JP4724063B2 - Cryogenic equipment - Google Patents

Cryogenic equipment Download PDF

Info

Publication number
JP4724063B2
JP4724063B2 JP2006200578A JP2006200578A JP4724063B2 JP 4724063 B2 JP4724063 B2 JP 4724063B2 JP 2006200578 A JP2006200578 A JP 2006200578A JP 2006200578 A JP2006200578 A JP 2006200578A JP 4724063 B2 JP4724063 B2 JP 4724063B2
Authority
JP
Japan
Prior art keywords
container
refrigerant
heat insulating
volume
vacuum heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006200578A
Other languages
Japanese (ja)
Other versions
JP2008025938A (en
Inventor
安見 大谷
政彦 高橋
透 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006200578A priority Critical patent/JP4724063B2/en
Publication of JP2008025938A publication Critical patent/JP2008025938A/en
Application granted granted Critical
Publication of JP4724063B2 publication Critical patent/JP4724063B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、超電導コイル等の低温で稼動する機器を冷媒によって冷却し低温に保持する低温装置に関する。   The present invention relates to a low-temperature device that cools a device that operates at a low temperature, such as a superconducting coil, with a refrigerant and keeps it at a low temperature.

超電導コイル等の低温で稼動する機器は多くの場合、冷媒によって冷却される。このような低温の冷媒を保持する低温装置の容器において、特に熱侵入による冷媒の蒸発量を抑える、あるいは蒸発量をゼロにすることを目的として、冷凍機を用いることがある(特許文献1,2)。冷凍機の冷凍能力が熱侵入量よりも大きい場合には、冷媒容器は負圧になり容器内に空気を吸い込むことになる。この場合、空気中の水分が容器内に固着することにより閉塞をひき起こし、危険であることから、容器内を負圧にしないよう、容器内圧力が大気圧力程度になるように制御する必要がある。
特開平4−180203号公報 特開平6−69030号公報
In many cases, a device operating at a low temperature such as a superconducting coil is cooled by a refrigerant. In a container of such a low-temperature apparatus holding a low-temperature refrigerant, a refrigerator may be used particularly for the purpose of suppressing the evaporation amount of the refrigerant due to heat intrusion or reducing the evaporation amount to zero (Patent Document 1, Patent Document 1). 2). When the refrigerating capacity of the refrigerator is larger than the heat penetration amount, the refrigerant container has a negative pressure and air is sucked into the container. In this case, since moisture in the air sticks in the container, it causes a blockage and is dangerous. Therefore, it is necessary to control the internal pressure of the container to be about atmospheric pressure so that the inside of the container does not become negative pressure. is there.
JP-A-4-180203 JP-A-6-69030

冷媒容器内の圧力制御に求められる特性としては、信頼性、制御性、簡便性および効率性が挙げられる。
信頼性が特に求められる低温装置としては、液体窒素あるいは液体ヘリウムを冷媒として用いた超電導磁石(MRI、NMR、SMES、超電導限流器、超電導発電機、超電導変圧器、単結晶引上げ装置用超電導磁石等)のクライオスタットが挙げられる。これらの装置は通常長時間継続運転が求められており、冷凍機の高信頼性が求められるが、容器内の圧力制御に関しても同様の信頼性が求められる。
Characteristics required for pressure control in the refrigerant container include reliability, controllability, simplicity, and efficiency.
Low-temperature devices that require high reliability include superconducting magnets that use liquid nitrogen or liquid helium as refrigerants (MRI, NMR, SMES, superconducting fault current limiters, superconducting generators, superconducting transformers, superconducting magnets for single crystal pulling devices) Etc.). These devices are usually required to operate continuously for a long time, and high reliability of the refrigerator is required, but the same reliability is also required for pressure control in the container.

制御性に関しては、容器内圧力変化は様々な要因で起るため、その各々に対し迅速に追従するような制御性が求められる。例えば、外気温度のような1年周期、1日周期の変動、気圧のような数日周期の変動、およびトラブル時の不規則な変動等に対応する必要がある。   Regarding controllability, changes in the internal pressure of the container are caused by various factors, and thus controllability is required to quickly follow each of them. For example, it is necessary to deal with a one-year cycle, a daily cycle variation such as an outside temperature, a several-day cycle variation such as an atmospheric pressure, and an irregular variation at the time of trouble.

簡便性に関しては、上記の超電導磁石は通常無人運転をしており、圧力制御も自動運転が求められる。また装置の製造の点からも、構造が簡素であることがコスト低減と信頼性向上につながる。効率性に関しては、圧力制御に必要な電力を抑えるあるいはゼロにすることが求められる。   In terms of simplicity, the superconducting magnet is normally operated unattended, and automatic operation is also required for pressure control. From the standpoint of manufacturing the device, the simple structure leads to cost reduction and reliability improvement. With regard to efficiency, it is required to reduce or eliminate the power required for pressure control.

以上の課題を克服するための最良の方策として、電力を使わない、人間の操作を必要としない、電力を使う場合は、断線等のトラブルが起きにくい、等の要求を満たす必要がある。   As the best measures for overcoming the above problems, it is necessary to satisfy such requirements as not using electric power, requiring no human operation, and using electric power such that troubles such as disconnection are unlikely to occur.

例えば図6に示す従来の低温装置は、ヒーター20を冷凍機1の冷却ステージ2に取り付けているが、この部位は通常、断熱真空空間に置かれているため、ヒーター20と冷却ステージ2との熱接触が劣化した場合、ヒーター20が断熱加熱されて断線するトラブルが発生しやすい。ヒーター20の取換作業は、断熱真空容器3を開けないと行えないため、取替え作業は大きなメンテナンスコストを発生させる。
そこで本発明は、メンテナンスしやすい簡易な構成によって自動的に冷媒容器内の圧力制御を行うことのできる低温装置を提供することを目的とする。
For example, the conventional low-temperature apparatus shown in FIG. 6 has the heater 20 attached to the cooling stage 2 of the refrigerator 1, but since this part is usually placed in an adiabatic vacuum space, the heater 20 and the cooling stage 2 When the thermal contact is deteriorated, a trouble that the heater 20 is adiabatically heated and is disconnected easily occurs. Since the replacement work of the heater 20 cannot be performed unless the heat insulating vacuum vessel 3 is opened, the replacement work generates a large maintenance cost.
Therefore, an object of the present invention is to provide a low-temperature apparatus that can automatically control the pressure in the refrigerant container with a simple configuration that is easy to maintain.

上記課題を解決するために、本発明の請求項1は、冷媒液を貯留する冷媒容器と、前記冷媒容器を包囲する真空断熱容器と、前記真空断熱容器の外に設けられ前記真空断熱容器と前記冷媒容器に貫入して前記冷媒液を冷却する冷却ステージを有する冷凍機と、前記冷媒容器内の前記冷媒液液面上のガス空間に設けられ前記ガス空間の圧力変化に従って体積を変える体積可変容器と、前記真空断熱容器の外に設けられたバッファまたは体積可変容器と、前記冷媒容器内に設けられた体積可変容器と前記真空断熱容器の外に設けられたバッファまたは体積可変容器を連通する連通管と、を備えていることを特徴とするIn order to solve the above-mentioned problem, claim 1 of the present invention includes a refrigerant container for storing a refrigerant liquid, a vacuum heat insulating container surrounding the refrigerant container, and the vacuum heat insulating container provided outside the vacuum heat insulating container. A refrigerator having a cooling stage that penetrates into the refrigerant container and cools the refrigerant liquid, and a variable volume that is provided in a gas space on the liquid surface of the refrigerant liquid in the refrigerant container and changes in volume according to a pressure change in the gas space. A container , a buffer or a variable volume container provided outside the vacuum insulation container, a variable volume container provided in the refrigerant container, and a buffer or variable volume container provided outside the vacuum insulation container. And a communication pipe .

本発明によれば、メンテナンスしやすい簡易な構成によって自動的に冷媒容器内の圧力制御を行うことのできる低温装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the low temperature apparatus which can perform the pressure control in a refrigerant | coolant container automatically with the simple structure which is easy to maintain can be provided.

以下、本発明の第1ないし第2の実施の形態の低温装置に関して図面を参照して説明する。
(第1の実施の形態)
図1は、本発明の第1の実施の形態の第1の実施例を示す。すなわち、真空断熱容器3内に納められた冷媒容器4内に液体窒素、液体ヘリウム等の低温の冷媒液5が保持され、真空断熱容器3の上部に取り付けられた冷凍機1の冷却ステージ2は真空断熱容器3の上部と冷媒容器4の上部から貫入して冷媒液5に達している。冷媒液5には超電導コイル等の被冷却機器8が浸漬されている。
Hereinafter, the low temperature apparatus according to the first and second embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 shows a first example of the first embodiment of the present invention. That is, the cooling stage 2 of the refrigerator 1 in which the low-temperature refrigerant liquid 5 such as liquid nitrogen or liquid helium is held in the refrigerant container 4 housed in the vacuum heat insulating container 3 and attached to the upper part of the vacuum heat insulating container 3 is It penetrates from the upper part of the vacuum heat insulating container 3 and the upper part of the refrigerant container 4 and reaches the refrigerant liquid 5. A cooling target device 8 such as a superconducting coil is immersed in the refrigerant liquid 5.

低温装置においては熱侵入により冷媒液5が蒸発するため、長期間冷媒の充填をしないためには冷凍機等で冷媒を冷却する必要がある。その際、熱侵入量と同じ冷凍能力をもつ冷凍機を用いれば、基本的に蒸発する冷媒は液化され、冷媒液5は長期間保持可能となる。しかし実際は、冷凍機の冷凍能力を、長期間厳密に侵入熱量と同じになるように運転することはできず、冷凍能力が小さくなれば容器内の圧力は上昇し、冷凍機の能力が大きくなれば容器内の圧力は低下する。通常は、冷凍能力が熱侵入量よりも大きい冷凍機を用いて、過剰な冷凍能力分はヒーター等の負の制御系により加熱して容器内の圧力を一定に保持する手段がとられる。従って本実施例における冷凍機1は熱侵入量より大きい冷凍能力を持っているものとする。   In the low-temperature apparatus, the refrigerant liquid 5 evaporates due to heat intrusion, so that it is necessary to cool the refrigerant with a refrigerator or the like in order not to fill the refrigerant for a long time. At that time, if a refrigerator having the same refrigeration capacity as the heat penetration amount is used, the refrigerant that evaporates is basically liquefied, and the refrigerant liquid 5 can be maintained for a long period of time. In practice, however, the refrigeration capacity of the refrigerator cannot be operated to be exactly the same as the amount of intrusion heat for a long period of time, and if the refrigeration capacity decreases, the pressure in the container increases and the capacity of the refrigerator increases. The pressure in the container will drop. Usually, a means for keeping the pressure in the container constant by heating the excess refrigeration capacity by a negative control system such as a heater using a refrigerator having a refrigeration capacity larger than the heat penetration amount. Therefore, it is assumed that the refrigerator 1 in this embodiment has a refrigerating capacity larger than the heat penetration amount.

本実施例の低温装置は更に、冷媒容器4内に体積可変容器であるベローズ6を設け、ベローズ6の外側は冷媒容器4の内圧に面し、内側は室温部に所定の容積を持つバッファ15に連通管7で連結した構成とする。このときベローズ6の上端を冷媒液5の温度よりも高い温度の位置に取り付けることで、伸縮するベローズ6自体を熱侵入量制御のための熱伝導部材として機能させることもできる。熱伝導を良くする必要がある場合には、銅、銀、金等の金属部材で構成されたベローズ6を用いる。
本実施例によれば、冷媒液5の蒸発凝縮に従ってベローズ6が伸縮して冷媒容器4の内圧を大気圧程度に自動的に保つことができる。
The low-temperature apparatus of the present embodiment further includes a bellows 6 that is a variable volume container in the refrigerant container 4, the outside of the bellows 6 faces the internal pressure of the refrigerant container 4, and the inside is a buffer 15 having a predetermined volume in the room temperature portion. It is set as the structure connected with the communication pipe 7. At this time, by attaching the upper end of the bellows 6 to a position at a temperature higher than the temperature of the refrigerant liquid 5, the expanding and contracting bellows 6 itself can also function as a heat conducting member for controlling the heat penetration amount. When it is necessary to improve heat conduction, a bellows 6 made of a metal member such as copper, silver, or gold is used.
According to the present embodiment, the bellows 6 expands and contracts according to the evaporation and condensation of the refrigerant liquid 5, and the internal pressure of the refrigerant container 4 can be automatically maintained at about atmospheric pressure.

図2は本実施の形態の第2の実施例を示し、第1の実施例(図1)における室温バッファ15の代わりに、体積可変容器である室温側ベローズ16を設けた構成である。本実施例は、室温側ベローズ16を設けたことにより、冷媒容器4内の単位圧力変化あたりの低温側に付けたベローズ6のストローク量が大きくなり、圧力制御幅が広くなるメリットがある。このとき、室温側のベローズ16に、可動範囲を制限する停止装置、圧力を確認できる目盛、手動で伸縮量を調整できる装置等を取り付けることで、圧力制御性が更に向上する。また、低温側のベローズ6にも、可動範囲制限用の停止装置を取り付けることで、異常圧力発生時の保護が可能となる。   FIG. 2 shows a second example of the present embodiment, in which a room temperature side bellows 16 that is a variable volume container is provided in place of the room temperature buffer 15 in the first example (FIG. 1). In the present embodiment, since the room temperature side bellows 16 is provided, the stroke amount of the bellows 6 attached to the low temperature side per unit pressure change in the refrigerant container 4 is increased, and there is an advantage that the pressure control width is widened. At this time, pressure controllability is further improved by attaching a stop device that limits the movable range, a scale that can confirm the pressure, a device that can manually adjust the amount of expansion and contraction, etc. to the bellows 16 on the room temperature side. Further, by attaching a stop device for limiting the movable range to the low temperature side bellows 6, it is possible to protect when an abnormal pressure occurs.

図3は本実施の形態の第3の実施例を示し、低温側のベローズ6内と、室温側のベローズ16内を連通する連通管7の途中に冷媒液5および冷媒ガスとの熱交換部17を設けた構成である。熱交換部17により冷媒液5への熱侵入量の調整を行うことができる。冷凍機1の能力が勝り、冷媒容器4内の圧力が低下した際には、低温側のベローズ6が伸び、内部容積が大きくなるため、室温側のベローズ16内のガスを吸い込むが、このとき熱交換部17で熱侵入量が増えるため冷媒液5が蒸発し冷媒容器4の内圧が上昇する。逆に冷媒容器4の内圧が増加した際は、低温側のベローズ6内の低温ガスが熱交換部17に通るため、熱侵入量の増加は起きない。室温側のベローズ16には、可動部移動範囲制限のための停止装置、圧力確認用目盛、手動調整装置等を取り付けた構成としてもよい。また室温側ベローズ16を容積変化のないバッファに置き換えた構成としてもよい。   FIG. 3 shows a third example of the present embodiment, in which the heat exchange section between the refrigerant liquid 5 and the refrigerant gas is provided in the middle of the communication pipe 7 communicating between the low temperature side bellows 6 and the room temperature side bellows 16. 17 is provided. The amount of heat entering the refrigerant liquid 5 can be adjusted by the heat exchange unit 17. When the capacity of the refrigerator 1 is superior and the pressure in the refrigerant container 4 decreases, the bellows 6 on the low temperature side extends and the internal volume increases, so the gas in the bellows 16 on the room temperature side is sucked. Since the amount of heat penetration increases in the heat exchanging part 17, the refrigerant liquid 5 evaporates and the internal pressure of the refrigerant container 4 rises. On the contrary, when the internal pressure of the refrigerant container 4 increases, the low temperature gas in the bellows 6 on the low temperature side passes through the heat exchanging portion 17, so that the amount of heat penetration does not increase. The bellows 16 on the room temperature side may have a configuration in which a stop device for limiting the moving range of the movable portion, a pressure check scale, a manual adjustment device, and the like are attached. Alternatively, the room temperature side bellows 16 may be replaced with a buffer having no volume change.

(第2の実施の形態)
図4は本発明の第2の実施の形態の第1の実施例を示し、冷媒液5中に設けたヒーター20および蒸発ガス溜め容器25と、冷媒容器4の上部から真空断熱容器3の外部へ突出して設けた圧力計22と、配線21,23によってヒーター20と圧力計22に接続された圧力制御器24とを備えた構成である。
(Second Embodiment)
FIG. 4 shows a first example of the second embodiment of the present invention. The heater 20 and the evaporative gas reservoir 25 provided in the refrigerant liquid 5 and the outside of the vacuum heat insulating container 3 from the upper part of the refrigerant container 4 are shown. And a pressure controller 24 connected to the heater 20 and the pressure gauge 22 by wires 21 and 23.

本実施例は、ヒーター20による加熱、加圧方式を採用しているが、冷媒容器4内に、ヒーター20の加熱により発生した蒸発ガスをいったん溜める容器25を設けている。こうすることで蒸発ガスが、冷媒容器4内の冷媒液5、あるいは冷媒液5面上部のガス空間の温度勾配を乱すことなく、内部ガス容積を安定して増加させることができる。そのため、ヒーター加熱に対する圧力上昇の応答性を向上させることができる。   In the present embodiment, a heating and pressurizing method using the heater 20 is employed, but a container 25 for temporarily storing the evaporated gas generated by the heating of the heater 20 is provided in the refrigerant container 4. By doing so, the evaporative gas can stably increase the internal gas volume without disturbing the temperature gradient of the refrigerant liquid 5 in the refrigerant container 4 or the gas space above the surface of the refrigerant liquid 5. Therefore, the responsiveness of the pressure increase with respect to heater heating can be improved.

図5は、本実施の形態の第2の実施例を示す。本実施例は、再凝縮用の冷凍機1を冷凍機着脱機構27によって着脱可能な構成とし、圧力制御用のヒーター20を冷却ステージ2に取り付けた構成である。本実施例ではヒーター20の取換が容易である。更に冷凍機1として、蓄冷式GM冷凍機、GM型パルスチューブ冷凍機を用いることで、冷却ステージ2の温度制御が容易となる。   FIG. 5 shows a second example of the present embodiment. In this embodiment, the recondensing refrigerator 1 is detachable by the refrigerator attaching / detaching mechanism 27, and the pressure control heater 20 is attached to the cooling stage 2. In this embodiment, the heater 20 can be easily replaced. Further, by using a regenerative GM refrigerator or a GM type pulse tube refrigerator as the refrigerator 1, the temperature control of the cooling stage 2 becomes easy.

本発明の第1の実施の形態の第1の実施例の低温装置の構成を示す断面図。Sectional drawing which shows the structure of the low-temperature apparatus of the 1st Example of the 1st Embodiment of this invention. 本発明の第1の実施の形態の第2の実施例の低温装置の構成を示す断面図。Sectional drawing which shows the structure of the low-temperature apparatus of the 2nd Example of the 1st Embodiment of this invention. 本発明の第1の実施の形態の第3の実施例の低温装置の構成を示す断面図。Sectional drawing which shows the structure of the low-temperature apparatus of the 3rd Example of the 1st Embodiment of this invention. 本発明の第2の実施の形態の第1の実施例の低温装置の構成を示す断面図。Sectional drawing which shows the structure of the low-temperature apparatus of the 1st Example of the 2nd Embodiment of this invention. 本発明の第2の実施の形態の第2の実施例の低温装置の構成を示す断面図。Sectional drawing which shows the structure of the low-temperature apparatus of the 2nd Example of the 2nd Embodiment of this invention. 従来の低温装置の構成を示す断面図。Sectional drawing which shows the structure of the conventional low-temperature apparatus.

符号の説明Explanation of symbols

1…冷凍機、2…冷却ステージ、3…真空断熱容器、4…冷媒容器、5…冷媒液、6…ベローズ、7…連通管、8…被冷却機器、15…室温バッファ、16…室温側ベローズ、17…熱交換部、20…ヒーター、21,23…配線、22…圧力計、24…圧力制御器、25…蒸発ガス溜め容器、26…再凝縮器、27…冷凍機着脱機構。

DESCRIPTION OF SYMBOLS 1 ... Refrigerator, 2 ... Cooling stage, 3 ... Vacuum insulation container, 4 ... Refrigerant container, 5 ... Refrigerant liquid, 6 ... Bellows, 7 ... Communication pipe, 8 ... Cooled apparatus, 15 ... Room temperature buffer, 16 ... Room temperature side Bellows, 17 ... heat exchange part, 20 ... heater, 21, 23 ... wiring, 22 ... pressure gauge, 24 ... pressure controller, 25 ... evaporative gas reservoir, 26 ... recondenser, 27 ... refrigerator attachment / detachment mechanism.

Claims (5)

冷媒液を貯留する冷媒容器と、前記冷媒容器を包囲する真空断熱容器と、前記真空断熱容器の外に設けられ前記真空断熱容器と前記冷媒容器に貫入して前記冷媒液を冷却する冷却ステージを有する冷凍機と、前記冷媒容器内の前記冷媒液液面上のガス空間に設けられ前記ガス空間の圧力変化に従って体積を変える体積可変容器と、前記真空断熱容器の外に設けられたバッファまたは体積可変容器と、前記冷媒容器内に設けられた体積可変容器と前記真空断熱容器の外に設けられたバッファまたは体積可変容器を連通する連通管と、を備えていることを特徴とする低温装置。 A refrigerant container for storing a refrigerant liquid; a vacuum heat insulating container surrounding the refrigerant container; and a cooling stage provided outside the vacuum heat insulating container and penetrating into the vacuum heat insulating container and the refrigerant container to cool the refrigerant liquid. A refrigerating machine, a volume variable container that is provided in a gas space above the liquid level of the refrigerant in the refrigerant container, and that changes its volume in accordance with a pressure change in the gas space, and a buffer or volume provided outside the vacuum heat insulating container A low-temperature apparatus comprising: a variable container; a volume variable container provided in the refrigerant container; and a communication pipe that communicates a buffer or a variable volume container provided outside the vacuum heat insulating container . 前記冷媒容器内に設けられた体積可変容器と前記真空断熱容器の外に設けられた体積可変容器はベローズであることを特徴とする請求項1記載の低温装置。 Cryostat according to claim 1, wherein a variable volume container provided outside the variable volume container and the vacuum insulated container provided in the refrigerant vessel, wherein the bellows der Rukoto. 前記真空断熱容器の外に設けられた体積可変容器は、伸縮量を制限する停止機構、または伸縮量の手動制御機構、または圧力確認用目盛の少なくとも一つを備えていることを特徴とする請求項1又は2記載の低温装置。 The variable volume container provided outside the vacuum heat insulating container is provided with at least one of a stop mechanism for limiting an expansion / contraction amount, a manual control mechanism for the expansion / contraction amount, or a pressure confirmation scale. Item 3. The cryogenic apparatus according to item 1 or 2 . 前記連結管は、当該連結管の途中に冷媒容器内の冷媒液と当該冷媒液液面上のガスとの熱交換をおこなう熱交換部を形成していることを特徴とする請求項1乃至3いずれかに記載の低温装置。 The connecting pipe, according to claim 1, wherein the forming the heat exchanging section for exchanging heat between the gas on the refrigerant liquid and the refrigerant liquid liquid level in the refrigerant container in the middle of the connecting pipe The cryogenic apparatus according to any one of the above. 前記真空断熱容器外に設けられたバッファまたは体積可変容器には真空排気またはガス置換操作が可能なバルブが取り付けられていることを特徴とする請求項1乃至4いずれかに記載の低温装置。 Cryostat according to any one of claims 1 to 4, characterized in that the buffer or variable volume container provided outside of the vacuum insulated container is evacuated or gas replacement operation is capable valve attached.
JP2006200578A 2006-07-24 2006-07-24 Cryogenic equipment Expired - Fee Related JP4724063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006200578A JP4724063B2 (en) 2006-07-24 2006-07-24 Cryogenic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006200578A JP4724063B2 (en) 2006-07-24 2006-07-24 Cryogenic equipment

Publications (2)

Publication Number Publication Date
JP2008025938A JP2008025938A (en) 2008-02-07
JP4724063B2 true JP4724063B2 (en) 2011-07-13

Family

ID=39116740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006200578A Expired - Fee Related JP4724063B2 (en) 2006-07-24 2006-07-24 Cryogenic equipment

Country Status (1)

Country Link
JP (1) JP4724063B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101075763B1 (en) 2009-07-30 2011-10-24 창진전기(주) A Pressure Control Apparatus For Transformer
KR101071003B1 (en) 2009-12-21 2011-10-06 금오공과대학교 산학협력단 A Cooling Apparatus For Transformer
JPWO2013172148A1 (en) * 2012-05-14 2016-01-12 株式会社日立メディコ Magnetic resonance imaging apparatus, gas recovery apparatus for magnetic resonance imaging apparatus, and method of operating magnetic resonance imaging apparatus
JP5913157B2 (en) * 2013-03-06 2016-04-27 住友重機械工業株式会社 Cryogenic cooling device and liquid level adjustment mechanism
JP6084526B2 (en) * 2013-06-25 2017-02-22 ジャパンスーパーコンダクタテクノロジー株式会社 Cryostat
JP6721465B2 (en) * 2016-09-08 2020-07-15 株式会社日立製作所 Magnetic resonance imaging apparatus and maintenance system using the magnetic resonance imaging apparatus
CN110327826A (en) * 2019-06-28 2019-10-15 中鸿纳米纤维技术丹阳有限公司 A kind of polymer emulsified equipment of nanofiber production
JP7339540B2 (en) * 2020-01-23 2023-09-06 富士通株式会社 Liquid immersion tank and liquid immersion cooling device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5121494A (en) * 1974-08-16 1976-02-20 Hitachi Ltd
JPS54149597A (en) * 1978-05-17 1979-11-22 Toshiba Corp Cryostat for superconductive coil
JPS5720485A (en) * 1980-07-11 1982-02-02 Mitsubishi Electric Corp Cryogenic refrigerating plant
JPS614206A (en) * 1984-06-18 1986-01-10 Toshiba Corp Ultralow temperature apparatus
JPH04180203A (en) * 1990-11-15 1992-06-26 Mitsubishi Electric Corp Very low temperature apparatus
JPH0669030A (en) * 1992-08-21 1994-03-11 Mitsubishi Electric Corp Superconducting magnet
JPH0979677A (en) * 1995-09-12 1997-03-28 Kobe Steel Ltd Pressurized ultra-flowing helium generating device
JPH09129938A (en) * 1995-11-02 1997-05-16 Tokyo Electric Power Co Inc:The Superconduction apparatus
JPH11317307A (en) * 1998-02-18 1999-11-16 General Electric Co <Ge> Zero boil-off refrigerating agent cooling recondensing type superconducting magnet assembly
JP2003287323A (en) * 2002-03-27 2003-10-10 Sanyo Electric Co Ltd Cold heat carrier
JP2004286373A (en) * 2003-03-24 2004-10-14 Sanyo Electric Co Ltd Pressure adjustment bellows and cooling device equipped with it

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5121494A (en) * 1974-08-16 1976-02-20 Hitachi Ltd
JPS54149597A (en) * 1978-05-17 1979-11-22 Toshiba Corp Cryostat for superconductive coil
JPS5720485A (en) * 1980-07-11 1982-02-02 Mitsubishi Electric Corp Cryogenic refrigerating plant
JPS614206A (en) * 1984-06-18 1986-01-10 Toshiba Corp Ultralow temperature apparatus
JPH04180203A (en) * 1990-11-15 1992-06-26 Mitsubishi Electric Corp Very low temperature apparatus
JPH0669030A (en) * 1992-08-21 1994-03-11 Mitsubishi Electric Corp Superconducting magnet
JPH0979677A (en) * 1995-09-12 1997-03-28 Kobe Steel Ltd Pressurized ultra-flowing helium generating device
JPH09129938A (en) * 1995-11-02 1997-05-16 Tokyo Electric Power Co Inc:The Superconduction apparatus
JPH11317307A (en) * 1998-02-18 1999-11-16 General Electric Co <Ge> Zero boil-off refrigerating agent cooling recondensing type superconducting magnet assembly
JP2003287323A (en) * 2002-03-27 2003-10-10 Sanyo Electric Co Ltd Cold heat carrier
JP2004286373A (en) * 2003-03-24 2004-10-14 Sanyo Electric Co Ltd Pressure adjustment bellows and cooling device equipped with it

Also Published As

Publication number Publication date
JP2008025938A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
JP4724063B2 (en) Cryogenic equipment
JP3996935B2 (en) Cryostat structure
JP4854396B2 (en) Cryostat structure with low-temperature refrigerator
JP4031121B2 (en) Cryostat equipment
EP2893271B1 (en) Cryogenic cooling apparatus and method such as for magnetic resonance imaging systems
KR102506491B1 (en) Fault-tolerant cryogenic cooling system
US10203068B2 (en) Method and device for precooling a cryostat
JP4040626B2 (en) Refrigerator mounting method and apparatus
CN110617650B (en) Cryogenic cooling system
JP6445752B2 (en) Superconducting magnet device
US20130008187A1 (en) Cryostat configuration
JP4431793B2 (en) Cryostat
JP4855990B2 (en) Recondensing device, mounting method thereof and superconducting magnet using the same
US9396855B2 (en) Method for cooling a superconducting magnet and the superconducting magnet
KR101574940B1 (en) A closed cryogen cooling system and method for cooling a superconducting magnet
US5979176A (en) Refrigerator
JP2007078310A (en) Cryogenic cooling device
KR100454702B1 (en) A cryovessel with the gm cryocooler and controlling method thereof
EP3182036B1 (en) Method of accelerating cool down
Jeong et al. Experimental investigation on the detachable thermosiphon for conduction-cooled superconducting magnets
JP2022064520A (en) Pre-cooling device, cryogenic device, and pre-cooling method
JPS60245285A (en) Superconductive magnet apparatus
Pavese et al. Cryostats for Thermometry and Gas-Based Temperature Control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100917

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees