JP4723114B2 - Focus control device and focus pull-in method - Google Patents

Focus control device and focus pull-in method Download PDF

Info

Publication number
JP4723114B2
JP4723114B2 JP2001149926A JP2001149926A JP4723114B2 JP 4723114 B2 JP4723114 B2 JP 4723114B2 JP 2001149926 A JP2001149926 A JP 2001149926A JP 2001149926 A JP2001149926 A JP 2001149926A JP 4723114 B2 JP4723114 B2 JP 4723114B2
Authority
JP
Japan
Prior art keywords
focus
signal
error signal
control
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001149926A
Other languages
Japanese (ja)
Other versions
JP2002342948A (en
Inventor
義明 荻野
保隆 佐竹
和弘 曽我
英司 佐保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Information and Telecommunication Engineering Ltd
Original Assignee
Hitachi Computer Peripherals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Computer Peripherals Co Ltd filed Critical Hitachi Computer Peripherals Co Ltd
Priority to JP2001149926A priority Critical patent/JP4723114B2/en
Publication of JP2002342948A publication Critical patent/JP2002342948A/en
Application granted granted Critical
Publication of JP4723114B2 publication Critical patent/JP4723114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)
  • Optical Recording Or Reproduction (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、相変化光ディスク等の初期化装置や検査装置に適用されるフォーカス制御装置及びフォーカス引き込み方法に係り、特に反射率が変化する記録媒体に好適なフォーカス制御装置及びフォーカス引き込み方法に関する。
【0002】
【従来の技術】
一般に光ディスクを記録媒体とするCD又はDVD等にデータの記録再生等を行う装置は、回転している光ディスクに照射するレーザ光をディスク記録膜面で合焦させるフォーカス制御装置が必要である。このフォーカス制御装置が、記録膜面と焦点のずれ量を検出するフォーカスエラー信号を生成する方法としては、例えばナイフエッジ法、非点収差法、ビームサイズ法等の多くの方法が提案されている。
【0003】
前記フォーカスエラー信号は、光ディスクの機械的特性に起因する面振れ量やたわみ量以上の範囲で線形性を持つのが理想である。しかし実際は前記のいずれの方法も、合焦点位置近傍の狭い範囲のみしか線形性をもたず、一般的にはS字カーブを描くため、フォーカシング制御を行う前に、合焦点位置を含むフォーカシング制御可能範囲、即ちS字カーブのP−P間を検出し、その検出範囲でフォーカスループを閉じるフォーカス引込み動作が必要となる。
【0004】
従来技術によるフォーカス引込み方法は、前記S字カーブの振幅が再現性よく出力するということを前提とし、S字カーブのピークよりわずかに低い位置に閾値(絶対値)を設け、フォーカシング制御可能範囲を検出し、予め設定された安定系となるフォーカス制御系でフォーカス追従モードに移行していた。この従来のフォーカス引込み方法を図6を用いて、本説明による二値化信号は全てアクティブLoとし、合焦点位置を図中の符号4に示す位置として説明する。
【0005】
従来のフォーカス引込み方法は、図6に示す如く、光ディスク1に照射したレーザ光2の焦点3を焦点軌道5に示すように光ディスク1より遠い位置からレーザ光入射側に移動させた場合、焦点軌道5に対するフォーカスエラー信号が、合焦点位置4に接近/交差/離間するに従ってS字カーブ6を描く。尚、前記フォーカスエラー信号(S字信号6)は、光ディスクの反射光を光ディテクタにて検出し前記種種の方法で生成したものである。
【0006】
従来のフォーカス引込み方法は、前記S字カーブ6のピーク7よりわずかに低い位置に閾値8を設け、前記と同様、焦点軌道5に示すように焦点3を光ディスク1より遠い位置からレーザ光入射側に移動させフォーカスエラー信号が閾値8を超えてから閾値を下回った時点で、焦点3がフォーカシング制御可能範囲10に入ったことを認識し、フォーカスオン信号9(AFON−N)によってフォーカスループを閉じ、フォーカス追従モードに移行する様に制御している。
【0007】
この制御方法としては、例えば特開平10−31828号公報において、S字カーブの振幅が主に光ディスク反射率とレーザ出力により変化する場合、予めS字カーブの振幅を測定し、その測定結果を基にサーボ系の一巡ループゲインを所定値に調整した後にフォーカス引込み動作を行う技術や、特開平11−203691号公報において、焦点位置を光ディスクから遠ざけながらS字カーブゼロクロス点近傍でのRF信号レベルを測定し、その測定値をもとにディスクの種類を判別するとともにフォーカスゲインを切換え、次に焦点位置を光ディスクから遠ざけながら合焦点近傍でフォーカス追従モードに切りかえる技術が提案されている。
【0008】
一方、CD−RW/DVD−RAM/DVD−RW/DVD+RW等に使用される相変化光ディスクは、記録膜生成後の状態においては記録膜の反射率が低い非晶質状態(as depo状態)であり、この状態から記録再生装置で使用できる様に記録膜の反射率が高い結晶状態に変えるために初期化を行う必要があり、この初期化を行う装置は、相変化光ディスク初期化装置と呼ばれている。
【0009】
【発明が解決しようとする課題】
この相変化光ディスク初期化装置は、前記同様のフォーカス制御が必要であり、高出力半導体レーザ(2W)を熱源として光ディスク記録膜上に100トラック以上をカバーできる長円形のレーザスポットを形成し、記録膜を結晶化温度以上にしながら、前記レーザスポットを走査させ光ディスク全面を結晶化させるものである。この相変化光ディスク初期化装置のレーザ波長は、810nm程度であり、相変化光ディスクを記録・再生する装置のレーザ波長とは異なっている。
【0010】
従って相変化光ディスク初期化装置に組み込まれたフォーカス装置が検出する波長810nm程度のレーザ光の反射率は、ディスクタイプによって大きく異なり、現状実用化されている相変化光ディスクにおいても、as depo状態では0.5%〜6%、結晶状態では3%〜30%と幅広く、as depo状態で数%以上の反射率があれば、結晶化しないレーザ出力で前述の特開平10−31828号公報のような方法でのフォーカス引込みは可能ではあるものの、現実的には、as depo状態での反射率は1%以下が一般的でありS/Nが極端に低下するためフォーカス引込みが困難であった。
【0011】
他方、この様な相変化光ディスク初期化装置において結晶化するレーザ出力でフォーカス引込み動作を行うことも考えられるが、S字カーブ内のゼロクロス近傍、即ち記録膜面上に形成するレーザスポットが絞られ記録膜が結晶化して反射率が増加したときのみ、S字カーブが増幅された状態になり、このような状態では、S字カーブのピークを正しく検出できないため、S字カーブの振幅値からフォーカス制御系を安定系にするといったこれまでの制御方法を使用することが困難であった。
【0012】
また、同様に結晶化するレーザ出力でフォーカス引込み動作を行い、前述の特開平11−203691号公報記載の方法を採用した場合、仮にS字カーブゼロクロス点近傍でのRF信号レベルが測定でき、その測定値をもとに最適ゲインを算出設定したとしても、レーザスポットは同一円周上を走査しているので、一度結晶化した部分を再度検出してしまい、フォーカシング制御可能範囲外の位置でフォーカス追従モードに切りかえるような誤動作をしてしまうと言う不具合があった。
【0013】
また相変化光ディスク初期化装置のフォーカス装置及びフォーカシング制御に関係した文献としては、初期化レーザの波長を記録・再生・消去に用いるレーザ波長から僅かにずらす技術が、例えば特開平10−241161号公報にて提案されているが、現技術での高出力半導体レーザ(2W)の波長は遠赤外帯(800nm帯)であり実現には至っていない。
【0014】
前述のように従来技術によるフォーカス装置によるフォーカス引込み方法は、フォーカス引込みが不安定で成功率が低い上、フォーカス引込みリトライ動作をいれた場合でもフォーカスを引込むまで長時間費やしてしまうと言う不具合があった。
【0015】
本発明の目的は、前述の従来技術による不具合を除去することであり、反射率が状態により異なる光ディスク又は、照射した光の熱により反射率が変化する相変化光ディスクにおいて、短時間に確実にフォーカス引き込み動作を行うフォーカス制御装置およびフォーカス引き込み方法を提供することである。
【0016】
【課題を解決するための手段】
前記目的を達成するため本発明は、光源から照射されフォーカス制御対象面からの反射光を受光してS字状のフォーカスエラー信号を生成すると共に、このフォーカスエラー信号によってフォーカス制御対象面に、前記光源の集光したスポットを位置付けする制御手段を備えるフォーカス制御装置において、前記反射光をその焦点位置の前と後で検出する複数の光ディテクタを含み、該複数の光ディテクタからの出力信号の相対的なレベル差を基に前記S字状のフォーカスエラー信号のフォーカシング制御可能範囲を示すフォーカスゲートを開くフォーカス信号生成回路を備えたことを第1の特徴とする。
【0017】
更に本発明は、前記制御手段が、複数の光ディテクタからのフォーカス和信号の信号レベルを測定する手段と、この測定結果を基にフォーカス制御系を安定化する安定化手段とを備え、前記フォーカスゲートが開き且つS字状のフォーカスエラー信号のゼロクロス近傍で前記安定化手段によりフォーカス制御系を安定系にしてからフォーカスループを閉じ、フォーカス追従モードに移行すること第2の特徴とする。
【0018】
また本発明は、前記制御手段が、フォーカス追従モード時にフォーカスゲートが閉じた場合、フォーカス外れと認識することを第3の特徴とする。
【0019】
更に本発明は、光源から照射されフォーカス制御対象面からの反射光を受光してS字状のフォーカスエラー信号を生成すると共に、このフォーカスエラー信号によってフォーカス制御対象面に、前記光源の集光したスポットを位置付けするフォーカス制御のフォーカス引き込み方法において、前記反射光をその焦点位置の前と後に配置された複数の光ディテクタにより検出し、この複数の検出信号の相対的なレベル差を基にS字状のフォーカスエラー信号のフォーカシング制御可能範囲を示すフォーカスゲートを開き且つS字状のフォーカスエラー信号のゼロクロス近傍で、フォーカス和信号の信号レベルを測定し、この測定結果を基にフォーカス制御系を安定系にしてから、フォーカスループを閉じフォーカス追従モードに移行すること第4の特徴とする。
【0020】
【発明実施の形態】
以下、図を参照して本発明の一実施形態を詳細に説明する。図1は本発明の一実施形態によるフォーカス制御装置のブロックを示す図、図2は前記フォーカス制御装置の反射光を検出するための光学系を示す図、図3は前記フォーカス制御装置のフォーカス信号生成回路の一例を示す図、図4は焦点位置とFE信号・FT信号・FG信号の関係を示す図、図5は本実施形態によるフォーカス制御装置のフォーカス引込み方法を説明する図である。
【0021】
さて、本実施形態によるフォーカス制御装置は、図1に示す如く、相変化光ディスク等の光ディスク11にレーザ光12を照射し、ディスク11からの反射光を検出する複数の光ディテクタをもつ光学系13と、該光ディテクタからの出力信号を処理し、フォーカス誤差信号(以下FE信号と略す)とフォーカス和信号(以下FT信号と略す)とS字カーブ内のフォーカシング制御可能範囲を示すフォーカスゲート信号(以下FG信号と略す)を生成するフォーカス信号生成回路14と、FE信号の増幅度を可変するゲイン調整回路15と、フォーカスループを閉じるためのアナログスイッチ16と、フォーカス系の安定性を図る位相補償回路17と、焦点位置を光ディスク垂直方向に移動させるレンズコイル18とそのレンズコイルを動作させる駆動回路19と、FT信号をディジタル化するAD変換器20と、フォーカスゲートが開きかつFE信号が負電圧になるタイミングを生成するゼロクロスラッチ回路21と、焦点位置を直線的に移動させるアップダウン回路22と、入力信号により出力信号をプログラミングできるMPU23を備える。
【0022】
前記光学系13の基本構成は、図2に示す如く、光ディスク11の記録膜24からのレンズ(符号なし)を介した反射光を反射及び一部を透過するハーフミラー25と、該ハーフミラー25を透過した反射光を受光する前光ディテクタ27と、ハーフミラー25を反射した反射光を受光する後光ディテクタ28とを備え、前光ディテクタ27が反射光の焦点位置26より前で受光し、後光ディテクタ28が焦点位置26より後の位置で受光する様に配置されている。
【0023】
前記フォーカス信号生成回路14は、図3に示す如く、記録膜からの反射光を捕らえ、光ディテクタからの出力電流に対し電流-電圧変換を施して得られる電圧を出力する前光ディテクタ27及び後光ディテクタ28と、該ディテクタ27からの出力信号A,Bを入力し、差を出力するコンパレータ35と、ディテクタ28からの出力信号C,Dを入力し、差を出力するコンパレータ36と、前記コンパレータ35及び36の出力信号を入力してアンド条件を取るアンド素子37と、前記出力B,Dを入力して差を演算する演算素子33と、前記出力B,Dを入力して加算する演算素子34とを備える。前記光ディテクタ27及び28の受光面(受光面積)は同じ構成であり、その受光面は中心部29(31)と外周部30(32)とに分けられ、それぞれ独立した出力信号A,B,C,Dを出力する。
【0024】
更に光ディテクタ27及び28は、合焦点位置では、点線31に示すように外周部ディテクタサイズよりわずかに小さいスポットを受光するようになっており、焦点位置がずれると、一方の光ディテクタに入るスポットのサイズが小さくなり、もう一方の光ディテクタに入るスポットのサイズは大きくなる様に構成している。
【0025】
この様に構成したフォーカス信号生成回路14は、前光ディテクタ27の外周部30の出力信号と後光ディテクタ28の外周部32の出力信号を演算素子33で差(B−D)を取ることによりFE信号(フォーカスエラー信号)を生成し、演算素子34で和(B+D)を取ることによりFT信号(フォーカス和信号)を生成し、更に光ディテクタの中心部29及び31と外周部30及び32の出力差をコンパレータ35及び36により二値化し、アンド素子37によって各光ディテクタの中心部29及び31の出力値が外周部30及び32より高い状態[(A-B)>0かつ(C-D)>0]をとることにより、FG信号(フォーカスゲート信号)を生成する様に構成されている。
【0026】
特に本実施形態によるフォーカス信号生成回路14は、光ディテクタ27及び28の出力値を相対的に検出するため、反射光量に依存せずFG信号を確実に検出することができる。尚、本実施例で説明した受光素子は、中心部と外周部が各1個で構成されているが、中心部と外周部がそれぞれ複数に分割されていてもよい。更に前述のように受光素子が分割されている場合は、それぞれ受光素子からの出力信号を演算素子で加工してFG信号を生成してもよい。非点収差法やナイフエッジ法においても同様の方法でFG信号を生成してもよい。
【0027】
次に本実施形態によるフォーカス信号生成回路を用いた焦点位置とFE信号・FT信号・FG信号の関係を図4を参照して説明する。本実施形態において、光ディスク38に照射したレーザ光39の焦点40を焦点軌道41に示すように光ディスク38より遠い位置からレーザ光入射側に移動させると、焦点軌道41に対するFE信号は、合焦点位置に接近/交差/離間するに従ってS字カーブ42を描く。一方、FG信号43は、合焦点位置であるS字カーブのゼロクロス点44を含む、S字カーブ内のフォーカシング制御可能範囲45のみLoレベルとなる。本実施形態においては、前記FG信号43がLoレベルの状態をフォーカスゲートが開いている状態とする。またFT信号45は合焦点位置44の周辺で信号レベルが増加する。
【0028】
次に本実施形態によるフォーカス引込み動作及び方法を図5を参照して説明する。図5は、非結晶化状態(as depo状態:斜線部)の相変化光ディスクを結晶化するレーザ出力でフォーカス引込制御を行う場合であり、図2のフォーカス装置の各部位と共に説明する。
【0029】
本実施形態によるフォーカス制御装置は、相化光ディスク46に照射する初期化レーザスポット47が記録膜面を走査48するように制御し、初期化レーザを結晶化する出力まで上げ、その焦点位置50をアップダウン回路22により軌道49に示すよう記録膜51の裏側から表側に移動させる。
【0030】
この移動によりフォーカス信号生成回路は、初期化スポットの焦点位置50が合焦点位置52に近づくにつれFT信号レベルが上昇し、FE信号のS字カーブ53の最初の上昇が現れ、このS字カーブ53のピークを超えるとフォーカスゲートが開き(FG信号Lo)、更に合焦点52に近づき初期化スポット47が絞られるとas depo状態であった記録膜が結晶化54し、反射率が急激に増加する。
【0031】
このとき本回路は、FE信号(S字カーブ)の振幅55とFT信号レベル56も反射率増加にほぼ比例して急激に増加し、その後S字カーブ53がゼロクロス点を通過し、当該通過直後にゼロクロスラッチ回路21が作動し、ゼロクロス信号(ZC信号)がLoとなって、MPU23に合焦点位置52にさしかかったことを知らせる。この知らせを受けたMPU23は、ZC信号の立下りでAD変換器20によりAD変換されたFT信号57を読み取り、その値を元にフォーカスループが安定系をとるために必要なゲインを算出し、その値をゲイン調整回路15に設定する。この後MPU23は、フォーカスON信号(AFON信号)をLoにしてアナログスイッチ16によってフォーカスループを閉じフォーカス追従モードに移行する。尚、ZC信号がLoになってAFON信号をLoにするまでの時間58は、S字カーブ53を描く時間よりはるかに短くなるようにAD変換とゲイン算出設定は高速に行う。以上の動作によりフォーカス引込み動作が終了する。
【0032】
ここで、電気的ノイズやディスクの局所的な欠陥、塵埃の付着等による誤動作を防ぐため、MPUがゲイン算出に用いるFT信号値は、S字カーブがゼロクロス点を通過した時点(ZC信号の立下り)からFT信号レベル57を複数回読み込み平均化するのが望ましい。また、本例では、フォーカス制御系が安定系をとるためのゲイン算出をMPU23で行ったが、ゲイン調整回路15を除算素子に置き換えFT信号を直接、前記除算素子に入力して、フォーカス制御系の安定系をとっても良い。また前記実施形態ではフォーカスゲートが開いたあとに、反射率変化が発生した場合を示したが、これに限るものではなく、フォーカスゲートが開く前やS字カーブのピーク前で反射率変化が発生してもよい。更に本例は、合焦点近傍で反射率が増加する場合を示したが、合焦点近傍で反射率が低下する場合や、反射率が変化しない場合にも適用でき安定したフォーカス引込みが可能である。
【0033】
本実施形態によるフォーカス引込み方法では、焦点位置を記録膜面垂直方向に記録膜面を横切って何度も往復(1周期)することなく、約1/4周期という短時間でフォーカス引込みが完了する。
【0034】
また本フォーカス制御装置では、フォーカス追従時にフォーカスゲート信号のレベルを常時監視することにより、フォーカス外れを確実に捉えることができる。
【0035】
【発明の効果】
以上述べた如く本発明は、光ディスクの反射光量に依存せずフォーカシング制御可能範囲を示すフォーカスゲート信号を出力するフォーカス信号生成回路を備え、合焦点位置でのFT信号レベルを基にフォーカス制御系の安定系を算出・設定する制御回路を設けたことによって、反射率が異なる光ディスクまたは、照射した光の熱により反射率が変化する相変化光ディスクにおいて、短時間に確実にフォーカス引き込み動作を行うことができる。またフォーカス追従時のフォーカス外れを確実に捉えることができる。
【図面の簡単な説明】
【図1】本発明に係るフォーカス制御装置のブロックを示す図。
【図2】上記実施形態のフォーカス制御装置の反射光を検出するための光学系を示す図。
【図3】上記実施形態のフォーカス制御装置のフォーカス信号生成回路の一実施例を示す図。
【図4】焦点位置とFE信号・FT信号・FG信号の関係を示す図。
【図5】本発明によるフォーカス制御装置のフォーカス引込み方法を説明する図。
【図6】従来のフォーカス引込み方法を説明する図。
[0001]
[Industrial application fields]
The present invention relates to a focus control device and a focus pull-in method applied to an initialization device such as a phase change optical disk and an inspection device, and more particularly to a focus control device and a focus pull-in method suitable for a recording medium whose reflectivity changes.
[0002]
[Prior art]
In general, an apparatus for recording / reproducing data on a CD or DVD using an optical disk as a recording medium requires a focus control apparatus that focuses a laser beam applied to a rotating optical disk on the disk recording film surface. Many methods such as a knife edge method, an astigmatism method, and a beam size method have been proposed as methods by which the focus control device generates a focus error signal for detecting the amount of deviation between the recording film surface and the focus. .
[0003]
Ideally, the focus error signal should have linearity in a range that is greater than the amount of surface deflection or deflection caused by the mechanical characteristics of the optical disk. However, in actuality, any of the above methods has linearity only in a narrow range in the vicinity of the in-focus position and generally draws an S-shaped curve. Therefore, before performing the focusing control, the focusing control including the in-focus position is performed. A focus pull-in operation for detecting a possible range, that is, between P and P of the S-shaped curve and closing the focus loop within the detection range is required.
[0004]
The focus pull-in method according to the prior art is based on the premise that the amplitude of the S-curve is output with good reproducibility, and a threshold value (absolute value) is provided at a position slightly lower than the peak of the S-curve, thereby providing a focusing controllable range. The focus control system, which is detected and becomes a preset stable system, has shifted to the focus follow-up mode. This conventional focus pull-in method will be described with reference to FIG. 6 where all the binarized signals according to the present description are active Lo and the in-focus position is a position indicated by reference numeral 4 in the figure.
[0005]
As shown in FIG. 6, when the focus 3 of the laser beam 2 irradiated to the optical disc 1 is moved from the position farther from the optical disc 1 to the laser beam incident side as shown in FIG. The S-curve 6 is drawn as the focus error signal for 5 approaches / crosses / separates the in-focus position 4. The focus error signal (S-shaped signal 6) is generated by the above-mentioned various methods by detecting the reflected light of the optical disk with an optical detector.
[0006]
In the conventional focus pull-in method, a threshold value 8 is provided at a position slightly lower than the peak 7 of the S-curve 6, and the focus 3 is moved from the position farther from the optical disk 1 as shown in the focal track 5 as described above. When the focus error signal falls below the threshold value after exceeding the threshold value 8, it is recognized that the focus 3 has entered the focus controllable range 10, and the focus loop is closed by the focus on signal 9 (AFON-N). Control is performed to shift to the focus tracking mode.
[0007]
As this control method, for example, in Japanese Patent Laid-Open No. 10-31828, when the amplitude of the S-curve changes mainly by the optical disc reflectivity and the laser output, the amplitude of the S-curve is measured in advance and the measurement result is used as a basis. In the technique of performing the focus pull-in operation after adjusting the loop loop gain of the servo system to a predetermined value, or in JP-A-11-203691, the RF signal level in the vicinity of the S-curve zero cross point is set while keeping the focal position away from the optical disk. A technique has been proposed in which the type of disk is measured, the type of the disk is discriminated based on the measured value, the focus gain is switched, and then the focus tracking mode is switched to the focus tracking mode in the vicinity of the in-focus point while keeping the focal position away from the optical disk.
[0008]
On the other hand, a phase change optical disk used for CD-RW / DVD-RAM / DVD-RW / DVD + RW is in an amorphous state (as depo state) in which the recording film has a low reflectivity in the state after the recording film is generated. Yes, it is necessary to perform initialization in order to change to a crystalline state in which the recording film has a high reflectivity so that it can be used in a recording / reproducing apparatus. This initialization apparatus is called a phase change optical disk initialization apparatus. It is.
[0009]
[Problems to be solved by the invention]
This phase change optical disk initialization apparatus requires the same focus control as described above, and forms an elliptical laser spot capable of covering 100 tracks or more on an optical disk recording film using a high-power semiconductor laser (2 W) as a heat source for recording. The entire surface of the optical disk is crystallized by scanning the laser spot while keeping the film at the crystallization temperature or higher. The laser wavelength of this phase change optical disk initialization apparatus is about 810 nm, which is different from the laser wavelength of the apparatus for recording / reproducing the phase change optical disk.
[0010]
Accordingly, the reflectivity of the laser beam having a wavelength of about 810 nm detected by the focus device incorporated in the phase change optical disk initialization apparatus varies greatly depending on the disk type, and even in the phase change optical disk currently in practical use, it is 0 in the as depo state. If the reflectance is several percent or more in the as depo state, the laser output that does not crystallize can be used as in the above-mentioned Japanese Patent Laid-Open No. 10-31828. Although the focus pull-in by the method is possible, the reflectivity in the as depo state is generally 1% or less, and the S / N is extremely lowered, so that the focus pull-in is difficult.
[0011]
On the other hand, it is conceivable to perform a focus pull-in operation with a laser output to be crystallized in such a phase change optical disk initialization apparatus, but the laser spot formed on the recording film surface is narrowed near the zero cross in the S-shaped curve. Only when the recording film is crystallized and the reflectance is increased, the S-curve is in an amplified state. In such a state, the peak of the S-curve cannot be detected correctly, and the focus is determined from the amplitude value of the S-curve. It has been difficult to use conventional control methods such as making the control system stable.
[0012]
Similarly, when the focus pull-in operation is performed with the laser output to be crystallized, and the method described in Japanese Patent Laid-Open No. 11-203691 is adopted, the RF signal level near the S-shaped curve zero cross point can be measured, Even if the optimum gain is calculated and set based on the measured value, the laser spot scans on the same circumference, so the crystallized part is detected again, and the focus is set at a position outside the focusing control range. There was a problem that it malfunctioned to switch to the follow-up mode.
[0013]
Further, as a document related to the focusing device and focusing control of the phase change optical disc initialization apparatus, a technique for slightly shifting the wavelength of the initialization laser from the laser wavelength used for recording / reproducing / erasing is disclosed in, for example, Japanese Patent Laid-Open No. 10-241161. However, the wavelength of the high-power semiconductor laser (2W) in the current technology is in the far infrared band (800 nm band) and has not been realized.
[0014]
As described above, the focus pull-in method using the focus device according to the prior art has a problem that the focus pull-in is unstable and the success rate is low, and even if the focus pull-in retry operation is performed, it takes a long time to pull the focus. It was.
[0015]
An object of the present invention is to eliminate the above-described disadvantages of the prior art, and in an optical disc whose reflectivity varies depending on the state or a phase change optical disc whose reflectivity changes due to the heat of irradiated light, it is possible to focus reliably in a short time. To provide a focus control device and a focus pull-in method for performing a pull-in operation.
[0016]
[Means for Solving the Problems]
In order to achieve the above object, the present invention generates an S-shaped focus error signal by receiving reflected light from a focus control target surface irradiated from a light source, and causes the focus control target surface to generate the S-shaped focus error signal. In a focus control device comprising a control means for positioning a focused spot of a light source, the apparatus includes a plurality of photodetectors that detect the reflected light before and after the focal position, and relative output signals from the plurality of photodetectors According to a first aspect of the present invention, a focus signal generation circuit that opens a focus gate indicating a focus controllable range of the S-shaped focus error signal based on a level difference is provided.
[0017]
Furthermore, the present invention is characterized in that the control means comprises means for measuring the signal level of the focus sum signal from a plurality of photodetectors, and stabilization means for stabilizing the focus control system based on the measurement result. The second feature is that the gate is opened and the focus control system is stabilized by the stabilizing means in the vicinity of the zero cross of the S-shaped focus error signal, then the focus loop is closed and the focus tracking mode is entered.
[0018]
According to a third aspect of the present invention, the control means recognizes that the focus is out of focus when the focus gate is closed in the focus follow-up mode.
[0019]
Furthermore, the present invention generates an S-shaped focus error signal by receiving the reflected light from the focus control target surface irradiated from the light source, and condensing the light source on the focus control target surface by this focus error signal. In the focus pull-in method of focus control for positioning a spot, the reflected light is detected by a plurality of photodetectors arranged before and after the focal position, and an S-shape is formed based on a relative level difference between the plurality of detection signals. Open the focus gate that indicates the focus control range of the focus error signal and measure the signal level of the focus sum signal near the zero cross of the S-shaped focus error signal, and stabilize the focus control system based on this measurement result After setting the system, close the focus loop and switch to focus follow mode. It is a feature of the.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram of a focus control device according to an embodiment of the present invention, FIG. 2 is a diagram showing an optical system for detecting reflected light of the focus control device, and FIG. 3 is a focus signal of the focus control device. FIG. 4 is a diagram illustrating an example of a generation circuit, FIG. 4 is a diagram illustrating a relationship between a focus position and an FE signal / FT signal / FG signal, and FIG. 5 is a diagram illustrating a focus pull-in method of the focus control device according to the present embodiment.
[0021]
As shown in FIG. 1, the focus control apparatus according to the present embodiment irradiates an optical disk 11 such as a phase change optical disk with a laser beam 12 and detects an optical system 13 having a plurality of optical detectors that detect reflected light from the disk 11. And an output signal from the optical detector, a focus error signal (hereinafter abbreviated as FE signal), a focus sum signal (hereinafter abbreviated as FT signal), and a focus gate signal (indicated by the focus control signal within the S-curve) (Hereinafter, abbreviated as FG signal) 14, a gain adjustment circuit 15 that varies the degree of amplification of the FE signal, an analog switch 16 that closes the focus loop, and phase compensation that stabilizes the focus system. The circuit 17, the lens coil 18 that moves the focal position in the vertical direction of the optical disk, and the lens coil are operated. Drive circuit 19 for converting the FT signal into digital signals, an AD converter 20 for digitizing the FT signal, a zero-cross latch circuit 21 for generating a timing at which the focus gate opens and the FE signal becomes a negative voltage, and an up-down movement for linearly moving the focal position A circuit 22 and an MPU 23 capable of programming an output signal by an input signal are provided.
[0022]
As shown in FIG. 2, the basic configuration of the optical system 13 includes a half mirror 25 that reflects and partially transmits reflected light from a recording film 24 of the optical disk 11 through a lens (not shown), and the half mirror 25. A front light detector 27 that receives the reflected light transmitted through the half mirror 25, and a rear light detector 28 that receives the reflected light reflected by the half mirror 25. The front light detector 27 receives the light before the focal position 26 of the reflected light, The rear light detector 28 is arranged to receive light at a position after the focal position 26.
[0023]
As shown in FIG. 3, the focus signal generation circuit 14 captures the reflected light from the recording film and outputs a voltage obtained by subjecting the output current from the photodetector to current-voltage conversion and outputs a front light detector 27 and a rear light detector 27. An optical detector 28, a comparator 35 that inputs output signals A and B from the detector 27 and outputs a difference, a comparator 36 that inputs output signals C and D from the detector 28 and outputs a difference, and the comparator An AND element 37 that receives the output signals 35 and 36 and takes an AND condition, an arithmetic element 33 that inputs the outputs B and D and calculates a difference, and an arithmetic element that inputs and adds the outputs B and D 34. The light receiving surfaces (light receiving areas) of the photodetectors 27 and 28 have the same configuration, and the light receiving surfaces are divided into a central portion 29 (31) and an outer peripheral portion 30 (32), and output signals A, B, C and D are output.
[0024]
Further, the photodetectors 27 and 28 receive a spot slightly smaller than the outer peripheral detector size at the in-focus position, as shown by a dotted line 31, and when the focal position shifts, the spot enters one of the photodetectors. The size of the spot becomes smaller, and the size of the spot entering the other optical detector becomes larger.
[0025]
The focus signal generation circuit 14 configured in this way obtains a difference (BD) between the output signal of the outer peripheral portion 30 of the front light detector 27 and the output signal of the outer peripheral portion 32 of the rear light detector 28 by the arithmetic element 33. An FE signal (focus error signal) is generated, and a sum (B + D) is obtained by the arithmetic element 34 to generate an FT signal (focus sum signal). Further, the center portions 29 and 31 and the outer peripheral portions 30 and 32 of the optical detector are generated. the output difference binarization Ri by the comparators 35 and 36, the output value is higher than the outer peripheral portion 30 and 32 state of the central portion 29 and 31 of the respective optical detectors by the aND element 37 [(a-B)> 0 and (C -D)> 0], the FG signal (focus gate signal) is generated.
[0026]
In particular focus signal generating circuit 14 according to this embodiment, since the relative detecting an output value of the light detector 27 and 28, it is possible to reliably detect the FG signal without depending on the amount of reflected light. In addition, although the center part and the outer peripheral part are each comprised by one piece, the center part and the outer peripheral part may be divided | segmented into plurality, respectively. Further, when the light receiving element is divided as described above, an FG signal may be generated by processing an output signal from each light receiving element by an arithmetic element. In the astigmatism method and the knife edge method, the FG signal may be generated by the same method.
[0027]
Next, the relationship between the focal position using the focus signal generation circuit according to the present embodiment and the FE signal / FT signal / FG signal will be described with reference to FIG. In the present embodiment, when the focal point 40 of the laser beam 39 irradiated on the optical disc 38 is moved from the position farther from the optical disc 38 toward the laser beam incident side as indicated by the focal orbit 41, the FE signal for the focal orbit 41 becomes the in-focus position. The S curve 42 is drawn as approaching / intersecting / separating. On the other hand, the FG signal 43 is at the Lo level only in the focusing controllable range 45 in the S-shaped curve including the zero-cross point 44 of the S-shaped curve that is the focal position. In the present embodiment, the state where the FG signal 43 is at the Lo level is the state where the focus gate is open. The signal level of the FT signal 45 increases around the in-focus position 44.
[0028]
Next, the focus pull-in operation and method according to the present embodiment will be described with reference to FIG. FIG. 5 shows a case where focus pull-in control is performed with a laser output for crystallizing a phase change optical disk in a non-crystallized state (as depo state: hatched portion), which will be described together with each part of the focus device in FIG.
[0029]
Focus control device according to the present embodiment is increased to output an initialization laser spot 47 is irradiated to the phase change optical disc 46 by controlling the recording layer surface so as to scan 48 to crystallize the initialization laser, the focal position 50 Is moved from the back side of the recording film 51 to the front side as shown by the track 49 by the up-down circuit 22.
[0030]
With this movement, the focus signal generation circuit causes the FT signal level to rise as the focus position 50 of the initialization spot approaches the in-focus position 52, and the first rise of the S curve 53 of the FE signal appears. When the peak is exceeded, the focus gate opens (FG signal Lo), and when the initialization spot 47 is narrowed closer to the in-focus point 52, the recording film which has been in the as-depo state is crystallized 54, and the reflectance increases rapidly. .
[0031]
At this time, in this circuit, the amplitude 55 of the FE signal (S-curve) and the FT signal level 56 also increase rapidly in proportion to the increase in reflectance, and then the S-curve 53 passes through the zero cross point and immediately after the passage. When the zero cross latch circuit 21 is activated, the zero cross signal (ZC signal) becomes Lo to inform the MPU 23 that the in-focus position 52 has been reached. Upon receiving this notification, the MPU 23 reads the FT signal 57 AD-converted by the AD converter 20 at the fall of the ZC signal, and calculates a gain necessary for the focus loop to take a stable system based on the value. The value is set in the gain adjustment circuit 15. Thereafter, the MPU 23 sets the focus ON signal (AFON signal) to Lo, closes the focus loop by the analog switch 16, and shifts to the focus follow-up mode. The AD conversion and gain calculation setting are performed at high speed so that the time 58 until the ZC signal becomes Lo and the AFON signal becomes Lo is much shorter than the time for drawing the S-curve 53. With the above operation, the focus pull-in operation is completed.
[0032]
Here, in order to prevent malfunction due to electrical noise, local disk defects, dust adhesion, etc., the FT signal value used by the MPU for gain calculation is the time when the S-curve passes the zero-cross point (the rise of the ZC signal). It is desirable that the FT signal level 57 is read a plurality of times and averaged. In this example, the gain calculation for the focus control system to take a stable system is performed by the MPU 23. However, the gain adjustment circuit 15 is replaced with a division element, and the FT signal is directly input to the division element, so that the focus control system The stable system may be taken. In the above-described embodiment, the case where the reflectance change occurs after the focus gate is opened is not limited to this. The reflectance change occurs before the focus gate opens or before the peak of the S-curve. May be. Furthermore, although this example showed the case where the reflectance increases near the in-focus point, it can be applied even when the reflectance decreases near the in-focus point or when the reflectance does not change, and stable focus pull-in is possible. .
[0033]
In the focus pull-in method according to the present embodiment, the focus pull-in is completed in a short time of about 1/4 cycle without reciprocating (one cycle) the focal position across the recording film surface in the direction perpendicular to the recording film surface. .
[0034]
Further, in this focus control device, it is possible to reliably detect out-of-focus by constantly monitoring the level of the focus gate signal during focus tracking.
[0035]
【The invention's effect】
As described above, the present invention includes a focus signal generation circuit that outputs a focus gate signal indicating a focusing controllable range without depending on the amount of reflected light from the optical disc, and the focus control system is based on the FT signal level at the in-focus position. By providing a control circuit that calculates and sets a stable system, it is possible to reliably perform a focus pull-in operation in a short time on optical disks with different reflectivities or phase change optical disks whose reflectivity changes due to the heat of irradiated light. it can. In addition, it is possible to reliably grasp out-of-focus during focus tracking.
[Brief description of the drawings]
FIG. 1 is a block diagram of a focus control device according to the present invention.
FIG. 2 is a diagram showing an optical system for detecting reflected light of the focus control device of the embodiment.
FIG. 3 is a diagram illustrating an example of a focus signal generation circuit of the focus control apparatus according to the embodiment.
FIG. 4 is a diagram showing a relationship between a focal position and an FE signal / FT signal / FG signal.
FIG. 5 is a diagram illustrating a focus pull-in method of the focus control device according to the present invention.
FIG. 6 is a diagram for explaining a conventional focus pull-in method.

Claims (3)

光源から照射されフォーカス制御対象面からの反射光を受光してS字状のフォーカスエラー信号を生成すると共に、このフォーカスエラー信号によってフォーカス制御対象面に、前記光源の集光したスポットを位置付けする制御手段を備えるフォーカス制御装置において、前記反射光をその焦点位置の前後の光ディテクタそれぞれについて、光ディテクタの中心部の出力信号と外周部の出力信号との出力差を二値化し、該二値化した信号のアンド条件をとることにより、前記S字状のフォーカスエラー信号のフォーカシング制御可能範囲を示すフォーカスゲートを開くフォーカス信号生成回路を備えるとともに、前記制御手段が、複数の光ディテクタからのフォーカス和信号の信号レベルを測定する手段と、この測定結果を基にフォーカス制御系を安定化する安定化手段とを含み、前記フォーカスゲートが開き且つ焦点位置を移動させることにより生成するS字状のフォーカスエラー信号のゼロクロス近傍で前記安定化手段によりフォーカス制御系を安定系にした後にフォーカスループを閉じ、フォーカス追従モードに移行することを特徴としたフォーカス制御装置。Control of irradiating light reflected from the focus control target surface and generating an S-shaped focus error signal, and positioning the focused spot of the light source on the focus control target surface by this focus error signal in focus control device comprising means, said about the reflected light each photodetector before after the focal position, the output difference between the output signals of the outer peripheral portion of the central portion of the light detector is binarized, the binary A focus signal generation circuit that opens a focus gate indicating a focus controllable range of the S-shaped focus error signal by taking an AND condition of the converted signal, and the control means includes focus signals from a plurality of optical detectors. A means for measuring the signal level of the sum signal and the focus control based on this measurement result. A stabilization means for stabilizing the system, and the focus control system is made stable by the stabilization means in the vicinity of the zero cross of the S-shaped focus error signal generated by opening the focus gate and moving the focus position. After that, the focus control device is characterized by closing the focus loop and shifting to the focus follow-up mode. 前記制御手段が、フォーカス追従モード時にフォーカスゲートが閉じた場合、フォーカス外れと認識することを特徴とする請求項1記載のフォーカス制御装置。  2. The focus control apparatus according to claim 1, wherein the control means recognizes out of focus when the focus gate is closed in the focus follow mode. 光源から照射されフォーカス制御対象面からの反射光を受光してS字状のフォーカスエラー信号を生成すると共に、このフォーカスエラー信号によってフォーカス制御対象面に、前記光源の集光したスポットを位置付けするフォーカス制御のフォーカス引き込み方法において、前記反射光をその焦点位置の前後の光ディテクタそれぞれについて、光ディテクタの中心部の出力信号と外周部の出力信号との出力差を二値化し、該二値化した信号のアンド条件を基に、焦点位置を移動させることにより生成するS字状のフォーカスエラー信号のフォーカシング制御可能範囲を示すフォーカスゲートを開き且つS字状のフォーカスエラー信号のゼロクロス近傍で、フォーカス和信号の信号レベルを測定し、この測定結果を基にフォーカス制御系を安定系にした後に、フォーカスループを閉じフォーカス追従モードに移行すること特徴とするフォーカス引き込み方法。A focus that irradiates light from the light source and receives reflected light from the focus control target surface to generate an S-shaped focus error signal, and positions the focused spot of the light source on the focus control target surface by the focus error signal in focus pull method of the control, the on reflected light each photodetector before after the focal position, the output difference between the output signals of the outer peripheral portion of the central portion of the light detector is binarized, the binarized Based on the AND condition of the signal, the focus gate showing the focus controllable range of the S-shaped focus error signal generated by moving the focus position is opened, and near the zero cross of the S-shaped focus error signal, The signal level of the focus sum signal is measured, and the focus control system is A focus pull-in method characterized by closing a focus loop and shifting to a focus follow-up mode after making a stable system.
JP2001149926A 2001-05-18 2001-05-18 Focus control device and focus pull-in method Expired - Fee Related JP4723114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001149926A JP4723114B2 (en) 2001-05-18 2001-05-18 Focus control device and focus pull-in method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001149926A JP4723114B2 (en) 2001-05-18 2001-05-18 Focus control device and focus pull-in method

Publications (2)

Publication Number Publication Date
JP2002342948A JP2002342948A (en) 2002-11-29
JP4723114B2 true JP4723114B2 (en) 2011-07-13

Family

ID=18995036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001149926A Expired - Fee Related JP4723114B2 (en) 2001-05-18 2001-05-18 Focus control device and focus pull-in method

Country Status (1)

Country Link
JP (1) JP4723114B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4361090B2 (en) * 2003-05-16 2009-11-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Extended focus control apparatus and method
US7663988B2 (en) 2006-06-06 2010-02-16 Sanyo Electric Co., Ltd. Optical disc apparatus and method of setting defocus value thereof
US7969847B2 (en) 2007-01-16 2011-06-28 Sanyo Electric Co., Ltd. Disc apparatus
JP5118551B2 (en) * 2008-05-14 2013-01-16 日立コンピュータ機器株式会社 Laser irradiation apparatus and autofocus control method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6282525A (en) * 1985-10-08 1987-04-16 Toshiba Corp Optical head
JPH05159313A (en) * 1991-12-09 1993-06-25 Hitachi Computer Peripherals Co Ltd Method for confirming focusing and method for setting timing to start focusing control operation, in optical processing device
JPH08249704A (en) * 1996-01-19 1996-09-27 Matsushita Electric Ind Co Ltd Optical head device
JPH10283669A (en) * 1992-09-10 1998-10-23 Toshiba Corp Optical head device
JPH10312550A (en) * 1997-05-14 1998-11-24 Nec Corp Optical head device
JPH11203691A (en) * 1997-12-29 1999-07-30 Sony Corp Pull-in method of optical disk device and focus servo
WO2000039792A1 (en) * 1998-12-29 2000-07-06 Koninklijke Philips Electronics N.V. Optical scanning device
JP2001052350A (en) * 1999-08-06 2001-02-23 Sony Corp Optical head, recording and/or reproducing apparatus, focus servo method
JP2001060358A (en) * 1999-08-23 2001-03-06 Sony Corp Disk driving device
JP2001067686A (en) * 1999-08-31 2001-03-16 Sanyo Electric Co Ltd Optical disk device
JP2001084609A (en) * 1999-09-10 2001-03-30 Victor Co Of Japan Ltd Optical device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6282525A (en) * 1985-10-08 1987-04-16 Toshiba Corp Optical head
JPH05159313A (en) * 1991-12-09 1993-06-25 Hitachi Computer Peripherals Co Ltd Method for confirming focusing and method for setting timing to start focusing control operation, in optical processing device
JPH10283669A (en) * 1992-09-10 1998-10-23 Toshiba Corp Optical head device
JPH08249704A (en) * 1996-01-19 1996-09-27 Matsushita Electric Ind Co Ltd Optical head device
JPH10312550A (en) * 1997-05-14 1998-11-24 Nec Corp Optical head device
JPH11203691A (en) * 1997-12-29 1999-07-30 Sony Corp Pull-in method of optical disk device and focus servo
WO2000039792A1 (en) * 1998-12-29 2000-07-06 Koninklijke Philips Electronics N.V. Optical scanning device
JP2001052350A (en) * 1999-08-06 2001-02-23 Sony Corp Optical head, recording and/or reproducing apparatus, focus servo method
JP2001060358A (en) * 1999-08-23 2001-03-06 Sony Corp Disk driving device
JP2001067686A (en) * 1999-08-31 2001-03-16 Sanyo Electric Co Ltd Optical disk device
JP2001084609A (en) * 1999-09-10 2001-03-30 Victor Co Of Japan Ltd Optical device

Also Published As

Publication number Publication date
JP2002342948A (en) 2002-11-29

Similar Documents

Publication Publication Date Title
JP2565485B2 (en) Optical recording / reproducing device
US6826133B2 (en) Optimizing a distance between lenses of a two objective lens for minimizing wavefront aberration and offsetting focus control
JPH02101637A (en) Optical information recording and reproducing device
JP4723114B2 (en) Focus control device and focus pull-in method
US6850472B2 (en) Optical pickup device and focus control method
US6396780B1 (en) Information storage apparatus and method for storing data
JP4572824B2 (en) Focus error signal adjustment method in optical disk apparatus
KR20050040784A (en) Recording and reproducing method, recording and reproducing device and semiconductor circuit
JP3995838B2 (en) Optical information recording / reproducing apparatus and recording power setting method thereof
JP3945811B2 (en) Optical pickup device
JP2887273B2 (en) Optical pickup device
JP4520906B2 (en) Tangential tilt detection device and optical disc device
JP3917103B2 (en) Focus control method and reproduction method of phase change recording medium
JP4044234B2 (en) Optical disk device
KR100556495B1 (en) Method for recording/playback of optical disc and apparatus for the same
JP2605914B2 (en) Focus control device
KR100657289B1 (en) Method for detecting tracking error signal and apparatus for writing and/or reproducing of information on/from super resolution type information storage medium
JP3086031B2 (en) Focus control method
JPS61139950A (en) Optical head
US8045428B2 (en) Optical pickup apparatus
WO2006088050A1 (en) Optical disk unit
JPH0883432A (en) Optical disk reproducing device
JP2008269719A (en) Focus servo control method and optical disk device
JPH09161275A (en) Optical disk medium and optical disk drive device using the medium
US20090274018A1 (en) Recording device and radial offset calibration method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20010702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091116

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100205

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees