (that is, one end of the workpiece 16) (see FIG. 2) (step S5-2).

このように切削工具6が第1切削開始位置に位置付けられると一次切削加工が開始され(ステップS5−3)、切削工具6の切削刃部6aが切込み方向(図2において上方向)に切込み量d(mm)でもって被加工物16の表面に作用し、さらに作動制御手段34によって第1駆動手段12が所定方向に回転されることにより、切削工具6が送り方向(図2中の矢印Pで示す方向)に送り速度f(mm/rev)で第1切削開始位置から切削終了位置(すなわち、被加工物16の他端部)まで移動される。このように切削工具6が移動されることによって、切削工具6の切削刃部6aが被加工物16の外面に作用し、被加工物16の表面に対して切込み量d(mm)でもって一次切削加工が施される。なお、この一次切削加工において、切削工具6の切削刃部6aの形状が被加工物16の周表面に残り、この残存した部分は螺旋状の山状突部48となり、切削工具6は送り速度f(mm/rev)で送られるので、隣接する山状突部48の送り方向における離間距離は距離f(mm)となる。   When the cutting tool 6 is thus positioned at the first cutting start position, primary cutting is started (step S5-3), and the cutting blade portion 6a of the cutting tool 6 is cut in the cutting direction (upward in FIG. 2). The cutting tool 6 moves in the feed direction (arrow P in FIG. 2) by acting on the surface of the workpiece 16 with d (mm) and further rotating the first driving means 12 in a predetermined direction by the operation control means 34. Is moved from the first cutting start position to the cutting end position (that is, the other end of the workpiece 16) at a feed speed f (mm / rev). By moving the cutting tool 6 in this way, the cutting blade portion 6a of the cutting tool 6 acts on the outer surface of the workpiece 16, and is primary with a cutting depth d (mm) with respect to the surface of the workpiece 16. Cutting is performed. In this primary cutting process, the shape of the cutting edge 6a of the cutting tool 6 remains on the peripheral surface of the workpiece 16, and the remaining part becomes a spiral mountain-shaped protrusion 48, and the cutting tool 6 is fed at a feed rate. Since it is sent at f (mm / rev), the separation distance in the feeding direction of the adjacent mountain-shaped protrusions 48 is the distance f (mm).

切削工具6が切削終了位置まで移動すると、ステップS5−4からステップS5−5へと進み、カウンタ42のカウント値がカウントアップされて「1」となり、加工完了判定手段44は、このカウント値「1」と加工条件演算手段38により演算設定された切削回数M=1とを対比し(ステップS5−5)、切削加工次数N=1が設定されている場合、加工完了判定手段44は切削加工が設定された切削回数M=1行われたと判定してステップS5−6からステップS6に進んで判定信号を生成する。このようにして加工が終了すると、作動制御手段34は、加工完了判定手段44からの判定信号に基づき、第1駆動手段12及び第2駆動手段14をそれぞれ所要の通りに制御することにより、切削工具6を切削終了位置から元の位置(すなわち、待機位置)へと移動させ(ステップS7)、また主駆動手段24の回転を停止させることにより被加工物16の回転を停止させる(ステップS8)。また、カウンタ42のカウンタ値がリセットされて(ステップS9)、一次切削加工が完了され、このようにして被加工物16に対する切削加工が終了する。   When the cutting tool 6 moves to the cutting end position, the process proceeds from step S5-4 to step S5-5, the count value of the counter 42 is incremented to "1", and the machining completion determination means 44 uses this count value " 1 ”is compared with the number of times of cutting M = 1 calculated and set by the processing condition calculating means 38 (step S5-5), and when the cutting order N = 1 is set, the processing completion determining means 44 determines the cutting process. Is determined to have been performed, and the process proceeds from step S5-6 to step S6 to generate a determination signal. When the machining is completed in this way, the operation control means 34 controls the first driving means 12 and the second driving means 14 as required based on the determination signal from the machining completion determination means 44, thereby cutting. The tool 6 is moved from the cutting end position to the original position (that is, the standby position) (step S7), and the rotation of the workpiece 16 is stopped by stopping the rotation of the main drive means 24 (step S8). . Further, the counter value of the counter 42 is reset (step S9), the primary cutting process is completed, and thus the cutting process on the workpiece 16 is completed.

なお、このように被加工物16に対して一次切削加工を施した後に、この被加工物16と同じ外形寸法を有する未加工の被加工物(図示せず)に対して切削加工を施す場合には、加工済みの被加工物16をチャック手段22から取り外した後に、未加工の被加工物をチャック手段22に取り付けて一次切削加工を行う。この場合には、入力手段46により加工情報を再度入力することなく、記憶手段40に記憶された切削加工データに基づき上述したのと同様にして一次切削加工が行われる。   In addition, after performing a primary cutting process on the workpiece 16 as described above, a cutting process is performed on an unprocessed workpiece (not shown) having the same external dimensions as the workpiece 16. In this case, after the processed workpiece 16 is removed from the chuck means 22, an unprocessed workpiece is attached to the chuck means 22 to perform primary cutting. In this case, the primary cutting is performed in the same manner as described above based on the cutting data stored in the storage unit 40 without inputting the machining information again by the input unit 46.

次に、加工次数設定手段36により切削加工次数N=2(二次切削加工)が設定された場合の切削加工方法の流れについて図3、図6及び図7に基づき説明する。切削加工次数N=2が設定されると、一次切削加工が行われた後に二次切削加工が行われ、この二次切削加工によって一次切削加工において残存する被加工物16の表面の山状突部48に対して切削加工が施される。   Next, the flow of the cutting method when the cutting order N = 2 (secondary cutting) is set by the processing order setting means 36 will be described with reference to FIGS. 3, 6, and 7. FIG. When the cutting order N = 2 is set, the secondary cutting is performed after the primary cutting is performed, and the ridges on the surface of the workpiece 16 remaining in the primary cutting by the secondary cutting are performed. Cutting is performed on the portion 48.

入力手段46を入力操作することによって所定の加工情報(被加工物16の外形寸法データなど)及び切削加工次数N=2を入力すると(ステップS1,S2)、ステップS3からステップS9に進み、加工次数設定手段36は切削加工次数N=2(二次切削加工)を設定し、これにより二次切削加工が設定され、加工条件演算手段38は、入力手段46により入力された加工情報に基づき、被加工物16の回転速度n(rev/min)、切削工具6の送り速度f(mm/rev)、切削工具6の切込み量d(mm)、切削回数M=2(=2)、第1切削開始位置及び切削終了位置などを演算設定するとともに、演算設定された送り速度f(mm/rev)に基づき切削工具6の送りの位相φ1=f/2(mm)を自動的に演算設定し、このように自動的に演算設定された一次切削加工条件及び二次切削加工条件は、それぞれ記憶手段40に切削加工データとして記憶される(ステップS10)。そして、このように演算設定された一次切削加工条件及び二次切削加工条件を用い、まず一次切削加工条件に基づいて上述したのと同様にして被加工物16に対して一次切削加工(ステップS5−1〜ステップS5−4)が行われ、その後に、二次切削加工条件に基づき二次切削加工が次のようにして行われる。 When predetermined machining information (external dimension data of the workpiece 16 and the like) and the cutting order N = 2 are input by performing an input operation on the input means 46 (steps S1 and S2), the process proceeds from step S3 to step S9. The order setting means 36 sets a cutting order N = 2 (secondary cutting), whereby secondary cutting is set, and the processing condition calculation means 38 is based on the processing information input by the input means 46. The rotational speed n (rev / min) of the workpiece 16, the feed speed f (mm / rev) of the cutting tool 6, the cutting depth d (mm) of the cutting tool 6, the number of times of cutting M = 2 (= 2 1 ), the first 1 The cutting start position and cutting end position are calculated and set, and the feed phase φ1 = f / 2 (mm) of the cutting tool 6 is automatically calculated and set based on the calculated feed speed f (mm / rev). And The primary cutting conditions and the secondary cutting conditions that are automatically calculated and set in this way are respectively stored as cutting data in the storage means 40 (step S10). Then, using the primary and secondary cutting conditions calculated and set in this way, the primary cutting is first performed on the workpiece 16 in the same manner as described above based on the primary cutting conditions (step S5). -1 to step S5-4) are performed, and then the secondary cutting is performed as follows based on the secondary cutting conditions.

切削工具6が第1切削開始位置から切削終了位置まで移動して一次切削加工が終了すると、加工完了判定手段44は、カウンタ42のカウント値「1」と加工条件演算手段38により演算設定された切削回数M=2とを対比し(ステップS5−5)、切削加工が設定された切削回数M=2行われていないと判定してステップS5−6からステップS5−7に進む。作動制御手段34は、演算設定された二次切削加工条件に基づき第1駆動手段12及び第2駆動手段14をそれぞれ所要の通りに制御し、これにより切削工具6が切削終了位置から第2切削開始位置(図3参照)へ移動される(ステップS5−7)。この第2切削開始位置は、第1切削開始位置より図3中の矢印Pで示す方向に距離φ1=f/2(mm)だけずれた位置である。このように切削工具6が第2切削開始位置に位置付けられると、二次切削加工が開始され(ステップS5−8)、切削工具6の切削刃部6aが、切込み方向(図3において上方向)に切込み量d(mm)でもって一次切削加工において被加工物16の表面に残存する山状突部48の最大部位に作用して切削し、さらに作動制御手段34によって第1駆動手段12が所定方向に回転されることにより、切削工具6が送り方向(図3中の矢印Pで示す方向)に一次切削加工時と等しい送り速度f(mm/rev)で第2切削開始位置から切削終了位置まで移動される。このように切削工具6が移動されることによって、図3に示すように、切削工具6の切削刃部6aが山状突部48の最大部位に作用し、被加工物16の表面に対して一次切削加工時と等しい切込み量d(mm)でもって二次切削加工が施される。   When the cutting tool 6 moves from the first cutting start position to the cutting end position and the primary cutting process is completed, the processing completion determination unit 44 is set by the count value “1” of the counter 42 and the processing condition calculation unit 38. The number of times of cutting M = 2 is compared (step S5-5), and it is determined that the number of times of cutting M = 2 that has been set is not performed, and the process proceeds from step S5-6 to step S5-7. The operation control means 34 controls the first driving means 12 and the second driving means 14 as required based on the calculated and set secondary cutting processing conditions, whereby the cutting tool 6 performs the second cutting from the cutting end position. It is moved to the start position (see FIG. 3) (step S5-7). The second cutting start position is a position shifted from the first cutting start position by a distance φ1 = f / 2 (mm) in the direction indicated by the arrow P in FIG. When the cutting tool 6 is positioned at the second cutting start position in this way, secondary cutting is started (step S5-8), and the cutting blade portion 6a of the cutting tool 6 is in the cutting direction (upward in FIG. 3). In the primary cutting process, the first drive means 12 is preliminarily cut by the operation control means 34 by acting on the maximum portion of the mountain-shaped protrusion 48 remaining on the surface of the workpiece 16 in the primary cutting process with a cutting depth d (mm). By rotating in the direction, the cutting tool 6 moves from the second cutting start position to the cutting end position at a feed speed f (mm / rev) equal to that during primary cutting in the feed direction (direction indicated by arrow P in FIG. 3). Moved to. By moving the cutting tool 6 in this way, as shown in FIG. 3, the cutting blade portion 6 a of the cutting tool 6 acts on the maximum portion of the mountain-shaped protrusion 48, and the surface of the workpiece 16 is moved. Secondary cutting is performed with a cutting depth d (mm) equal to that during primary cutting.

切削工具6が切削終了位置まで移動すると、ステップS5−9からステップS5−10へ進み、カウンタ42のカウント値が更にカウントアップされて「2」となり、加工完了判定手段44は、このカウント値「2」と加工条件演算手段38により演算設定された切削回数M=2とを対比し(ステップS5−10)、被加工物16に対する切削加工が設定された切削回数M=2行われたと判定してステップS5−11からステップS6に進んで判定信号を生成する。さらにステップS7〜ステップS9が遂行されて、一次切削加工及び二次切削加工が完了され、被加工物16に対する切削加工が終了する。   When the cutting tool 6 moves to the cutting end position, the process proceeds from step S5-9 to step S5-10, the count value of the counter 42 is further counted up to "2", and the machining completion determination means 44 uses this count value " 2 ”is compared with the number of times of cutting M = 2 calculated and set by the processing condition calculating means 38 (step S5-10), and it is determined that the number of times of cutting M = 2 set for the workpiece 16 is set. The process proceeds from step S5-11 to step S6 to generate a determination signal. Further, Step S7 to Step S9 are performed, the primary cutting and the secondary cutting are completed, and the cutting for the workpiece 16 is completed.

図3に示すように、この二次切削加工後において被加工物16の表面には山状突部50が残るようになり、上述のように切削加工次数N=2でもって切削加工を行うと、二次切削加工において一次切削加工後に被加工物16の表面に存在する山状突部48の最大部位を切削するので、二次切削加工後の被加工物16の表面の山状突部50の高さd1(mm)(すなわち、被加工物16の表面粗さ)は、一次切削加工における山状突部48の高さd(mm)よりも小さくなり、被加工物16の表面に鏡面仕上げ加工を施すことができる。なお、切削工具6は送り速度f(mm/rev)で送られるので、隣接する山状突部50の送り方向における離間距離はそれぞれ距離f/2(mm)となる。   As shown in FIG. 3, after the secondary cutting process, the mountain-shaped protrusion 50 remains on the surface of the workpiece 16, and when the cutting process is performed with the cutting order N = 2 as described above. In the secondary cutting process, since the maximum portion of the mountain-shaped protrusion 48 existing on the surface of the workpiece 16 is cut after the primary cutting, the mountain-shaped protrusion 50 on the surface of the workpiece 16 after the secondary cutting is performed. The height d1 (mm) of the workpiece 16 (that is, the surface roughness of the workpiece 16) is smaller than the height d (mm) of the mountain-shaped protrusion 48 in the primary cutting, and the surface of the workpiece 16 is mirror-finished. Finishing can be applied. Since the cutting tool 6 is fed at a feeding speed f (mm / rev), the separation distances in the feeding direction of adjacent mountain-shaped protrusions 50 are distances f / 2 (mm), respectively.

次に、加工次数設定手段36により切削加工次数N=3(三次切削加工)が設定された場合の切削加工方法の流れについて図4、図6及び図7に基づき説明する。切削加工次数N=3が設定されると、一次切削加工及び二次切削加工が行われた後に三次切削加工が行われ、この三次切削加工によって二次切削加工後の被加工物16の表面の上記山状突部50に切削加工が施される。入力手段46を入力操作することによって所定の加工情報(被加工物16の外形寸法データなど)及び切削加工次数N=3を入力すると(ステップS1,S2)、ステップS3からステップS9を経てステップS11に進み、加工次数設定手段36は切削加工次数N=3を設定し、これにより三次切削加工が設定される。加工条件演算手段38は、入力手段46により入力された加工情報に基づき、被加工物16の回転速度n(rev/min)、切削工具6の送り速度f(mm/rev)、切削工具6の切込み量d(mm)、切削回数M=4(=2)、第1切削開始位置及び切削終了位置などを自動的に演算設定するとともに、演算設定された送り速度f(mm/rev)に基づき、二次切削加工における切削工具6の送りの位相φ1=f/2(mm)及び三次切削加工における切削工具6の送りの位相φ2=f/4(mm),φ3=3f/4(mm)をそれぞれ自動的に演算設定し、このように演算設定された一次切削加工条件、二次切削加工条件及び三次切削加工条件は、それぞれ記憶手段40に切削加工データとして記憶される(ステップS12)。そして、このように演算された一次切削加工条件、二次切削加工条件及び三次切削加工条件を用い、一次切削加工条件に基づき一次切削加工(ステップS5−1〜ステップS5−4)が行われ、その後に、二次切削加工に基づき二次切削加工(ステップS5−7〜ステップS5−9)が行われ、更にその後に、三次切削加工条件に基づき三次切削加工が次のようにして行われる。 Next, the flow of the cutting method when the cutting order N = 3 (tertiary cutting) is set by the processing order setting means 36 will be described with reference to FIGS. 4, 6, and 7. When the cutting order N = 3 is set, the tertiary cutting is performed after the primary cutting and the secondary cutting, and the surface of the workpiece 16 after the secondary cutting is obtained by the tertiary cutting. The mountain-shaped protrusion 50 is cut. When predetermined processing information (external dimension data of the workpiece 16 and the like) and the cutting order N = 3 are input by performing an input operation on the input means 46 (steps S1 and S2), the process proceeds from step S3 to step S9 to step S11. Then, the processing order setting means 36 sets the cutting processing order N = 3, thereby setting the tertiary cutting processing. The machining condition calculation unit 38 is based on the machining information input by the input unit 46, the rotational speed n (rev / min) of the workpiece 16, the feed speed f (mm / rev) of the cutting tool 6, and the cutting tool 6. The cutting amount d (mm), the number of times of cutting M = 4 (= 2 2 ), the first cutting start position, the cutting end position, etc. are automatically calculated and set, and the calculated feed speed f (mm / rev) is set. Based on this, the phase φ1 = f / 2 (mm) of the feed of the cutting tool 6 in the secondary cutting and the phase φ2 = f / 4 (mm) of the feed of the cutting tool 6 in the tertiary cutting, φ3 = 3f / 4 (mm) ) Are automatically calculated and set, and the primary cutting conditions, secondary cutting conditions and tertiary cutting conditions thus calculated and set are respectively stored as cutting data in the storage means 40 (step S12). . And primary cutting (step S5-1 to step S5-4) is performed based on the primary cutting conditions using the primary cutting conditions, secondary cutting conditions and tertiary cutting conditions calculated in this way. Thereafter, secondary cutting (steps S5-7 to S5-9) is performed based on the secondary cutting, and thereafter, tertiary cutting is performed as follows based on the tertiary cutting conditions.

切削工具6が第2切削開始位置から切削終了位置まで移動すると、加工完了判定手段44は、カウンタ42のカウント値「2」と加工条件演算手段38により演算設定された切削回数M=4とを対比し(ステップS5−10)、切削加工が設定された切削回数M=4行われていないと判定してステップS5−11からステップS5−12に進む。作動制御手段34は、演算設定された三次切削加工条件に基づき第1駆動手段12及び第2駆動手段14をそれぞれ所要の通りに制御し、これにより切削工具6が切削終了位置から第3切削開始位置(図4において実線で示す)へ移動される(ステップS5−12)。この第3切削開始位置は、第1切削開始位置より図4中の矢印Pで示す方向に距離φ2=f/4(mm)だけずれた位置である。このように切削工具6が第3切削開始位置に位置付けられると、三次切削加工が開始され(ステップS5−13)、切削工具6の切削刃部6aが、切込み量d(mm)でもって二次切削加工後の特定の山状突部50(一次切削加工後の山状突部48を切削することによって生じる一対の山状突部50のうち一方)に作用し、さらに作動制御手段34によって第1駆動手段12が所定方向に回転されることにより、切削工具6が送り方向(図4中の矢印Pで示す方向)に一次及び二次切削加工時と等しい送り速度f(mm/rev)で第3切削開始位置から切削終了位置まで移動される。このように切削工具6が移動されることによって、切削工具6の切削刃部6aが特定の山状突部50に対してその一端部から他端部まで切削し、被加工物16の表面に対して一次及び二次切削加工と等しい切込み量d(mm)でもって切削加工が施される。   When the cutting tool 6 moves from the second cutting start position to the cutting end position, the processing completion determination unit 44 sets the count value “2” of the counter 42 and the number of times of cutting M = 4 calculated and set by the processing condition calculation unit 38. In contrast (step S5-10), it is determined that the number of cuttings M = 4 that has been set is not performed, and the process proceeds from step S5-11 to step S5-12. The operation control means 34 controls the first driving means 12 and the second driving means 14 as required based on the calculated and set tertiary cutting conditions, whereby the cutting tool 6 starts the third cutting from the cutting end position. It is moved to a position (indicated by a solid line in FIG. 4) (step S5-12). The third cutting start position is a position shifted from the first cutting start position by a distance φ2 = f / 4 (mm) in the direction indicated by the arrow P in FIG. When the cutting tool 6 is positioned at the third cutting start position in this way, tertiary cutting is started (step S5-13), and the cutting blade portion 6a of the cutting tool 6 is secondary with a cutting depth d (mm). It acts on a specific mountain-shaped protrusion 50 after cutting (one of a pair of mountain-shaped protrusions 50 generated by cutting the mountain-shaped protrusion 48 after the primary cutting), and the operation control means 34 further When the first driving means 12 is rotated in a predetermined direction, the cutting tool 6 is fed in the feed direction (direction indicated by an arrow P in FIG. 4) at a feed speed f (mm / rev) equal to that during primary and secondary cutting. It is moved from the third cutting start position to the cutting end position. By moving the cutting tool 6 in this manner, the cutting blade 6a of the cutting tool 6 cuts from one end portion to the other end portion of the specific mountain-shaped protrusion 50, and on the surface of the workpiece 16. On the other hand, cutting is performed with a cutting depth d (mm) equal to the primary and secondary cutting.

切削工具6が第3切削開始位置から切削終了位置まで移動すると(ステップS5−14)、カウンタ42のカウンタ値が更にカウントアップされて「3」となり、加工完了判定手段44は、カウンタ42のカウント値「3」と加工条件演算手段38により演算設定された切削回数M=4とを対比し(ステップS5−15)、切削加工が設定された切削回数M=4行われていないと判定してステップS5−16からステップS5−17に進み、作動制御手段34は、演算設定された三次切削加工条件に基づき第1駆動手段12及び第2駆動手段14をそれぞれ所要の通りに制御し、これにより切削工具6が切削終了位置から第4切削開始位置(図4において一点鎖線で示す)へ移動される。この第4切削開始位置は、第1切削開始位置より図4中の矢印Pで示す方向に距離φ3=3f/4(mm)だけずれた位置である。このように切削工具6が第4切削開始位置に位置付けられると、切削工具6の切削刃部6aが、切込み量d(mm)でもって残りの山状突部50(一次切削加工後の山状突部48を切削することによって生じる一対の山状突部50のうち他方)に作用し、さらに作動制御手段34によって第1駆動手段12が所定方向に回転されることにより、切削工具6が送り方向(図4中の矢印Pで示す方向)に上記送り速度f(mm/rev)で第4切削開始位置から切削終了位置まで移動される。このように切削工具6が移動されることによって、切削工具6の切削刃部6aが残りの山状突部50に対してその一端部から他端部まで切削し、被加工物16の表面に対して切込み量d(mm)でもって切削加工が施される。このように三次切削加工によって、二次切削加工後の被加工物16の山状突部50の最大部位を切削するので、三次切削加工後に被加工物16の表面に残る山状突部54の高さd2(mm)(すなわち、被加工物16の表面粗さ)は、二次切削加工における山状突部50の高さd1(mm)よりも更に小さくなり、被加工物16に対してよりきれいな鏡面仕上げ加工を施すことができる。   When the cutting tool 6 moves from the third cutting start position to the cutting end position (step S5-14), the counter value of the counter 42 is further counted up to “3”, and the processing completion determination means 44 counts the counter 42. The value “3” is compared with the number of times of cutting M = 4 calculated and set by the processing condition calculating means 38 (step S5-15), and it is determined that the number of times of cutting M = 4 where the cutting is set is not performed. Proceeding from step S5-16 to step S5-17, the operation control means 34 controls the first drive means 12 and the second drive means 14 as required based on the calculated tertiary cutting conditions, thereby The cutting tool 6 is moved from the cutting end position to the fourth cutting start position (indicated by a dashed line in FIG. 4). The fourth cutting start position is a position shifted from the first cutting start position by a distance φ3 = 3f / 4 (mm) in the direction indicated by the arrow P in FIG. When the cutting tool 6 is positioned at the fourth cutting start position in this way, the cutting blade portion 6a of the cutting tool 6 has the remaining mountain-shaped protrusion 50 (the mountain shape after the primary cutting) with the cutting amount d (mm). The cutting tool 6 is fed by acting on the other of the pair of mountain-shaped protrusions 50 generated by cutting the protrusion 48 and rotating the first driving means 12 in a predetermined direction by the operation control means 34. It is moved from the fourth cutting start position to the cutting end position at the feed speed f (mm / rev) in the direction (direction indicated by arrow P in FIG. 4). By moving the cutting tool 6 in this way, the cutting blade portion 6a of the cutting tool 6 cuts from the one end portion to the other end portion with respect to the remaining mountain-shaped projection 50, and on the surface of the workpiece 16. On the other hand, cutting is performed with a cutting depth d (mm). As described above, since the maximum portion of the mountain-shaped protrusion 50 of the workpiece 16 after the secondary cutting is cut by the tertiary cutting, the mountain-shaped protrusion 54 remaining on the surface of the workpiece 16 after the tertiary cutting is processed. The height d2 (mm) (that is, the surface roughness of the workpiece 16) is further smaller than the height d1 (mm) of the mountain-shaped protrusion 50 in the secondary cutting process, and is higher than the workpiece 16. A cleaner mirror finish can be applied.

切削工具6が切削終了位置まで移動すると、ステップS5−17からステップS5−18に進み、カウンタ42のカウント値が更にカウントアップされて「4」となり、加工完了判定手段44は、このカウント値「4」と加工条件演算手段38により演算設定された切削回数M=4とを対比し(ステップS5−18)、更にステップS5−19からステップS6に進み、切削加工が設定された切削回数M=4行われたと判定して判定信号を生成し、被加工物16に対する三次切削加工が終了する。その後、ステップS7からステップS9までが遂行されて、一次切削加工、二次切削加工及び三次切削加工が完了され、被加工物16に対する切削加工が終了する。   When the cutting tool 6 moves to the cutting end position, the process proceeds from step S5-17 to step S5-18, the count value of the counter 42 is further counted up to "4", and the machining completion determination means 44 uses this count value " 4 ”is compared with the number of times of cutting M = 4 calculated and set by the processing condition calculating means 38 (step S5-18), and the process further proceeds from step S5-19 to step S6, where the number of times of cutting M = when the cutting is set 4, it is determined that it has been performed, and a determination signal is generated, and the tertiary cutting for the workpiece 16 is completed. Thereafter, Steps S7 to S9 are performed to complete the primary cutting, the secondary cutting, and the tertiary cutting, and the cutting of the workpiece 16 is completed.

本実施形態の切削加工装置2による切削加工方法では、次のような作用効果が達成される。第1に、一次切削加工が行われた後に、二次切削加工(二次切削加工及び三次切削加工)が行われるので、一次切削加工にて生じる被加工物16の表面の山状突部48(二次切削加工にて生じる被加工物16の表面の山状突部50)を二次切削加工(三次切削加工)により切削することができ、これにより被加工物16の表面に対して鏡面仕上げ加工を施すことが可能となる。第2に、切削加工次数N=2(切削加工次数N=3)が設定されると、一次切削加工及び二次切削加工(一次切削加工、二次切削加工及び三次切削加工)の切削加工条件が自動的に演算されてこれらの加工がこの順に自動的に行われるので、比較的短時間で且つ効率的に被加工物16に対して鏡面仕上げ加工を施すことが可能となる。   In the cutting method by the cutting apparatus 2 of the present embodiment, the following effects are achieved. First, since the secondary cutting (secondary cutting and tertiary cutting) is performed after the primary cutting is performed, the ridges 48 on the surface of the workpiece 16 generated by the primary cutting. (The mountain-like protrusion 50 on the surface of the workpiece 16 generated by the secondary cutting) can be cut by secondary cutting (tertiary cutting), and thereby the mirror surface with respect to the surface of the workpiece 16 Finishing can be performed. Second, when the cutting order N = 2 (cutting order N = 3) is set, the cutting conditions of the primary cutting and the secondary cutting (primary cutting, secondary cutting and tertiary cutting) are set. Are automatically calculated and these processes are automatically performed in this order, so that the workpiece 16 can be mirror-finished efficiently in a relatively short time.

以上、本発明に従う鏡面仕上げ切削加工方法及び鏡面仕上げ切削加工装置の一実施形態について説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形乃至修正が可能である。 As mentioned above, although one embodiment of the mirror surface finishing cutting method and the mirror surface finishing cutting apparatus according to the present invention has been described, the present invention is not limited to such an embodiment, and various embodiments can be made without departing from the scope of the present invention. Deformation or correction is possible.

例えば、上記実施形態では、加工次数設定手段36により、切削加工次数N=1,N=2及びN=3が選択的に設定されるように構成したが、これに限られず、これに加えて切削加工次数N=4が設定されるように構成しても良く、あるいは更に切削加工次数N=5が設定されるように構成しても良い。   For example, in the above embodiment, the machining order setting means 36 is configured to selectively set the cutting orders N = 1, N = 2, and N = 3. However, the present invention is not limited to this, and in addition to this, The cutting order N = 4 may be set, or the cutting order N = 5 may be further set.

上述した切削加工を一般式で表すと、切削加工次数Nが設定された場合には、N次切削加工が設定され、一次切削加工からN次切削加工までの間に2N−1回の切削加工が行われ、このとき、切削工具6が送り方向に2N−1回往復される。また、N次切削加工においては、送りの位相は距離f/2N−1,3f/2N−1,・・・,(2N−1−1)f/2N−1だけそれぞれずらして、送り方向に送り速度f(mm/rev)で切削工具6を送ることにより行われる。例えば、切削加工次数N=1が設定されると、一次切削加工において切削回数M=1でもって切削加工が行われ、切削加工次数N=2が設定されると、一次切削加工及び二次切削加工において切削回数M=2でもって切削加工が行われ、また切削加工次数N=3が設定されると、一次切削加工から三次切削加工までの間に切削回数M=4でもって切削加工が行われる。 When the above-described cutting process is expressed by a general formula, when the cutting order N is set, the N-th cutting process is set, and 2 N-1 times of cutting are performed between the primary cutting process and the N- th cutting process. Processing is performed, and at this time, the cutting tool 6 is reciprocated 2 N-1 times in the feed direction. In N-order cutting, the feed phases are shifted by distances f / 2 N−1 , 3f / 2 N−1 ,..., (2 N−1 −1) f / 2 N−1. The cutting tool 6 is fed at a feed speed f (mm / rev) in the feed direction. For example, when the cutting order N = 1 is set, cutting is performed with the number of cuttings M = 1 in the primary cutting, and when the cutting order N = 2 is set, the primary cutting and the secondary cutting are performed. When cutting is performed with the number of cuttings M = 2, and when the cutting order N = 3 is set, the cutting is performed with the number of cuttings M = 4 from the first cutting to the third cutting. Is called.

また、例えば切削加工次数N=4が設定された場合には、四次切削加工が設定され、一次切削加工から四次切削加工までの間に切削回数M=8(=24−1)でもって切削加工が行われる。四次切削加工においては、第1切削開始位置から送り方向に送りの位相を距離f/8(mm),3f/8(mm),5f/8(mm),7f/8(mm)だけそれぞれずらして、送り方向に送り速度f(mm/rev)で切削工具6を送り、切込み量d(mm)でもって被加工物16に対して切削加工が行われる。これにより、三次切削加工により被加工物16の表面に生じた山状突部54を切削することができ、より一層きれいな鏡面仕上げ加工を施すことができる。例えば、切削工具6のノーズ半径(すなわち、切削工具6の切削刃部6aの半径)を0.8(mm)、切削工具6の送り速度を0.2(mm/rev)として一次切削加工から四次切削加工まで行うと、四次切削加工後に残存する山状突部の高さ(すなわち、被加工物16の表面粗さ)は0.1(μm)以下となる。 For example, when the cutting order N = 4 is set, quaternary cutting is set, and the number of cuttings M = 8 (= 2 4-1 ) between the primary cutting and the quaternary cutting. Thus, cutting is performed. In quaternary cutting, the phase of feed in the feed direction from the first cutting start position is the distance f / 8 (mm), 3f / 8 (mm), 5f / 8 (mm), and 7f / 8 (mm), respectively. The cutting tool 6 is fed at a feed speed f (mm / rev) in the feed direction, and the workpiece 16 is cut with a cutting depth d (mm). Thereby, the mountain-shaped protrusion 54 generated on the surface of the workpiece 16 by the tertiary cutting process can be cut, and a more beautiful mirror finish can be performed. For example, the primary cutting is performed with the nose radius of the cutting tool 6 (that is, the radius of the cutting blade portion 6a of the cutting tool 6) set to 0.8 (mm) and the feed speed of the cutting tool 6 set to 0.2 (mm / rev). When the fourth cutting is performed, the height of the ridges remaining after the fourth cutting (that is, the surface roughness of the workpiece 16) is 0.1 (μm) or less.

また例えば、上記実施形態では、加工次数設定手段36により切削加工次数を設定することによって、被加工物16に対する切削加工を設定している(例えば、切削加工次数を「2」に設定すると、二次切削加工が設定される)が、切削加工次数に代えて切削加工モードを設定するようにしても良く、この場合、一次(又は二次、三次、・・・)切削加工モードを設定すると、一次(又は二次、三次、・・・)切削加工が設定されるようになる。   Further, for example, in the above-described embodiment, the cutting order for the workpiece 16 is set by setting the cutting order by the processing order setting means 36 (for example, when the cutting order is set to “2”, However, the cutting mode may be set instead of the cutting order. In this case, when the primary (or secondary, tertiary,...) Cutting mode is set, A primary (or secondary, tertiary,...) Cutting process is set.

また例えば、上記実施形態では、丸棒状又は円筒状の被加工物16の外面に対して切削加工を施すように構成したが、これに限られず、円筒状の被加工物の内面に対しても上述したのと同様の切削加工方法により切削加工を施すことができる。あるいは、外面が曲面状に形成された被加工物に対しても切削加工を施すことができ、この場合には、被加工物の外形寸法データを入力手段46により入力することにより、作動制御手段34により第1及び第2駆動手段12,14をそれぞれ所要の通りに回転させ、被加工物16の外形状に応じて切削工具6を送り方向及び切込み方向にそれぞれ適宜移動させるようにすればよい。   Further, for example, in the above embodiment, the outer surface of the round or cylindrical workpiece 16 is cut, but the present invention is not limited to this, and the inner surface of the cylindrical workpiece is also limited. Cutting can be performed by the same cutting method as described above. Alternatively, it is possible to perform cutting on a workpiece having an outer surface formed in a curved shape. In this case, by inputting the external dimension data of the workpiece by the input means 46, the operation control means The first and second driving means 12 and 14 may be rotated as required by 34 so that the cutting tool 6 is appropriately moved in the feed direction and the cutting direction according to the outer shape of the workpiece 16. .

また例えば、上記実施形態では、第1駆動手段12及び第2駆動手段14をそれぞれ電動モータから構成したが、これらを例えばリニアモータから構成するようにしてもよい。また、上記実施形態では、切削工具6の切削刃部6aを三角状に構成したが、適宜の形状のものを用いるようにしてもよい。   For example, in the said embodiment, although the 1st drive means 12 and the 2nd drive means 14 were each comprised from the electric motor, you may make these comprise, for example from a linear motor. Moreover, in the said embodiment, although the cutting blade part 6a of the cutting tool 6 was comprised in the triangle shape, you may make it use the thing of a suitable shape.

また例えば、上記実施形態では、切削加工後の被加工物16の山状突部48(50,54)の最大部位を切削するようにしているが、必ずしも最大部位を切削する必要はなく、送りの位相をずらして切削加工を施すことによって上述したのと同様の作用効果を達成することができる。   Further, for example, in the above embodiment, the maximum portion of the mountain-shaped protrusion 48 (50, 54) of the workpiece 16 after cutting is cut, but it is not always necessary to cut the maximum portion, and the feed The same effects as described above can be achieved by performing the cutting process while shifting the phase.

また例えば、上記実施形態では、移動テーブル28及び刃物テーブル32がそれぞれ送り方向及び切込み方向に往復移動するように構成したが、これに限られず、適宜の軸機構から構成するようにしてもよく、例えば次のように構成してもよい。第1支持手段には主軸部20が送り方向に移動自在に支持され、また第2支持手段には刃物テーブル32が切込み方向に支持されるように構成し、第1駆動手段が所定方向(又は、所定方向と反対方向)に回転することにより、主軸部20、すなわち被加工物16が送り方向(又は、戻し方向)に往復移動され、また第2駆動手段が所定方向(又は、所定方向と反対方向)に回転することにより、刃物テーブル32、すなわち切削工具6が切込み方向(又は、戻し方向)に往復移動される。したがって、切削工具6が被加工物16に対して相対的に送り方向に移動されるようになり、上述したのと同様に、切削工具6により被加工物16の表面に対して切削加工を施すことができる。   Further, for example, in the above embodiment, the moving table 28 and the blade table 32 are configured to reciprocate in the feeding direction and the cutting direction, respectively, but the present invention is not limited thereto, and may be configured from an appropriate shaft mechanism. For example, you may comprise as follows. The main support 20 is supported by the first support means so as to be movable in the feed direction, and the blade table 32 is supported by the second support means in the cutting direction, and the first drive means is configured in a predetermined direction (or , By rotating in the direction opposite to the predetermined direction, the main shaft portion 20, that is, the workpiece 16 is reciprocated in the feeding direction (or the returning direction), and the second driving means is moved in the predetermined direction (or the predetermined direction). By rotating in the opposite direction), the blade table 32, that is, the cutting tool 6 is reciprocated in the cutting direction (or the returning direction). Accordingly, the cutting tool 6 is moved in the feed direction relative to the workpiece 16, and the cutting tool 6 performs cutting on the surface of the workpiece 16 as described above. be able to.

本発明の一実施形態による鏡面仕上げ切削加工装置の概略図である。It is the schematic of the mirror surface finishing cutting apparatus by one Embodiment of this invention. 図1の鏡面仕上げ切削加工装置を用いて、被加工物に対して一次切削加工を施した状態を示す概略断面図である。It is a schematic sectional drawing which shows the state which performed the primary cutting process with respect to the workpiece using the mirror surface finishing cutting apparatus of FIG. 図1の鏡面仕上げ切削加工装置を用いて、被加工物に対して二次切削加工を施した状態を示す概略断面図である。It is a schematic sectional drawing which shows the state which performed the secondary cutting process with respect to the workpiece using the mirror surface finishing cutting apparatus of FIG. 図1の鏡面仕上げ切削加工装置を用いて、被加工物に対して三次切削加工を施した状態を示す概略断面図である。It is a schematic sectional drawing which shows the state which performed the tertiary cutting process with respect to the workpiece using the mirror surface finishing cutting apparatus of FIG. 図1の鏡面仕上げ切削加工装置の制御系を簡略的に示すブロック図である。It is a block diagram which shows simply the control system of the mirror surface finishing cutting apparatus of FIG. 図1の鏡面仕上げ切削加工装置による切削加工方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the cutting method by the mirror surface finishing cutting apparatus of FIG. 図6のフローチャートにおける切削加工の流れを示すフローチャートである。It is a flowchart which shows the flow of the cutting process in the flowchart of FIG.

符号の説明Explanation of symbols

2 切削加工装置
6 切削工具
8 第1支持手段
10 第2支持手段
12 第1駆動手段
14 第2駆動手段
16 被加工物
34 作動制御手段
38 加工条件演算手段
DESCRIPTION OF SYMBOLS 2 Cutting apparatus 6 Cutting tool 8 1st support means 10 2nd support means 12 1st drive means 14 2nd drive means 16 Workpiece 34 Operation control means 38 Process condition calculation means

Claims (4)

切削工具を所定の送り方向に送ることにより、回転される被加工物の表面に対して切削加工を施して鏡面仕上げを行う鏡面仕上げ切削加工方法であって、
切削開始位置より前記所定の送り方向に所定の送り速度fで前記切削工具を送り、所定の切込み量でもって前記被加工物に対して一次切削加工を行い、その後に、前記切削開始位置から前記所定の送り方向に送りの位相を距離f/2だけずらして前記所定の送り方向に前記所定の送り速度fで前記切削工具を送り、前記所定の切込み量でもって前記被加工物に対して二次切削加工を行うことを特徴とする鏡面仕上げ切削加工方法。
A mirror-finishing cutting method that performs a mirror finish on a surface of a workpiece to be rotated by sending a cutting tool in a predetermined feed direction,
The cutting tool is fed from the cutting start position in the predetermined feed direction at a predetermined feed speed f , and a primary cutting process is performed on the workpiece with a predetermined cutting amount. The phase of the feed is shifted by a distance f / 2 in the predetermined feed direction, and the cutting tool is fed at the predetermined feed speed f in the predetermined feed direction. A mirror finish cutting method characterized by performing a next cutting process.
前記二次切削加工の後に三次切削加工が更に行われ、前記三次切削加工では、前記切削開始位置から前記所定の送り方向に送りの位相を距離f/4又は3f/4だけずらして、前記所定の送り方向に前記送り速度fで前記切削工具を送って前記所定の切込み量でもって前記被加工物に対して切削加工を行い、更に前記切削開始位置から前記所定の送り方向に送りの位相を距離3f/4又はf/4だけずらして、前記所定の送り方向に前記送り速度fで前記切削工具を送って前記所定の切込み量でもって前記被加工物に対して切削加工を行うことを特徴とする請求項に記載の鏡面仕上げ切削加工方法。 Tertiary cutting is further performed after the secondary cutting, and in the tertiary cutting, the phase of feeding is shifted by a distance f / 4 or 3f / 4 from the cutting start position in the predetermined feeding direction, and the predetermined cutting is performed. The cutting tool is fed at the feed speed f in the feed direction to cut the workpiece with the predetermined cutting depth, and the feed phase is shifted from the cutting start position to the predetermined feed direction. The workpiece is shifted by a distance of 3f / 4 or f / 4 and the cutting tool is fed at the feed speed f in the predetermined feed direction, and the workpiece is cut with the predetermined cut amount. The mirror surface finishing cutting method according to claim 1 . 切削工具を所定の送り方向に支持する第1支持手段と、前記切削工具を前記送り方向に対して実質上垂直な切込み方向に支持する第2支持手段と、前記切削工具を前記送り方向に往復移動させるための第1駆動手段と、前記切削工具を前記切込み方向に往復移動させるための第2駆動手段と、前記第1及び第2駆動手段をそれぞれ作動制御するための作動制御手段と、切削加工条件を演算するための加工条件演算手段と、を備え、前記切削工具を前記送り方向に送ることにより、回転される被加工物の表面に対して切削加工を施す鏡面仕上げ切削加工装置であって、
一次切削加工が設定されると、前記加工条件演算手段は一次切削加工条件を演算し、この演算された前記一次切削加工条件に基づき前記作動制御手段が前記第1及び第2駆動手段を作動制御することにより一次切削加工が行われ、この一次切削加工では、切削開始位置より前記送り方向に送り速度fで前記切削工具が送られて所定の切込み量でもって前記被加工物に対して切削加工が行われ、
また二次切削加工が設定されると、前記加工条件演算手段は前記一次切削加工条件及び二次切削加工条件を演算し、この演算された前記一次切削加工条件に基づき前記作動制御手段が前記第1及び第2駆動手段を作動制御することにより前記一次切削加工が行われ、その後に、演算された前記二次切削加工条件に基づき前記作動制御手段が前記第1及び第2駆動手段を作動制御することにより二次切削加工が行われ、この二次切削加工では、前記切削開始位置から前記送り方向に送りの位相を距離f/2だけずらして前記送り方向に前記送り速度fで前記切削工具が送られて、前記所定の切込み量でもって前記被加工物に対して切削加工が行われることを特徴とする鏡面仕上げ切削加工装置。
First support means for supporting the cutting tool in a predetermined feed direction, second support means for supporting the cutting tool in a cutting direction substantially perpendicular to the feed direction, and reciprocating the cutting tool in the feed direction First driving means for moving, second driving means for reciprocating the cutting tool in the cutting direction, operation control means for controlling the operation of the first and second driving means, and cutting A mirror condition finishing cutting device for cutting a surface of a workpiece to be rotated by sending the cutting tool in the feed direction. And
When primary cutting is set, the machining condition calculation means calculates primary cutting conditions, and the operation control means controls the first and second drive means based on the calculated primary cutting conditions. In this primary cutting process, the cutting tool is fed at a feed speed f in the feed direction from the cutting start position, and the workpiece is cut with a predetermined depth of cut. Is done,
When the secondary cutting is set, the machining condition calculation means calculates the primary cutting condition and the secondary cutting condition, and the operation control means determines the first cutting condition based on the calculated primary cutting condition. The primary cutting is performed by controlling the operation of the first and second drive means, and then the operation control means controls the operation of the first and second drive means based on the calculated secondary cutting conditions. In this secondary cutting, the cutting tool shifts the feed phase in the feed direction from the cutting start position by a distance f / 2 at the feed speed f in the feed direction. it is sent, mirror finish cutting apparatus characterized by cutting is performed on the predetermined said workpiece with a depth of cut.
三次切削加工の設定が可能であり、三次切削加工が設定されると、前記加工条件演算手段は前記一次切削加工条件、前記二次切削加工条件及び三次切削加工条件を演算し、この演算された前記一次切削加工条件に基づき前記一次切削加工が行われ、その後に、演算された前記二次切削加工条件に基づき前記二次切削加工が行われ、更にその後に、演算された前記三次切削加工条件に基づき前記作動制御手段が前記第1及び第2駆動手段を作動制御することにより三次切削加工が行われ、この三次切削加工では、前記切削開始位置から前記送り方向に送りの位相を距離f/4又は3f/4だけずらして前記送り方向に前記送り速度fで前記切削工具が送られて、前記所定の切込み量でもって前記被加工物に対して切削加工が行われ、更に、前記切削開始位置から前記送り方向に送りの位相を距離3f/4又はf/4だけずらして前記送り方向に前記送り速度fで前記切削工具が送られて、前記所定の切込み量でもって前記被加工物に対して切削加工が行われることを特徴とする請求項に記載の鏡面仕上げ切削加工装置。 Setting of the tertiary cutting is possible, and when the tertiary cutting is set, the processing condition calculation means calculates the primary cutting processing condition, the secondary cutting processing condition, and the tertiary cutting processing condition. The primary cutting is performed based on the primary cutting conditions, the secondary cutting is then performed based on the calculated secondary cutting conditions, and then the calculated tertiary cutting conditions are further calculated. Based on the above, the operation control means controls the operation of the first and second drive means to perform tertiary cutting, and in this tertiary cutting, the phase of feed is set to the distance f / in the feed direction from the cutting start position. The cutting tool is sent at the feed speed f in the feed direction with a shift of 4 or 3f / 4, and the workpiece is cut with the predetermined depth of cut. The cutting tool is fed at the feed speed f in the feed direction by shifting the feed phase in the feed direction from the cutting start position by a distance 3f / 4 or f / 4, and the workpiece is processed with the predetermined depth of cut. The mirror finish cutting apparatus according to claim 3 , wherein the object is cut.
JP2005374751A 2005-12-27 2005-12-27 Mirror surface finishing cutting method and mirror surface finishing cutting device Active JP4724556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005374751A JP4724556B2 (en) 2005-12-27 2005-12-27 Mirror surface finishing cutting method and mirror surface finishing cutting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005374751A JP4724556B2 (en) 2005-12-27 2005-12-27 Mirror surface finishing cutting method and mirror surface finishing cutting device

Publications (2)

Publication Number Publication Date
JP2007175796A JP2007175796A (en) 2007-07-12
JP4724556B2 true JP4724556B2 (en) 2011-07-13

Family

ID=38301493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005374751A Active JP4724556B2 (en) 2005-12-27 2005-12-27 Mirror surface finishing cutting method and mirror surface finishing cutting device

Country Status (1)

Country Link
JP (1) JP4724556B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5126665B2 (en) * 2007-12-05 2013-01-23 オークマ株式会社 Turning method, turning condition and cutting path generation method
JP6621696B2 (en) * 2016-03-29 2019-12-18 シチズン時計株式会社 Machine tool and control device thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071601A (en) * 2001-08-30 2003-03-12 Okuma Corp Turning method
JP2004098229A (en) * 2002-09-10 2004-04-02 Okuma Corp Contouring working method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833478A (en) * 1971-09-06 1973-05-10

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071601A (en) * 2001-08-30 2003-03-12 Okuma Corp Turning method
JP2004098229A (en) * 2002-09-10 2004-04-02 Okuma Corp Contouring working method

Also Published As

Publication number Publication date
JP2007175796A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
KR102343458B1 (en) Control device for machine tool, and machine tool provided with said control device
TWI600487B (en) Numeral controlling device
JP6709163B2 (en) Machine tool and control device for this machine tool
JP5902753B2 (en) Numerical control device with a function of rounding up / cutting in or circular motion
JP5860072B2 (en) Numerical control device with a function to suppress chattering during thread cutting
CN108994552B (en) Gear machining method and gear machining device
JP6209392B2 (en) Interference confirmation device
WO2016067371A1 (en) Numerical control device
JP2020044593A (en) Gear processing device and gear processing method
CN103785905A (en) Machine tool
JP4724556B2 (en) Mirror surface finishing cutting method and mirror surface finishing cutting device
JP7044734B2 (en) Servo controller
JP5126665B2 (en) Turning method, turning condition and cutting path generation method
JP6444923B2 (en) Numerical controller
JP6147456B1 (en) Numerical controller
JP2005040912A (en) Machining device
US20190091778A1 (en) End mill machining apparatus, cam apparatus, nc program, and machining method
KR20220013488A (en) Machine tools and their control units
JP6062971B2 (en) A numerical controller that controls machine tools based on skiving instructions
JP2021066005A (en) Numerical control apparatus, program and control method
JP2004202594A (en) Numerical control device
KR20240005053A (en) Vibratory cutting condition setting device for machine tools
JP4037087B2 (en) Thread cutting control method and control device for numerically controlled machine tool and numerically controlled machine tool incorporating the same
JP2012003515A (en) Control method and controller for machine tool
JP4391150B2 (en) Spring manufacturing method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4724556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250