JP4722796B2 - Imaging optical system and electronic imaging apparatus having the same - Google Patents

Imaging optical system and electronic imaging apparatus having the same Download PDF

Info

Publication number
JP4722796B2
JP4722796B2 JP2006241590A JP2006241590A JP4722796B2 JP 4722796 B2 JP4722796 B2 JP 4722796B2 JP 2006241590 A JP2006241590 A JP 2006241590A JP 2006241590 A JP2006241590 A JP 2006241590A JP 4722796 B2 JP4722796 B2 JP 4722796B2
Authority
JP
Japan
Prior art keywords
lens
lens group
object side
optical system
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006241590A
Other languages
Japanese (ja)
Other versions
JP2007108707A (en
Inventor
伸一 三原
要人 足立
啓介 市川
靖展 伊賀
浩司 松本
和章 村山
圭悟 松尾
英喜 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2006241590A priority Critical patent/JP4722796B2/en
Priority to PCT/JP2006/318450 priority patent/WO2007032512A1/en
Priority to US11/991,905 priority patent/US7715108B2/en
Publication of JP2007108707A publication Critical patent/JP2007108707A/en
Application granted granted Critical
Publication of JP4722796B2 publication Critical patent/JP4722796B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、極めて小さな撮像モジュールに使用される結像光学系及び、該結像光学系を有する電子撮像装置に関するものである。   The present invention relates to an imaging optical system used for an extremely small imaging module and an electronic imaging apparatus having the imaging optical system.

近年、銀塩35mmフィルムカメラに代わる次世代カメラとして、デジタルカメラが普及してきている。最近では、デジタルカメラはますます小型化・薄型化されてきている。また、同時に普及しつつある携帯電話にまで、カメラ機能(以下、撮像モジュールという)が搭載されてきている。この撮像モジュールを携帯電話に搭載するためには、光学系がデジタルカメラの光学系以上に小型薄型でなくてはならない。特に、ズームレンズにおいては、小型化、薄型化が要求される。しかしながら、現在携帯電話に搭載出来るほどに小型化されたズームレンズはあまり知られていない。   In recent years, digital cameras have become widespread as next-generation cameras that replace silver salt 35 mm film cameras. Recently, digital cameras have become increasingly smaller and thinner. Also, camera functions (hereinafter referred to as imaging modules) have been mounted on mobile phones that are becoming popular at the same time. In order to mount this imaging module on a mobile phone, the optical system must be smaller and thinner than the optical system of a digital camera. In particular, a zoom lens is required to be small and thin. However, zoom lenses that are small enough to be installed in mobile phones are not well known.

ズームレンズを小型化・薄型化するための代表的な手段としては、次の2つの手段が考えられる。即ち、
A.沈胴式鏡筒を採用して、光学系を筐体の厚み(奥行き)方向に収納する。この沈胴式鏡筒は、撮影時に光学系がカメラ筐体内からせり出し、携帯時にはカメラ筐体内に収納される構造の鏡筒である。
B.屈曲光学系を採用して、光学系を筐体の幅方向あるいは高さ方向に収納する。この屈曲光学系は、光学系の光路(光軸)を、ミラーやプリズムなど反射光学素子で折り曲げる構成の光学系である。
As typical means for reducing the size and thickness of the zoom lens, the following two means can be considered. That is,
A. A retractable lens barrel is used to house the optical system in the thickness (depth) direction of the housing. The collapsible lens barrel is a lens barrel having a structure in which an optical system protrudes from the camera case during photographing and is housed in the camera case when carried.
B. A bending optical system is employed to accommodate the optical system in the width direction or height direction of the casing. This bending optical system is an optical system configured to bend the optical path (optical axis) of the optical system with a reflective optical element such as a mirror or a prism.

上記Aの手段を用いた従来例としては、例えば、次の特許文献1に記載のものが、上記Bの手段を用いた従来例としては、例えば、次の特許文献2に記載のものがある。   A conventional example using the means A is described in, for example, the following Patent Document 1, and a conventional example using the means B is, for example, described in the following Patent Document 2. .

特開2002−365545号公報JP 2002-365545 A 特開2003−43354号公報JP 2003-43354 A

しかし、特許文献1に記載の上記Aの手段を用いた構成では、光学系を構成するレンズの枚数、あるいは移動レンズ群の数がまだまだ多く筐体を小型化・薄型化することは困難である。   However, in the configuration using the means A described in Patent Document 1, the number of lenses constituting the optical system or the number of moving lens groups is still large, and it is difficult to reduce the size and thickness of the housing. .

また、特許文献2に記載の上記Bの手段を用いた構成は、上記Aの手段を用いた場合よりも、筐体を薄くしやすいが、変倍時の可動レンズ群の移動量や、光学系を構成するレンズの枚数が多くなりがちになる。そのため、体積的には決して小型化には向いていない。   The configuration using the means B described in Patent Document 2 is easier to make the housing thinner than the case using the means A, but the amount of movement of the movable lens group at the time of zooming, The number of lenses constituting the system tends to increase. Therefore, it is not suitable for miniaturization in volume.

本発明は、上記従来の課題に鑑みてなされたものであり、小型化・薄型化した結像光学系、及び小型化・薄型化及び広角化を可能とすると共に、諸収差が良好に補正された電子撮像装置を提供することを目的とする。   The present invention has been made in view of the above-described conventional problems, and enables a compact and thin imaging optical system, and a compact, thin and wide angle, and various aberrations are corrected well. An object of the present invention is to provide an electronic imaging apparatus.

上記目的を達成するため、本発明による結像光学系は、正のレンズ群と、負のレンズ群と、絞りとを有する結像光学系において、前記絞りより像面側に前記負のレンズ群が配置され、前記負のレンズ群が複数のレンズを接合してなる接合レンズを有し、
横軸をNd、及び縦軸をνdとする直交座標系において、Nd=α×νd+β(但し、α=−0.017)で表される直線を設定したときに、
以下の条件式(1)の範囲の下限値であるときの直線、及び上限値であるときの直線で定まる領域と、以下の条件式(2)及び(3)で定まる領域との両方の領域に、前記接合レンズを構成する少なくとも一つのレンズのNd及びνdが含まれることを特徴とする。
1.45<β<2.15 …(1)
1.58<Nd<2.20…(2)
3<νd<40 …(3)
ここで、Ndは屈折率、νdはアッベ数をそれぞれ表す。
In order to achieve the above object, an imaging optical system according to the present invention is an imaging optical system having a positive lens group, a negative lens group, and a stop, and the negative lens group is located closer to the image plane than the stop. And the negative lens group has a cemented lens formed by cementing a plurality of lenses,
In a Cartesian coordinate system in which the horizontal axis is Nd and the vertical axis is νd, a straight line represented by Nd = α × νd + β (where α = −0.017) is set.
The area defined by the straight line when the lower limit value is within the range of the conditional expression (1) and the straight line when the upper limit value is satisfied, and the area determined by the following conditional expressions (2) and (3) Nd and νd of at least one lens constituting the cemented lens are included.
1.45 <β <2.15 (1)
1.58 <Nd <2.20 (2)
3 <νd <40 (3)
Here, Nd represents a refractive index and νd represents an Abbe number.

また、Nd及びνdが前記両方の領域に含まれる一つのレンズを所定のレンズとしたとき、該所定のレンズの光軸中心厚が、該接合レンズを構成する他のレンズの光軸中心厚よりも薄いことが好ましい。   Further, when one lens in which Nd and νd are included in both the areas is a predetermined lens, the optical axis center thickness of the predetermined lens is larger than the optical axis center thicknesses of the other lenses constituting the cemented lens. Is also preferably thin.

また、次の条件式を満足することが好ましい。
0.22<t1<2.0
但し、t1は前記所定のレンズの密着硬化された樹脂層の光軸中心厚である。
Moreover, it is preferable that the following conditional expression is satisfied.
0.22 <t1 <2.0
However, t1 is the optical axis center thickness of the resin layer in which the predetermined lens is adhered and cured.

また、前記接合レンズは、該接合レンズを構成する一つのレンズのレンズ表面に樹脂を密着硬化させてなる複合レンズであることが望ましい。   Further, it is desirable that the cemented lens is a compound lens in which a resin is adhered and cured on the lens surface of one lens constituting the cemented lens.

また、前記接合レンズは、該接合レンズを構成する一つのレンズのレンズ表面にガラスを密着硬化させてなる複合レンズであることが望ましい。   In addition, the cemented lens is preferably a compound lens formed by closely bonding glass to the lens surface of one lens constituting the cemented lens.

また、前記結像光学系は最も物体側が正群であるズームレンズであることが好ましい。   Further, it is preferable that the imaging optical system is a zoom lens whose object side is the positive group.

また、前記結像光学系は最も物体側が負群であるズームレンズであることが好ましい。   Further, it is preferable that the imaging optical system is a zoom lens whose negative side is the most object side.

また、前記結像光学系は屈曲のためのプリズムを有することが好ましい。   The imaging optical system preferably has a bending prism.

また、前記プリズムは最も物体側の群にあることが好ましい。   Further, it is preferable that the prisms are in a group closest to the object side.

また、本発明の電子撮像装置は、上記いずれかの本発明の結像光学系と、電子撮像素子と、前記結像光学系を通じて結像した像を前記電子撮像素子で撮像することによって得られた画像データを加工して前記像の形状を変化させた画像データとして出力する画像処理手段とを有し、前記結像光学系ズームレンズでありが、該ズームレンズが無限遠物点合焦時に次の条件式を満足することを特徴としている。
0.7 < y07/(fw・tanω07w) < 0.96
但し、y07は前記電子撮像素子の有効撮像面内(撮像可能な面内)で中心から最も遠い点までの距離(最大像高)をy10としたとき、y07=0.7y10として表される。また、ω07wは広角端における前記撮像面上の中心からy07の位置に結ぶ像点に対応する物点方向の光軸に対する角度である。
The electronic imaging device of the present invention is obtained by capturing an image formed through the imaging optical system with any one of the imaging optical system of the present invention, the electronic imaging device, and the electronic imaging device. Image processing means that processes the image data and outputs the image data as the image data in which the shape of the image is changed, and is the imaging optical system zoom lens, and when the zoom lens is focused on an object point at infinity It is characterized by satisfying the following conditional expression.
0.7 <y 07 / (fw · tan ω 07w ) <0.96
However, y 07 is y 07 = 0.7y 10 , where y 10 is the distance (maximum image height) from the center to the farthest point in the effective imaging plane (in the plane where imaging is possible) of the electronic imaging device. expressed. Further, ω 07w is an angle with respect to the optical axis in the object point direction corresponding to the image point connecting from the center on the imaging surface to the position of y 07 at the wide angle end.

本発明によれば、結像光学系の体積の小型化・薄型化をともに達成することが可能となり、さらに、本発明の電子撮像装置にあって諸収差の良好な補正と、広角化との両立が可能となる。   According to the present invention, it is possible to reduce both the volume and the thickness of the imaging optical system, and in the electronic imaging device of the present invention, it is possible to correct various aberrations and widen the angle. Coexistence is possible.

実施例の説明に先立ち、本発明の作用効果について説明する。
本発明の結像光学系は、正のレンズ群と、負のレンズ群と、絞りとを有する結像光学系において、絞りより像面側に負のレンズ群が配置され、負のレンズ群が複数のレンズを接合してなる接合レンズを有することを基本構成としている。
Prior to the description of the embodiments, the effects of the present invention will be described.
The imaging optical system of the present invention is a imaging optical system having a positive lens group, a negative lens group, and a stop. A negative lens group is disposed on the image plane side from the stop, and the negative lens group is The basic configuration is to have a cemented lens formed by cementing a plurality of lenses.

このように、本発明の結像光学系においては、絞りより像面側の負のレンズ群に接合レンズを用いているので、特にズームレンズにおける変倍時の軸上色収差の変動を容易に抑えられる。また、少ないレンズ枚数にてズーム全域に亘り色にじみの発生を十分に抑制することが可能である。通常、絞りよりも像側の負レンズ群の存在は全長を短くするために効果が大きい一方で、光学系を沈胴した際にその厚みが不利に働くことがある。しかし、接合レンズが薄くできるために絞りより像側の負レンズ群は薄く出来、沈胴しての薄くかつ全長の短い光学系にし得る。   As described above, in the imaging optical system according to the present invention, the cemented lens is used for the negative lens group on the image plane side from the stop, so that it is possible to easily suppress the fluctuation of the axial chromatic aberration at the time of zooming in the zoom lens. It is done. In addition, it is possible to sufficiently suppress the occurrence of color bleeding over the entire zoom range with a small number of lenses. Normally, the presence of the negative lens group on the image side of the stop is very effective for shortening the entire length, but the thickness may be disadvantageous when the optical system is retracted. However, since the cemented lens can be made thin, the negative lens group on the image side from the stop can be made thin, and the optical system can be made into a thin and short overall length when retracted.

そして、横軸をNd、及び縦軸をνdとする直交座標系において、Nd=α×νd+β(但し、α=−0.017)で表される直線を設定したときに、
以下の条件式(1)の範囲の下限値であるときの直線、及び上限値であるときの直線で定まる領域と、以下の条件式(2)及び(3)で定まる領域との両方の領域に、接合レンズを構成する少なくとも一つのレンズのNd及びνdが含まれることが望ましい。
1.45<β<2.15 …(1)
1.58<Nd<2.20…(2)
3<νd<40 …(3)
ここで、Ndは屈折率、νdはアッベ数をそれぞれ表す。
When a straight line represented by Nd = α × νd + β (where α = −0.017) is set in an orthogonal coordinate system in which the horizontal axis is Nd and the vertical axis is νd,
The area defined by the straight line when the lower limit value is within the range of the conditional expression (1) and the straight line when the upper limit value is satisfied, and the area determined by the following conditional expressions (2) and (3) It is desirable that Nd and νd of at least one lens constituting the cemented lens are included.
1.45 <β <2.15 (1)
1.58 <Nd <2.20 (2)
3 <νd <40 (3)
Here, Nd represents a refractive index and νd represents an Abbe number.

ここで、硝材とは、ガラス、樹脂等のレンズ材料のことをいう。また、接合レンズとしては、適宜選択されるこれらの硝材からなる複数のレンズを接合したものが用いられる。   Here, the glass material means a lens material such as glass or resin. Further, as the cemented lens, a lens in which a plurality of lenses made of these glass materials selected as appropriate is cemented is used.

条件式(1)の下限値を下回ると、屈折率が低いので空気接触面側に非球面を設けたときの効果が小さく、球面収差、コマ収差、歪曲収差の補正が困難となる。あるいはアッベ数が低いので極めて薄い接合レンズとして色収差の補正が可能だが、空気接触面側を非球面化すると高次の倍率色収差や色コマが発生しやすく、収差補正自由度が減る。   If the lower limit of conditional expression (1) is not reached, the refractive index is low, so the effect of providing an aspheric surface on the air contact surface side is small, and it becomes difficult to correct spherical aberration, coma aberration, and distortion aberration. Alternatively, since the Abbe number is low, chromatic aberration can be corrected as a very thin cemented lens. However, if the air contact surface side is made aspherical, higher-order lateral chromatic aberration and color coma are likely to occur, and the degree of freedom in correcting aberrations is reduced.

条件式(1)の上限値を上回ると、色収差やペッツバール和の補正レベルは通常の光学ガラスレンズと同等となり本発明の特徴が得られない。   If the upper limit value of conditional expression (1) is exceeded, the correction level of chromatic aberration and Petzval sum is equivalent to that of a normal optical glass lens, and the features of the present invention cannot be obtained.

条件式(2)の下限値を下回ると、空気接触面側に非球面を設けたときの効果が小さく、球面収差、コマ収差、歪曲収差の補正が困難となる。   If the lower limit of conditional expression (2) is not reached, the effect when an aspheric surface is provided on the air contact surface side is small, and it becomes difficult to correct spherical aberration, coma aberration, and distortion aberration.

条件式(2)の上限値を上回ると、有機質を含んだ材料の場合、屈折率が高すぎると温度分散が大きくなりすぎ、環境による光学特性が不安定になりやすい。また、反射率が高くなりすぎ、コーティングを最適化してもゴーストが出やすい。   If the upper limit of conditional expression (2) is exceeded, in the case of a material containing organic matter, if the refractive index is too high, the temperature dispersion becomes too large and the optical characteristics due to the environment tend to become unstable. Also, the reflectivity becomes too high, and ghosting is likely to occur even if the coating is optimized.

条件式(3)の下限値を下回ると、極めて薄い接合レンズとして色収差の補正が可能だが、空気接触面側を非球面化すると高次の倍率色収差や色コマが発生しやすく、収差補正自由度が減る。   If the lower limit of conditional expression (3) is not reached, chromatic aberration can be corrected as an extremely thin cemented lens. However, if the air contact surface is made aspherical, higher-order lateral chromatic aberration and color coma are likely to occur, and the degree of freedom in correcting aberrations. Decrease.

条件式(3)の上限値を上回ると、色収差を補正するために接合レンズの屈折力を強くする必要があり、ペッツバール和の補正には有利であるが、材料の環境による光学特性の影響を受けやすくなる。   If the upper limit of conditional expression (3) is exceeded, it is necessary to increase the refractive power of the cemented lens in order to correct chromatic aberration, which is advantageous for correcting the Petzval sum. It becomes easy to receive.

なお、次の条件式(1’)を満足すると、より好ましい。
1.48<β<2.04 …(1’)
さらに、次の条件式(1”)を満足すると、より好ましい。
1.50<β<2.00 …(1”)
なお、次の条件式(2’)を満足すると、より好ましい。
1.60<Nd<2.10 …(2’)
さらに、次の条件式(2”)を満足すると、より好ましい。
1.63<Nd<1.95 …(2”)
なお、次の条件式(3’)を満足すると、より好ましい。
5<νd<30 …(3’)
さらに、次の条件式(3”)を満足すると、より好ましい。
6<νd<25 …(3”)
It is more preferable that the following conditional expression (1 ′) is satisfied.
1.48 <β <2.04 (1 ′)
Further, it is more preferable that the following conditional expression (1 ″) is satisfied.
1.50 <β <2.00 (1 ″)
It is more preferable that the following conditional expression (2 ′) is satisfied.
1.60 <Nd <2.10 (2 ′)
Furthermore, it is more preferable that the following conditional expression (2 ″) is satisfied.
1.63 <Nd <1.95 (2 ″)
It is more preferable that the following conditional expression (3 ′) is satisfied.
5 <νd <30 (3 ′)
Furthermore, it is more preferable that the following conditional expression (3 ″) is satisfied.
6 <νd <25 (3 ″)

また、接合レンズは、上記両方の領域に含まれるNd及びνdの値を有するレンズ(以下、所定のレンズと称する。)と他のレンズで構成され、所定のレンズは、その光軸中心厚みが他のレンズの光軸中心厚よりも薄いことが好ましい。このようにすることで、前記上記各収差の更なる良好な補正効果やレンズ群の薄型化が実現できる。   The cemented lens is composed of a lens having the values of Nd and νd (hereinafter referred to as a “predetermined lens”) included in both of the above-mentioned areas and another lens, and the predetermined lens has an optical axis center thickness. It is preferably thinner than the center thickness of the optical axis of the other lens. By doing in this way, the further favorable correction effect of each said aberration and the thickness reduction of a lens group are realizable.

また、接合レンズは、製造精度を向上させる上で、レンズ表面(他のレンズ表面)に樹脂を密着硬化させた複合レンズであるのがよい。ここで、密着硬化させた樹脂が、上記所定のレンズに該当する。   The cemented lens is preferably a compound lens in which a resin is adhered and cured on the lens surface (other lens surface) in order to improve manufacturing accuracy. Here, the contact-cured resin corresponds to the predetermined lens.

また、接合レンズは、耐光性、耐薬品性等の耐性に有利である上で、レンズ表面(他のレンズ表面)にガラスを密着硬化させた複合レンズであるのがよい。ここで、密着硬化させたガラスが、上記所定のレンズに該当する。   Further, the cemented lens is advantageous in terms of light resistance, chemical resistance, and the like, and is preferably a compound lens in which glass is adhered and cured on the lens surface (other lens surface). Here, the glass that has been subjected to close contact hardening corresponds to the predetermined lens.

また、接合レンズは、小型かつ安定に成型を行う上で、所定のレンズ(Nd及びνdが上記両方の領域に含まれる一つのレンズ)の光軸中心厚t1が、次の条件式(4)を満足するとよい。
0.22<t1<2.0 …(4)
なお、次の条件式(4’)を満足すると、より好ましい。
0.3<t1<1.5 …(4’ )
さらに、次の条件式(4”)を満足すると、より好ましい。
0.32<t1<1.0 …(4” )
In addition, when the cemented lens is molded in a small size and stably, the optical axis center thickness t1 of a predetermined lens (Nd and νd included in both the above regions) is expressed by the following conditional expression (4). It is good to satisfy.
0.22 <t1 <2.0 (4)
It is more preferable that the following conditional expression (4 ′) is satisfied.
0.3 <t1 <1.5 (4 ′)
Furthermore, it is more preferable that the following conditional expression (4 ″) is satisfied.
0.32 <t1 <1.0 (4 ")

また、結像光学系は、ズームの高倍率化とレンズの明るさ向上向上の観点から、最も物体側が正群であるズームレンズであるのがよい。   In addition, the imaging optical system is preferably a zoom lens having a positive lens group closest to the object side from the viewpoint of increasing the zoom magnification and improving the brightness of the lens.

また、結像光学系は、小型化上、最も物体側が負群であるズームレンズであるのがよい。   In addition, the image forming optical system is preferably a zoom lens having a negative group on the most object side in view of miniaturization.

また、結像光学系は、撮影方向に対する光学系の小型化を図る上で、屈曲のためのプリズムを有するのがよい。   Further, the imaging optical system preferably has a prism for bending in order to reduce the size of the optical system with respect to the photographing direction.

また、結像光学系は、更に薄型化を図る上で、プリズムが最も物体側の群にあるのがよい。   In order to further reduce the thickness of the imaging optical system, it is preferable that the prism is in the group closest to the object side.

ところで、電子撮像素子の画素サイズがある程度以上小さくなると、回折の影響によりナイキスト周波数以上の成分がなくなる。そこで、これを利用すれば、光学ローパスフィルターを省略することができる。これは、光学系全体を極力薄くする点からも好ましい。
そこで、次の条件式(6)を満足するのが好ましい。
Fw ≧ a(μm) …(6)
但し、Fwは広角端における解放F値、aは電子撮像素子の水平方向の画素間距離(単位:μm)である。
条件式(6)を満足すると、光学ローパスフィルターを光路中に配置しなくてよくなる。よって、光学系を小型化できる。
By the way, when the pixel size of the electronic image sensor becomes smaller than a certain level, the component having the Nyquist frequency or higher disappears due to the influence of diffraction. Therefore, if this is used, the optical low-pass filter can be omitted. This is also preferable from the viewpoint of making the entire optical system as thin as possible.
Therefore, it is preferable that the following conditional expression (6) is satisfied.
Fw ≧ a (μm) (6)
Here, Fw is the release F value at the wide-angle end, and a is the horizontal inter-pixel distance (unit: μm) of the electronic image sensor.
If the conditional expression (6) is satisfied, the optical low-pass filter need not be arranged in the optical path. Therefore, the optical system can be reduced in size.

なお、上記条件(6)を満足する場合、画質確保の点から、開口絞りは開放のみとするのが好ましい。これは、この場合の光学系が、開口絞りの径が常に一定の光学系ということである。そして、この場合の光学系では、絞り込みの動作が不要になるため、絞り込み機構を省略できる。よって、その分だけ、小型化が可能になる。なお、条件式(6)を満足しない場合は、光学ローパスフィルターが必要である。   When the above condition (6) is satisfied, it is preferable that the aperture stop is only opened from the viewpoint of ensuring image quality. This means that the optical system in this case is an optical system in which the diameter of the aperture stop is always constant. Further, in the optical system in this case, a narrowing operation is not necessary, so that the narrowing mechanism can be omitted. Therefore, the size can be reduced accordingly. If the conditional expression (6) is not satisfied, an optical low-pass filter is necessary.

また、条件式(6')を満足すると、より好ましい。
Fw ≧ 1.2a(μm) …(6’)
さらに、条件式(6”)を満足すると、より一層好ましい。
Fw ≧ 1.4a(μm) …(6”)
Moreover, it is more preferable that the conditional expression (6 ′) is satisfied.
Fw ≧ 1.2a (μm) (6 ′)
Furthermore, it is even more preferable that the conditional expression (6 ″) is satisfied.
Fw ≧ 1.4a (μm) (6 ″)

最後に、電子撮像装置について説明する。電子撮像装置としては、奥行きの薄型化と広画角化を両立させたものが好ましい。
ここで、無限遠物体を、歪曲収差がない光学系で結像したとする。この場合、結像した像に歪曲がないので、
f=y/tanω
が成立する。
但し、yは像点の光軸からの高さ、fは結像系の焦点距離、ωは撮像面上の中心からyの位置に結ぶ像点に対応する物点方向の光軸に対する角度である。
Finally, an electronic imaging device will be described. As the electronic imaging device, a device that achieves both a reduction in depth and a wide angle of view is preferable.
Here, it is assumed that an object at infinity is imaged by an optical system having no distortion. In this case, since the image formed has no distortion,
f = y / tan ω
Is established.
Where y is the height of the image point from the optical axis, f is the focal length of the imaging system, ω is the angle with respect to the optical axis in the object direction corresponding to the image point connecting from the center on the imaging surface to the y position. is there.

一方、光学系に樽型の歪曲収差がある場合は、
f>y/tanω
となる。つまり、fとyとを一定の値とするならば、ωは大きな値となる。
On the other hand, if the optical system has barrel distortion,
f> y / tan ω
It becomes. That is, if f and y are constant values, ω is a large value.

そこで、電子撮像装置には、結像光学系としてズームレンズを用いるのが好ましい。ズームレンズとしては、特に広角端近傍の焦点距離において、意図的に大きな樽型の歪曲収差を有した光学系を用いるのが良い。この場合、歪曲収差を補正しなくて済む分だけ、光学系の広画角化が達成できる。ただし、物体の像は、樽型の歪曲収差を有した状態で電子撮像素子上に結像する。そこで、電子撮像装置では、電子撮像素子で得られた画像データを、画像処理で加工するようにしている。この加工では、樽型の歪曲収差を補正するように、画像データ(画像の形状)を変化させる。このようにすれば、最終的に得られた画像データは、物体とほぼ相似の形状を持つ画像データとなる。よって、この画像データに基づいて、物体の画像をCRTやプリンターに出力すればよい。   Therefore, it is preferable to use a zoom lens as an imaging optical system in the electronic imaging apparatus. As the zoom lens, it is preferable to use an optical system that intentionally has a large barrel distortion, particularly at a focal length near the wide-angle end. In this case, it is possible to achieve a wider angle of view of the optical system as much as it is not necessary to correct distortion. However, the image of the object is formed on the electronic image pickup device in a state having barrel-shaped distortion. Therefore, in the electronic imaging device, image data obtained by the electronic imaging element is processed by image processing. In this processing, the image data (image shape) is changed so as to correct the barrel distortion. In this way, the finally obtained image data is image data having a shape substantially similar to the object. Therefore, an object image may be output to a CRT or printer based on the image data.

ここで、結像光学系(ズームレンズ)には、ほぼ無限遠物点合焦時に次の条件式(7)を満足するものを採用するのがよい。
0.7 < y07/(fw・tanω07w) < 0.96 …(7)
但し、y07は電子撮像素子の有効撮像面内(撮像可能な面内)で中心から最も遠い点までの距離(最大像高)をy10としたとき、y07=0.7y10として表される。また、ω07wは広角端における撮像面上の中心からy07の位置に結ぶ像点に対応する物点方向の光軸に対する角度である。
Here, it is preferable to use an imaging optical system (zoom lens) that satisfies the following conditional expression (7) when focusing on an object point at infinity.
0.7 <y 07 / (fw · tan ω 07w ) <0.96 (7)
However, when y 07 is the distance to the farthest point from the center in the effective image pickup plane of the electronic imaging device (imaging possible in-plane) (maximum image height) was y 10, the table as y 07 = 0.7y 10 Is done. Further, ω 07w is an angle with respect to the optical axis in the object point direction corresponding to the image point connecting from the center on the imaging surface at the wide angle end to the position y 07 .

上記条件式(7)はズーム広角端における樽型歪曲の度合いを規定したものである。条件式(7)を満足すれば、光学系を肥大化させずに、広い画角の情報を取り込むことが可能となる。なお、樽型に歪んだ像は電子撮像素子にて光電変換されて、樽型に歪んだ画像データとなる。しかしながら、樽型に歪んだ画像データは、電子撮像装置の信号処理系である画像処理手段にて、電気的に、像の形状変化に相当する加工が施される。このようにすれば、最終的に画像処理手段から出力された画像データを表示装置にて再生したとしても、歪曲が補正されて被写体形状にほぼ相似した画像が得られる。   Conditional expression (7) defines the degree of barrel distortion at the zoom wide-angle end. If conditional expression (7) is satisfied, it becomes possible to capture information with a wide angle of view without enlarging the optical system. Note that an image distorted in a barrel shape is photoelectrically converted by an electronic imaging device, and becomes image data distorted in a barrel shape. However, the image data distorted into a barrel shape is electrically processed by an image processing means which is a signal processing system of the electronic imaging apparatus, corresponding to a change in the shape of the image. In this way, even if the image data finally output from the image processing means is reproduced on the display device, the distortion is corrected and an image substantially similar to the subject shape is obtained.

ここで、条件式(7)の上限値を上回る場合であって、特に、1に近い値をとると、歪曲収差が光学的に良く補正されたことに相当する補正を、画像処理手段で行うことができるが、光学系の小型化を維持しながら、広い視野角に亘って像を取り込むことが困難となる。一方、条件式(7)の下限値を下回ると、光学系の歪曲収差による画像歪みを画像処理手段で補正した場合に画角周辺部の放射方向への引き伸ばし率が高くなりすぎる。その結果、画像周辺部の鮮鋭度の劣化が目立つようになってしまう。   Here, when the value exceeds the upper limit value of the conditional expression (7), particularly when a value close to 1 is taken, correction corresponding to the fact that the distortion aberration is optically corrected is performed by the image processing means. However, it is difficult to capture an image over a wide viewing angle while maintaining downsizing of the optical system. On the other hand, if the lower limit value of conditional expression (7) is not reached, when the image distortion due to the distortion of the optical system is corrected by the image processing means, the stretching ratio in the radial direction around the angle of view becomes too high. As a result, the sharpness degradation at the periphery of the image becomes conspicuous.

一方、条件式(7)を満足することにより、光学系の小型化と広角化(歪曲込みの垂直方向の画角を38°以上にする)とが可能となる。   On the other hand, when the conditional expression (7) is satisfied, the optical system can be downsized and widened (the angle of view in the vertical direction of distortion is 38 ° or more).

なお、次の条件式(7')を満足すると、より好ましい。
0.75 < y07/(fw・tanω07w) < 0.94 …(7')
さらに、次の条件式(7”)を満足すると、より一層好ましい。
0.80 < y07/(fw・tanω07w) < 0.92 …(7”)
It is more preferable that the following conditional expression (7 ′) is satisfied.
0.75 <y 07 / (fw · tan ω 07w ) <0.94 (7 ')
Furthermore, it is even more preferable that the following conditional expression (7 ″) is satisfied.
0.80 <y 07 / (fw · tanω 07w) <0.92 ... (7 ")

本発明の結像光学系は、以上述べた条件式や構成上の特徴を、個々に、満足あるいは備えることにより、高画素数の電子撮像素子を用いても、結像光学系の体積の小型化・薄型化をともに達成することが可能となると共に、良好な収差補正が実現できる。また、本発明の結像光学系は、上記条件式や構成上の特徴を、組み合わせて備える(満足する)こともできる。この場合、いっそうの小型化・薄型化、あるいは、より良好な収差補正を達成できる。また、本発明の結像光学系を有する電子撮像装置は、結像光学系の体積の小型化・薄型化をともに達成することが可能となり、さらに、諸収差の良好な補正と、広角化との両立が可能となる。   The imaging optical system according to the present invention satisfies the above-described conditional expressions and structural characteristics individually or satisfies the requirements so that the volume of the imaging optical system can be reduced even when an electronic imaging device having a large number of pixels is used. This makes it possible to achieve both a reduction in thickness and thickness, and to achieve good aberration correction. In addition, the imaging optical system of the present invention can be provided with (satisfied with) the above conditional expressions and structural features in combination. In this case, further downsizing / thinning or better aberration correction can be achieved. In addition, the electronic imaging apparatus having the imaging optical system of the present invention can achieve both a reduction in volume and a reduction in volume of the imaging optical system. Can be achieved.

次に本発明の実施例について図面を用いて説明する。
本発明のズームレンズとしては、5群構成または4群構成が考えられる。5群構成のズームレンズでは、物体側から、正屈折力の第1レンズ群、負屈折力の第2レンズ群、正屈折力の第3レンズ群、負屈折力の第4レンズ群、正屈折力の第5レンズ群という順で、各レンズ群を配置することが好ましい。
Next, embodiments of the present invention will be described with reference to the drawings.
As the zoom lens of the present invention, a 5-group configuration or a 4-group configuration is conceivable. In a zoom lens having a five-group configuration, from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group having a negative refractive power, and a positive refraction. It is preferable to arrange the lens groups in the order of the fifth lens group of the force.

ここで、第1レンズ群は、負レンズ、プリズム、正レンズを含んで構成することが好ましい。このとき、物体側から、負レンズ、プリズム、正レンズという順で、これらを配置することがより好ましい。なお、1つの負レンズ、1つのプリズム、1つの正レンズのみで第1レンズ群を構成しても良い。   Here, the first lens group preferably includes a negative lens, a prism, and a positive lens. At this time, it is more preferable to dispose these in the order of the negative lens, the prism, and the positive lens from the object side. Note that the first lens group may be composed of only one negative lens, one prism, and one positive lens.

また、第2レンズ群は、正レンズと負レンズを含んで構成することが好ましい。このとき、物体側から、負レンズ、正レンズの順で、これらを配置することがより好ましい。なお、1つの正レンズと1つの負レンズのみで第2レンズ群を構成しても良い。 The second lens group preferably includes a positive lens and a negative lens. At this time, it is more preferable to dispose these in the order of the negative lens and the positive lens from the object side. Note that the second lens group may be composed of only one positive lens and one negative lens.

また、第3レンズ群は、正レンズと負レンズを含んで構成することが好ましい。このとき、正レンズと負レンズで接合レンズを構成し、正レンズが物体側に位置するように接合レンズを配置することがより好ましい。なお、1つの接合レンズのみで第3レンズ群を構成しても良い。この場合、接合レンズは1つの正レンズと1つの負レンズで構成される。   The third lens group preferably includes a positive lens and a negative lens. At this time, it is more preferable to form a cemented lens with a positive lens and a negative lens, and arrange the cemented lens so that the positive lens is located on the object side. Note that the third lens group may be configured by only one cemented lens. In this case, the cemented lens is composed of one positive lens and one negative lens.

また、第4レンズ群は、正レンズと負レンズを含んで構成することが好ましい。このとき、正レンズと負レンズで接合レンズを構成し、負レンズが物体側に位置するように接合レンズを配置することがより好ましい。あるいは、負レンズで接合レンズを構成し、中心肉厚(心厚)が厚い負レンズが物体側に位置するように接合レンズを配置することがより好ましい。なお、1つの接合レンズのみで第4レンズ群を構成しても良い。この場合、接合レンズは2つの負レンズ、あるいは1つの正レンズと1つの負レンズで構成される。   The fourth lens group preferably includes a positive lens and a negative lens. At this time, it is more preferable to form a cemented lens with a positive lens and a negative lens, and arrange the cemented lens so that the negative lens is located on the object side. Alternatively, it is more preferable that the cemented lens is constituted by a negative lens, and the cemented lens is arranged so that the negative lens having a thick central thickness (heart thickness) is positioned on the object side. Note that the fourth lens group may be composed of only one cemented lens. In this case, the cemented lens includes two negative lenses, or one positive lens and one negative lens.

また、第5レンズ群は、正レンズを含んで構成するのが好ましい。このとき、1つの正レンズのみで第5レンズ群を構成するのがより好ましい。   The fifth lens group preferably includes a positive lens. At this time, it is more preferable that the fifth lens group is constituted by only one positive lens.

また、4群構成のズームレンズでは、物体側から順に、負屈折力の第1レンズ群、正屈折力の第2レンズ群、負屈折力の第3レンズ群、正屈折力の第4レンズ群という屈折率配置が好ましい。   Further, in the zoom lens having a four-group configuration, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens group having a positive refractive power. The refractive index arrangement is preferable.

ここで、第1レンズ群は、負レンズ、プリズム、接合レンズを含んで構成することが好ましい。このとき、物体側から、負レンズ、プリズム、接合レンズという順で、これらを配置することがより好ましい。また、接合レンズを正レンズと負レンズで構成し、正レンズが物体側に位置するように接合レンズを配置することが好ましい。なお、1つの負レンズ、1つのプリズム、1つの接合レンズのみで第1レンズ群を構成しても良い。この場合、接合レンズは1つの正レンズと1つの負レンズで構成される。   Here, the first lens group preferably includes a negative lens, a prism, and a cemented lens. At this time, it is more preferable to dispose these in the order of the negative lens, the prism, and the cemented lens from the object side. Further, it is preferable that the cemented lens is composed of a positive lens and a negative lens, and the cemented lens is arranged so that the positive lens is located on the object side. Note that the first lens group may be configured by only one negative lens, one prism, and one cemented lens. In this case, the cemented lens is composed of one positive lens and one negative lens.

また、第2レンズ群は、正レンズと負レンズを含んで構成することが好ましい。このとき、正レンズと負レンズで接合レンズを構成し、正レンズが物体側に位置するように接合レンズを配置することがより好ましい。なお、1つの接合レンズのみで第2レンズ群を構成しても良い。この場合、接合レンズは1つの正レンズと1つの負レンズで構成される。   The second lens group preferably includes a positive lens and a negative lens. At this time, it is more preferable to form a cemented lens with a positive lens and a negative lens, and arrange the cemented lens so that the positive lens is located on the object side. Note that the second lens group may be constituted by only one cemented lens. In this case, the cemented lens is composed of one positive lens and one negative lens.

また、第3レンズ群は、正レンズと負レンズを含んで構成することが好ましい。このとき、正レンズと負レンズで接合レンズを構成し、負レンズが物体側に位置するように接合レンズを配置することがより好ましい。なお、1つの接合レンズのみで第3レンズ群を構成しても良い。この場合、接合レンズは1つの正レンズと1つの負レンズで構成される。   The third lens group preferably includes a positive lens and a negative lens. At this time, it is more preferable to form a cemented lens with a positive lens and a negative lens, and arrange the cemented lens so that the negative lens is located on the object side. Note that the third lens group may be configured by only one cemented lens. In this case, the cemented lens is composed of one positive lens and one negative lens.

また、第4レンズ群は、正レンズと負レンズを含んで構成することが好ましい。このとき、正レンズと負レンズで接合レンズを構成し、正レンズが物体側に位置するように接合レンズを配置することがより好ましい。なお、1つの接合レンズのみで第4レンズ群を構成しても良い。この場合、接合レンズは1つの正レンズと1つの負レンズで構成される。   The fourth lens group preferably includes a positive lens and a negative lens. At this time, it is more preferable to form a cemented lens with a positive lens and a negative lens, and arrange the cemented lens so that the positive lens is located on the object side. Note that the fourth lens group may be composed of only one cemented lens. In this case, the cemented lens is composed of one positive lens and one negative lens.

なお、1つのレンズの屈折力を、2つのレンズに分散することができる。よって、上記の各レンズ群において、1つのレンズを2つのレンズに置き換えることもできる。ただし、小型化・薄型化の観点から、2つのレンズに置き換えるレンズの個数は、各レンズ群で1つのみとするのが好ましい。   In addition, the refractive power of one lens can be distributed to two lenses. Therefore, in each lens group described above, one lens can be replaced with two lenses. However, from the viewpoint of size reduction and thickness reduction, it is preferable that the number of lenses replaced with two lenses is only one in each lens group.

図1は本発明の実施例1にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。   FIG. 1 is a cross-sectional view along the optical axis showing an optical configuration at the time of focusing on an object point at infinity at the wide angle end of a zoom lens according to Embodiment 1 of the present invention.

図2は実施例1にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。   FIG. 2 is a diagram showing spherical aberration, astigmatism, distortion, and lateral chromatic aberration when the zoom lens according to Example 1 is focused on an object point at infinity, where (a) is a wide angle end, (b) is an intermediate, (c) shows the state at the telephoto end.

実施例1のズームレンズは、図1に示すように、物体側より順に、第1レンズ群G1と、第2レンズ群G2と、開口絞りSと、第3レンズ群G3と、第4レンズ群G4と、第5レンズ群G5を有している。なお、図中、LPFはローパスフィルター、CGはカバーガラス、Iは電子撮像素子の撮像面である。   As shown in FIG. 1, the zoom lens according to the first embodiment includes, in order from the object side, a first lens group G1, a second lens group G2, an aperture stop S, a third lens group G3, and a fourth lens group. G4 and the fifth lens group G5 are included. In the figure, LPF is a low-pass filter, CG is a cover glass, and I is an image pickup surface of an electronic image pickup element.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL111、プリズムL112、両凸レンズL113で構成されており、全体で正の屈折力を有している。   The first lens group G1 includes a negative meniscus lens L111 having a convex surface directed toward the object side, a prism L112, and a biconvex lens L113, and has a positive refractive power as a whole.

第2レンズ群G2は、両凹レンズL121と、物体側に凸面を向けた正メニスカスレンズL122で構成されており、全体で負の屈折力を有している。   The second lens group G2 includes a biconcave lens L121 and a positive meniscus lens L122 having a convex surface directed toward the object side, and has a negative refracting power as a whole.

第3レンズ群G3は、両凸レンズL131と両凹レンズL132との接合レンズで構成されており、全体で正の屈折力を有している。   The third lens group G3 is composed of a cemented lens made up of a biconvex lens L131 and a biconcave lens L132, and has a positive refractive power as a whole.

第4レンズ群G4は、物体側に凸面を向けた負メニスカスレンズL141と、物体側に凸面を向けた正メニスカスレンズL142との接合レンズで構成されており、全体で負の屈折力を有している。物体側に凸面を向けた正メニスカスレンズL142は、心厚の薄いレンズである。   The fourth lens group G4 includes a cemented lens which is formed by a negative meniscus lens L141 having a convex surface directed toward the object side and a positive meniscus lens L142 having a convex surface directed toward the object side, and has a negative refracting power as a whole. ing. The positive meniscus lens L142 having a convex surface facing the object side is a lens having a thin heart thickness.

第5レンズ群G5は、両凸レンズL151で構成されており、全体で正の屈折力を有している。   The fifth lens group G5 includes a biconvex lens L151, and has a positive refractive power as a whole.

広角端から望遠端へと変倍する際には、第1レンズ群G1は固定、第2レンズ群G2は像側へ移動し、開口絞りSは固定、第3レンズ群G3は物体側へ移動し、第4レンズ群G4は一旦像側へ移動した後に物体側へ移動し、第5レンズ群G5像側へ移動する。   When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, the second lens group G2 is moved to the image side, the aperture stop S is fixed, and the third lens group G3 is moved to the object side. The fourth lens group G4 once moves to the image side, then moves to the object side, and moves to the image side of the fifth lens group G5.

非球面は、第1レンズ群G1中の両凸レンズL113の物体側の面、第2レンズ群G2中の両凹レンズL121の両面、第3レンズ群G3中の両凸レンズL131の物体側の面、両凹レンズL132の像側の面、第4レンズ群G4中の物体側に凸面を向けた正メニスカスレンズL142の像側の面、第5レンズ群G5中の両凸レンズL151の物体側の面に設けられている。   The aspherical surfaces are the object side surface of the biconvex lens L113 in the first lens group G1, both surfaces of the biconcave lens L121 in the second lens group G2, the object side surface of the biconvex lens L131 in the third lens group G3, both Provided on the image side surface of the concave lens L132, the image side surface of the positive meniscus lens L142 with the convex surface facing the object side in the fourth lens group G4, and the object side surface of the biconvex lens L151 in the fifth lens group G5. ing.

次に、実施例1のズームレンズを構成する光学部材の数値データを示す。
なお、実施例1の数値データにおいて、r1、r2、…は各レンズ面の曲率半径、d1、d2、…は各レンズの肉厚または空気間隔、nd1、nd2、…は各レンズのd線での屈折率、νd1、νd2、…は各レンズのアッべ数、Fno.はFナンバー、fは全系焦点距離、D0は物体から第1面までの距離をそれぞれ表している。また、数値データにおけるr及びdの番号と、光学構成(レンズ面、肉厚、空気間隔)との関係を、図48に示す。
Next, numerical data of optical members constituting the zoom lens of Example 1 are shown.
In the numerical data of Example 1, r1, r2,... Are the radius of curvature of each lens surface, d1, d2,... Are the thickness or air spacing of each lens, and nd1, nd2,. Are the Abbe number of each lens, Fno. Is the F number, f is the focal length of the entire system, and D0 is the distance from the object to the first surface. FIG. 48 shows the relationship between the r and d numbers in the numerical data and the optical configuration (lens surface, thickness, air spacing).

また、非球面形状は、光軸方向をz、光軸に直交する方向をyにとり、円錐係数をK、非球面係数をA4、A6、A8、A10としたとき、次の式で表される。
z=(y2/r)/[1+{1−(1+K)(y/r)21/2
+A4y4+A6y6+A8y8+A10y10
また、Eは10のべき乗を表している。なお、これら諸元値の記号は後述の実施例の数値データにおいても共通である。なお、円錐係数はkで示す場合もある。
The aspherical shape is expressed by the following equation when the optical axis direction is z, the direction orthogonal to the optical axis is y, the conical coefficient is K, and the aspherical coefficients are A4, A6, A8, and A10. .
z = (y 2 / r) / [1+ {1− (1 + K) (y / r) 2 } 1/2 ]
+ A4y 4 + A6y 6 + A8y 8 + A10y 10
E represents a power of 10. The symbols of these specification values are common to the numerical data of the examples described later. The cone coefficient may be indicated by k.

次に、本実施例の数値データを掲げる。   Next, numerical data of this embodiment will be listed.

数値データ1
r1=26.33
d1=1 Nd1=1.8061 νd1=40.92
r2=10.006
d2=2.9
r3=∞
d3=12 Nd3=1.8061 νd3=40.92
r4=∞
d4=0.3
r5=26.758 (非球面)
d5=3.54 Nd5=1.741 νd5=52.64
r6=-28.965
d6=D6
r7=-131.345 (非球面)
d7=0.8 Nd7=1.8061 νd7=40.92
r8=5.919 (非球面)
d8=0.7
r9=8.064
d9=2.2 Nd9=1.7552 νd9=27.51
r10=66.381
d10=D10
r11=絞り
d11=D11
r12=7.833 (非球面)
d12=5.8 Nd12=1.6935 νd12=53.21
r13=-11.499
d13=0.7 Nd13=1.84666 νd13=23.78
r14=30.622 (非球面)
d14=D14
r15=40.578
d15=0.6 Nd15=1.48749 νd15=70.23
r16=10.949
d16=0.1 Nd16=1.60687 νd16=27.03
r17=12.043 (非球面)
d17=D17
r18=13.800 (非球面)
d18=1.8 Nd18=1.7432 νd18=49.34
r19=-43.765
d19=D19
r20=∞
d20=1.9 Nd20=1.54771 νd20=62.84
r21=∞
d21=0.8
r22=∞
d22=0.75 Nd22=1.51633 νd22=64.14
r23=∞
d23=D23
Numerical data 1
r1 = 26.33
d1 = 1 Nd1 = 1.8061 νd1 = 40.92
r2 = 10.006
d2 = 2.9
r3 = ∞
d3 = 12 Nd3 = 1.8061 νd3 = 40.92
r4 = ∞
d4 = 0.3
r5 = 26.758 (Aspherical surface)
d5 = 3.54 Nd5 = 1.741 νd5 = 52.64
r6 = -28.965
d6 = D6
r7 = -131.345 (Aspherical surface)
d7 = 0.8 Nd7 = 1.8061 νd7 = 40.92
r8 = 5.919 (Aspherical surface)
d8 = 0.7
r9 = 8.064
d9 = 2.2 Nd9 = 1.7552 νd9 = 27.51
r10 = 66.381
d10 = D10
r11 = aperture
d11 = D11
r12 = 7.833 (Aspherical surface)
d12 = 5.8 Nd12 = 1.6935 νd12 = 53.21
r13 = -11.499
d13 = 0.7 Nd13 = 1.84666 νd13 = 23.78
r14 = 30.622 (Aspherical surface)
d14 = D14
r15 = 40.578
d15 = 0.6 Nd15 = 1.48749 νd15 = 70.23
r16 = 10.949
d16 = 0.1 Nd16 = 1.60687 νd16 = 27.03
r17 = 12.043 (Aspherical surface)
d17 = D17
r18 = 13.800 (aspherical surface)
d18 = 1.8 Nd18 = 1.7432 νd18 = 49.34
r19 = -43.765
d19 = D19
r20 = ∞
d20 = 1.9 Nd20 = 1.54771 νd20 = 62.84
r21 = ∞
d21 = 0.8
r22 = ∞
d22 = 0.75 Nd22 = 1.51633 νd22 = 64.14
r23 = ∞
d23 = D23

非球面係数
第5面
k=0
A4=4.05861E-06
A6=2.45198E-07
A8=0.00000E+00
第7面
k=0
A4=-3.70360E-04
A6=2.03291E-05
A8=-5.16020E-07
第8面
k=0
A4=-8.18468E-04
A6=2.71936E-05
A8=-1.40721E-06
第12面
k=0
A4=1.26362E-04
A6=1.67158E-06
A8=5.21583E-08
第14面
k=0
A4=7.68617E-04
A6=5.97869E-06
A8=9.78572E-07
第17面
k=0
A4=1.49229E-04
A6=-4.05344E-06
A8=0.00000E+00
第18面
k=0
A4=5.20616E-05
A6=3.84073E-06
A8=-1.76970E-07
Aspherical coefficient fifth surface
k = 0
A4 = 4.05861E-06
A6 = 2.45198E-07
A8 = 0.000E + 00
7th page
k = 0
A4 = -3.70360E-04
A6 = 2.03291E-05
A8 = -5.16020E-07
8th page
k = 0
A4 = -8.18468E-04
A6 = 2.71936E-05
A8 = -1.40721E-06
12th page
k = 0
A4 = 1.26362E-04
A6 = 1.67158E-06
A8 = 5.21583E-08
14th page
k = 0
A4 = 7.68617E-04
A6 = 5.97869E-06
A8 = 9.78572E-07
17th page
k = 0
A4 = 1.49229E-04
A6 = -4.05344E-06
A8 = 0.000E + 00
18th page
k = 0
A4 = 5.20616E-05
A6 = 3.84073E-06
A8 = -1.76970E-07

ズームデータ
D0(物体から第1面までの距離)が∞のとき
広角端 中間 望遠端
焦点距離 6.005 13.699 17.995
FNO. 2.85 4.82 5.88
D6 0.8 6.91 8.38
D10 8.97 2.86 1.39
D11 11.32 3.77 1.19
D14 1.71 11.94 14.15
D17 1.32 2.04 3.26
D19 4.76 1.36 0.51
D23 1.36 1.37 1.36
Zoom data
When D0 (distance from the object to the first surface) is ∞
Wide-angle end Middle Telephoto end
Focal length 6.005 13.699 17.995
FNO. 2.85 4.82 5.88
D6 0.8 6.91 8.38
D10 8.97 2.86 1.39
D11 11.32 3.77 1.19
D14 1.71 11.94 14.15
D17 1.32 2.04 3.26
D19 4.76 1.36 0.51
D23 1.36 1.37 1.36

図3は本発明の実施例2にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。   FIG. 3 is a cross-sectional view along the optical axis showing the optical configuration at the time of focusing on an object point at infinity at the wide angle end of the zoom lens according to Example 2 of the present invention.

図4は実施例2にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。   4A and 4B are diagrams showing spherical aberration, astigmatism, distortion aberration, and chromatic aberration of magnification when the zoom lens according to Example 2 is focused on an object point at infinity, where (a) is a wide-angle end, (b) is an intermediate position, (c) shows the state at the telephoto end.

実施例2のズームレンズは、図3に示すように、物体側より順に、第1レンズ群G1と、第2レンズ群G2と、開口絞りSと、第3レンズ群G3と、第4レンズ群G4と、第5レンズ群G5を有している。なお、図中、LPFはローパスフィルター、CGはカバーガラス、Iは電子撮像素子の撮像面である。   As shown in FIG. 3, the zoom lens of Example 2 includes, in order from the object side, the first lens group G1, the second lens group G2, the aperture stop S, the third lens group G3, and the fourth lens group. G4 and the fifth lens group G5 are included. In the figure, LPF is a low-pass filter, CG is a cover glass, and I is an image pickup surface of an electronic image pickup element.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL111、プリズムL112、両凸レンズL113で構成されており、全体で正の屈折力を有している。   The first lens group G1 includes a negative meniscus lens L111 having a convex surface directed toward the object side, a prism L112, and a biconvex lens L113, and has a positive refractive power as a whole.

第2レンズ群G2は、両凹レンズL121と、物体側に凸面を向けた正メニスカスレンズL122で構成されており、全体で負の屈折力を有している。   The second lens group G2 includes a biconcave lens L121 and a positive meniscus lens L122 having a convex surface directed toward the object side, and has a negative refracting power as a whole.

第3レンズ群G3は、両凸レンズL131と両凹レンズL132との接合レンズで構成されており、全体で正の屈折力を有している。   The third lens group G3 is composed of a cemented lens made up of a biconvex lens L131 and a biconcave lens L132, and has a positive refractive power as a whole.

第4レンズ群G4は、物体側に凸面を向けた負メニスカスレンズL141と、物体側に凸面を向けた正メニスカスレンズL142との接合レンズで構成されており、全体で負の屈折力を有している。物体側に凸面を向けた正メニスカスレンズL142は、心厚の薄いレンズである。   The fourth lens group G4 includes a cemented lens which is formed by a negative meniscus lens L141 having a convex surface directed toward the object side and a positive meniscus lens L142 having a convex surface directed toward the object side, and has a negative refracting power as a whole. ing. The positive meniscus lens L142 having a convex surface facing the object side is a lens having a thin heart thickness.

第5レンズ群G5は、両凸レンズL151で構成されており、全体で正の屈折力を有している。   The fifth lens group G5 includes a biconvex lens L151, and has a positive refractive power as a whole.

広角端から望遠端へと変倍する際には、第1レンズ群G1は固定、第2レンズ群G2は像側へ移動し、開口絞りSは固定、第3レンズ群G3は物体側へ移動し、第4レンズ群G4は一旦像側へ移動した後に物体側へ移動し、第5レンズ群G5像側へ移動する。   When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, the second lens group G2 is moved to the image side, the aperture stop S is fixed, and the third lens group G3 is moved to the object side. The fourth lens group G4 once moves to the image side, then moves to the object side, and moves to the image side of the fifth lens group G5.

非球面は、第1レンズ群G1中の両凸レンズL113の物体側の面、第2レンズ群G2中の両凹レンズL121の両面、第3レンズ群G3中の両凸レンズL131の物体側の面、両凹レンズL132の像側の面、第4レンズ群G4中の物体側に凸面を向けた正メニスカスレンズL142の像側の面、第5レンズ群G5中の両凸レンズL151の物体側の面に設けられている。   The aspherical surfaces are the object side surface of the biconvex lens L113 in the first lens group G1, both surfaces of the biconcave lens L121 in the second lens group G2, the object side surface of the biconvex lens L131 in the third lens group G3, both Provided on the image side surface of the concave lens L132, the image side surface of the positive meniscus lens L142 with the convex surface facing the object side in the fourth lens group G4, and the object side surface of the biconvex lens L151 in the fifth lens group G5. ing.

次に、本実施例の数値データを掲げる。
数値データ2
r1=30.613
d1=1 Nd1=1.8061 νd1=40.92
r2=10.004
d2=2.9
r3=∞
d3=12 Nd3=1.8061 νd3=40.92
r4=∞
d4=0.3
r5=25.367 (非球面)
d5=3.54 Nd5=1.741 νd5=52.64
r6=-30.821
d6=D6
r7=-139.143 (非球面)
d7=0.8 Nd7=1.8061 νd7=40.92
r8=6.251 (非球面)
d8=0.7
r9=8.353
d9=2.2 Nd9=1.7552 νd9=27.51
r10=89.717
d10=D10
r11=絞り
d11=D11
r12=8.190 (非球面)
d12=5.96 Nd12=1.6935 νd12=53.21
r13=-11.471
d13=0.7 Nd13=1.84666 νd13=23.78
r14=27.082 (非球面)
d14=D14
r15=30.851
d15=0.6 Nd15=1.48749 νd15=70.23
r16=10.858
d16=0.1 Nd16=1.60258 νd16=18.58
r17=11.942 (非球面)
d17=D17
r18=12.917 (非球面)
d18=1.8 Nd18=1.7432 νd18=49.34
r19=-39.589
d19=D19
r20=∞
d20=1.9 Nd20=1.54771 νd20=62.84
r21=∞
d21=0.8
r22=∞
d22=0.75 Nd22=1.51633 νd22=64.14
r23=∞
d23=D23
Next, numerical data of this embodiment will be listed.
Numerical data 2
r1 = 30.613
d1 = 1 Nd1 = 1.8061 νd1 = 40.92
r2 = 10.004
d2 = 2.9
r3 = ∞
d3 = 12 Nd3 = 1.8061 νd3 = 40.92
r4 = ∞
d4 = 0.3
r5 = 25.367 (Aspherical surface)
d5 = 3.54 Nd5 = 1.741 νd5 = 52.64
r6 = -30.821
d6 = D6
r7 = -139.143 (Aspherical surface)
d7 = 0.8 Nd7 = 1.8061 νd7 = 40.92
r8 = 6.251 (Aspherical surface)
d8 = 0.7
r9 = 8.353
d9 = 2.2 Nd9 = 1.7552 νd9 = 27.51
r10 = 89.717
d10 = D10
r11 = aperture d11 = D11
r12 = 8.190 (aspherical surface)
d12 = 5.96 Nd12 = 1.6935 νd12 = 53.21
r13 = -11.471
d13 = 0.7 Nd13 = 1.84666 νd13 = 23.78
r14 = 27.082 (Aspherical surface)
d14 = D14
r15 = 30.851
d15 = 0.6 Nd15 = 1.48749 νd15 = 70.23
r16 = 10.858
d16 = 0.1 Nd16 = 1.60258 νd16 = 18.58
r17 = 11.942 (Aspherical surface)
d17 = D17
r18 = 12.917 (Aspherical surface)
d18 = 1.8 Nd18 = 1.7432 νd18 = 49.34
r19 = -39.589
d19 = D19
r20 = ∞
d20 = 1.9 Nd20 = 1.54771 νd20 = 62.84
r21 = ∞
d21 = 0.8
r22 = ∞
d22 = 0.75 Nd22 = 1.51633 νd22 = 64.14
r23 = ∞
d23 = D23

非球面係数
第5面
k=0
A4=1.11418E-05
A6=7.82363E-08
A8=0
第7面
k=0
A4=3.05928E-06
A6=5.15862E-06
A8=-1.60243E-07
第8面
k=0
A4=-3.11351E-04
A6=7.68460E-06
A8=-6.23664E-07
第12面
k=0
A4=8.68188E-05
A6=3.96805E-06
A8=-9.06844E-09
第14面
k=0
A4=5.70877E-04
A6=1.11773E-05
A8=6.97910E-07
第17面
k=0
A4=2.53040E-04
A6=-4.57584E-06
A8=0.00000E+00
第18面
k=0
A4=9.09876E-05
A6=1.42880E-07
A8=-2.35059E-08
Aspherical coefficient fifth surface
k = 0
A4 = 1.11418E-05
A6 = 7.82363E-08
A8 = 0
7th page
k = 0
A4 = 3.05928E-06
A6 = 5.15862E-06
A8 = -1.60243E-07
8th page
k = 0
A4 = -3.11351E-04
A6 = 7.68460E-06
A8 = -6.23664E-07
12th page
k = 0
A4 = 8.68188E-05
A6 = 3.96805E-06
A8 = -9.06844E-09
14th page
k = 0
A4 = 5.70877E-04
A6 = 1.11773E-05
A8 = 6.97910E-07
17th page
k = 0
A4 = 2.53040E-04
A6 = -4.57584E-06
A8 = 0.000E + 00
18th page
k = 0
A4 = 9.09876E-05
A6 = 1.42880E-07
A8 = -2.35059E-08

ズームデータ
D0(物体から第1面までの距離)が∞のとき
広角端 中間 望遠端
焦点距離 5.998 13.7 17.982
FNO. 2.85 4.5 5.64
D6 0.8 9.32 10.33
D10 10.89 2.37 1.36
D11 11.09 4 1.16
D14 1.71 11.67 15.59
D17 2.54 2.18 2.61
D19 4.54 2.03 0.53
D23 1.36 1.36 1.36
Zoom data
When D0 (distance from the object to the first surface) is ∞
Wide-angle end Middle Telephoto end
Focal length 5.998 13.7 17.982
FNO. 2.85 4.5 5.64
D6 0.8 9.32 10.33
D10 10.89 2.37 1.36
D11 11.09 4 1.16
D14 1.71 11.67 15.59
D17 2.54 2.18 2.61
D19 4.54 2.03 0.53
D23 1.36 1.36 1.36

図5は本発明の実施例3にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。   FIG. 5 is a sectional view along the optical axis showing an optical configuration at the time of focusing on an object point at infinity at the wide-angle end of the zoom lens according to Example 3 of the present invention.

図6は実施例3にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。   FIG. 6 is a diagram illustrating spherical aberration, astigmatism, distortion, and lateral chromatic aberration when the zoom lens according to Example 3 is focused on an object point at infinity, where (a) is a wide angle end, (b) is an intermediate position, (c) shows the state at the telephoto end.

実施例3のズームレンズは、図5に示すように、物体側より順に、第1レンズ群G1と、第2レンズ群G2と、開口絞りSと、第3レンズ群G3と、第4レンズ群G4と、第5レンズ群G5を有している。なお、図中、LPFはローパスフィルター、CGはカバーガラス、Iは電子撮像素子の撮像面である。   As shown in FIG. 5, the zoom lens of Example 3 includes, in order from the object side, the first lens group G1, the second lens group G2, the aperture stop S, the third lens group G3, and the fourth lens group. G4 and the fifth lens group G5 are included. In the figure, LPF is a low-pass filter, CG is a cover glass, and I is an image pickup surface of an electronic image pickup element.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL111、プリズムL112、両凸レンズL113で構成されており、全体で正の屈折力を有している。   The first lens group G1 includes a negative meniscus lens L111 having a convex surface directed toward the object side, a prism L112, and a biconvex lens L113, and has a positive refractive power as a whole.

第2レンズ群G2は、両凹レンズL121と、物体側に凸面を向けた正メニスカスレンズL122で構成されており、全体で負の屈折力を有している。   The second lens group G2 includes a biconcave lens L121 and a positive meniscus lens L122 having a convex surface directed toward the object side, and has a negative refracting power as a whole.

第3レンズ群G3は、両凸レンズL131と両凹レンズL132との接合レンズで構成されており、全体で正の屈折力を有している。   The third lens group G3 is composed of a cemented lens made up of a biconvex lens L131 and a biconcave lens L132, and has a positive refractive power as a whole.

第4レンズ群G4は、物体側に凸面を向けた負メニスカスレンズL141と、物体側に凸面を向けた正メニスカスレンズL142との接合レンズで構成されており、全体で負の屈折力を有している。物体側に凸面を向けた正メニスカスレンズL142は、心厚の薄いレンズである。   The fourth lens group G4 includes a cemented lens which is formed by a negative meniscus lens L141 having a convex surface directed toward the object side and a positive meniscus lens L142 having a convex surface directed toward the object side, and has a negative refracting power as a whole. ing. The positive meniscus lens L142 having a convex surface facing the object side is a lens having a thin heart thickness.

第5レンズ群G5は、両凸レンズL151で構成されており、全体で正の屈折力を有している。   The fifth lens group G5 includes a biconvex lens L151, and has a positive refractive power as a whole.

広角端から望遠端へと変倍する際には、第1レンズ群G1は固定、第2レンズ群G2は像側へ移動し、開口絞りSは固定、第3レンズ群G3は物体側へ移動し、第4レンズ群G4は一旦像側へ移動した後に物体側へ移動し、第5レンズ群G5像側へ移動する。   When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, the second lens group G2 is moved to the image side, the aperture stop S is fixed, and the third lens group G3 is moved to the object side. The fourth lens group G4 once moves to the image side, then moves to the object side, and moves to the image side of the fifth lens group G5.

非球面は、第1レンズ群G1中の両凸レンズL113の物体側の面、第2レンズ群G2中の両凹レンズL121の両面、第3レンズ群G3中の両凸レンズL131の物体側の面、両凹レンズL132の像側の面、第4レンズ群G4中の物体側に凸面を向けた正メニスカスレンズL142の像側の面、第5レンズ群G5中の両凸レンズL151の物体側の面に設けられている。   The aspheric surfaces are the object-side surface of the biconvex lens L113 in the first lens group G1, the both surfaces of the biconcave lens L121 in the second lens group G2, the object-side surface of the biconvex lens L131 in the third lens group G3, both Provided on the image side surface of the concave lens L132, the image side surface of the positive meniscus lens L142 with the convex surface facing the object side in the fourth lens group G4, and the object side surface of the biconvex lens L151 in the fifth lens group G5. ing.

次に、本実施例の数値データを掲げる。
数値データ3
r1=26.323
d1=1 Nd1=1.8061 νd1=40.92
r2=10.008
d2=2.9
r3=∞
d3=12 Nd3=1.8061 νd3=40.92
r4=∞
d4=0.3
r5=26.751 (非球面)
d5=3.54 Nd5=1.741 νd5=52.64
r6=-28.956
d6=D6
r7=-131.499(非球面)
d7=0.8 Nd7=1.8061 νd7=40.92
r8=5.919(非球面)
d8=0.7
r9=8.063
d9=2.2 Nd9=1.7552 νd9=27.51
r10=66.411
d10=D10
r11=絞り
d11=D11
r12=7.833 (非球面)
d12=5.8 Nd12=1.6935 νd12=53.21
r13=-11.499
d13=0.7 Nd13=1.84666 νd13=23.78
r14=30.626(非球面)
d14=D14
r15=40.611
d15=0.6 Nd15=1.48749 νd15=70.23
r16=10.951
d16=0.1 Nd16=1.69556 νd16=25.02
r17=12.040 (非球面)
d17=D17
r18=13.804 (非球面)
d18=1.8 Nd18=1.7432 νd18=49.34
r19=-43.815
d19=D19
r20=∞
d20=1.9 Nd20=1.54771 νd20=62.84
r21=∞
d21=0.8
r22=∞
d22=0.75 Nd22=1.51633 νd22=64.14
r23=∞
d23=D23
Next, numerical data of this embodiment will be listed.
Numerical data 3
r1 = 26.323
d1 = 1 Nd1 = 1.8061 νd1 = 40.92
r2 = 10.008
d2 = 2.9
r3 = ∞
d3 = 12 Nd3 = 1.8061 νd3 = 40.92
r4 = ∞
d4 = 0.3
r5 = 26.751 (Aspherical surface)
d5 = 3.54 Nd5 = 1.741 νd5 = 52.64
r6 = -28.956
d6 = D6
r7 = -131.499 (aspherical surface)
d7 = 0.8 Nd7 = 1.8061 νd7 = 40.92
r8 = 5.919 (aspherical surface)
d8 = 0.7
r9 = 8.063
d9 = 2.2 Nd9 = 1.7552 νd9 = 27.51
r10 = 66.411
d10 = D10
r11 = aperture d11 = D11
r12 = 7.833 (Aspherical surface)
d12 = 5.8 Nd12 = 1.6935 νd12 = 53.21
r13 = -11.499
d13 = 0.7 Nd13 = 1.84666 νd13 = 23.78
r14 = 30.626 (aspherical surface)
d14 = D14
r15 = 40.611
d15 = 0.6 Nd15 = 1.48749 νd15 = 70.23
r16 = 10.951
d16 = 0.1 Nd16 = 1.69556 νd16 = 25.02
r17 = 12.040 (Aspherical surface)
d17 = D17
r18 = 13.804 (aspherical surface)
d18 = 1.8 Nd18 = 1.7432 νd18 = 49.34
r19 = -43.815
d19 = D19
r20 = ∞
d20 = 1.9 Nd20 = 1.54771 νd20 = 62.84
r21 = ∞
d21 = 0.8
r22 = ∞
d22 = 0.75 Nd22 = 1.51633 νd22 = 64.14
r23 = ∞
d23 = D23

非球面係数
第5面
k=0
A4=4.79969E-06
A6=1.77649E-07
A8=0
第7面
k=0
A4=-3.70126E-04
A6=2.07943E-05
A8=-5.46313E-07
第8面
k=0
A4=-8.17289E-04
A6=2.67093E-05
A8=-1.44560E-06
第12面
k=0
A4=1.26495E-04
A6=1.60044E-06
A8=5.40471E-08
第14面
k=0
A4=7.67067E-04
A6=5.64377E-06
A8=1.00057E-06
第17面
k=0
A4=1.47554E-04
A6=-4.25967E-06
A8=0.00000E+00
第18面
k=0
A4=5.40303E-05
A6=4.23811E-06
A8=-1.98225E-07
Aspherical coefficient fifth surface
k = 0
A4 = 4.79969E-06
A6 = 1.77649E-07
A8 = 0
7th page
k = 0
A4 = -3.70126E-04
A6 = 2.07943E-05
A8 = -5.46313E-07
8th page
k = 0
A4 = -8.17289E-04
A6 = 2.67093E-05
A8 = -1.44560E-06
12th page
k = 0
A4 = 1.26495E-04
A6 = 1.60044E-06
A8 = 5.40471E-08
14th page
k = 0
A4 = 7.67067E-04
A6 = 5.64377E-06
A8 = 1.00057E-06
17th page
k = 0
A4 = 1.47554E-04
A6 = -4.25967E-06
A8 = 0.000E + 00
18th page
k = 0
A4 = 5.40303E-05
A6 = 4.23811E-06
A8 = -1.98225E-07

ズームデータ
D0(物体から第1面までの距離)が∞のとき
広角端 中間 望遠端
焦点距離 5.971 13.646 17.936
FNO. 2.83 4.8 5.86
D6 0.8 6.91 8.38
D10 8.97 2.86 1.39
D11 11.32 3.77 1.19
D14 1.71 11.94 14.15
D17 1.32 2.04 3.26
D19 4.76 1.36 0.51
D23 1.28 1.3 1.28
Zoom data
When D0 (distance from the object to the first surface) is ∞
Wide-angle end Middle Telephoto end
Focal length 5.971 13.646 17.936
FNO. 2.83 4.8 5.86
D6 0.8 6.91 8.38
D10 8.97 2.86 1.39
D11 11.32 3.77 1.19
D14 1.71 11.94 14.15
D17 1.32 2.04 3.26
D19 4.76 1.36 0.51
D23 1.28 1.3 1.28

図7は本発明の実施例4にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。   FIG. 7 is a cross-sectional view along the optical axis showing an optical configuration at the time of focusing on an object point at infinity at the wide-angle end of a zoom lens according to Example 4 of the present invention.

図8は実施例4にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。   FIG. 8 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 4 is focused on an object point at infinity, where (a) is the wide-angle end, (b) is the middle, (c) shows the state at the telephoto end.

実施例4のズームレンズは、図7に示すように、物体側より順に、第1レンズ群G1と、第2レンズ群G2と、開口絞りSと、第3レンズ群G3と、第4レンズ群G4と、第5レンズ群G5を有している。なお、図中、LPFはローパスフィルター、CGはカバーガラス、Iは電子撮像素子の撮像面である。   As shown in FIG. 7, the zoom lens of Example 4 includes, in order from the object side, the first lens group G1, the second lens group G2, the aperture stop S, the third lens group G3, and the fourth lens group. G4 and the fifth lens group G5 are included. In the figure, LPF is a low-pass filter, CG is a cover glass, and I is an image pickup surface of an electronic image pickup element.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL111、プリズムL112、両凸レンズL113で構成されており、全体で正の屈折力を有している。   The first lens group G1 includes a negative meniscus lens L111 having a convex surface directed toward the object side, a prism L112, and a biconvex lens L113, and has a positive refractive power as a whole.

第2レンズ群G2は、両凹レンズL121と、物体側に凸面を向けた正メニスカスレンズL122で構成されており、全体で負の屈折力を有している。   The second lens group G2 includes a biconcave lens L121 and a positive meniscus lens L122 having a convex surface directed toward the object side, and has a negative refracting power as a whole.

第3レンズ群G3は、両凸レンズL131と両凹レンズL132との接合レンズで構成されており、全体で正の屈折力を有している。   The third lens group G3 is composed of a cemented lens made up of a biconvex lens L131 and a biconcave lens L132, and has a positive refractive power as a whole.

第4レンズ群G4は、物体側に凸面を向けた負メニスカスレンズL141と、物体側に凸面を向けた正メニスカスレンズL142との接合レンズで構成されており、全体で負の屈折力を有している。物体側に凸面を向けた正メニスカスレンズL142は、心厚の薄いレンズである。   The fourth lens group G4 includes a cemented lens which is formed by a negative meniscus lens L141 having a convex surface directed toward the object side and a positive meniscus lens L142 having a convex surface directed toward the object side, and has a negative refracting power as a whole. ing. The positive meniscus lens L142 having a convex surface facing the object side is a lens having a thin heart thickness.

第5レンズ群G5は、両凸レンズL151で構成されており、全体で正の屈折力を有している。   The fifth lens group G5 includes a biconvex lens L151, and has a positive refractive power as a whole.

広角端から望遠端へと変倍する際には、第1レンズ群G1は固定、第2レンズ群G2は像側へ移動し、開口絞りSは固定、第3レンズ群G3は物体側へ移動し、第4レンズ群G4は一旦像側へ移動した後に物体側へ移動し、第5レンズ群G5像側へ移動する。   When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, the second lens group G2 is moved to the image side, the aperture stop S is fixed, and the third lens group G3 is moved to the object side. The fourth lens group G4 once moves to the image side, then moves to the object side, and moves to the image side of the fifth lens group G5.

非球面は、第1レンズ群G1中の両凸レンズL113の物体側の面、第2レンズ群G2中の両凹レンズL121の両面、第3レンズ群G3中の両凸レンズL131の物体側の面、両凹レンズL132の像側の面、第4レンズ群G4中の物体側に凸面を向けた正メニスカスレンズL142の像側の面、第5レンズ群G5中の両凸レンズL151の物体側の面に設けられている。   The aspherical surfaces are the object side surface of the biconvex lens L113 in the first lens group G1, both surfaces of the biconcave lens L121 in the second lens group G2, the object side surface of the biconvex lens L131 in the third lens group G3, both Provided on the image side surface of the concave lens L132, the image side surface of the positive meniscus lens L142 with the convex surface facing the object side in the fourth lens group G4, and the object side surface of the biconvex lens L151 in the fifth lens group G5. ing.

次に、本実施例の数値データを掲げる。
数値データ4
r1=32.631
d1=1 Nd1=1.8061 νd1=40.92
r2=9.985
d2=2.9
r3=∞
d3=12 Nd3=1.8061 νd3=40.92
r4=∞
d4=0.3
r5=25.505 (非球面)
d5=3.54 Nd5=1.741 νd5=52.64
r6=-31.527
d6=D6
r7=-151.509 (非球面)
d7=0.8 Nd7=1.8061 νd7=40.92
r8=6.307(非球面)
d8=0.7
r9=8.373
d9=2.2 Nd9=1.7552 νd9=27.51
r10=87.071
d10=D10
r11=絞り
d11=D11
r12=8.110 (非球面)
d12=6.01 Nd12=1.6935 νd12=53.21
r13=-11.313
d13=0.7 Nd13=1.84666 νd13=23.78
r14=26.936 (非球面)
d14=D14
r15=34.857
d15=0.6 Nd15=1.48749 νd15=70.23
r16=11.538
d16=0.1 Nd16=1.72568 νd16=18.68
r17=12.691 (非球面)
d17=D17
r18=13.654(非球面)
d18=1.8 Nd18=1.7432 νd18=49.34
r19=-43.21
d19=D19
r20=∞
d20=1.9 Nd20=1.54771 νd20=62.84
r21=∞
d21=0.8
r22=∞
d22=0.75 Nd22=1.51633 νd22=64.14
r23=∞
d23=D23
Next, numerical data of this embodiment will be listed.
Numerical data 4
r1 = 32.631
d1 = 1 Nd1 = 1.8061 νd1 = 40.92
r2 = 9.985
d2 = 2.9
r3 = ∞
d3 = 12 Nd3 = 1.8061 νd3 = 40.92
r4 = ∞
d4 = 0.3
r5 = 25.505 (Aspherical surface)
d5 = 3.54 Nd5 = 1.741 νd5 = 52.64
r6 = -31.527
d6 = D6
r7 = -151.509 (Aspherical surface)
d7 = 0.8 Nd7 = 1.8061 νd7 = 40.92
r8 = 6.307 (aspherical surface)
d8 = 0.7
r9 = 8.373
d9 = 2.2 Nd9 = 1.7552 νd9 = 27.51
r10 = 87.071
d10 = D10
r11 = aperture d11 = D11
r12 = 8.110 (aspherical surface)
d12 = 6.01 Nd12 = 1.6935 νd12 = 53.21
r13 = -11.313
d13 = 0.7 Nd13 = 1.84666 νd13 = 23.78
r14 = 26.936 (Aspherical surface)
d14 = D14
r15 = 34.857
d15 = 0.6 Nd15 = 1.48749 νd15 = 70.23
r16 = 11.338
d16 = 0.1 Nd16 = 1.72568 νd16 = 18.68
r17 = 12.691 (aspherical surface)
d17 = D17
r18 = 13.654 (aspherical surface)
d18 = 1.8 Nd18 = 1.7432 νd18 = 49.34
r19 = -43.21
d19 = D19
r20 = ∞
d20 = 1.9 Nd20 = 1.54771 νd20 = 62.84
r21 = ∞
d21 = 0.8
r22 = ∞
d22 = 0.75 Nd22 = 1.51633 νd22 = 64.14
r23 = ∞
d23 = D23

非球面係数
第5面
k=0
A4=6.81895E-06
A6=1.57853E-07
A8=0
第7面
k=0
A4=-1.70993E-06
A6=2.36923E-06
A8=-8.61161E-08
第8面
k=0
A4=-3.29439E-04
A6=4.30202E-06
A8=-4.88617E-07
第12面
k=0
A4=8.07503E-05
A6=3.66307E-06
A8=-3.68004E-08
第14面
k=0
A4=6.11551E-04
A6=1.35724E-05
A8=4.04446E-07
第17面
k=0
A4=1.30946E-05
A6=-2.52309E-06
A8=0.00000E+00
第18面
k=0
A4=-7.62235E-06
A6=-2.71920E-07
A8=-2.83588E-09
Aspherical coefficient fifth surface
k = 0
A4 = 6.81895E-06
A6 = 1.57853E-07
A8 = 0
7th page
k = 0
A4 = -1.70993E-06
A6 = 2.36923E-06
A8 = -8.61161E-08
8th page
k = 0
A4 = -3.29439E-04
A6 = 4.30202E-06
A8 = -4.88617E-07
12th page
k = 0
A4 = 8.07503E-05
A6 = 3.66307E-06
A8 = -3.68004E-08
14th page
k = 0
A4 = 6.11551E-04
A6 = 1.35724E-05
A8 = 4.04446E-07
17th page
k = 0
A4 = 1.30946E-05
A6 = -2.52309E-06
A8 = 0.000E + 00
18th page
k = 0
A4 = -7.62235E-06
A6 = -2.71920E-07
A8 = -2.83588E-09

ズームデータ
D0(物体から第1面までの距離)が∞のとき
広角端 中間 望遠端
焦点距離 6.02 13.7 17.993
FNO. 2.85 4.35 5.45
D6 0.8 10.48 11.56
D10 12.16 2.48 1.4
D11 10.47 4.03 1.19
D14 1.69 11.35 15.31
D17 2.99 2.24 2.67
D19 4.54 2.06 0.5
D23 1.36 1.36 1.36
Zoom data
When D0 (distance from the object to the first surface) is ∞
Wide-angle end Middle Telephoto end
Focal length 6.02 13.7 17.993
FNO. 2.85 4.35 5.45
D6 0.8 10.48 11.56
D10 12.16 2.48 1.4
D11 10.47 4.03 1.19
D14 1.69 11.35 15.31
D17 2.99 2.24 2.67
D19 4.54 2.06 0.5
D23 1.36 1.36 1.36

図9は本発明の実施例5にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。   FIG. 9 is a cross-sectional view along the optical axis showing the optical configuration when focusing on an object point at infinity at the wide-angle end of a zoom lens according to Example 5 of the present invention.

図10は実施例5にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。   FIG. 10 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 5 is focused on an object point at infinity, where (a) is a wide angle end, (b) is an intermediate position, (c) shows the state at the telephoto end.

実施例5のズームレンズは、図9に示すように、物体側より順に、第1レンズ群G1と、第2レンズ群G2と、開口絞りSと、第3レンズ群G3と、第4レンズ群G4と、第5レンズ群G5を有している。なお、図中、LPFはローパスフィルター、CGはカバーガラス、Iは電子撮像素子の撮像面である。   As shown in FIG. 9, the zoom lens of Example 5 includes, in order from the object side, a first lens group G1, a second lens group G2, an aperture stop S, a third lens group G3, and a fourth lens group. G4 and the fifth lens group G5 are included. In the figure, LPF is a low-pass filter, CG is a cover glass, and I is an image pickup surface of an electronic image pickup element.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL111、プリズムL112、両凸レンズL113で構成されており、全体で正の屈折力を有している。   The first lens group G1 includes a negative meniscus lens L111 having a convex surface directed toward the object side, a prism L112, and a biconvex lens L113, and has a positive refractive power as a whole.

第2レンズ群G2は、両凹レンズL121と、物体側に凸面を向けた正メニスカスレンズL122で構成されており、全体で負の屈折力を有している。   The second lens group G2 includes a biconcave lens L121 and a positive meniscus lens L122 having a convex surface directed toward the object side, and has a negative refracting power as a whole.

第3レンズ群G3は、両凸レンズL131と両凹レンズL132との接合レンズで構成されており、全体で正の屈折力を有している。   The third lens group G3 is composed of a cemented lens made up of a biconvex lens L131 and a biconcave lens L132, and has a positive refractive power as a whole.

第4レンズ群G4は、物体側に凸面を向けた負メニスカスレンズL141と、物体側に凸面を向けた正メニスカスレンズL142との接合レンズで構成されており、全体で負の屈折力を有している。物体側に凸面を向けた正メニスカスレンズL142は、心厚の薄いレンズである。   The fourth lens group G4 includes a cemented lens which is formed by a negative meniscus lens L141 having a convex surface directed toward the object side and a positive meniscus lens L142 having a convex surface directed toward the object side, and has a negative refracting power as a whole. ing. The positive meniscus lens L142 having a convex surface facing the object side is a lens having a thin heart thickness.

第5レンズ群G5は、両凸レンズL151で構成されており、全体で正の屈折力を有している。   The fifth lens group G5 includes a biconvex lens L151, and has a positive refractive power as a whole.

広角端から望遠端へと変倍する際には、第1レンズ群G1は固定、第2レンズ群G2は像側へ移動し、開口絞りSは固定、第3レンズ群G3は物体側へ移動し、第4レンズ群G4は一旦像側へ移動した後に物体側へ移動し、第5レンズ群G5像側へ移動する。   When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, the second lens group G2 is moved to the image side, the aperture stop S is fixed, and the third lens group G3 is moved to the object side. The fourth lens group G4 once moves to the image side, then moves to the object side, and moves to the image side of the fifth lens group G5.

非球面は、第1レンズ群G1中の両凸レンズL113の物体側の面、第2レンズ群G2中の両凹レンズL121の両面、第3レンズ群G3中の両凸レンズL131の物体側の面、両凹レンズL132の像側の面、第4レンズ群G4中の物体側に凸面を向けた正メニスカスレンズL142の像側の面、第5レンズ群G5中の両凸レンズL151の物体側の面に設けられている。   The aspherical surfaces are the object side surface of the biconvex lens L113 in the first lens group G1, both surfaces of the biconcave lens L121 in the second lens group G2, the object side surface of the biconvex lens L131 in the third lens group G3, both Provided on the image side surface of the concave lens L132, the image side surface of the positive meniscus lens L142 with the convex surface facing the object side in the fourth lens group G4, and the object side surface of the biconvex lens L151 in the fifth lens group G5. ing.

次に、本実施例の数値データを掲げる。
数値データ5
r1=34.223
d1=1 Nd1=1.8061 νd1=40.92
r2=9.992
d2=2.9
r3=∞
d3=12 Nd3=1.8061 νd3=40.92
r4=∞
d4=0.3
r5=25.219 (非球面)
d5=3.54 Nd5=1.741 νd5=52.64
r6=-31.093
d6=D6
r7=-171.219 (非球面)
d7=0.8 Nd7=1.8061 νd7=40.92
r8=6.240 (非球面)
d8=0.7
r9=8.367
d9=2.2 Nd9=1.7552 νd9=27.51
r10=94.233
d10=D10
r11=絞り
d11=D11
r12=8.110 (非球面)
d12=6.14 Nd12=1.6935 νd12=53.21
r13=-10.501
d13=0.7 Nd13=1.84666 νd13=23.78
r14=27.402 (非球面)
d14=D14
r15=35.798
d15=0.6 Nd15=1.48749 νd15=70.23
r16=11.909
d16=0.1 Nd16=1.852 νd16=14.02
r17=13.099 (非球面)
d17=D17
r18=14.223 (非球面)
d18=1.8 Nd18=1.7432 νd18=49.34
r19=-42.909
d19=D19
r20=∞
d20=1.9 Nd20=1.54771 νd20=62.84
r21=∞
d21=0.8
r22=∞
d22=0.75 Nd22=1.51633 νd22=64.14
r23=∞
d23=D23
Next, numerical data of this embodiment will be listed.
Numerical data 5
r1 = 34.223
d1 = 1 Nd1 = 1.8061 νd1 = 40.92
r2 = 9.992
d2 = 2.9
r3 = ∞
d3 = 12 Nd3 = 1.8061 νd3 = 40.92
r4 = ∞
d4 = 0.3
r5 = 25.219 (Aspherical surface)
d5 = 3.54 Nd5 = 1.741 νd5 = 52.64
r6 = -31.093
d6 = D6
r7 = -171.219 (Aspherical surface)
d7 = 0.8 Nd7 = 1.8061 νd7 = 40.92
r8 = 6.240 (aspherical surface)
d8 = 0.7
r9 = 8.367
d9 = 2.2 Nd9 = 1.7552 νd9 = 27.51
r10 = 94.233
d10 = D10
r11 = aperture d11 = D11
r12 = 8.110 (aspherical surface)
d12 = 6.14 Nd12 = 1.6935 νd12 = 53.21
r13 = -10.501
d13 = 0.7 Nd13 = 1.84666 νd13 = 23.78
r14 = 27.402 (Aspherical surface)
d14 = D14
r15 = 35.798
d15 = 0.6 Nd15 = 1.48749 νd15 = 70.23
r16 = 11.909
d16 = 0.1 Nd16 = 1.852 νd16 = 14.02
r17 = 13.099 (Aspherical surface)
d17 = D17
r18 = 14.223 (Aspherical surface)
d18 = 1.8 Nd18 = 1.7432 νd18 = 49.34
r19 = -42.909
d19 = D19
r20 = ∞
d20 = 1.9 Nd20 = 1.54771 νd20 = 62.84
r21 = ∞
d21 = 0.8
r22 = ∞
d22 = 0.75 Nd22 = 1.51633 νd22 = 64.14
r23 = ∞
d23 = D23

非球面係数
第5面
k=0
A4=6.45893E-06
A6=1.37910E-07
A8=0
第7面
k=0
A4=-2.12805E-06
A6=1.24854E-06
A8=-5.50277E-08
第8面
k=0
A4=-3.36684E-04
A6=1.67990E-06
A8=-4.39469E-07
第12面
k=0
A4=7.11651E-05
A6=4.18868E-06
A8=-7.13660E-08
第14面
k=0
A4=5.75134E-04
A6=1.71545E-05
A8=1.92117E-07
第17面
k=0
A4=3.19443E-05
A6=-2.58744E-06
A8=0.00000E+00
第18面
k=0
A4=-1.27513E-06
A6=-4.93312E-08
A8=-9.86622E-09
Aspherical coefficient fifth surface
k = 0
A4 = 6.45893E-06
A6 = 1.37910E-07
A8 = 0
7th page
k = 0
A4 = -2.12805E-06
A6 = 1.48554E-06
A8 = -5.50277E-08
8th page
k = 0
A4 = -3.36684E-04
A6 = 1.79990E-06
A8 = -4.39469E-07
12th page
k = 0
A4 = 7.11651E-05
A6 = 4.18868E-06
A8 = -7.13660E-08
14th page
k = 0
A4 = 5.75134E-04
A6 = 1.71545E-05
A8 = 1.92117E-07
17th page
k = 0
A4 = 3.19443E-05
A6 = -2.58744E-06
A8 = 0.000E + 00
18th page
k = 0
A4 = -1.27513E-06
A6 = -4.93312E-08
A8 = -9.86622E-09

ズームデータ
D0(物体から第1面までの距離)が∞のとき
広角端 中間 望遠端
焦点距離 6.026 13.701 17.994
FNO. 2.85 4.22 5.29
D6 0.8 11.11 12.22
D10 12.81 2.5 1.4
D11 10.02 4 1.19
D14 1.7 10.83 14.52
D17 2.97 2.24 2.94
D19 4.47 2.09 0.5
D23 1.36 1.36 1.36
Zoom data
When D0 (distance from the object to the first surface) is ∞
Wide-angle end Middle Telephoto end
Focal length 6.026 13.701 17.994
FNO. 2.85 4.22 5.29
D6 0.8 11.11 12.22
D10 12.81 2.5 1.4
D11 10.02 4 1.19
D14 1.7 10.83 14.52
D17 2.97 2.24 2.94
D19 4.47 2.09 0.5
D23 1.36 1.36 1.36

図11は本発明の実施例6にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。   FIG. 11 is a cross-sectional view along the optical axis showing an optical configuration at the time of focusing on an object point at infinity at the wide-angle end of a zoom lens according to Example 6 of the present invention.

図12は実施例6にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。   12A and 12B are diagrams showing spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 6 is focused on an object point at infinity, where (a) is a wide angle end, (b) is an intermediate position, (c) shows the state at the telephoto end.

実施例6のズームレンズは、図11に示すように、物体側より順に、第1レンズ群G1と、第2レンズ群G2と、開口絞りSと、第3レンズ群G3と、第4レンズ群G4と、第5レンズ群G5を有している。なお、図中、LPFはローパスフィルター、CGはカバーガラス、Iは電子撮像素子の撮像面である。   As shown in FIG. 11, the zoom lens of Example 6 includes, in order from the object side, a first lens group G1, a second lens group G2, an aperture stop S, a third lens group G3, and a fourth lens group. G4 and the fifth lens group G5 are included. In the figure, LPF is a low-pass filter, CG is a cover glass, and I is an image pickup surface of an electronic image pickup element.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL111、プリズムL112、両凸レンズL113で構成されており、全体で正の屈折力を有している。   The first lens group G1 includes a negative meniscus lens L111 having a convex surface directed toward the object side, a prism L112, and a biconvex lens L113, and has a positive refractive power as a whole.

第2レンズ群G2は、両凹レンズL121と、物体側に凸面を向けた正メニスカスレンズL122で構成されており、全体で負の屈折力を有している。   The second lens group G2 includes a biconcave lens L121 and a positive meniscus lens L122 having a convex surface directed toward the object side, and has a negative refracting power as a whole.

第3レンズ群G3は、両凸レンズL131と両凹レンズL132との接合レンズで構成されており、全体で正の屈折力を有している。   The third lens group G3 is composed of a cemented lens made up of a biconvex lens L131 and a biconcave lens L132, and has a positive refractive power as a whole.

第4レンズ群G4は、物体側に凸面を向けた負メニスカスレンズL141と、物体側に凸面を向けた正メニスカスレンズL142との接合レンズで構成されており、全体で負の屈折力を有している。物体側に凸面を向けた正メニスカスレンズL142は、心厚の薄いレンズである。   The fourth lens group G4 includes a cemented lens which is formed by a negative meniscus lens L141 having a convex surface directed toward the object side and a positive meniscus lens L142 having a convex surface directed toward the object side, and has a negative refracting power as a whole. ing. The positive meniscus lens L142 having a convex surface facing the object side is a lens having a thin heart thickness.

第5レンズ群G5は、物体側に凸面を向けた正メニスカスレンズL151で構成されており、全体で正の屈折力を有している。   The fifth lens group G5 includes a positive meniscus lens L151 having a convex surface directed toward the object side, and has a positive refracting power as a whole.

広角端から望遠端へと変倍する際には、第1レンズ群G1は固定、第2レンズ群G2は像側へ移動し、開口絞りSは固定、第3レンズ群G3は物体側へ移動し、第4レンズ群G4は一旦像側へ移動した後に物体側へ移動し、第5レンズ群G5像側へ移動する。   When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, the second lens group G2 is moved to the image side, the aperture stop S is fixed, and the third lens group G3 is moved to the object side. The fourth lens group G4 once moves to the image side, then moves to the object side, and moves to the image side of the fifth lens group G5.

非球面は、第1レンズ群G1中の両凸レンズL113の物体側の面、第2レンズ群G2中の両凹レンズL121の両面、第3レンズ群G3中の両凸レンズL131の物体側の面、両凹レンズL132の像側の面、第4レンズ群G4中の物体側に凸面を向けた正メニスカスレンズL142の像側の面、第5レンズ群G5中の物体側に凸面を向けた正メニスカスレンズL151の物体側の面に設けられている。   The aspherical surfaces are the object side surface of the biconvex lens L113 in the first lens group G1, both surfaces of the biconcave lens L121 in the second lens group G2, the object side surface of the biconvex lens L131 in the third lens group G3, both The image side surface of the concave lens L132, the image side surface of the positive meniscus lens L142 with the convex surface facing the object side in the fourth lens group G4, and the positive meniscus lens L151 with the convex surface facing the object side in the fifth lens group G5 It is provided on the object side surface.

次に、本実施例の数値データを掲げる。
数値データ6
r1=25.378
d1=1 Nd1=1.8061 νd1=40.92
r2=9.203
d2=3.71
r3=∞
d3=12 Nd3=1.8061 νd3=40.92
r4=∞
d4=0.3
r5=47.204 (非球面)
d5=3.54 Nd5=1.741 νd5=52.64
r6=-22.238
d6=D6
r7=-59.956(非球面)
d7=0.8 Nd7=1.8061 νd7=40.92
r8=6.912(非球面)
d8=0.7
r9=9.696
d9=2.2 Nd9=1.7552 νd9=27.51
r10=218.437
d10=D10
r11=絞り
d11=D11
r12=7.687 (非球面)
d12=6.26 Nd12=1.6935 νd12=53.21
r13=-12.317
d13=0.7 Nd13=1.84666 νd13=23.78
r14=29.010(非球面)
d14=D14
r15=15.343
d15=0.6 Nd15=1.58267 νd15=46.42
r16=7.801
d16=0.1 Nd16=1.65228 νd16=12
r17=7.969 (非球面)
d17=D17
r18=10.663 (非球面)
d18=1.8 Nd18=1.7725 νd18=49.6
r19=182.013
d19=D19
r20=∞
d20=1.9 Nd20=1.54771 νd20=62.84
r21=∞
d21=0.8
r22=∞
d22=0.75 Nd22=1.51633 νd22=64.14
r23=∞
d23=D23
Next, numerical data of this embodiment will be listed.
Numerical data 6
r1 = 25.378
d1 = 1 Nd1 = 1.8061 νd1 = 40.92
r2 = 9.203
d2 = 3.71
r3 = ∞
d3 = 12 Nd3 = 1.8061 νd3 = 40.92
r4 = ∞
d4 = 0.3
r5 = 47.204 (Aspherical surface)
d5 = 3.54 Nd5 = 1.741 νd5 = 52.64
r6 = -22.238
d6 = D6
r7 = -59.956 (Aspherical surface)
d7 = 0.8 Nd7 = 1.8061 νd7 = 40.92
r8 = 6.912 (aspherical surface)
d8 = 0.7
r9 = 9.696
d9 = 2.2 Nd9 = 1.7552 νd9 = 27.51
r10 = 218.437
d10 = D10
r11 = aperture d11 = D11
r12 = 7.687 (aspherical surface)
d12 = 6.26 Nd12 = 1.6935 νd12 = 53.21
r13 = -12.317
d13 = 0.7 Nd13 = 1.84666 νd13 = 23.78
r14 = 29.010 (aspherical surface)
d14 = D14
r15 = 15.343
d15 = 0.6 Nd15 = 1.58267 νd15 = 46.42
r16 = 7.801
d16 = 0.1 Nd16 = 1.65228 νd16 = 12
r17 = 7.969 (aspherical surface)
d17 = D17
r18 = 10.663 (aspherical surface)
d18 = 1.8 Nd18 = 1.7725 νd18 = 49.6
r19 = 182.013
d19 = D19
r20 = ∞
d20 = 1.9 Nd20 = 1.54771 νd20 = 62.84
r21 = ∞
d21 = 0.8
r22 = ∞
d22 = 0.75 Nd22 = 1.51633 νd22 = 64.14
r23 = ∞
d23 = D23

非球面係数
第5面
k=0
A4=1.56293E-05
A6=1.88151E-07
A8=0
第7面
k=0
A4=-3.52622E-04
A6=1.94506E-05
A8=-2.27135E-07
第8面
k=0
A4=-6.69309E-04
A6=1.97817E-05
A8=-2.00038E-07
第12面
k=0
A4=7.43312E-05
A6=1.49461E-06
A8=2.68705E-08
第14面
k=0
A4=7.23485E-04
A6=9.02163E-06
A8=9.80727E-07
第17面
k=0
A4=6.18056E-06
A6=2.05787E-06
A8=0.00000E+00
第18面
k=0
A4=-3.12291E-05
A6=9.09050E-06
A8=-1.55608E-07
Aspherical coefficient fifth surface
k = 0
A4 = 1.56293E-05
A6 = 1.88151E-07
A8 = 0
7th page
k = 0
A4 = -3.52622E-04
A6 = 1.94506E-05
A8 = -2.27135E-07
8th page
k = 0
A4 = -6.69309E-04
A6 = 1.97817E-05
A8 = -2.00038E-07
12th page
k = 0
A4 = 7.43312E-05
A6 = 1.49461E-06
A8 = 2.68705E-08
14th page
k = 0
A4 = 7.23485E-04
A6 = 9.02163E-06
A8 = 9.80727E-07
17th page
k = 0
A4 = 6.18056E-06
A6 = 2.05787E-06
A8 = 0.000E + 00
18th page
k = 0
A4 = -3.12291E-05
A6 = 9.09050E-06
A8 = -1.55608E-07

ズームデータ
D0(物体から第1面までの距離)が∞のとき
広角端 中間 望遠端
焦点距離 6.1 13.42 17.995
FNO. 3.37 5.23 6.58
D6 3.92 9.22 9.7
D10 12.74 2.46 0.47
D11 6.15 2.51 0.43
D14 1.57 12.09 15.5
D17 1.33 2 3.24
D19 4.75 1.4 0.53
D23 1.37 1.37 1.37
Zoom data
When D0 (distance from the object to the first surface) is ∞
Wide-angle end Middle Telephoto end
Focal length 6.1 13.42 17.995
FNO. 3.37 5.23 6.58
D6 3.92 9.22 9.7
D10 12.74 2.46 0.47
D11 6.15 2.51 0.43
D14 1.57 12.09 15.5
D17 1.33 2 3.24
D19 4.75 1.4 0.53
D23 1.37 1.37 1.37

図13は本発明の実施例7にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。   FIG. 13 is a cross-sectional view along the optical axis showing an optical configuration at the time of focusing on an object point at infinity at the wide-angle end of a zoom lens according to Example 7 of the present invention.

図14は実施例7にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。   FIG. 14 is a diagram showing spherical aberration, astigmatism, distortion aberration, and chromatic aberration of magnification when the zoom lens according to Example 7 is focused on an object point at infinity, where (a) is a wide angle end, (b) is an intermediate position, (c) shows the state at the telephoto end.

実施例7のズームレンズは、図13に示すように、物体側より順に、第1レンズ群G1と、第2レンズ群G2と、開口絞りSと、第3レンズ群G3と、第4レンズ群G4と、第5レンズ群G5を有している。なお、図中、LPFはローパスフィルター、CGはカバーガラス、Iは電子撮像素子の撮像面である。   As shown in FIG. 13, the zoom lens according to the seventh exemplary embodiment includes, in order from the object side, the first lens group G1, the second lens group G2, the aperture stop S, the third lens group G3, and the fourth lens group. G4 and the fifth lens group G5 are included. In the figure, LPF is a low-pass filter, CG is a cover glass, and I is an image pickup surface of an electronic image pickup element.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL111、プリズムL112、両凸レンズL113で構成されており、全体で正の屈折力を有している。   The first lens group G1 includes a negative meniscus lens L111 having a convex surface directed toward the object side, a prism L112, and a biconvex lens L113, and has a positive refractive power as a whole.

第2レンズ群G2は、両凹レンズL121と、物体側に凸面を向けた正メニスカスレンズL122で構成されており、全体で負の屈折力を有している。   The second lens group G2 includes a biconcave lens L121 and a positive meniscus lens L122 having a convex surface directed toward the object side, and has a negative refracting power as a whole.

第3レンズ群G3は、両凸レンズL131と両凹レンズL132との接合レンズで構成されており、全体で正の屈折力を有している。   The third lens group G3 is composed of a cemented lens made up of a biconvex lens L131 and a biconcave lens L132, and has a positive refractive power as a whole.

第4レンズ群G4は、物体側に凸面を向けた負メニスカスレンズL141と、物体側に凸面を向けた負メニスカスレンズL142との接合レンズで構成されており、全体で負の屈折力を有している。物体側に凸面を向けた負メニスカスレンズL142は、心厚の薄いレンズである。   The fourth lens group G4 includes a cemented lens which is formed by a negative meniscus lens L141 having a convex surface directed toward the object side and a negative meniscus lens L142 having a convex surface directed toward the object side, and has a negative refracting power as a whole. ing. The negative meniscus lens L142 having a convex surface facing the object side is a lens having a thin heart thickness.

第5レンズ群G5は、物体側に凸面を向けた正メニスカスレンズL151で構成されており、全体で正の屈折力を有している。   The fifth lens group G5 includes a positive meniscus lens L151 having a convex surface directed toward the object side, and has a positive refracting power as a whole.

広角端から望遠端へと変倍する際には、第1レンズ群G1は固定、第2レンズ群G2は像側へ移動し、開口絞りSは固定、第3レンズ群G3は物体側へ移動し、第4レンズ群G4は一旦像側へ移動した後に物体側へ移動し、第5レンズ群G5像側へ移動する。   When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, the second lens group G2 is moved to the image side, the aperture stop S is fixed, and the third lens group G3 is moved to the object side. The fourth lens group G4 once moves to the image side, then moves to the object side, and moves to the image side of the fifth lens group G5.

非球面は、第1レンズ群G1中の両凸レンズL113の物体側の面、第2レンズ群G2中の両凹レンズL121の両面、第3レンズ群G3中の両凸レンズL131の物体側の面、両凹レンズL132の像側の面、第4レンズ群G4中の物体側に凸面を向けた負メニスカスレンズL142の像側の面、第5レンズ群G5中の物体側に凸面を向けた正メニスカスレンズL151の物体側の面に設けられている。   The aspherical surfaces are the object side surface of the biconvex lens L113 in the first lens group G1, both surfaces of the biconcave lens L121 in the second lens group G2, the object side surface of the biconvex lens L131 in the third lens group G3, both An image side surface of the concave lens L132, an image side surface of the negative meniscus lens L142 having a convex surface facing the object side in the fourth lens group G4, and a positive meniscus lens L151 having a convex surface facing the object side in the fifth lens group G5 It is provided on the object side surface.

次に、本実施例の数値データを掲げる。
数値データ7
r1=22.245
d1=1 Nd1=1.8061 νd1=40.92
r2=8.826
d2=3.45
r3=∞
d3=12 Nd3=1.8061 νd3=40.92
r4=∞
d4=0.3
r5=36.134(非球面)
d5=3.54 Nd5=1.741 νd5=52.64
r6=-26.96
d6=D6
r7=-114.807(非球面)
d7=0.8 Nd7=1.8061 νd7=40.92
r8=6.407 (非球面)
d8=0.7
r9=8.98
d9=2.2 Nd9=1.7552 νd9=27.51
r10=126.659
d10=D10
r11=絞り
d11=D11
r12=7.716 (非球面)
d12=6.16 Nd12=1.6935 νd12=53.21
r13=-11.934
d13=0.7 Nd13=1.84666 νd13=23.78
r14=29.278 (非球面)
d14=D14
r15=11.15
d15=0.6 Nd15=1.48749 νd15=70.23
r16=6.803
d16=0.1 Nd16=1.59885 νd16=6.52
r17=6.686(非球面)
d17=D17
r18=10.149 (非球面)
d18=1.8 Nd18=1.7432 νd18=49.34
r19=93.849
d19=D19
r20=∞
d20=1.9 Nd20=1.54771 νd20=62.84
r21=∞
d21=0.8
r22=∞
d22=0.75 Nd22=1.51633 νd22=64.14
r23=∞
d23=D23
Next, numerical data of this embodiment will be listed.
Numerical data 7
r1 = 22.245
d1 = 1 Nd1 = 1.8061 νd1 = 40.92
r2 = 8.826
d2 = 3.45
r3 = ∞
d3 = 12 Nd3 = 1.8061 νd3 = 40.92
r4 = ∞
d4 = 0.3
r5 = 36.134 (aspherical surface)
d5 = 3.54 Nd5 = 1.741 νd5 = 52.64
r6 = -26.96
d6 = D6
r7 = -114.807 (aspherical surface)
d7 = 0.8 Nd7 = 1.8061 νd7 = 40.92
r8 = 6.407 (Aspherical surface)
d8 = 0.7
r9 = 8.98
d9 = 2.2 Nd9 = 1.7552 νd9 = 27.51
r10 = 126.659
d10 = D10
r11 = aperture
d11 = D11
r12 = 7.716 (aspherical surface)
d12 = 6.16 Nd12 = 1.6935 νd12 = 53.21
r13 = -11.934
d13 = 0.7 Nd13 = 1.84666 νd13 = 23.78
r14 = 29.278 (Aspherical surface)
d14 = D14
r15 = 11.15
d15 = 0.6 Nd15 = 1.48749 νd15 = 70.23
r16 = 6.803
d16 = 0.1 Nd16 = 1.59885 νd16 = 6.52
r17 = 6.686 (aspherical surface)
d17 = D17
r18 = 10.149 (Aspherical surface)
d18 = 1.8 Nd18 = 1.7432 νd18 = 49.34
r19 = 93.849
d19 = D19
r20 = ∞
d20 = 1.9 Nd20 = 1.54771 νd20 = 62.84
r21 = ∞
d21 = 0.8
r22 = ∞
d22 = 0.75 Nd22 = 1.51633 νd22 = 64.14
r23 = ∞
d23 = D23

非球面係数
第5面
k=0
A4=3.04484E-05
A6=2.47332E-07
A8=0
第7面
k=0
A4=-3.29779E-04
A6=1.94880E-05
A8=-2.30770E-07
第8面
k=0
A4=-6.90117E-04
A6=1.82143E-05
A8=-2.09696E-07
第12面
k=0
A4=7.14236E-05
A6=1.72782E-06
A8=2.44480E-08
第14面
k=0
A4=6.86121E-04
A6=1.02728E-05
A8=8.39843E-07
第17面
k=0
A4=-8.14853E-05
A6=6.69357E-07
A8=0.00000E+00
第18面
k=0
A4=-7.16543E-05
A6=1.04773E-05
A8=-1.54753E-07
Aspherical coefficient fifth surface
k = 0
A4 = 3.04484E-05
A6 = 2.47332E-07
A8 = 0
7th page
k = 0
A4 = -3.29779E-04
A6 = 1.94880E-05
A8 = -2.30770E-07
8th page
k = 0
A4 = -6.90117E-04
A6 = 1.82143E-05
A8 = -2.09696E-07
12th page
k = 0
A4 = 7.14236E-05
A6 = 1.72782E-06
A8 = 2.44480E-08
14th page
k = 0
A4 = 6.86121E-04
A6 = 1.02728E-05
A8 = 8.39843E-07
17th page
k = 0
A4 = -8.14853E-05
A6 = 6.69357E-07
A8 = 0.000E + 00
18th page
k = 0
A4 = -7.16543E-05
A6 = 1.04773E-05
A8 = -1.54753E-07

ズームデータ
D0(物体から第1面までの距離)が∞のとき
広角端 中間 望遠端
焦点距離 6.1 13.42 17.995
FNO. 3.21 5.1 6.43
D6 2.85 10.17 10.67
D10 10.88 2.65 0.77
D11 6.94 2.58 0.4
D14 1.17 12.06 15.56
D17 1.33 2.02 3.28
D19 4.75 1.39 0.49
D23 1.37 1.37 1.37
Zoom data
When D0 (distance from the object to the first surface) is ∞
Wide-angle end Middle Telephoto end
Focal length 6.1 13.42 17.995
FNO. 3.21 5.1 6.43
D6 2.85 10.17 10.67
D10 10.88 2.65 0.77
D11 6.94 2.58 0.4
D14 1.17 12.06 15.56
D17 1.33 2.02 3.28
D19 4.75 1.39 0.49
D23 1.37 1.37 1.37

図15は本発明の実施例8にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。   FIG. 15 is a cross-sectional view along the optical axis showing an optical configuration at the time of focusing on an object point at infinity at the wide-angle end of a zoom lens according to Example 8 of the present invention.

図16は実施例8にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。   FIG. 16 is a diagram showing spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 8 is focused on an object point at infinity, where (a) is the wide-angle end, (b) is the middle, (c) shows the state at the telephoto end.

実施例8のズームレンズは、図15に示すように、物体側より順に、第1レンズ群G1と、第2レンズ群G2と、開口絞りSと、第3レンズ群G3と、第4レンズ群G4と、第5レンズ群G5を有している。なお、図中、LPFはローパスフィルター、CGはカバーガラス、Iは電子撮像素子の撮像面である。   As shown in FIG. 15, the zoom lens of Example 8 includes, in order from the object side, the first lens group G1, the second lens group G2, the aperture stop S, the third lens group G3, and the fourth lens group. G4 and the fifth lens group G5 are included. In the figure, LPF is a low-pass filter, CG is a cover glass, and I is an image pickup surface of an electronic image pickup element.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL111、プリズムL112、両凸レンズL113で構成されており、全体で正の屈折力を有している。   The first lens group G1 includes a negative meniscus lens L111 having a convex surface directed toward the object side, a prism L112, and a biconvex lens L113, and has a positive refractive power as a whole.

第2レンズ群G2は、負両凹レンズL121と、物体側に凸面を向けた正メニスカスレンズL122で構成されており、全体で負の屈折力を有している。   The second lens group G2 includes a negative biconcave lens L121 and a positive meniscus lens L122 having a convex surface directed toward the object side, and has a negative refracting power as a whole.

第3レンズ群G3は、両凸レンズL131と両凹レンズL132との接合レンズで構成されており、全体で正の屈折力を有している。   The third lens group G3 is composed of a cemented lens made up of a biconvex lens L131 and a biconcave lens L132, and has a positive refractive power as a whole.

第4レンズ群G4は、物体側に凸面を向けた負メニスカスレンズL141と、物体側に凸面を向けた正メニスカスレンズL142との接合レンズで構成されており、全体で負の屈折力を有している。物体側に凸面を向けた正メニスカスレンズL142は、心厚の薄いレンズである。   The fourth lens group G4 includes a cemented lens which is formed by a negative meniscus lens L141 having a convex surface directed toward the object side and a positive meniscus lens L142 having a convex surface directed toward the object side, and has a negative refracting power as a whole. ing. The positive meniscus lens L142 having a convex surface facing the object side is a lens having a thin heart thickness.

第5レンズ群G5は、物体側に凸面を向けた正メニスカスレンズL151で構成されており、全体で正の屈折力を有している。   The fifth lens group G5 includes a positive meniscus lens L151 having a convex surface directed toward the object side, and has a positive refracting power as a whole.

広角端から望遠端へと変倍する際には、第1レンズ群G1は固定、第2レンズ群G2は像側へ移動し、開口絞りSは固定、第3レンズ群G3は物体側へ移動し、第4レンズ群G4は一旦像側へ移動した後に物体側へ移動し、第5レンズ群G5像側へ移動する。   When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, the second lens group G2 is moved to the image side, the aperture stop S is fixed, and the third lens group G3 is moved to the object side. The fourth lens group G4 once moves to the image side, then moves to the object side, and moves to the image side of the fifth lens group G5.

非球面は、第1レンズ群G1中の両凸レンズL113の物体側の面、第2レンズ群G2中の両凹レンズL121の両面、第3レンズ群G3中の両凸レンズL131の物体側の面、両凹レンズL132の像側の面、第4レンズ群G4中の物体側に凸面を向けた正メニスカスレンズL142の像側の面、第5レンズ群G5中の物体側に凸面を向けた正メニスカスレンズL151の物体側の面に設けられている。   The aspherical surfaces are the object side surface of the biconvex lens L113 in the first lens group G1, both surfaces of the biconcave lens L121 in the second lens group G2, the object side surface of the biconvex lens L131 in the third lens group G3, both The image side surface of the concave lens L132, the image side surface of the positive meniscus lens L142 with the convex surface facing the object side in the fourth lens group G4, and the positive meniscus lens L151 with the convex surface facing the object side in the fifth lens group G5 It is provided on the object side surface.

次に、本実施例の数値データを掲げる。
数値データ8
r1=23.3
d1=1 Nd1=1.8061 νd1=40.92
r2=8.963
d2=3.66
r3=∞
d3=12 Nd3=1.8061 νd3=40.92
r4=∞
d4=0.3
r5=43.373 (非球面)
d5=3.54 Nd5=1.741 νd5=52.64
r6=-23.569
d6=D6
r7=-60.807(非球面)
d7=0.8 Nd7=1.8061 νd7=40.92
r8=6.844 (非球面)
d8=0.7
r9=9.537
d9=2.2 Nd9=1.7552 νd9=27.51
r10=225.725
d10=D10
r11=絞り
d11=D11
r12=7.662 (非球面)
d12=6.34 Nd12=1.6935 νd12=53.21
r13=-11.718
d13=0.7 Nd13=1.84666 νd13=23.78
r14=28.761 (非球面)
d14=D14
r15=15.01
d15=0.6 Nd15=1.48749 νd15=70.23
r16=7.96
d16=0.1 Nd16=1.79525 νd16=9.95
r17=7.975 (非球面)
d17=D17
r18=11.632 (非球面)
d18=1.8 Nd18=1.7432 νd18=49.34
r19=234.357
d19=D19
r20=∞
d20=1.9 Nd20=1.54771 νd20=62.84
r21=∞
d21=0.8
r22=∞
d22=0.75 Nd22=1.51633 νd22=64.14
r23=∞
d23=D23
Next, numerical data of this embodiment will be listed.
Numerical data 8
r1 = 23.3
d1 = 1 Nd1 = 1.8061 νd1 = 40.92
r2 = 8.963
d2 = 3.66
r3 = ∞
d3 = 12 Nd3 = 1.8061 νd3 = 40.92
r4 = ∞
d4 = 0.3
r5 = 43.373 (Aspherical surface)
d5 = 3.54 Nd5 = 1.741 νd5 = 52.64
r6 = -23.569
d6 = D6
r7 = -60.807 (aspherical surface)
d7 = 0.8 Nd7 = 1.8061 νd7 = 40.92
r8 = 6.844 (Aspherical surface)
d8 = 0.7
r9 = 9.537
d9 = 2.2 Nd9 = 1.7552 νd9 = 27.51
r10 = 225.725
d10 = D10
r11 = aperture
d11 = D11
r12 = 7.662 (aspherical surface)
d12 = 6.34 Nd12 = 1.6935 νd12 = 53.21
r13 = -11.718
d13 = 0.7 Nd13 = 1.84666 νd13 = 23.78
r14 = 28.761 (aspherical surface)
d14 = D14
r15 = 15.01
d15 = 0.6 Nd15 = 1.48749 νd15 = 70.23
r16 = 7.96
d16 = 0.1 Nd16 = 1.79525 νd16 = 9.95
r17 = 7.975 (Aspherical surface)
d17 = D17
r18 = 11.632 (aspherical surface)
d18 = 1.8 Nd18 = 1.7432 νd18 = 49.34
r19 = 234.357
d19 = D19
r20 = ∞
d20 = 1.9 Nd20 = 1.54771 νd20 = 62.84
r21 = ∞
d21 = 0.8
r22 = ∞
d22 = 0.75 Nd22 = 1.51633 νd22 = 64.14
r23 = ∞
d23 = D23

非球面係数
第5面
k=0
A4=2.10592E-05
A6=2.04017E-07
A8=0
第7面
k=0
A4=-2.74185E-04
A6=1.68715E-05
A8=-1.96216E-07
第8面
k=0
A4=-5.92738E-04
A6=1.71764E-05
A8=-2.01706E-07
第12面
k=0
A4=6.68932E-05
A6=1.80769E-06
A8=1.66788E-08
第14面
k=0
A4=7.22351E-04
A6=1.11715E-05
A8=9.20361E-07
第17面
k=0
A4=-2.32260E-05
A6=6.22598E-07
A8=0.00000E+00
第18面
k=0
A4=-5.31997E-05
A6=8.76368E-06
A8=-1.43841E-07
Aspherical coefficient fifth surface
k = 0
A4 = 2.10592E-05
A6 = 2.04017E-07
A8 = 0
7th page
k = 0
A4 = -2.74185E-04
A6 = 1.68715E-05
A8 = -1.96216E-07
8th page
k = 0
A4 = -5.92738E-04
A6 = 1.7664E-05
A8 = -2.01706E-07
12th page
k = 0
A4 = 6.68932E-05
A6 = 1.80769E-06
A8 = 1.66788E-08
14th page
k = 0
A4 = 7.22351E-04
A6 = 1.11715E-05
A8 = 9.20361E-07
17th page
k = 0
A4 = -2.32260E-05
A6 = 6.22598E-07
A8 = 0.000E + 00
18th page
k = 0
A4 = -5.31997E-05
A6 = 8.76368E-06
A8 = -1.43841E-07

ズームデータ
D0(物体から第1面までの距離)が∞のとき
広角端 中間 望遠端
焦点距離 6.1 13.42 17.995
FNO. 3.45 5.14 6.51
D6 3.24 9.87 10.77
D10 13.65 2.39 0.92
D11 5.85 3.12 0.4
D14 1.48 11.6 14.74
D17 1.34 2.07 3.37
D19 4.75 1.33 0.4
D23 1.37 1.37 1.37
Zoom data
When D0 (distance from the object to the first surface) is ∞
Wide-angle end Middle Telephoto end
Focal length 6.1 13.42 17.995
FNO. 3.45 5.14 6.51
D6 3.24 9.87 10.77
D10 13.65 2.39 0.92
D11 5.85 3.12 0.4
D14 1.48 11.6 14.74
D17 1.34 2.07 3.37
D19 4.75 1.33 0.4
D23 1.37 1.37 1.37

図17は本発明の実施例9にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。   FIG. 17 is a cross-sectional view along the optical axis showing an optical configuration at the time of focusing on an object point at infinity at the wide-angle end of a zoom lens according to Example 9 of the present invention.

図18は実施例9にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。   FIG. 18 is a diagram illustrating spherical aberration, astigmatism, distortion, and lateral chromatic aberration when the zoom lens according to Example 9 is focused on an object point at infinity, where (a) is a wide-angle end, (b) is an intermediate view, (c) shows the state at the telephoto end.

実施例9のズームレンズは、図17に示すように、物体側より順に、第1レンズ群G1と、第2レンズ群G2と、開口絞りSと、第3レンズ群G3と、第4レンズ群G4と、第5レンズ群G5を有している。なお、図中、LPFはローパスフィルター、CGはカバーガラス、Iは電子撮像素子の撮像面である。   As shown in FIG. 17, the zoom lens according to the ninth embodiment includes, in order from the object side, the first lens group G1, the second lens group G2, the aperture stop S, the third lens group G3, and the fourth lens group. G4 and the fifth lens group G5 are included. In the figure, LPF is a low-pass filter, CG is a cover glass, and I is an image pickup surface of an electronic image pickup element.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL111、プリズムL112、両凸レンズL113で構成されており、全体で正の屈折力を有している。   The first lens group G1 includes a negative meniscus lens L111 having a convex surface directed toward the object side, a prism L112, and a biconvex lens L113, and has a positive refractive power as a whole.

第2レンズ群G2は、両凹レンズL121と、物体側に凸面を向けた正メニスカスレンズL122で構成されており、全体で負の屈折力を有している。   The second lens group G2 includes a biconcave lens L121 and a positive meniscus lens L122 having a convex surface directed toward the object side, and has a negative refracting power as a whole.

第3レンズ群G3は、両凸レンズL131と両凹レンズL132との接合レンズで構成されており、全体で正の屈折力を有している。   The third lens group G3 is composed of a cemented lens made up of a biconvex lens L131 and a biconcave lens L132, and has a positive refractive power as a whole.

第4レンズ群G4は、物体側に凸面を向けた負メニスカスレンズL141と、物体側に凸面を向けた正メニスカスレンズL142との接合レンズで構成されており、全体で負の屈折力を有している。物体側に凸面を向けた正メニスカスレンズL142は、心厚の薄いレンズである。   The fourth lens group G4 includes a cemented lens which is formed by a negative meniscus lens L141 having a convex surface directed toward the object side and a positive meniscus lens L142 having a convex surface directed toward the object side, and has a negative refracting power as a whole. ing. The positive meniscus lens L142 having a convex surface facing the object side is a lens having a thin heart thickness.

第5レンズ群G5は、両凸レンズL151で構成されており、全体で正の屈折力を有している。   The fifth lens group G5 includes a biconvex lens L151, and has a positive refractive power as a whole.

広角端から望遠端へと変倍する際には、第1レンズ群G1は固定、第2レンズ群G2は像側へ移動し、開口絞りSは固定、第3レンズ群G3は物体側へ移動し、第4レンズ群G4は一旦像側へ移動した後に物体側へ移動し、第5レンズ群G5像側へ移動する。   When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, the second lens group G2 is moved to the image side, the aperture stop S is fixed, and the third lens group G3 is moved to the object side. The fourth lens group G4 once moves to the image side, then moves to the object side, and moves to the image side of the fifth lens group G5.

非球面は、第1レンズ群G1中の両凸レンズL113の物体側の面、第2レンズ群G2中の両凹レンズL121の両面、第3レンズ群G3中の両凸レンズL131の物体側の面、両凹レンズL132の像側の面、第4レンズ群G4中の物体側に凸面を向けた正メニスカスレンズL142の像側の面、第5レンズ群G5中の両凸レンズL151の物体側の面に設けられている。   The aspherical surfaces are the object side surface of the biconvex lens L113 in the first lens group G1, both surfaces of the biconcave lens L121 in the second lens group G2, the object side surface of the biconvex lens L131 in the third lens group G3, both Provided on the image side surface of the concave lens L132, the image side surface of the positive meniscus lens L142 with the convex surface facing the object side in the fourth lens group G4, and the object side surface of the biconvex lens L151 in the fifth lens group G5. ing.

次に、本実施例の数値データを掲げる。
数値データ9
r1=23.417
d1=1 Nd1=1.8061 νd1=40.92
r2=8.991
d2=3.7
r3=∞
d3=12 Nd3=1.8061 νd3=40.92
r4=∞
d4=0.3
r5=42.756 (非球面)
d5=3.54 Nd5=1.741 νd5=52.64
r6=-23.653
d6=D6
r7=-62.454 (非球面)
d7=0.8 Nd7=1.8061 νd7=40.92
r8=6.820 (非球面)
d8=0.7
r9=9.53
d9=2.2 Nd9=1.7552 νd9=27.51
r10=216.48
d10=D10
r11=絞り
d11=D11
r12=7.667 (非球面)
d12=6.33 Nd12=1.6935 νd12=53.21
r13=-11.715
d13=0.7 Nd13=1.84666 νd13=23.78
r14=28.801 (非球面)
d14=D14
r15=16.547
d15=0.6 Nd15=1.48749 νd15=70.23
r16=8.396
d16=0.1 Nd16=1.9712 νd16=12.88
r17=8.453 (非球面)
d17=D17
r18=12.298 (非球面)
d18=1.8 Nd18=1.7432 νd18=49.34
r19=-1666.051
d19=D19
r20=∞
d20=1.9 Nd20=1.54771 νd20=62.84
r21=∞
d21=0.8
r22=∞
d22=0.75 Nd22=1.51633 νd22=64.14
r23=∞
d23=D23
Next, numerical data of this embodiment will be listed.
Numerical data 9
r1 = 23.417
d1 = 1 Nd1 = 1.8061 νd1 = 40.92
r2 = 8.991
d2 = 3.7
r3 = ∞
d3 = 12 Nd3 = 1.8061 νd3 = 40.92
r4 = ∞
d4 = 0.3
r5 = 42.756 (Aspherical surface)
d5 = 3.54 Nd5 = 1.741 νd5 = 52.64
r6 = -23.653
d6 = D6
r7 = -62.454 (Aspherical surface)
d7 = 0.8 Nd7 = 1.8061 νd7 = 40.92
r8 = 6.820 (Aspherical surface)
d8 = 0.7
r9 = 9.53
d9 = 2.2 Nd9 = 1.7552 νd9 = 27.51
r10 = 216.48
d10 = D10
r11 = aperture
d11 = D11
r12 = 7.667 (aspherical surface)
d12 = 6.33 Nd12 = 1.6935 νd12 = 53.21
r13 = -11.715
d13 = 0.7 Nd13 = 1.84666 νd13 = 23.78
r14 = 28.801 (Aspherical surface)
d14 = D14
r15 = 16.547
d15 = 0.6 Nd15 = 1.48749 νd15 = 70.23
r16 = 8.396
d16 = 0.1 Nd16 = 1.9712 νd16 = 12.88
r17 = 8.453 (aspherical surface)
d17 = D17
r18 = 12.298 (Aspherical surface)
d18 = 1.8 Nd18 = 1.7432 νd18 = 49.34
r19 = -1666.051
d19 = D19
r20 = ∞
d20 = 1.9 Nd20 = 1.54771 νd20 = 62.84
r21 = ∞
d21 = 0.8
r22 = ∞
d22 = 0.75 Nd22 = 1.51633 νd22 = 64.14
r23 = ∞
d23 = D23

非球面係数
第5面
k=0
A4=1.97863E-05
A6=1.99130E-07
A8=0
第7面
k=0
A4=-2.76063E-04
A6=1.66842E-05
A8=-1.87307E-07
第8面
k=0
A4=-6.00048E-04
A6=1.66821E-05
A8=-1.83573E-07
第12面
k=0
A4=6.73087E-05
A6=1.83455E-06
A8=1.35252E-08
第14面
k=0
A4=7.20573E-04
A6=1.11057E-05
A8=9.05706E-07
第17面
k=0
A4=-7.32245E-06
A6=3.35000E-07
A8=0.00000E+00
第18面
k=0
A4=-5.22378E-05
A6=8.59323E-06
A8=-1.53966E-07
Aspherical coefficient fifth surface
k = 0
A4 = 1.78683E-05
A6 = 1.99130E-07
A8 = 0
7th page
k = 0
A4 = -2.76063E-04
A6 = 1.66842E-05
A8 = -1.87307E-07
8th page
k = 0
A4 = -6.00048E-04
A6 = 1.68221E-05
A8 = -1.83573E-07
12th page
k = 0
A4 = 6.73087E-05
A6 = 1.83455E-06
A8 = 1.35252E-08
14th page
k = 0
A4 = 7.20573E-04
A6 = 1.11057E-05
A8 = 9.05706E-07
17th page
k = 0
A4 = -7.32245E-06
A6 = 3.35000E-07
A8 = 0.000E + 00
18th page
k = 0
A4 = -5.22378E-05
A6 = 8.59323E-06
A8 = -1.53966E-07

ズームデータ
D0(物体から第1面までの距離)が∞のとき
広角端 中間 望遠端
焦点距離 6.1 13.42 17.995
FNO. 3.41 5.12 6.49
D6 3.39 9.88 10.83
D10 13.35 2.4 0.93
D11 6.12 3.14 0.4
D14 1.47 11.6 14.69
D17 1.34 2.07 3.38
D19 4.75 1.33 0.4
D23 1.37 1.37 1.37
Zoom data
When D0 (distance from the object to the first surface) is ∞
Wide-angle end Middle Telephoto end
Focal length 6.1 13.42 17.995
FNO. 3.41 5.12 6.49
D6 3.39 9.88 10.83
D10 13.35 2.4 0.93
D11 6.12 3.14 0.4
D14 1.47 11.6 14.69
D17 1.34 2.07 3.38
D19 4.75 1.33 0.4
D23 1.37 1.37 1.37

図19は本発明の実施例10にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。   FIG. 19 is a cross-sectional view along the optical axis showing an optical configuration at the time of focusing on an object point at infinity at the wide-angle end of the zoom lens according to Example 10 of the present invention.

図20は実施例10にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。   FIG. 20 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 10 is focused on an object point at infinity, where (a) is a wide-angle end, (b) is an intermediate position, (c) shows the state at the telephoto end.

実施例10のズームレンズは、図19に示すように、物体側より順に、第1レンズ群G1と、第2レンズ群G2と、開口絞りSと、第3レンズ群G3と、第4レンズ群G4と、第5レンズ群G5を有している。なお、図中、LPFはローパスフィルター、CGはカバーガラス、Iは電子撮像素子の撮像面である。   As shown in FIG. 19, the zoom lens according to the tenth embodiment includes, in order from the object side, the first lens group G1, the second lens group G2, the aperture stop S, the third lens group G3, and the fourth lens group. G4 and the fifth lens group G5 are included. In the figure, LPF is a low-pass filter, CG is a cover glass, and I is an image pickup surface of an electronic image pickup element.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL111、プリズムL112、両凸レンズL113で構成されており、全体で正の屈折力を有している。   The first lens group G1 includes a negative meniscus lens L111 having a convex surface directed toward the object side, a prism L112, and a biconvex lens L113, and has a positive refractive power as a whole.

第2レンズ群G2は、両凹レンズL121と、物体側に凸面を向けた正メニスカスレンズL122で構成されており、全体で負の屈折力を有している。   The second lens group G2 includes a biconcave lens L121 and a positive meniscus lens L122 having a convex surface directed toward the object side, and has a negative refracting power as a whole.

第3レンズ群G3は、両凸レンズL131と両凹レンズL132との接合レンズで構成されており、全体で正の屈折力を有している。   The third lens group G3 is composed of a cemented lens made up of a biconvex lens L131 and a biconcave lens L132, and has a positive refractive power as a whole.

第4レンズ群G4は、物体側に凸面を向けた負メニスカスレンズL141と、物体側に凸面を向けた負メニスカスレンズL142との接合レンズで構成されており、全体で負の屈折力を有している。物体側に凸面を向けた負メニスカスレンズL142は、心厚の薄いレンズである。   The fourth lens group G4 includes a cemented lens which is formed by a negative meniscus lens L141 having a convex surface directed toward the object side and a negative meniscus lens L142 having a convex surface directed toward the object side, and has a negative refracting power as a whole. ing. The negative meniscus lens L142 having a convex surface facing the object side is a lens having a thin heart thickness.

第5レンズ群G5は、物体側に凸面を向けた正メニスカスレンズL151で構成されており、全体で正の屈折力を有している。   The fifth lens group G5 includes a positive meniscus lens L151 having a convex surface directed toward the object side, and has a positive refracting power as a whole.

広角端から望遠端へと変倍する際には、第1レンズ群G1は固定、第2レンズ群G2は像側へ移動し、開口絞りSは固定、第3レンズ群G3は物体側へ移動し、第4レンズ群G4は一旦像側へ移動した後に物体側へ移動し、第5レンズ群G5像側へ移動する。   When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, the second lens group G2 is moved to the image side, the aperture stop S is fixed, and the third lens group G3 is moved to the object side. The fourth lens group G4 once moves to the image side, then moves to the object side, and moves to the image side of the fifth lens group G5.

非球面は、第1レンズ群G1中の両凸レンズL113の物体側の面、第2レンズ群G2中の両凹レンズL121の両面、第3レンズ群G3中の両凸レンズL131の物体側の面、両凹レンズL132の像側の面、第4レンズ群G4中の物体側に凸面を向けた負メニスカスレンズL142の像側の面、第5レンズ群G5中の物体側に凸面を向けた正メニスカスレンズL151の物体側の面に設けられている。   The aspherical surfaces are the object side surface of the biconvex lens L113 in the first lens group G1, both surfaces of the biconcave lens L121 in the second lens group G2, the object side surface of the biconvex lens L131 in the third lens group G3, both An image side surface of the concave lens L132, an image side surface of the negative meniscus lens L142 having a convex surface facing the object side in the fourth lens group G4, and a positive meniscus lens L151 having a convex surface facing the object side in the fifth lens group G5 It is provided on the object side surface.

次に、本実施例の数値データを掲げる。
数値データ10
r1=23.178
d1=1 Nd1=1.8061 νd1=40.92
r2=8.968
d2=3.67
r3=∞
d3=12 Nd3=1.8061 νd3=40.92
r4=∞
d4=0.3
r5=42.366 (非球面)
d5=3.54 Nd5=1.741 νd5=52.64
r6=-23.47
d6=D6
r7=-66.184 (非球面)
d7=0.8 Nd7=1.8061 νd7=40.92
r8=6.725(非球面)
d8=0.7
r9=9.362
d9=2.2 Nd9=1.7552 νd9=27.51
r10=168.719
d10=D10
r11=絞り
d11=D11
r12=7.677(非球面)
d12=6.32 Nd12=1.6935 νd12=53.21
r13=-11.657
d13=0.7 Nd13=1.84666 νd13=23.78
r14=28.815(非球面)
d14=D14
r15=16.437
d15=0.6 Nd15=1.48749 νd15=70.23
r16=8.459
d16=0.1 Nd16=2.0512 νd16=6.28
r17=8.423(非球面)
d17=D17
r18=11.783(非球面)
d18=1.8 Nd18=1.7432 νd18=49.34
r19=490.283
d19=D19
r20=∞
d20=1.9 Nd20=1.54771 νd20=62.84
r21=∞
d21=0.8
r22=∞
d22=0.75 Nd22=1.51633 νd22=64.14
r23=∞
d23=D23
Next, numerical data of this embodiment will be listed.
Numerical data 10
r1 = 23.178
d1 = 1 Nd1 = 1.8061 νd1 = 40.92
r2 = 8.968
d2 = 3.67
r3 = ∞
d3 = 12 Nd3 = 1.8061 νd3 = 40.92
r4 = ∞
d4 = 0.3
r5 = 42.366 (Aspherical surface)
d5 = 3.54 Nd5 = 1.741 νd5 = 52.64
r6 = -23.47
d6 = D6
r7 = -66.184 (Aspherical surface)
d7 = 0.8 Nd7 = 1.8061 νd7 = 40.92
r8 = 6.725 (aspherical surface)
d8 = 0.7
r9 = 9.362
d9 = 2.2 Nd9 = 1.7552 νd9 = 27.51
r10 = 168.719
d10 = D10
r11 = aperture
d11 = D11
r12 = 7.677 (aspherical surface)
d12 = 6.32 Nd12 = 1.6935 νd12 = 53.21
r13 = -11.657
d13 = 0.7 Nd13 = 1.84666 νd13 = 23.78
r14 = 28.815 (aspherical surface)
d14 = D14
r15 = 16.437
d15 = 0.6 Nd15 = 1.48749 νd15 = 70.23
r16 = 8.459
d16 = 0.1 Nd16 = 2.0512 νd16 = 6.28
r17 = 8.423 (aspherical surface)
d17 = D17
r18 = 11.783 (aspherical surface)
d18 = 1.8 Nd18 = 1.7432 νd18 = 49.34
r19 = 490.283
d19 = D19
r20 = ∞
d20 = 1.9 Nd20 = 1.54771 νd20 = 62.84
r21 = ∞
d21 = 0.8
r22 = ∞
d22 = 0.75 Nd22 = 1.51633 νd22 = 64.14
r23 = ∞
d23 = D23

非球面係数
第5面
k=0
A4=1.89496E-05
A6=1.97953E-07
A8=0
第7面
k=0
A4=-2.76791E-04
A6=1.68717E-05
A8=-1.97472E-07
第8面
k=0
A4=-6.09891E-04
A6=1.70615E-05
A8=-2.17636E-07
第12面
k=0
A4=6.94450E-05
A6=1.97650E-06
A8=1.24007E-08
第14面
k=0
A4=7.23654E-04
A6=1.11472E-05
A8=9.36169E-07
第17面
k=0
A4=-2.39579E-05
A6=-3.59629E-09
A8=0.00000E+00
第18面
k=0
A4=-7.13942E-05
A6=8.39629E-06
A8=-1.49327E-07
Aspherical coefficient fifth surface
k = 0
A4 = 1.94996E-05
A6 = 1.97953E-07
A8 = 0
7th page
k = 0
A4 = -2.76791E-04
A6 = 1.68717E-05
A8 = -1.97472E-07
8th page
k = 0
A4 = -6.09891E-04
A6 = 1.70615E-05
A8 = -2.17636E-07
12th page
k = 0
A4 = 6.94450E-05
A6 = 1.97650E-06
A8 = 1.24007E-08
14th page
k = 0
A4 = 7.23654E-04
A6 = 1.11472E-05
A8 = 9.36169E-07
17th page
k = 0
A4 = -2.39579E-05
A6 = -3.59629E-09
A8 = 0.000E + 00
18th page
k = 0
A4 = -7.13942E-05
A6 = 8.39629E-06
A8 = -1.49327E-07

ズームデータ
D0(物体から第1面までの距離)が∞のとき
広角端 中間 望遠端
焦点距離 6.1 13.42 17.994
FNO. 3.36 5.08 6.45
D6 3.34 9.92 10.92
D10 12.91 2.49 1.12
D11 6.71 3.27 0.4
D14 1.48 11.56 14.61
D17 1.34 2.06 3.36
D19 4.75 1.34 0.42
D23 1.37 1.37 1.37
Zoom data
When D0 (distance from the object to the first surface) is ∞
Wide-angle end Middle Telephoto end
Focal length 6.1 13.42 17.994
FNO. 3.36 5.08 6.45
D6 3.34 9.92 10.92
D10 12.91 2.49 1.12
D11 6.71 3.27 0.4
D14 1.48 11.56 14.61
D17 1.34 2.06 3.36
D19 4.75 1.34 0.42
D23 1.37 1.37 1.37

図21は本発明の実施例11にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。   FIG. 21 is a cross-sectional view along the optical axis showing an optical configuration at the time of focusing on an object point at infinity at the wide-angle end of a zoom lens according to Example 11 of the present invention.

図22は実施例11にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。   FIG. 22 is a diagram illustrating spherical aberration, astigmatism, distortion, and lateral chromatic aberration when the zoom lens according to Example 11 is focused on an object point at infinity, where (a) is a wide angle end, (b) is an intermediate position, (c) shows the state at the telephoto end.

実施例11のズームレンズは、図21に示すように、物体側より順に、第1レンズ群G1と、第2レンズ群G2と、開口絞りSと、第3レンズ群G3と、第4レンズ群G4を有している。なお、図中、LPFはローパスフィルター、CGはカバーガラス、Iは電子撮像素子の撮像面である。   As shown in FIG. 21, the zoom lens of Example 11 includes, in order from the object side, a first lens group G1, a second lens group G2, an aperture stop S, a third lens group G3, and a fourth lens group. G4. In the figure, LPF is a low-pass filter, CG is a cover glass, and I is an image pickup surface of an electronic image pickup element.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL211、プリズムL212、両凸レンズL213と両凹レンズL214との接合レンズで構成されており、全体で負の屈折力を有している。   The first lens group G1 includes a negative meniscus lens L211 having a convex surface directed toward the object side, a prism L212, and a cemented lens of a biconvex lens L213 and a biconcave lens L214, and has a negative refracting power as a whole. .

第2レンズ群G2は、両凸レンズL221と像側に凸面を向けた負メニスカスレンズL222との接合レンズで構成されており、全体で正の屈折力を有している。   The second lens group G2 includes a cemented lens which is formed by a biconvex lens L221 and a negative meniscus lens L222 having a convex surface directed toward the image side, and has a positive refractive power as a whole.

第3レンズ群G3は、物体側に凹面を向けた負メニスカスレンズL231と物体側に凹面を向けた正メニスカスレンズL232との接合レンズで構成されており、全体で負の屈折力を有している。物体側に凹面を向けた正メニスカスレンズL232は、心厚の薄いレンズである。   The third lens group G3 includes a cemented lens which is formed by a negative meniscus lens L231 having a concave surface directed toward the object side and a positive meniscus lens L232 having a concave surface directed toward the object side, and has a negative refracting power as a whole. Yes. The positive meniscus lens L232 having a concave surface facing the object side is a lens having a thin heart thickness.

第4レンズ群G4は、両凸レンズL241と、物体側に凹面を向けた負メニスカスレンズL242との接合レンズで構成されており、全体で正の屈折力を有している。   The fourth lens group G4 includes a cemented lens which is formed by a biconvex lens L241 and a negative meniscus lens L242 having a concave surface directed toward the object side, and has a positive refracting power as a whole.

広角端から望遠端へと変倍する際には、第1レンズ群G1は固定、第2レンズ群G2は物体側へ移動し、開口絞りSは固定、第3レンズ群G3は像側へ移動し、第4レンズ群G4は像側へ移動する。   When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, the second lens group G2 is moved to the object side, the aperture stop S is fixed, and the third lens group G3 is moved to the image side. Then, the fourth lens group G4 moves to the image side.

非球面は、第1レンズ群G1中の両凸レンズL213の物体側の面、第2レンズ群G2中の両凸レンズL221の物体側の面、第3レンズ群G3中の物体側に凹面を向けた正メニスカスレンズL232の像側の面、第4レンズ群G4中の両凸レンズL241の物体側の面に設けられている。   The aspherical surface has a concave surface facing the object side surface of the biconvex lens L213 in the first lens group G1, the object side surface of the biconvex lens L221 in the second lens group G2, and the object side in the third lens group G3. It is provided on the image side surface of the positive meniscus lens L232 and the object side surface of the biconvex lens L241 in the fourth lens group G4.

次に、本実施例の数値データを掲げる。
数値データ11
r1=53.184
d1=1.1 Nd1=1.7432 νd1=49.34
r2=11.873
d2=3
r3=∞
d3=12.5 Nd3=1.8061 νd3=40.92
r4=∞
d4=0.4
r5=59.366 (非球面)
d5=2.2 Nd5=1.883 νd5=40.76
r6=-20.517
d6=0.7 Nd6=1.48749 νd6=70.23
r7=13.429
d7=D7
r8=13.703 (非球面)
d8=3.5 Nd8=1.7432 νd8=49.34
r9=-12.5
d9=0.7 Nd9=1.84666 νd9=23.78
r10=-54.992
d10=D10
r11=絞り
d11=D11
r12=-8.545
d12=0.7 Nd12=1.51742 νd12=52.43
r13=-100
d13=0.35 Nd13=1.60687 νd13=27.03
r14=-29.442 (非球面)
d14=D14
r15=11.068 (非球面)
d15=3.5 Nd15=1.6935 νd15=53.21
r16=-7.5
d16=0.7 Nd16=1.84666 νd16=23.78
r17=-16.423
d17=D17
r18=∞
d18=1.44 Nd18=1.54771 νd18=62.84
r19=∞
d19=0.8
r20=∞
d20=0.6 Nd20=1.51633 νd20=64.14
r21=∞
d21=D21
Next, numerical data of this embodiment will be listed.
Numerical data 11
r1 = 53.184
d1 = 1.1 Nd1 = 1.7432 νd1 = 49.34
r2 = 11.873
d2 = 3
r3 = ∞
d3 = 12.5 Nd3 = 1.8061 νd3 = 40.92
r4 = ∞
d4 = 0.4
r5 = 59.366 (Aspherical surface)
d5 = 2.2 Nd5 = 1.833 νd5 = 40.76
r6 = -20.517
d6 = 0.7 Nd6 = 1.48749 νd6 = 70.23
r7 = 13.429
d7 = D7
r8 = 13.703 (Aspherical surface)
d8 = 3.5 Nd8 = 1.7432 νd8 = 49.34
r9 = -12.5
d9 = 0.7 Nd9 = 1.84666 νd9 = 23.78
r10 = -54.992
d10 = D10
r11 = aperture
d11 = D11
r12 = -8.545
d12 = 0.7 Nd12 = 1.51742 νd12 = 52.43
r13 = -100
d13 = 0.35 Nd13 = 1.60687 νd13 = 27.03
r14 = -29.442 (Aspherical surface)
d14 = D14
r15 = 11.068 (Aspherical surface)
d15 = 3.5 Nd15 = 1.6935 νd15 = 53.21
r16 = −7.5
d16 = 0.7 Nd16 = 1.84666 νd16 = 23.78
r17 = -16.423
d17 = D17
r18 = ∞
d18 = 1.44 Nd18 = 1.54771 νd18 = 62.84
r19 = ∞
d19 = 0.8
r20 = ∞
d20 = 0.6 Nd20 = 1.51633 νd20 = 64.14
r21 = ∞
d21 = D21

非球面係数
第5面
k=0
A4=2.67481E-05
A6=1.21868E-07
A8=0.00000E+00
第8面
k=0
A4=-2.11732E-05
A6=-1.15590E-07
A8=-4.21441E-07
第14面
k=0
A4=-3.07942E-04
A6=2.46538E-06
A8=-1.28129E-06
第15面
k=0
A4=-2.90469E-04
A6=3.87680E-07
A8=5.27383E-08
Aspherical coefficient fifth surface
k = 0
A4 = 2.67481E-05
A6 = 1.21868E-07
A8 = 0.000E + 00
8th page
k = 0
A4 = -2.11732E-05
A6 = -1.15590E-07
A8 = -4.21441E-07
14th page
k = 0
A4 = -3.07942E-04
A6 = 2.46538E-06
A8 = -1.28129E-06
15th page
k = 0
A4 = -2.90469E-04
A6 = 3.87680E-07
A8 = 5.27383E-08

ズームデータ
D0(物体から第1面までの距離)が∞のとき
広角端 中間 望遠端
焦点距離 5.999 13.697 17.987
FNO. 2.84 3.39 3.74
D7 13.8 3.92 0.8
D10 1.6 11.49 14.61
D11 1.41 6.01 9.1
D14 6.45 4.93 3
D17 5.45 2.36 1.2
D21 1.36 1.36 1.36
Zoom data
When D0 (distance from the object to the first surface) is ∞
Wide-angle end Middle Telephoto end
Focal length 5.999 13.697 17.987
FNO. 2.84 3.39 3.74
D7 13.8 3.92 0.8
D10 1.6 11.49 14.61
D11 1.41 6.01 9.1
D14 6.45 4.93 3
D17 5.45 2.36 1.2
D21 1.36 1.36 1.36

図23は本発明の実施例12にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。   FIG. 23 is a cross-sectional view along the optical axis showing an optical configuration at the time of focusing on an object point at infinity at the wide-angle end of a zoom lens according to Example 12 of the present invention.

図24は実施例12にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。   FIG. 24 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 12 is focused on an object point at infinity, where (a) is a wide angle end, (b) is an intermediate view, (c) shows the state at the telephoto end.

実施例12のズームレンズは、図23に示すように、物体側より順に、第1レンズ群G1と、第2レンズ群G2と、開口絞りSと、第3レンズ群G3と、第4レンズ群G4を有している。なお、図中、LPFはローパスフィルター、CGはカバーガラス、Iは電子撮像素子の撮像面である。   As shown in FIG. 23, in the zoom lens of Example 12, the first lens group G1, the second lens group G2, the aperture stop S, the third lens group G3, and the fourth lens group are sequentially arranged from the object side. G4. In the figure, LPF is a low-pass filter, CG is a cover glass, and I is an image pickup surface of an electronic image pickup element.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL211、プリズムL212、両凸レンズL213と両凹レンズL214との接合レンズで構成されており、全体で負の屈折力を有している。   The first lens group G1 includes a negative meniscus lens L211 having a convex surface directed toward the object side, a prism L212, and a cemented lens of a biconvex lens L213 and a biconcave lens L214, and has a negative refracting power as a whole. .

第2レンズ群G2は、両凸レンズL221と像側に凸面を向けた負メニスカスレンズL222との接合レンズで構成されており、全体で正の屈折力を有している。   The second lens group G2 includes a cemented lens which is formed by a biconvex lens L221 and a negative meniscus lens L222 having a convex surface directed toward the image side, and has a positive refractive power as a whole.

第3レンズ群G3は、物体側に凹面を向けた負メニスカスレンズL231と物体側に凹面を向けた正メニスカスレンズL232との接合レンズで構成されており、全体で負の屈折力を有している。物体側に凹面を向けた正メニスカスレンズL232は、心厚の薄いレンズである。   The third lens group G3 includes a cemented lens which is formed by a negative meniscus lens L231 having a concave surface directed toward the object side and a positive meniscus lens L232 having a concave surface directed toward the object side, and has a negative refracting power as a whole. Yes. The positive meniscus lens L232 having a concave surface facing the object side is a lens having a thin heart thickness.

第4レンズ群G4は、両凸レンズL241と、物体側に凹面を向けた負メニスカスレンズL242との接合レンズで構成されており、全体で正の屈折力を有している。   The fourth lens group G4 includes a cemented lens which is formed by a biconvex lens L241 and a negative meniscus lens L242 having a concave surface directed toward the object side, and has a positive refracting power as a whole.

広角端から望遠端へと変倍する際には、第1レンズ群G1は固定、第2レンズ群G2は物体側へ移動し、開口絞りSは固定、第3レンズ群G3は像側へ移動し、第4レンズ群G4は像側へ移動する。   When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, the second lens group G2 is moved to the object side, the aperture stop S is fixed, and the third lens group G3 is moved to the image side. Then, the fourth lens group G4 moves to the image side.

非球面は、第1レンズ群G1中の両凸レンズL213の物体側の面、第2レンズ群G2中の両凸レンズL221の物体側の面、第3レンズ群G3中の物体側に凹面を向けた正メニスカスレンズL232の像側の面、第4レンズ群G4中の両凸レンズL241の物体側の面に設けられている。   The aspherical surface has a concave surface facing the object side surface of the biconvex lens L213 in the first lens group G1, the object side surface of the biconvex lens L221 in the second lens group G2, and the object side in the third lens group G3. It is provided on the image side surface of the positive meniscus lens L232 and the object side surface of the biconvex lens L241 in the fourth lens group G4.

次に、本実施例の数値データを掲げる。
数値データ12
r1=37.87
d1=1.1 Nd1=1.72 νd1=41.98
r2=10.224
d2=3
r3=∞
d3=12.5 Nd3=1.8061 νd3=40.92
r4=∞
d4=0.4
r5=89.903 (非球面)
d5=2.2 Nd5=1.883 νd5=40.76
r6=-14.853
d6=0.7 Nd6=1.48749 νd6=70.23
r7=14.608
d7=D7
r8=14.897 (非球面)
d8=3.5 Nd8=1.7432 νd8=49.34
r9=-12.5
d9=0.7 Nd9=1.84666 νd9=23.78
r10=-58.416
d10=D10
r11=絞り
d11=D11
r12=-8.762
d12=0.7 Nd12=1.51742 νd12=52.43
r13=-100
d13=0.35 Nd13=1.60258 νd13=18.58
r14=-31.451 (非球面)
d14=D14
r15=10.327 (非球面)
d15=3.5 Nd15=1.6935 νd15=53.21
r16=-7.5
d16=0.7 Nd16=1.84666 νd16=23.78
r17=-17.752
d17=D17
r18=∞
d18=1.44 Nd18=1.54771 νd18=62.84
r19=∞
d19=0.8
r20=∞
d20=0.6 Nd20=1.51633 νd20=64.14
r21=∞
d21=D21
Next, numerical data of this embodiment will be listed.
Numerical data 12
r1 = 37.87
d1 = 1.1 Nd1 = 1.72 νd1 = 41.98
r2 = 10.224
d2 = 3
r3 = ∞
d3 = 12.5 Nd3 = 1.8061 νd3 = 40.92
r4 = ∞
d4 = 0.4
r5 = 89.903 (Aspherical surface)
d5 = 2.2 Nd5 = 1.833 νd5 = 40.76
r6 = -14.853
d6 = 0.7 Nd6 = 1.48749 νd6 = 70.23
r7 = 14.608
d7 = D7
r8 = 14.897 (Aspherical surface)
d8 = 3.5 Nd8 = 1.7432 νd8 = 49.34
r9 = -12.5
d9 = 0.7 Nd9 = 1.84666 νd9 = 23.78
r10 = -58.416
d10 = D10
r11 = aperture
d11 = D11
r12 = -8.762
d12 = 0.7 Nd12 = 1.51742 νd12 = 52.43
r13 = -100
d13 = 0.35 Nd13 = 1.60258 νd13 = 18.58
r14 = -31.451 (Aspherical surface)
d14 = D14
r15 = 10.327 (Aspherical surface)
d15 = 3.5 Nd15 = 1.6935 νd15 = 53.21
r16 = −7.5
d16 = 0.7 Nd16 = 1.84666 νd16 = 23.78
r17 = -17.752
d17 = D17
r18 = ∞
d18 = 1.44 Nd18 = 1.54771 νd18 = 62.84
r19 = ∞
d19 = 0.8
r20 = ∞
d20 = 0.6 Nd20 = 1.51633 νd20 = 64.14
r21 = ∞
d21 = D21

非球面係数
第5面
k=0
A4=1.56745E-05
A6=1.40375E-07
A8=0
第8面
k=0
A4=-5.42647E-06
A6=-8.38801E-08
A8=0.00000E+00
第14面
k=0
A4=-2.46472E-04
A6=-2.77422E-07
A8=0.00000E+00
第15面
k=0
A4=-2.66703E-04
A6=2.98736E-07
A8=0.00000E+00
Aspherical coefficient fifth surface
k = 0
A4 = 1.56745E-05
A6 = 1.40375E-07
A8 = 0
8th page
k = 0
A4 = -5.42647E-06
A6 = -8.38801E-08
A8 = 0.000E + 00
14th page
k = 0
A4 = -2.46472E-04
A6 = -2.77422E-07
A8 = 0.000E + 00
15th page
k = 0
A4 = -2.66703E-04
A6 = 2.98736E-07
A8 = 0.000E + 00

ズームデータ
D0(物体から第1面までの距離)が∞のとき
広角端 中間 望遠端
焦点距離 6.02 13.7 17.998
FNO. 2.84 3.52 3.89
D7 14.02 3.96 0.8
D10 1.6 11.67 14.82
D11 1.4 7.11 10.07
D14 7.1 4.6 3
D17 5.76 2.55 1.19
D21 1.36 1.36 1.36
Zoom data
When D0 (distance from the object to the first surface) is ∞
Wide-angle end Middle Telephoto end
Focal length 6.02 13.7 17.998
FNO. 2.84 3.52 3.89
D7 14.02 3.96 0.8
D10 1.6 11.67 14.82
D11 1.4 7.11 10.07
D14 7.1 4.6 3
D17 5.76 2.55 1.19
D21 1.36 1.36 1.36

図25は本発明の実施例13にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。   FIG. 25 is a cross-sectional view along the optical axis showing an optical configuration at the time of focusing on an object point at infinity at the wide-angle end of a zoom lens according to Example 13 of the present invention.

図26は実施例13にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。   FIG. 26 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 13 is focused on an object point at infinity, in which (a) is a wide angle end, (b) is an intermediate position, (c) shows the state at the telephoto end.

実施例13のズームレンズは、図25に示すように、物体側より順に、第1レンズ群G1と、第2レンズ群G2と、開口絞りSと、第3レンズ群G3と、第4レンズ群G4を有している。なお、図中、LPFはローパスフィルター、CGはカバーガラス、Iは電子撮像素子の撮像面である。   As shown in FIG. 25, the zoom lens of Example 13 includes, in order from the object side, the first lens group G1, the second lens group G2, the aperture stop S, the third lens group G3, and the fourth lens group. G4. In the figure, LPF is a low-pass filter, CG is a cover glass, and I is an image pickup surface of an electronic image pickup element.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL211、プリズムL212、両凸レンズL213と両凹レンズL214との接合レンズで構成されており、全体で負の屈折力を有している。   The first lens group G1 includes a negative meniscus lens L211 having a convex surface directed toward the object side, a prism L212, and a cemented lens of a biconvex lens L213 and a biconcave lens L214, and has a negative refracting power as a whole. .

第2レンズ群G2は、両凸レンズL221と像側に凸面を向けた負メニスカスレンズL222との接合レンズで構成されており、全体で正の屈折力を有している。   The second lens group G2 includes a cemented lens which is formed by a biconvex lens L221 and a negative meniscus lens L222 having a convex surface directed toward the image side, and has a positive refractive power as a whole.

第3レンズ群G3は、物体側に凹面を向けた負メニスカスレンズL231と物体側に凹面を向けた正メニスカスレンズL232との接合レンズで構成されており、全体で負の屈折力を有している。物体側に凹面を向けた正メニスカスレンズL232は、心厚の薄いレンズである。   The third lens group G3 includes a cemented lens which is formed by a negative meniscus lens L231 having a concave surface directed toward the object side and a positive meniscus lens L232 having a concave surface directed toward the object side, and has a negative refracting power as a whole. Yes. The positive meniscus lens L232 having a concave surface facing the object side is a lens having a thin heart thickness.

第4レンズ群G4は、両凸レンズL241と、物体側に凹面を向けた負メニスカスレンズL242との接合レンズで構成されており、全体で正の屈折力を有している。   The fourth lens group G4 includes a cemented lens which is formed by a biconvex lens L241 and a negative meniscus lens L242 having a concave surface directed toward the object side, and has a positive refracting power as a whole.

広角端から望遠端へと変倍する際には、第1レンズ群G1は固定、第2レンズ群G2は物体側へ移動し、開口絞りSは固定、第3レンズ群G3は像側へ移動し、第4レンズ群G4は像側へ移動する。   When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, the second lens group G2 is moved to the object side, the aperture stop S is fixed, and the third lens group G3 is moved to the image side. Then, the fourth lens group G4 moves to the image side.

非球面は、第1レンズ群G1中の両凸レンズL213の物体側の面、第2レンズ群G2中の両凸レンズL221の物体側の面、第3レンズ群G3中の物体側に凹面を向けた正メニスカスレンズL232の像側の面、第4レンズ群G4中の両凸レンズL241の物体側の面に設けられている。   The aspherical surface has a concave surface facing the object side surface of the biconvex lens L213 in the first lens group G1, the object side surface of the biconvex lens L221 in the second lens group G2, and the object side in the third lens group G3. It is provided on the image side surface of the positive meniscus lens L232 and the object side surface of the biconvex lens L241 in the fourth lens group G4.

次に、本実施例の数値データを掲げる。
数値データ13
r1=53.073
d1=1.1 Nd1=1.7432 νd1=49.34
r2=11.88
d2=3
r3=∞
d3=12.5 Nd3=1.8061 νd3=40.92
r4=∞
d4=0.4
r5=59.240 (非球面)
d5=2.2 Nd5=1.883 νd5=40.76
r6=-20.497
d6=0.7 Nd6=1.48749 νd6=70.23
r7=13.436
d7=D7
r8=13.696 (非球面)
d8=3.5 Nd8=1.7432 νd8=49.34
r9=-12.5
d9=0.7 Nd9=1.84666 νd9=23.78
r10=-54.875
d10=D10
r11=絞り
d11=D11
r12=-8.541
d12=0.7 Nd12=1.51742 νd12=52.43
r13=-100
d13=0.35 Nd13=1.69556 νd13=25.02
r14=-29.479 (非球面)
d14=D14
r15=11.078 (非球面)
d15=3.5 Nd15=1.6935 νd15=53.21
r16=-7.5
d16=0.7 Nd16=1.84666 νd16=23.78
r17=-16.449
d17=D17
r18=∞
d18=1.44 Nd18=1.54771 νd18=62.84
r19=∞
d19=0.8
r20=∞
d20=0.6 Nd20=1.51633 νd20=64.14
r21=∞
d21=D21
Next, numerical data of this embodiment will be listed.
Numerical data 13
r1 = 53.073
d1 = 1.1 Nd1 = 1.7432 νd1 = 49.34
r2 = 11.88
d2 = 3
r3 = ∞
d3 = 12.5 Nd3 = 1.8061 νd3 = 40.92
r4 = ∞
d4 = 0.4
r5 = 59.240 (Aspherical surface)
d5 = 2.2 Nd5 = 1.833 νd5 = 40.76
r6 = -20.497
d6 = 0.7 Nd6 = 1.48749 νd6 = 70.23
r7 = 13.436
d7 = D7
r8 = 13.696 (Aspherical surface)
d8 = 3.5 Nd8 = 1.7432 νd8 = 49.34
r9 = -12.5
d9 = 0.7 Nd9 = 1.84666 νd9 = 23.78
r10 = -54.875
d10 = D10
r11 = aperture
d11 = D11
r12 = -8.541
d12 = 0.7 Nd12 = 1.51742 νd12 = 52.43
r13 = -100
d13 = 0.35 Nd13 = 1.69556 νd13 = 25.02
r14 = -29.479 (Aspherical surface)
d14 = D14
r15 = 11.078 (Aspherical surface)
d15 = 3.5 Nd15 = 1.6935 νd15 = 53.21
r16 = −7.5
d16 = 0.7 Nd16 = 1.84666 νd16 = 23.78
r17 = -16.449
d17 = D17
r18 = ∞
d18 = 1.44 Nd18 = 1.54771 νd18 = 62.84
r19 = ∞
d19 = 0.8
r20 = ∞
d20 = 0.6 Nd20 = 1.51633 νd20 = 64.14
r21 = ∞
d21 = D21

非球面係数
第5面
k=0
A4=2.61751E-05
A6=1.15939E-07
A8=0
第8面
k=0
A4=-2.16066E-05
A6=-9.35544E-08
A8=0.00000E+00
第14面
k=0
A4=-3.03099E-04
A6=4.81429E-06
A8=0.00000E+00
第15面
k=0
A4=-2.89734E-04
A6=2.36417E-07
A8=0.00000E+00
Aspherical coefficient fifth surface
k = 0
A4 = 2.61751E-05
A6 = 1.15939E-07
A8 = 0
8th page
k = 0
A4 = -2.16066E-05
A6 = -9.35544E-08
A8 = 0.000E + 00
14th page
k = 0
A4 = -3.03099E-04
A6 = 4.81429E-06
A8 = 0.000E + 00
15th page
k = 0
A4 = -2.89734E-04
A6 = 2.36417E-07
A8 = 0.000E + 00

ズームデータ
D0(物体から第1面までの距離)が∞のとき
広角端 中間 望遠端
焦点距離 5.97 13.634 17.897
FNO. 2.82 3.37 3.71
D7 13.8 3.92 0.8
D10 1.6 11.49 14.61
D11 1.41 6.01 9.1
D14 6.45 4.93 3
D17 5.45 2.36 1.2
D21 1.1 1.11 1.12
Zoom data
When D0 (distance from the object to the first surface) is ∞
Wide-angle end Middle Telephoto end
Focal length 5.97 13.634 17.897
FNO. 2.82 3.37 3.71
D7 13.8 3.92 0.8
D10 1.6 11.49 14.61
D11 1.41 6.01 9.1
D14 6.45 4.93 3
D17 5.45 2.36 1.2
D21 1.1 1.11 1.12

図27は本発明の実施例14にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。   FIG. 27 is a cross-sectional view along the optical axis showing an optical configuration at the time of focusing on an object point at infinity at the wide-angle end of a zoom lens according to Example 14 of the present invention.

図28は実施例14にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。   FIG. 28 is a diagram showing spherical aberration, astigmatism, distortion, and lateral chromatic aberration when the zoom lens according to Example 14 is focused on an object point at infinity, where (a) is a wide angle end, (b) is an intermediate view, (c) shows the state at the telephoto end.

実施例14のズームレンズは、図27に示すように、物体側より順に、第1レンズ群G1と、第2レンズ群G2と、開口絞りSと、第3レンズ群G3と、第4レンズ群G4を有している。なお、図中、LPFはローパスフィルター、CGはカバーガラス、Iは電子撮像素子の撮像面である。   As shown in FIG. 27, the zoom lens of Example 14 includes, in order from the object side, the first lens group G1, the second lens group G2, the aperture stop S, the third lens group G3, and the fourth lens group. G4. In the figure, LPF is a low-pass filter, CG is a cover glass, and I is an image pickup surface of an electronic image pickup element.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL211、プリズムL212、両凸レンズL213と両凹レンズL214との接合レンズで構成されており、全体で負の屈折力を有している。   The first lens group G1 includes a negative meniscus lens L211 having a convex surface directed toward the object side, a prism L212, and a cemented lens of a biconvex lens L213 and a biconcave lens L214, and has a negative refracting power as a whole. .

第2レンズ群G2は、両凸レンズL221と像側に凸面を向けた負メニスカスレンズL222との接合レンズで構成されており、全体で正の屈折力を有している。   The second lens group G2 includes a cemented lens which is formed by a biconvex lens L221 and a negative meniscus lens L222 having a convex surface directed toward the image side, and has a positive refractive power as a whole.

第3レンズ群G3は、物体側に凹面を向けた負メニスカスレンズL231と物体側に凹面を向けた正メニスカスレンズL232との接合レンズで構成されており、全体で負の屈折力を有している。物体側に凹面を向けた正メニスカスレンズL232は、心厚の薄いレンズである。   The third lens group G3 includes a cemented lens which is formed by a negative meniscus lens L231 having a concave surface directed toward the object side and a positive meniscus lens L232 having a concave surface directed toward the object side, and has a negative refracting power as a whole. Yes. The positive meniscus lens L232 having a concave surface facing the object side is a lens having a thin heart thickness.

第4レンズ群G4は、両凸レンズL241と、物体側に凹面を向けた負メニスカスレンズL242との接合レンズで構成されており、全体で正の屈折力を有している。   The fourth lens group G4 includes a cemented lens which is formed by a biconvex lens L241 and a negative meniscus lens L242 having a concave surface directed toward the object side, and has a positive refracting power as a whole.

広角端から望遠端へと変倍する際には、第1レンズ群G1は固定、第2レンズ群G2は物体側へ移動し、開口絞りSは固定、第3レンズ群G3は像側へ移動し、第4レンズ群G4は像側へ移動する。   When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, the second lens group G2 is moved to the object side, the aperture stop S is fixed, and the third lens group G3 is moved to the image side. Then, the fourth lens group G4 moves to the image side.

非球面は、第1レンズ群G1中の両凸レンズL213の物体側の面、第2レンズ群G2中の両凸レンズL221の物体側の面、第3レンズ群G3中の物体側に凹面を向けた正メニスカスレンズL232の像側の面、第4レンズ群G4中の両凸レンズL241の物体側の面に設けられている。   The aspherical surface has a concave surface facing the object side surface of the biconvex lens L213 in the first lens group G1, the object side surface of the biconvex lens L221 in the second lens group G2, and the object side in the third lens group G3. It is provided on the image side surface of the positive meniscus lens L232 and the object side surface of the biconvex lens L241 in the fourth lens group G4.

次に、本実施例の数値データを掲げる。
数値データ14
r1=35.882
d1=1.1 Nd1=1.72 νd1=41.98
r2=11.389
d2=3
r3=∞
d3=12.5 Nd3=1.8061 νd3=40.92
r4=∞
d4=0.4
r5=1449.208 (非球面)
d5=2.2 Nd5=1.883 νd5=40.76
r6=-20.294
d6=0.7 Nd6=1.48749 νd6=70.23
r7=13.692
d7=D7
r8=13.337 (非球面)
d8=3.5 Nd8=1.7432 νd8=49.34
r9=-12.5
d9=0.7 Nd9=1.84666 νd9=23.78
r10=-35.434
d10=D10
r11=絞り
d11=D11
r12=-9.636
d12=0.7 Nd12=1.51742 νd12=52.43
r13=-100
d13=0.35 Nd13=1.72568 νd13=18.68
r14=-47.470(非球面)
d14=D14
r15=9.153 (非球面)
d15=3.5 Nd15=1.6935 νd15=53.21
r16=-7.5
d16=0.7 Nd16=1.84666 νd16=23.78
r17=-27.617
d17=D17
r18=∞
d18=1.44 Nd18=1.54771 νd18=62.84
r19=∞
d19=0.8
r20=∞
d20=0.6 Nd20=1.51633 νd20=64.14
r21=∞
d21=D21
Next, numerical data of this embodiment will be listed.
Numerical data 14
r1 = 35.882
d1 = 1.1 Nd1 = 1.72 νd1 = 41.98
r2 = 11.389
d2 = 3
r3 = ∞
d3 = 12.5 Nd3 = 1.8061 νd3 = 40.92
r4 = ∞
d4 = 0.4
r5 = 1449.208 (Aspherical surface)
d5 = 2.2 Nd5 = 1.833 νd5 = 40.76
r6 = -20.294
d6 = 0.7 Nd6 = 1.48749 νd6 = 70.23
r7 = 13.692
d7 = D7
r8 = 13.337 (Aspherical surface)
d8 = 3.5 Nd8 = 1.7432 νd8 = 49.34
r9 = -12.5
d9 = 0.7 Nd9 = 1.84666 νd9 = 23.78
r10 = −35.434
d10 = D10
r11 = aperture
d11 = D11
r12 = -9.636
d12 = 0.7 Nd12 = 1.51742 νd12 = 52.43
r13 = -100
d13 = 0.35 Nd13 = 1.72568 νd13 = 18.68
r14 = -47.470 (aspherical surface)
d14 = D14
r15 = 9.153 (aspherical surface)
d15 = 3.5 Nd15 = 1.6935 νd15 = 53.21
r16 = −7.5
d16 = 0.7 Nd16 = 1.84666 νd16 = 23.78
r17 = -27.617
d17 = D17
r18 = ∞
d18 = 1.44 Nd18 = 1.54771 νd18 = 62.84
r19 = ∞
d19 = 0.8
r20 = ∞
d20 = 0.6 Nd20 = 1.51633 νd20 = 64.14
r21 = ∞
d21 = D21

非球面係数
第5面
k=0
A4=4.26368E-05
A6=2.02030E-07
A8=0
第8面
k=0
A4=-4.51766E-05
A6=-2.67569E-07
A8=0.00000E+00
第14面
k=0
A4=-2.01076E-04
A6=2.16748E-06
A8=0.00000E+00
第15面
k=0
A4=-2.54268E-04
A6=2.30811E-07
A8=0.00000E+00
Aspherical coefficient fifth surface
k = 0
A4 = 4.26368E-05
A6 = 2.02030E-07
A8 = 0
8th page
k = 0
A4 = -4.51766E-05
A6 = -2.67569E-07
A8 = 0.000E + 00
14th page
k = 0
A4 = -2.01076E-04
A6 = 2.16748E-06
A8 = 0.000E + 00
15th page
k = 0
A4 = -2.54268E-04
A6 = 2.30811E-07
A8 = 0.000E + 00

ズームデータ
D0(物体から第1面までの距離)が∞のとき
広角端 中間 望遠端
焦点距離 6.115 13.7 17.987
FNO. 2.84 3.46 3.75
D7 12.73 4.33 0.8
D10 1.58 9.99 13.51
D11 1.41 6.05 10.08
D14 8.06 6.6 2.98
D17 4.78 1.6 1.19
D21 1.36 1.36 1.36
Zoom data
When D0 (distance from the object to the first surface) is ∞
Wide-angle end Middle Telephoto end
Focal length 6.115 13.7 17.987
FNO. 2.84 3.46 3.75
D7 12.73 4.33 0.8
D10 1.58 9.99 13.51
D11 1.41 6.05 10.08
D14 8.06 6.6 2.98
D17 4.78 1.6 1.19
D21 1.36 1.36 1.36

図29は本発明の実施例15にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。   FIG. 29 is a cross-sectional view along the optical axis showing the optical configuration at the time of focusing on an object point at infinity at the wide-angle end of the zoom lens according to Example 15 of the present invention.

図30は実施例15にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。   FIG. 30 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 15 is focused on an object point at infinity, where (a) is a wide angle end, (b) is an intermediate view, (c) shows the state at the telephoto end.

実施例15のズームレンズは、図29に示すように、物体側より順に、第1レンズ群G1と、第2レンズ群G2と、開口絞りSと、第3レンズ群G3と、第4レンズ群G4を有している。なお、図中、LPFはローパスフィルター、CGはカバーガラス、Iは電子撮像素子の撮像面である。   As shown in FIG. 29, in the zoom lens of Example 15, the first lens group G1, the second lens group G2, the aperture stop S, the third lens group G3, and the fourth lens group are sequentially arranged from the object side. G4. In the figure, LPF is a low-pass filter, CG is a cover glass, and I is an image pickup surface of an electronic image pickup element.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL211、プリズムL212、両凸レンズL213と両凹レンズL214との接合レンズで構成されており、全体で負の屈折力を有している。   The first lens group G1 includes a negative meniscus lens L211 having a convex surface directed toward the object side, a prism L212, and a cemented lens of a biconvex lens L213 and a biconcave lens L214, and has a negative refracting power as a whole. .

第2レンズ群G2は、両凸レンズL221と像側に凸面を向けた負メニスカスレンズL222との接合レンズで構成されており、全体で正の屈折力を有している。   The second lens group G2 includes a cemented lens which is formed by a biconvex lens L221 and a negative meniscus lens L222 having a convex surface directed toward the image side, and has a positive refractive power as a whole.

第3レンズ群G3は、物体側に凹面を向けた負メニスカスレンズL231と物体側に凹面を向けた正メニスカスレンズL232との接合レンズで構成されており、全体で負の屈折力を有している。物体側に凹面を向けた正メニスカスレンズL232は、心厚の薄いレンズである。   The third lens group G3 includes a cemented lens which is formed by a negative meniscus lens L231 having a concave surface directed toward the object side and a positive meniscus lens L232 having a concave surface directed toward the object side, and has a negative refracting power as a whole. Yes. The positive meniscus lens L232 having a concave surface facing the object side is a lens having a thin heart thickness.

第4レンズ群G4は、両凸レンズL241と、物体側に凹面を向けた負メニスカスレンズL242との接合レンズで構成されており、全体で正の屈折力を有している。   The fourth lens group G4 includes a cemented lens which is formed by a biconvex lens L241 and a negative meniscus lens L242 having a concave surface directed toward the object side, and has a positive refracting power as a whole.

広角端から望遠端へと変倍する際には、第1レンズ群G1は固定、第2レンズ群G2は物体側へ移動し、開口絞りSは固定、第3レンズ群G3は像側へ移動し、第4レンズ群G4は像側へ移動する。   When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, the second lens group G2 is moved to the object side, the aperture stop S is fixed, and the third lens group G3 is moved to the image side. Then, the fourth lens group G4 moves to the image side.

非球面は、第1レンズ群G1中の両凸レンズL213の物体側の面、第2レンズ群G2中の両凸レンズL221の物体側の面、第3レンズ群G3中の物体側に凹面を向けた正メニスカスレンズL232の像側の面、第4レンズ群G4中の両凸レンズL241の物体側の面に設けられている。   The aspherical surface has a concave surface facing the object side surface of the biconvex lens L213 in the first lens group G1, the object side surface of the biconvex lens L221 in the second lens group G2, and the object side in the third lens group G3. It is provided on the image side surface of the positive meniscus lens L232 and the object side surface of the biconvex lens L241 in the fourth lens group G4.

次に、本実施例の数値データを掲げる。
数値データ15
r1=35.571
d1=1.1 Nd1=1.72 νd1=41.98
r2=11.248
d2=3
r3=∞
d3=12.5 Nd3=1.8061 νd3=40.92
r4=∞
d4=0.4
r5=610.441(非球面)
d5=2.2 Nd5=1.883 νd5=40.76
r6=-20.284
d6=0.7 Nd6=1.48749 νd6=70.23
r7=14.001
d7=D7
r8=13.614 (非球面)
d8=3.5 Nd8=1.7432 νd8=49.34
r9=-12.5
d9=0.7 Nd9=1.84666 νd9=23.78
r10=-35.933
d10=D10
r11=絞り
d11=D11
r12=-9.979
d12=0.7 Nd12=1.51742 νd12=52.43
r13=-100
d13=0.35 Nd13=1.852 νd13=14.02
r14=-57.672 (非球面)
d14=D14
r15=9.097(非球面)
d15=3.5 Nd15=1.6935 νd15=53.21
r16=-7.5
d16=0.7 Nd16=1.84666 νd16=23.78
r17=-27.778
d17=D17
r18=∞
d18=1.44 Nd18=1.54771 νd18=62.84
r19=∞
d19=0.8
r20=∞
d20=0.6 Nd20=1.51633 νd20=64.14
r21=∞
d21=D21
Next, numerical data of this embodiment will be listed.
Numerical data 15
r1 = 35.571
d1 = 1.1 Nd1 = 1.72 νd1 = 41.98
r2 = 11.248
d2 = 3
r3 = ∞
d3 = 12.5 Nd3 = 1.8061 νd3 = 40.92
r4 = ∞
d4 = 0.4
r5 = 610.441 (aspherical surface)
d5 = 2.2 Nd5 = 1.833 νd5 = 40.76
r6 = -20.284
d6 = 0.7 Nd6 = 1.48749 νd6 = 70.23
r7 = 14.001
d7 = D7
r8 = 13.614 (Aspherical surface)
d8 = 3.5 Nd8 = 1.7432 νd8 = 49.34
r9 = -12.5
d9 = 0.7 Nd9 = 1.84666 νd9 = 23.78
r10 = -35.933
d10 = D10
r11 = aperture
d11 = D11
r12 = -9.979
d12 = 0.7 Nd12 = 1.51742 νd12 = 52.43
r13 = -100
d13 = 0.35 Nd13 = 1.852 νd13 = 14.02
r14 = -57.672 (Aspherical surface)
d14 = D14
r15 = 9.097 (aspherical surface)
d15 = 3.5 Nd15 = 1.6935 νd15 = 53.21
r16 = −7.5
d16 = 0.7 Nd16 = 1.84666 νd16 = 23.78
r17 = -27.778
d17 = D17
r18 = ∞
d18 = 1.44 Nd18 = 1.54771 νd18 = 62.84
r19 = ∞
d19 = 0.8
r20 = ∞
d20 = 0.6 Nd20 = 1.51633 νd20 = 64.14
r21 = ∞
d21 = D21

非球面係数
第5面
k=0
A4=4.31813E-05
A6=1.95476E-07
A8=0
第8面
k=0
A4=-4.35637E-05
A6=-2.46996E-07
A8=0.00000E+00
第14面
k=0
A4=-1.80555E-04
A6=2.30560E-06
A8=0.00000E+00
第15面
k=0
A4=-2.61526E-04
A6=3.69800E-07
A8=0.00000E+00
Aspherical coefficient fifth surface
k = 0
A4 = 4.31813E-05
A6 = 1.95476E-07
A8 = 0
8th page
k = 0
A4 = -4.35637E-05
A6 = -2.46996E-07
A8 = 0.000E + 00
14th page
k = 0
A4 = -1.80555E-04
A6 = 2.30560E-06
A8 = 0.000E + 00
15th page
k = 0
A4 = -2.61526E-04
A6 = 3.69800E-07
A8 = 0.000E + 00

ズームデータ
D0(物体から第1面までの距離)が∞のとき
広角端 中間 望遠端
焦点距離 6.108 13.7 17.989
FNO. 2.84 3.49 3.76
D7 12.89 4.45 0.81
D10 1.58 10.03 13.67
D11 1.41 6.36 10.13
D14 8.02 6.38 2.98
D17 4.88 1.58 1.2
D21 1.36 1.36 1.36
Zoom data
When D0 (distance from the object to the first surface) is ∞
Wide-angle end Middle Telephoto end
Focal length 6.108 13.7 17.989
FNO. 2.84 3.49 3.76
D7 12.89 4.45 0.81
D10 1.58 10.03 13.67
D11 1.41 6.36 10.13
D14 8.02 6.38 2.98
D17 4.88 1.58 1.2
D21 1.36 1.36 1.36

図31は本発明の実施例16にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。   FIG. 31 is a cross-sectional view along the optical axis showing the optical configuration at the time of focusing on an object point at infinity at the wide-angle end of the zoom lens according to Example 16 of the present invention.

図32は実施例16にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。   FIG. 32 is a diagram illustrating spherical aberration, astigmatism, distortion, and lateral chromatic aberration when the zoom lens according to Example 16 is focused on an object point at infinity, where (a) is a wide-angle end, (b) is an intermediate view, (c) shows the state at the telephoto end.

実施例16のズームレンズは、図31に示すように、物体側より順に、第1レンズ群G1と、第2レンズ群G2と、開口絞りSと、第3レンズ群G3と、第4レンズ群G4を有している。なお、図中、LPFはローパスフィルター、CGはカバーガラス、Iは電子撮像素子の撮像面である。   As shown in FIG. 31, the zoom lens of Example 16 includes, in order from the object side, a first lens group G1, a second lens group G2, an aperture stop S, a third lens group G3, and a fourth lens group. G4. In the figure, LPF is a low-pass filter, CG is a cover glass, and I is an image pickup surface of an electronic image pickup element.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL211、プリズムL212、両凸レンズL213と両凹レンズL214との接合レンズで構成されており、全体で負の屈折力を有している。   The first lens group G1 includes a negative meniscus lens L211 having a convex surface directed toward the object side, a prism L212, and a cemented lens of a biconvex lens L213 and a biconcave lens L214, and has a negative refracting power as a whole. .

第2レンズ群G2は、両凸レンズL221と像側に凸面を向けた負メニスカスレンズL222との接合レンズで構成されており、全体で正の屈折力を有している。   The second lens group G2 includes a cemented lens which is formed by a biconvex lens L221 and a negative meniscus lens L222 having a convex surface directed toward the image side, and has a positive refractive power as a whole.

第3レンズ群G3は、物体側に凹面を向けた負メニスカスレンズL231と物体側に凹面を向けた正メニスカスレンズL232との接合レンズで構成されており、全体で負の屈折力を有している。物体側に凹面を向けた正メニスカスレンズL232は、心厚の薄いレンズである。   The third lens group G3 includes a cemented lens which is formed by a negative meniscus lens L231 having a concave surface directed toward the object side and a positive meniscus lens L232 having a concave surface directed toward the object side, and has a negative refracting power as a whole. Yes. The positive meniscus lens L232 having a concave surface facing the object side is a lens having a thin heart thickness.

第4レンズ群G4は、両凸レンズL241と、物体側に凹面を向けた負メニスカスレンズL242との接合レンズで構成されており、全体で正の屈折力を有している。   The fourth lens group G4 includes a cemented lens which is formed by a biconvex lens L241 and a negative meniscus lens L242 having a concave surface directed toward the object side, and has a positive refracting power as a whole.

広角端から望遠端へと変倍する際には、第1レンズ群G1は固定、第2レンズ群G2は物体側へ移動し、開口絞りSは固定、第3レンズ群G3は像側へ移動し、第4レンズ群G4は像側へ移動する。   When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, the second lens group G2 is moved to the object side, the aperture stop S is fixed, and the third lens group G3 is moved to the image side. Then, the fourth lens group G4 moves to the image side.

非球面は、第1レンズ群G1中の両凸レンズL213の物体側の面、第2レンズ群G2中の両凸レンズL221の物体側の面、第3レンズ群G3中の物体側に凹面を向けた正メニスカスレンズL232の像側の面、第4レンズ群G4中の両凸レンズL241の物体側の面に設けられている。   The aspherical surface has a concave surface facing the object side surface of the biconvex lens L213 in the first lens group G1, the object side surface of the biconvex lens L221 in the second lens group G2, and the object side in the third lens group G3. It is provided on the image side surface of the positive meniscus lens L232 and the object side surface of the biconvex lens L241 in the fourth lens group G4.

次に、本実施例の数値データを掲げる。
数値データ16
r1=38.891
d1=1.1 Nd1=1.7432 νd1=49.34
r2=9.835
d2=3
r3=∞
d3=12.5 Nd3=1.8061 νd3=40.92
r4=∞
d4=0.4
r5=60.054 (非球面)
d5=2.2 Nd5=1.883 νd5=40.76
r6=-24.469
d6=0.7 Nd6=1.48749 νd6=70.23
r7=12.862
d7=D7
r8=15.353 (非球面)
d8=3.5 Nd8=1.7432 νd8=49.34
r9=-12.5
d9=0.7 Nd9=1.84666 νd9=23.78
r10=-39.902
d10=D10
r11=絞り
d11=D11
r12=-9.98
d12=0.7 Nd12=1.51729 νd12=65.94
r13=-100
d13=0.35 Nd13=1.65228 νd13=12.75
r14=-48.119 (非球面)
d14=D14
r15=11.111 (非球面)
d15=3.5 Nd15=1.6935 νd15=53.21
r16=-7.5
d16=0.7 Nd16=1.84666 νd16=23.78
r17=-22.56
d17=D17
r18=∞
d18=1.44 Nd18=1.54771 νd18=62.84
r19=∞
d19=0.8
r20=∞
d20=0.6 Nd20=1.51633 νd20=64.14
r21=∞
d21=D21
Next, numerical data of this embodiment will be listed.
Numerical data 16
r1 = 38.891
d1 = 1.1 Nd1 = 1.7432 νd1 = 49.34
r2 = 9.835
d2 = 3
r3 = ∞
d3 = 12.5 Nd3 = 1.8061 νd3 = 40.92
r4 = ∞
d4 = 0.4
r5 = 60.054 (Aspherical surface)
d5 = 2.2 Nd5 = 1.833 νd5 = 40.76
r6 = -24.469
d6 = 0.7 Nd6 = 1.48749 νd6 = 70.23
r7 = 12.862
d7 = D7
r8 = 15.353 (Aspherical surface)
d8 = 3.5 Nd8 = 1.7432 νd8 = 49.34
r9 = -12.5
d9 = 0.7 Nd9 = 1.84666 νd9 = 23.78
r10 = −39.902
d10 = D10
r11 = aperture
d11 = D11
r12 = -9.98
d12 = 0.7 Nd12 = 1.571729 νd12 = 65.94
r13 = -100
d13 = 0.35 Nd13 = 1.65228 νd13 = 12.75
r14 = -48.119 (Aspherical surface)
d14 = D14
r15 = 11.111 (aspherical surface)
d15 = 3.5 Nd15 = 1.6935 νd15 = 53.21
r16 = −7.5
d16 = 0.7 Nd16 = 1.84666 νd16 = 23.78
r17 = -22.56
d17 = D17
r18 = ∞
d18 = 1.44 Nd18 = 1.54771 νd18 = 62.84
r19 = ∞
d19 = 0.8
r20 = ∞
d20 = 0.6 Nd20 = 1.51633 νd20 = 64.14
r21 = ∞
d21 = D21

非球面係数
第5面
k=0
A4=7.13925E-05
A6=1.71754E-07
A8=0
第8面
k=0
A4=-3.78743E-05
A6=-1.60871E-07
A8=0.00000E+00
第14面
k=0
A4=-4.07707E-04
A6=2.30478E-06
A8=0.00000E+00
第15面
k=0
A4=-3.45182E-04
A6=2.31185E-06
A8=0.00000E+00
Aspherical coefficient fifth surface
k = 0
A4 = 7.13925E-05
A6 = 1.71754E-07
A8 = 0
8th page
k = 0
A4 = -3.78743E-05
A6 = -1.60871E-07
A8 = 0.000E + 00
14th page
k = 0
A4 = -4.07707E-04
A6 = 2.30478E-06
A8 = 0.000E + 00
15th page
k = 0
A4 = -3.45182E-04
A6 = 2.31185E-06
A8 = 0.000E + 00

ズームデータ
D0(物体から第1面までの距離)が∞のとき
広角端 中間 望遠端
焦点距離 6.101 10.553 17.994
FNO. 3.06 3.65 5.17
D7 17.7 5.59 1.05
D10 5.85 9.39 13.35
D11 0.65 4.63 15.8
D14 5.72 3.86 2.69
D17 5.77 6.71 5.32
D21 1.36 1.36 1.36
Zoom data
When D0 (distance from the object to the first surface) is ∞
Wide-angle end Middle Telephoto end
Focal length 6.101 10.553 17.994
FNO. 3.06 3.65 5.17
D7 17.7 5.59 1.05
D10 5.85 9.39 13.35
D11 0.65 4.63 15.8
D14 5.72 3.86 2.69
D17 5.77 6.71 5.32
D21 1.36 1.36 1.36

図33は本発明の実施例17にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。   FIG. 33 is a cross-sectional view along the optical axis showing an optical configuration at the time of focusing on an object point at infinity at the wide-angle end of a zoom lens according to Example 17 of the present invention.

図34は実施例17にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。   FIG. 34 is a diagram showing spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 17 is focused on an object point at infinity, where (a) is the wide-angle end, (b) is the middle, (c) shows the state at the telephoto end.

実施例17のズームレンズは、図33に示すように、物体側より順に、第1レンズ群G1と、第2レンズ群G2と、開口絞りSと、第3レンズ群G3と、第4レンズ群G4を有している。なお、図中、LPFはローパスフィルター、CGはカバーガラス、Iは電子撮像素子の撮像面である。   As shown in FIG. 33, the zoom lens of Example 17 includes a first lens group G1, a second lens group G2, an aperture stop S, a third lens group G3, and a fourth lens group in order from the object side. G4. In the figure, LPF is a low-pass filter, CG is a cover glass, and I is an image pickup surface of an electronic image pickup element.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL211、プリズムL212、両凸レンズL213と両凹レンズL214との接合レンズで構成されており、全体で負の屈折力を有している。   The first lens group G1 includes a negative meniscus lens L211 having a convex surface directed toward the object side, a prism L212, and a cemented lens of a biconvex lens L213 and a biconcave lens L214, and has a negative refracting power as a whole. .

第2レンズ群G2は、両凸レンズL221と像側に面を向けた負メニスカスレンズL222との接合レンズで構成されており、全体で正の屈折力を有している。   The second lens group G2 includes a cemented lens which is formed by a biconvex lens L221 and a negative meniscus lens L222 having a surface directed toward the image side, and has a positive refractive power as a whole.

第3レンズ群G3は、物体側に凹面を向けた負メニスカスレンズL231と物体側に凹面を向けた正メニスカスレンズL232との接合レンズで構成されており、全体で負の屈折力を有している。物体側に凹面を向けた正メニスカスレンズL232は、心厚の薄いレンズである。   The third lens group G3 includes a cemented lens which is formed by a negative meniscus lens L231 having a concave surface directed toward the object side and a positive meniscus lens L232 having a concave surface directed toward the object side, and has a negative refracting power as a whole. Yes. The positive meniscus lens L232 having a concave surface facing the object side is a lens having a thin heart thickness.

第4レンズ群G4は、両凸レンズL241と、物体側に凹面を向けた負メニスカスレンズL242との接合レンズで構成されており、全体で正の屈折力を有している。   The fourth lens group G4 includes a cemented lens which is formed by a biconvex lens L241 and a negative meniscus lens L242 having a concave surface directed toward the object side, and has a positive refracting power as a whole.

広角端から望遠端へと変倍する際には、第1レンズ群G1は固定、第2レンズ群G2は物体側へ移動し、開口絞りSは固定、第3レンズ群G3は像側へ移動し、第4レンズ群G4は像側へ移動する。   When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, the second lens group G2 is moved to the object side, the aperture stop S is fixed, and the third lens group G3 is moved to the image side. Then, the fourth lens group G4 moves to the image side.

非球面は、第1レンズ群G1中の両凸レンズL213の物体側の面、第2レンズ群G2中の両凸レンズL221の物体側の面、第3レンズ群G3中の物体側に凹面を向けた正メニスカスレンズL232の像側の面、第4レンズ群G4中の両凸レンズL241の物体側の面に設けられている。   The aspherical surface has a concave surface facing the object side surface of the biconvex lens L213 in the first lens group G1, the object side surface of the biconvex lens L221 in the second lens group G2, and the object side in the third lens group G3. It is provided on the image side surface of the positive meniscus lens L232 and the object side surface of the biconvex lens L241 in the fourth lens group G4.

次に、本実施例の数値データを掲げる。
数値データ17
r1=57.868
d1=1.1 Nd1=1.7432 νd1=49.34
r2=11.248
d2=3.05
r3=∞
d3=12.5 Nd3=1.8061 νd3=40.92
r4=∞
d4=0.4
r5=51.247 (非球面)
d5=3.42 Nd5=1.883 νd5=40.76
r6=-24.561
d6=0.9 Nd6=1.48749 νd6=70.23
r7=12.542
d7=D7
r8=14.337 (非球面)
d8=7.69 Nd8=1.7432 νd8=49.34
r9=-12.5
d9=3.98 Nd9=1.84666 νd9=23.78
r10=-50.883
d10=D10
r11=絞り
d11=D11
r12=-10.713
d12=0.9 Nd12=1.52852 νd12=58.86
r13=-100
d13=0.35 Nd13=1.59885 νd13=6.52
r14=-63.005 (非球面)
d14=D14
r15=9.560 (非球面)
d15=4.34 Nd15=1.71237 νd15=44.16
r16=-7.5
d16=3.5 Nd16=1.81657 νd16=21.77
r17=-48.273
d17=D17
r18=∞
d18=1.44 Nd18=1.54771 νd18=62.84
r19=∞
d19=0.8
r20=∞
d20=0.6 Nd20=1.51633 νd20=64.14
r21=∞
d21=D21
Next, numerical data of this embodiment will be listed.
Numerical data 17
r1 = 57.868
d1 = 1.1 Nd1 = 1.7432 νd1 = 49.34
r2 = 11.248
d2 = 3.05
r3 = ∞
d3 = 12.5 Nd3 = 1.8061 νd3 = 40.92
r4 = ∞
d4 = 0.4
r5 = 51.247 (Aspherical surface)
d5 = 3.42 Nd5 = 1.833 νd5 = 40.76
r6 = -24.561
d6 = 0.9 Nd6 = 1.48749 νd6 = 70.23
r7 = 12.542
d7 = D7
r8 = 14.337 (Aspherical surface)
d8 = 7.69 Nd8 = 1.7432 νd8 = 49.34
r9 = -12.5
d9 = 3.98 Nd9 = 1.84666 νd9 = 23.78
r10 = -50.883
d10 = D10
r11 = aperture
d11 = D11
r12 = -10.713
d12 = 0.9 Nd12 = 1.52852 νd12 = 58.86
r13 = -100
d13 = 0.35 Nd13 = 1.59885 νd13 = 6.52
r14 = -63.005 (Aspherical surface)
d14 = D14
r15 = 9.560 (aspherical surface)
d15 = 4.34 Nd15 = 1.71237 νd15 = 44.16
r16 = −7.5
d16 = 3.5 Nd16 = 1.81657 νd16 = 21.77
r17 = -48.273
d17 = D17
r18 = ∞
d18 = 1.44 Nd18 = 1.54771 νd18 = 62.84
r19 = ∞
d19 = 0.8
r20 = ∞
d20 = 0.6 Nd20 = 1.51633 νd20 = 64.14
r21 = ∞
d21 = D21

非球面係数
第5面
k=0
A4=6.06374E-05
A6=2.96748E-08
A8=0
第8面
k=0
A4=-3.79953E-05
A6=-9.01187E-08
A8=0.00000E+00
第14面
k=0
A4=-4.27739E-04
A6=3.55154E-06
A8=0.00000E+00
第15面
k=0
A4=-3.08817E-04
A6=1.61244E-06
A8=0.00000E+00
Aspherical coefficient fifth surface
k = 0
A4 = 6.06374E-05
A6 = 2.96748E-08
A8 = 0
8th page
k = 0
A4 = -3.79953E-05
A6 = -9.01187E-08
A8 = 0.000E + 00
14th page
k = 0
A4 = -4.27739E-04
A6 = 3.55154E-06
A8 = 0.000E + 00
15th page
k = 0
A4 = -3.08817E-04
A6 = 1.61244E-06
A8 = 0.000E + 00

ズームデータ
D0(物体から第1面までの距離)が∞のとき
広角端 中間 望遠端
焦点距離 6.101 10.555 17.998
FNO. 3.24 3.5 4.82
D7 18.49 5.99 1.21
D10 0.91 7.03 11.89
D11 0.61 2.38 11.94
D14 6.75 5.1 4.34
D17 4.75 5.22 3.4
D21 1.36 1.36 1.36
Zoom data
When D0 (distance from the object to the first surface) is ∞
Wide-angle end Middle Telephoto end
Focal length 6.101 10.555 17.998
FNO. 3.24 3.5 4.82
D7 18.49 5.99 1.21
D10 0.91 7.03 11.89
D11 0.61 2.38 11.94
D14 6.75 5.1 4.34
D17 4.75 5.22 3.4
D21 1.36 1.36 1.36

図35は本発明の実施例18にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。   FIG. 35 is a sectional view taken along the optical axis showing the optical configuration at the time of focusing on an object point at infinity at the wide-angle end of the zoom lens according to Example 18 of the present invention.

図36は実施例18にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。   FIG. 36 is a diagram showing spherical aberration, astigmatism, distortion, and lateral chromatic aberration when the zoom lens according to Example 18 is focused on an object point at infinity, where (a) is the wide-angle end, (b) is the middle, (c) shows the state at the telephoto end.

実施例18のズームレンズは、図35に示すように、物体側より順に、第1レンズ群G1と、第2レンズ群G2と、開口絞りSと、第3レンズ群G3と、第4レンズ群G4を有している。なお、図中、LPFはローパスフィルター、CGはカバーガラス、Iは電子撮像素子の撮像面である。   As shown in FIG. 35, the zoom lens of Example 18 includes, in order from the object side, the first lens group G1, the second lens group G2, the aperture stop S, the third lens group G3, and the fourth lens group. G4. In the figure, LPF is a low-pass filter, CG is a cover glass, and I is an image pickup surface of an electronic image pickup element.

第1レンズ群G1は、物体面に凸側を向けた負メニスカスレンズL211、プリズムL212、両凸レンズL213と両凹レンズL214との接合レンズで構成されており、全体で負の屈折力を有している。   The first lens group G1 includes a negative meniscus lens L211 having a convex side directed toward the object surface, a prism L212, and a cemented lens of a biconvex lens L213 and a biconcave lens L214, and has a negative refracting power as a whole. Yes.

第2レンズ群G2は、両凸レンズL221と像側に凸面を向けた負メニスカスレンズL222との接合レンズで構成されており、全体で正の屈折力を有している。   The second lens group G2 includes a cemented lens which is formed by a biconvex lens L221 and a negative meniscus lens L222 having a convex surface directed toward the image side, and has a positive refractive power as a whole.

第3レンズ群G3は、物体側に凹面を向けた負メニスカスレンズL231と物体側に凹面を向けた正メニスカスレンズL232との接合レンズで構成されており、全体で負の屈折力を有している。物体側に凹面を向けた正メニスカスレンズL232は、心厚の薄いレンズである。   The third lens group G3 includes a cemented lens which is formed by a negative meniscus lens L231 having a concave surface directed toward the object side and a positive meniscus lens L232 having a concave surface directed toward the object side, and has a negative refracting power as a whole. Yes. The positive meniscus lens L232 having a concave surface facing the object side is a lens having a thin heart thickness.

第4レンズ群G4は、両凸レンズL241と、物体側に凹面を向けた負メニスカスレンズL242との接合レンズで構成されており、全体で正の屈折力を有している。   The fourth lens group G4 includes a cemented lens which is formed by a biconvex lens L241 and a negative meniscus lens L242 having a concave surface directed toward the object side, and has a positive refracting power as a whole.

広角端から望遠端へと変倍する際には、第1レンズ群G1は固定、第2レンズ群G2は物体側へ移動し、開口絞りSは固定、第3レンズ群G3は像側へ移動し、第4レンズ群G4は像側へ移動する。   When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, the second lens group G2 is moved to the object side, the aperture stop S is fixed, and the third lens group G3 is moved to the image side. Then, the fourth lens group G4 moves to the image side.

非球面は、第1レンズ群G1中の両凸レンズL213の物体側の面、第2レンズ群G2中の両凸レンズL221の物体側の面、第3レンズ群G3中の物体側に凹面を向けた正メニスカスレンズL232の像側の面、第4レンズ群G4中の両凸レンズL241の物体側の面に設けられている。   The aspherical surface has a concave surface facing the object side surface of the biconvex lens L213 in the first lens group G1, the object side surface of the biconvex lens L221 in the second lens group G2, and the object side in the third lens group G3. It is provided on the image side surface of the positive meniscus lens L232 and the object side surface of the biconvex lens L241 in the fourth lens group G4.

次に、本実施例の数値データを掲げる。
数値データ18
r1=62.959
d1=1.1 Nd1=1.7432 νd1=49.34
r2=11.433
d2=2.98
r3=∞
d3=12.5 Nd3=1.8061 νd3=40.92
r4=∞
d4=0.4
r5=50.756(非球面)
d5=2.79 Nd5=1.883 νd5=40.76
r6=-24.668
d6=0.9 Nd6=1.48749 νd6=70.23
r7=12.505
d7=D7
r8=14.492(非球面)
d8=7.39 Nd8=1.7432 νd8=49.34
r9=-12.5
d9=5.86 Nd9=1.84666 νd9=23.78
r10=-48.836
d10=D10
r11=絞り
d11=D11
r12=-9.553
d12=0.9 Nd12=1.53585 νd12=55.13
r13=-100
d13=0.35 Nd13=1.79525 νd13=9.95
r14=-44.152 (非球面)
d14=D14
r15=9.226 (非球面)
d15=4.3 Nd15=1.70794 νd15=47.46
r16=-7.5
d16=3.48 Nd16=1.82618 νd16=21.48
r17=-49.212
d17=D17
r18=∞
d18=1.44 Nd18=1.54771 νd18=62.84
r19=∞
d19=0.8
r20=∞
d20=0.6 Nd20=1.51633 νd20=64.14
r21=∞
d21=D21
Next, numerical data of this embodiment will be listed.
Numerical data 18
r1 = 62.959
d1 = 1.1 Nd1 = 1.7432 νd1 = 49.34
r2 = 11.433
d2 = 2.98
r3 = ∞
d3 = 12.5 Nd3 = 1.8061 νd3 = 40.92
r4 = ∞
d4 = 0.4
r5 = 50.756 (aspherical surface)
d5 = 2.79 Nd5 = 1.833 νd5 = 40.76
r6 = -24.668
d6 = 0.9 Nd6 = 1.48749 νd6 = 70.23
r7 = 12.505
d7 = D7
r8 = 14.492 (aspherical surface)
d8 = 7.39 Nd8 = 1.7432 νd8 = 49.34
r9 = -12.5
d9 = 5.86 Nd9 = 1.84666 νd9 = 23.78
r10 = -48.836
d10 = D10
r11 = aperture
d11 = D11
r12 = -9.553
d12 = 0.9 Nd12 = 1.53585 νd12 = 55.13
r13 = -100
d13 = 0.35 Nd13 = 1.79525 νd13 = 9.95
r14 = -44.152 (Aspherical surface)
d14 = D14
r15 = 9.226 (Aspherical surface)
d15 = 4.3 Nd15 = 1.70794 νd15 = 47.46
r16 = −7.5
d16 = 3.48 Nd16 = 1.82618 νd16 = 21.18
r17 = -49.212
d17 = D17
r18 = ∞
d18 = 1.44 Nd18 = 1.54771 νd18 = 62.84
r19 = ∞
d19 = 0.8
r20 = ∞
d20 = 0.6 Nd20 = 1.51633 νd20 = 64.14
r21 = ∞
d21 = D21

非球面係数
第5面
k=0
A4=6.09647E-05
A6=1.57459E-08
A8=0
第8面
k=0
A4=-3.80323E-05
A6=-6.55996E-08
A8=0.00000E+00
第14面
k=0
A4=-4.26592E-04
A6=4.19255E-06
A8=0.00000E+00
第15面
k=0
A4=-3.87754E-04
A6=2.28630E-06
A8=0.00000E+00
Aspherical coefficient fifth surface
k = 0
A4 = 6.09647E-05
A6 = 1.57459E-08
A8 = 0
8th page
k = 0
A4 = -3.80323E-05
A6 = -6.55996E-08
A8 = 0.000E + 00
14th page
k = 0
A4 = -4.26592E-04
A6 = 4.19255E-06
A8 = 0.000E + 00
15th page
k = 0
A4 = -3.87754E-04
A6 = 2.28630E-06
A8 = 0.000E + 00

ズームデータ
D0(物体から第1面までの距離)が∞のとき
広角端 中間 望遠端
焦点距離 6.1 10.553 17.995
FNO. 3.19 3.47 4.77
D7 18.27 5.85 1.19
D10 0.7 6.91 12.07
D11 0.64 2.49 12.19
D14 5.78 4.42 3.89
D17 4.69 5.18 3.29
D21 1.36 1.36 1.36
Zoom data
When D0 (distance from the object to the first surface) is ∞
Wide-angle end Middle Telephoto end
Focal length 6.1 10.553 17.995
FNO. 3.19 3.47 4.77
D7 18.27 5.85 1.19
D10 0.7 6.91 12.07
D11 0.64 2.49 12.19
D14 5.78 4.42 3.89
D17 4.69 5.18 3.29
D21 1.36 1.36 1.36

図37は本発明の実施例19にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。   FIG. 37 is a cross sectional view along the optical axis showing the optical configuration at the time of focusing on an object point at infinity at the wide-angle end of the zoom lens according to Example 19 of the present invention.

図38は実施例19にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。   FIG. 38 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 19 is in focus at infinity, (a) is the wide-angle end, (b) is the middle, (c) shows the state at the telephoto end.

実施例19のズームレンズは、図37に示すように、物体側より順に、第1レンズ群G1と、第2レンズ群G2と、開口絞りSと、第3レンズ群G3と、第4レンズ群G4を有している。なお、図中、LPFはローパスフィルター、CGはカバーガラス、Iは電子撮像素子の撮像面である。   As shown in FIG. 37, in the zoom lens of Example 19, the first lens group G1, the second lens group G2, the aperture stop S, the third lens group G3, and the fourth lens group are sequentially arranged from the object side. G4. In the figure, LPF is a low-pass filter, CG is a cover glass, and I is an image pickup surface of an electronic image pickup element.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL211、プリズムL212、両凸レンズL213と両凹レンズL214との接合レンズで構成されており、全体で負の屈折力を有している。   The first lens group G1 includes a negative meniscus lens L211 having a convex surface directed toward the object side, a prism L212, and a cemented lens of a biconvex lens L213 and a biconcave lens L214, and has a negative refracting power as a whole. .

第2レンズ群G2は、両凸レンズL221と像側に凸面を向けた負メニスカスレンズL222との接合レンズで構成されており、全体で正の屈折力を有している。   The second lens group G2 includes a cemented lens which is formed by a biconvex lens L221 and a negative meniscus lens L222 having a convex surface directed toward the image side, and has a positive refractive power as a whole.

第3レンズ群G3は、物体側に凹面を向けた負メニスカスレンズL231と物体側に凹面を向けた正メニスカスレンズL232との接合レンズで構成されており、全体で負の屈折力を有している。物体側に凹面を向けた正メニスカスレンズL232は、心厚の薄いレンズである。   The third lens group G3 includes a cemented lens which is formed by a negative meniscus lens L231 having a concave surface directed toward the object side and a positive meniscus lens L232 having a concave surface directed toward the object side, and has a negative refracting power as a whole. Yes. The positive meniscus lens L232 having a concave surface facing the object side is a lens having a thin heart thickness.

第4レンズ群G4は、両凸レンズL241と、物体側に凹面を向けた負メニスカスレンズL242との接合レンズで構成されており、全体で正の屈折力を有している。   The fourth lens group G4 includes a cemented lens which is formed by a biconvex lens L241 and a negative meniscus lens L242 having a concave surface directed toward the object side, and has a positive refracting power as a whole.

広角端から望遠端へと変倍する際には、第1レンズ群G1は固定、第2レンズ群G2は物体側へ移動し、開口絞りSは固定、第3レンズ群G3は像側へ移動し、第4レンズ群G4は像側へ移動する。   When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, the second lens group G2 is moved to the object side, the aperture stop S is fixed, and the third lens group G3 is moved to the image side. Then, the fourth lens group G4 moves to the image side.

非球面は、第1レンズ群G1中の両凸レンズL213の物体側の面、第2レンズ群G2中の両凸レンズL221の物体側の面、第3レンズ群G3中の物体側に凹面を向けた正メニスカスレンズL232の像側の面、第4レンズ群G4中の両凸レンズL241の物体側の面に設けられている。   The aspherical surface has a concave surface facing the object side surface of the biconvex lens L213 in the first lens group G1, the object side surface of the biconvex lens L221 in the second lens group G2, and the object side in the third lens group G3. It is provided on the image side surface of the positive meniscus lens L232 and the object side surface of the biconvex lens L241 in the fourth lens group G4.

次に、本実施例の数値データを掲げる。
数値データ19
r1=68.079
d1=1.1 Nd1=1.7432 νd1=49.34
r2=11.633
d2=2.99
r3=∞
d3=12.5 Nd3=1.8061 νd3=40.92
r4=∞
d4=0.4
r5=50.301(非球面)
d5=2.33 Nd5=1.883 νd5=40.76
r6=-24.516
d6=0.9 Nd6=1.48749 νd6=70.23
r7=12.478
d7=D7
r8=14.504 (非球面)
d8=7.39 Nd8=1.7432 νd8=49.34
r9=-12.5
d9=6.85 Nd9=1.84666 νd9=23.78
r10=-48.451
d10=D10
r11=絞り
d11=D11
r12=-8.927
d12=0.9 Nd12=1.53859 νd12=53.87
r13=-100
d13=0.35 Nd13=1.9712 νd13=12.88
r14=-38.346 (非球面)
d14=D14
r15=8.915(非球面)
d15=4.15 Nd15=1.70159 νd15=48.9
r16=-7.5
d16=3 Nd16=1.8402 νd16=21.32
r17=-47.582
d17=D17
r18=∞
d18=1.44 Nd18=1.54771 νd18=62.84
r19=∞
d19=0.8
r20=∞
d20=0.6 Nd20=1.51633 νd20=64.14
r21=∞
d21=D21
Next, numerical data of this embodiment will be listed.
Numerical data 19
r1 = 68.079
d1 = 1.1 Nd1 = 1.7432 νd1 = 49.34
r2 = 11.633
d2 = 2.99
r3 = ∞
d3 = 12.5 Nd3 = 1.8061 νd3 = 40.92
r4 = ∞
d4 = 0.4
r5 = 50.301 (Aspherical surface)
d5 = 2.33 Nd5 = 1.833 νd5 = 40.76
r6 = -24.516
d6 = 0.9 Nd6 = 1.48749 νd6 = 70.23
r7 = 12.478
d7 = D7
r8 = 14.504 (aspherical surface)
d8 = 7.39 Nd8 = 1.7432 νd8 = 49.34
r9 = -12.5
d9 = 6.85 Nd9 = 1.84666 νd9 = 23.78
r10 = −48.451
d10 = D10
r11 = aperture
d11 = D11
r12 = -8.927
d12 = 0.9 Nd12 = 1.53859 νd12 = 53.87
r13 = -100
d13 = 0.35 Nd13 = 1.9712 νd13 = 12.88
r14 = -38.346 (Aspherical surface)
d14 = D14
r15 = 8.915 (aspherical surface)
d15 = 4.15 Nd15 = 1.70159 νd15 = 48.9
r16 = −7.5
d16 = 3 Nd16 = 1.8402 νd16 = 21.32
r17 = -47.582
d17 = D17
r18 = ∞
d18 = 1.44 Nd18 = 1.54771 νd18 = 62.84
r19 = ∞
d19 = 0.8
r20 = ∞
d20 = 0.6 Nd20 = 1.51633 νd20 = 64.14
r21 = ∞
d21 = D21

非球面係数
第5面
k=0
A4=5.92982E-05
A6=5.24010E-09
A8=0
第8面
k=0
A4=-3.76559E-05
A6=-4.70537E-08
A8=0.00000E+00
第14面
k=0
A4=-4.04099E-04
A6=4.26752E-06
A8=0.00000E+00
第15面
k=0
A4=-4.50778E-04
A6=2.93020E-06
A8=0.00000E+00
Aspherical coefficient fifth surface
k = 0
A4 = 5.92982E-05
A6 = 5.24010E-09
A8 = 0
8th page
k = 0
A4 = -3.76559E-05
A6 = -4.70537E-08
A8 = 0.000E + 00
14th page
k = 0
A4 = -4.04099E-04
A6 = 4.26752E-06
A8 = 0.000E + 00
15th page
k = 0
A4 = -4.50778E-04
A6 = 2.93020E-06
A8 = 0.000E + 00

ズームデータ
D0(物体から第1面までの距離)が∞のとき
広角端 中間 望遠端
焦点距離 6.1 10.553 17.997
FNO. 3.12 3.41 4.64
D7 17.78 5.7 1.23
D10 0.56 6.93 12.47
D11 0.67 2.77 12.22
D14 5.2 3.94 3.41
D17 4.67 4.99 2.88
D21 1.36 1.36 1.36
Zoom data
When D0 (distance from the object to the first surface) is ∞
Wide-angle end Middle Telephoto end
Focal length 6.1 10.553 17.997
FNO. 3.12 3.41 4.64
D7 17.78 5.7 1.23
D10 0.56 6.93 12.47
D11 0.67 2.77 12.22
D14 5.2 3.94 3.41
D17 4.67 4.99 2.88
D21 1.36 1.36 1.36

図39は本発明の実施例20にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。   FIG. 39 is a cross-sectional view along the optical axis showing an optical configuration at the time of focusing on an object point at infinity at the wide-angle end of a zoom lens according to Example 20 of the present invention.

図40は実施例20にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。   FIG. 40 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 20 is focused on an object point at infinity, where (a) is a wide-angle end, (b) is an intermediate view, (c) shows the state at the telephoto end.

実施例20のズームレンズは、図39に示すように、物体側より順に、第1レンズ群G1と、第2レンズ群G2と、開口絞りSと、第3レンズ群G3と、第4レンズ群G4を有している。なお、図中、LPFはローパスフィルター、CGはカバーガラス、Iは電子撮像素子の撮像面である。   As shown in FIG. 39, in the zoom lens of Example 20, the first lens group G1, the second lens group G2, the aperture stop S, the third lens group G3, and the fourth lens group are sequentially arranged from the object side. G4. In the figure, LPF is a low-pass filter, CG is a cover glass, and I is an image pickup surface of an electronic image pickup element.

第1レンズ群G1は、物体側に凸面を向けた負メニスカスレンズL211、プリズムL212、両凸レンズL213と両凹レンズL214との接合レンズで構成されており、全体で負の屈折力を有している。   The first lens group G1 includes a negative meniscus lens L211 having a convex surface directed toward the object side, a prism L212, and a cemented lens of a biconvex lens L213 and a biconcave lens L214, and has a negative refracting power as a whole. .

第2レンズ群G2は、両凸レンズL221と像側に凸面を向けた負メニスカスレンズL222との接合レンズで構成されており、全体で正の屈折力を有している。   The second lens group G2 includes a cemented lens which is formed by a biconvex lens L221 and a negative meniscus lens L222 having a convex surface directed toward the image side, and has a positive refractive power as a whole.

第3レンズ群G3は、物体側に凹面を向けた負メニスカスレンズL231と物体側に凹面を向けた正メニスカスレンズL232との接合レンズで構成されており、全体で負の屈折力を有している。物体側に凹面を向けた正メニスカスレンズL232は、心厚の薄いレンズである。   The third lens group G3 includes a cemented lens which is formed by a negative meniscus lens L231 having a concave surface directed toward the object side and a positive meniscus lens L232 having a concave surface directed toward the object side, and has a negative refracting power as a whole. Yes. The positive meniscus lens L232 having a concave surface facing the object side is a lens having a thin heart thickness.

第4レンズ群G4は、両凸レンズL241と、物体側に凹面を向けた負メニスカスレンズL242との接合レンズで構成されており、全体で正の屈折力を有している。   The fourth lens group G4 includes a cemented lens which is formed by a biconvex lens L241 and a negative meniscus lens L242 having a concave surface directed toward the object side, and has a positive refracting power as a whole.

広角端から望遠端へと変倍する際には、第1レンズ群G1は固定、第2レンズ群G2は物体側へ移動し、開口絞りSは固定、第3レンズ群G3は像側へ移動し、第4レンズ群G4は像側へ移動する。   When zooming from the wide-angle end to the telephoto end, the first lens group G1 is fixed, the second lens group G2 is moved to the object side, the aperture stop S is fixed, and the third lens group G3 is moved to the image side. Then, the fourth lens group G4 moves to the image side.

非球面は、第1レンズ群G1中の両凸レンズL213の物体側の面、第2レンズ群G2中の両凸レンズL221の物体側の面、第3レンズ群G3中の物体側に凹面を向けた正メニスカスレンズL232の像側の面、第4レンズ群G4中の両凸レンズL241の物体側の面に設けられている。   The aspherical surface has a concave surface facing the object side surface of the biconvex lens L213 in the first lens group G1, the object side surface of the biconvex lens L221 in the second lens group G2, and the object side in the third lens group G3. It is provided on the image side surface of the positive meniscus lens L232 and the object side surface of the biconvex lens L241 in the fourth lens group G4.

次に、本実施例の数値データを掲げる。
数値データ20
r1=63.79
d1=1.1 Nd1=1.7432 νd1=49.34
r2=11.649
d2=3.06
r3=∞
d3=12.5 Nd3=1.8061 νd3=40.92
r4=∞
d4=0.4
r5=46.980(非球面)
d5=3.3 Nd5=1.883 νd5=40.76
r6=-25.318
d6=0.9 Nd6=1.48749 νd6=70.23
r7=12.314
d7=D7
r8=14.146(非球面)
d8=7.85 Nd8=1.7432 νd8=49.34
r9=-12.5
d9=4.47 Nd9=1.84666 νd9=23.78
r10=-53.448
d10=D10
r11=絞り
d11=D11
r12=-9.716
d12=0.9 Nd12=1.53062 νd12=57.73
r13=-100
d13=0.35 Nd13=2.0512 νd13=6.28
r14=-76.868 (非球面)
d14=D14
r15=8.784(非球面)
d15=4.06 Nd15=1.70975 νd15=45.62
r16=-7.5
d16=3.07 Nd16=1.82469 νd16=21.99
r17=-41.356
d17=D17
r18=∞
d18=1.44 Nd18=1.54771 νd18=62.84
r19=∞
d19=0.8
r20=∞
d20=0.6 Nd20=1.51633 νd20=64.14
r21=∞
d21=D21
Next, numerical data of this embodiment will be listed.
Numerical data 20
r1 = 63.79
d1 = 1.1 Nd1 = 1.7432 νd1 = 49.34
r2 = 11.649
d2 = 3.06
r3 = ∞
d3 = 12.5 Nd3 = 1.8061 νd3 = 40.92
r4 = ∞
d4 = 0.4
r5 = 46.980 (aspherical surface)
d5 = 3.3 Nd5 = 1.833 νd5 = 40.76
r6 = -25.318
d6 = 0.9 Nd6 = 1.48749 νd6 = 70.23
r7 = 12.314
d7 = D7
r8 = 14.146 (aspherical surface)
d8 = 7.85 Nd8 = 1.7432 νd8 = 49.34
r9 = -12.5
d9 = 4.47 Nd9 = 1.84666 νd9 = 23.78
r10 = −53.448
d10 = D10
r11 = aperture
d11 = D11
r12 = -9.716
d12 = 0.9 Nd12 = 1.53062 νd12 = 57.73
r13 = -100
d13 = 0.35 Nd13 = 2.0512 νd13 = 6.28
r14 = -76.868 (Aspherical surface)
d14 = D14
r15 = 8.784 (aspherical surface)
d15 = 4.06 Nd15 = 1.70975 νd15 = 45.62
r16 = −7.5
d16 = 3.07 Nd16 = 1.82469 νd16 = 21.19
r17 = −41.356
d17 = D17
r18 = ∞
d18 = 1.44 Nd18 = 1.54771 νd18 = 62.84
r19 = ∞
d19 = 0.8
r20 = ∞
d20 = 0.6 Nd20 = 1.51633 νd20 = 64.14
r21 = ∞
d21 = D21

非球面係数
第5面
k=0
A4=5.85091E-05
A6=1.63330E-08
A8=0
第8面
k=0
A4=-3.75473E-05
A6=-8.44888E-08
A8=0.00000E+00
第14面
k=0
A4=-2.99314E-04
A6=3.36694E-06
A8=0.00000E+00
第15面
k=0
A4=-3.61178E-04
A6=1.58918E-06
A8=0.00000E+00
Aspherical coefficient fifth surface
k = 0
A4 = 5.85091E-05
A6 = 1.63330E-08
A8 = 0
8th page
k = 0
A4 = -3.75473E-05
A6 = -8.44888E-08
A8 = 0.000E + 00
14th page
k = 0
A4 = -2.99314E-04
A6 = 3.36694E-06
A8 = 0.000E + 00
15th page
k = 0
A4 = -3.61178E-04
A6 = 1.58918E-06
A8 = 0.000E + 00

ズームデータ
D0(物体から第1面までの距離)が∞のとき
広角端 中間 望遠端
焦点距離 6.099 10.552 17.993
FNO. 3.03 3.33 4.5
D7 17.47 5.63 1.2
D10 1.14 7.24 12.69
D11 0.62 2.75 11.06
D14 6.52 5.15 4.63
D17 4.84 5.06 3.15
D21 1.36 1.36 1.36
Zoom data
When D0 (distance from the object to the first surface) is ∞
Wide-angle end Middle Telephoto end
Focal length 6.099 10.552 17.993
FNO. 3.03 3.33 4.5
D7 17.47 5.63 1.2
D10 1.14 7.24 12.69
D11 0.62 2.75 11.06
D14 6.52 5.15 4.63
D17 4.84 5.06 3.15
D21 1.36 1.36 1.36

さて、以上のような本発明の結像光学系は、物体の像をCCDやCMOSなどの電子撮像素子で撮影する撮影装置、とりわけデジタルカメラやビデオカメラ、情報処理装置の例であるパソコン、電話、携帯端末、特に持ち運びに便利な携帯電話等に用いることができる。以下に、その実施形態を例示する。   The imaging optical system of the present invention as described above is a photographing apparatus for photographing an image of an object with an electronic image sensor such as a CCD or CMOS, in particular, a digital camera, a video camera, a personal computer or an example of an information processing apparatus, a telephone. It can be used for portable terminals, especially mobile phones that are convenient to carry. The embodiment is illustrated below.

図41〜図43に本発明による結像光学系をデジタルカメラの撮影光学系41に組み込んだ構成の概念図を示す。図41はデジタルカメラ40の外観を示す前方斜視図、図42は同後方斜視図、図43はデジタルカメラ40の光学構成を示す断面図である。   FIGS. 41 to 43 are conceptual diagrams of structures in which the imaging optical system according to the present invention is incorporated in the photographing optical system 41 of a digital camera. 41 is a front perspective view showing an appearance of the digital camera 40, FIG. 42 is a rear perspective view thereof, and FIG. 43 is a cross-sectional view showing an optical configuration of the digital camera 40.

デジタルカメラ40は、この例の場合、撮影用光路42を有する撮影光学系41、ファインダー用光路44を有するファインダー光学系43、シャッター45、フラッシュ46、液晶表示モニター47等を含む。そして、撮影者が、カメラ40の上部に配置されたシャッター45を押圧すると、それに連動して撮影光学系41、例えば実施例1のズームレンズを通して撮影が行われる。   In this example, the digital camera 40 includes a photographing optical system 41 having a photographing optical path 42, a finder optical system 43 having a finder optical path 44, a shutter 45, a flash 46, a liquid crystal display monitor 47, and the like. Then, when the photographer presses the shutter 45 disposed on the upper part of the camera 40, the photographing is performed through the photographing optical system 41, for example, the zoom lens of the first embodiment in conjunction therewith.

撮影光学系41によって形成された物体像は、CCD49の撮像面上に形成される。このCCD49で受光された物体像は、画像処理手段51を介し、電子画像としてカメラ背面に設けられた液晶表示モニター47に表示される。また、この画像処理手段51にはメモリ等が配置され、撮影された電子画像を記録することもできる。なお、このメモリは画像処理手段51と別体に設けてもよいし、フロッピー(登録商標)ディスクやメモリーカード、MO等により電子的に記録書込を行うように構成してもよい。   The object image formed by the photographing optical system 41 is formed on the image pickup surface of the CCD 49. The object image received by the CCD 49 is displayed as an electronic image on the liquid crystal display monitor 47 provided on the back of the camera via the image processing means 51. Further, the image processing means 51 is provided with a memory or the like, and can record a captured electronic image. This memory may be provided separately from the image processing means 51, or may be configured to perform recording and writing electronically using a floppy (registered trademark) disk, memory card, MO, or the like.

さらに、ファインダー用光路44上には、ファインダー用対物光学系53が配置されている。このファインダー用対物光学系53は、カバーレンズ54、第1プリズム10、開口絞り2、第2プリズム20、フォーカス用レンズ66からなる。このファインダー用対物光学系53によって、結像面67上に物体像が形成される。この物体像は、像正立部材であるポロプリズム55の視野枠57上に形成される。このポリプリズム55の後方には、正立正像にされた像を観察者眼球Eに導く接眼光学系59が配置されている。   Further, a finder objective optical system 53 is disposed on the finder optical path 44. The finder objective optical system 53 includes a cover lens 54, a first prism 10, an aperture stop 2, a second prism 20, and a focusing lens 66. An object image is formed on the imaging surface 67 by the finder objective optical system 53. This object image is formed on the field frame 57 of the Porro prism 55 which is an image erecting member. An eyepiece optical system 59 that guides an erect image to the observer eyeball E is disposed behind the polyprism 55.

このように構成されたデジタルカメラ40によれば、撮影光学系41の構成枚数を少なくした小型化・薄型化のズームレンズを有する電子撮像装置が実現できる。   According to the digital camera 40 configured as described above, an electronic imaging device having a compact and thin zoom lens in which the number of components of the photographing optical system 41 is reduced can be realized.

次に、本発明の結像光学系が対物光学系として内蔵された情報処理装置の一例であるパソコンを図44〜図46に示す。図44はパソコン300のカバーを開いた状態の前方斜視図、図45はパソコン300の撮影光学系303の断面図、図46は図44の側面図である。図44〜図46に示されるように、パソコン300は、キーボード301と、情報処理手段や記録手段と、モニター302と、撮影光学系303とを有している。   Next, a personal computer which is an example of an information processing apparatus in which the imaging optical system of the present invention is incorporated as an objective optical system is shown in FIGS. 44 is a front perspective view of the personal computer 300 with the cover open, FIG. 45 is a sectional view of the photographing optical system 303 of the personal computer 300, and FIG. 46 is a side view of FIG. 44 to 46, the personal computer 300 includes a keyboard 301, information processing means and recording means, a monitor 302, and a photographing optical system 303.

ここで、キーボード301は、外部から操作者が情報を入力するためのものである。情報処理手段や記録手段は、図示を省略している。モニター302は、情報を操作者に表示するためのものである。撮影光学系303は、操作者自身や周辺の像を撮影するためのものである。モニター302は、液晶表示素子やCRTディスプレイ等であってよい。液晶表示素子としては、図示しないバックライトにより背面から照明する透過型液晶表示素子や、前面からの光を反射して表示する反射型液晶表示素子がある。また、図中、撮影光学系303は、モニター302の右上に内蔵されているが、その場所に限らず、モニター302の周囲や、キーボード301の周囲のどこであってもよい。   Here, the keyboard 301 is for an operator to input information from the outside. The information processing means and recording means are not shown. The monitor 302 is for displaying information to the operator. The photographing optical system 303 is for photographing an image of the operator himself or a surrounding area. The monitor 302 may be a liquid crystal display element, a CRT display, or the like. Examples of the liquid crystal display element include a transmissive liquid crystal display element that illuminates from the back with a backlight (not shown), and a reflective liquid crystal display element that reflects and displays light from the front. Further, in the drawing, the photographing optical system 303 is built in the upper right of the monitor 302. However, the imaging optical system 303 is not limited to the place, and may be anywhere around the monitor 302 or the keyboard 301.

この撮影光学系303は、撮影光路304上に、例えば実施例1のズームレンズからなる対物光学系100と、像を受光する電子撮像素子チップ162とを有している。これらはパソコン300に内蔵されている。   The photographing optical system 303 includes, on the photographing optical path 304, the objective optical system 100 including, for example, the zoom lens according to the first embodiment, and the electronic imaging element chip 162 that receives an image. These are built in the personal computer 300.

鏡枠の先端には、対物光学系100を保護するためのカバーガラス102が配置されている。
電子撮像素子チップ162で受光された物体像は、端子166を介して、パソコン300の処理手段に入力される。そして、最終的に、物体像は電子画像としてモニター302に表示される、図44には、その一例として、操作者が撮影した画像305が示されている。また、この画像305は、処理手段を介し、遠隔地から通信相手のパソコンに表示されることも可能である。遠隔地への画像伝達は、インターネットや電話を利用する。
A cover glass 102 for protecting the objective optical system 100 is disposed at the tip of the mirror frame.
The object image received by the electronic image sensor chip 162 is input to the processing means of the personal computer 300 via the terminal 166. Finally, the object image is displayed on the monitor 302 as an electronic image. FIG. 44 shows an image 305 taken by the operator as an example. The image 305 can also be displayed on a communication partner's personal computer from a remote location via the processing means. The Internet and telephone are used for image transmission to remote places.

次に、本発明の結像光学系が撮影光学系として内蔵された情報処理装置の一例である電話、特に持ち運びに便利な携帯電話を図47に示す。図47(a)は携帯電話400の正面図、図47(b)は側面図、図47(c)は撮影光学系405の断面図である。図47(a)〜(c)に示されるように、携帯電話400は、マイク部401と、スピーカ部402と、入力ダイアル403と、モニター404と、撮影光学系405と、アンテナ406と、処理手段とを有している。   Next, FIG. 47 shows a telephone which is an example of an information processing apparatus in which the imaging optical system of the present invention is incorporated as a photographing optical system, particularly a portable telephone which is convenient to carry. 47 (a) is a front view of the mobile phone 400, FIG. 47 (b) is a side view, and FIG. 47 (c) is a sectional view of the photographing optical system 405. 47A to 47C, the mobile phone 400 includes a microphone unit 401, a speaker unit 402, an input dial 403, a monitor 404, a photographing optical system 405, an antenna 406, and processing. Means.

ここで、マイク部401は、操作者の声を情報として入力するためのものである。スピーカ部402は、通話相手の声を出力するためのものである。入力ダイアル403は、操作者が情報を入力するためのものである。モニター404は、操作者自身や通話相手等の撮影像や、電話番号等の情報を表示するためのものである。アンテナ406は、通信電波の送信と受信を行うためのものである。処理手段(不図示)は、画像情報や通信情報、入力信号等の処理を行ためのものである。   Here, the microphone unit 401 is for inputting an operator's voice as information. The speaker unit 402 is for outputting the voice of the other party. An input dial 403 is used by an operator to input information. The monitor 404 is for displaying information such as a photographed image of the operator himself or the other party, a telephone number, and the like. The antenna 406 is for transmitting and receiving communication radio waves. The processing means (not shown) is for processing image information, communication information, input signals, and the like.

ここで、モニター404は液晶表示素子である。また、図中、各構成の配置位置、特にこれらに限られない。この撮影光学系405は、撮影光路407上に配された対物光学系100と、物体像を受光する電子撮像素子チップ162とを有している。対物光学系100としては、例えば実施例1のズームレンズが用いられる。これらは、携帯電話400に内蔵されている。   Here, the monitor 404 is a liquid crystal display element. Further, in the drawing, the arrangement positions of the respective components, in particular, are not limited thereto. The photographing optical system 405 includes the objective optical system 100 disposed on the photographing optical path 407 and an electronic image sensor chip 162 that receives an object image. As the objective optical system 100, for example, the zoom lens of Example 1 is used. These are built in the mobile phone 400.

鏡枠の先端には、対物光学系100を保護するためのカバーガラス102が配置されている。
電子撮影素子チップ162で受光された物体像は、端子166を介して、図示していない画像処理手段に入力される。そして、最終的に物体像は、電子画像としてモニター404に、又は、通信相手のモニターに、又は、両方に表示される。また、処理手段には信号処理機能が含まれている。通信相手に画像を送信する場合、この機能により、電子撮像素子チップ162で受光された物体像の情報を、送信可能な信号へと変換する。
A cover glass 102 for protecting the objective optical system 100 is disposed at the tip of the mirror frame.
The object image received by the electronic imaging element chip 162 is input to an image processing unit (not shown) via the terminal 166. Finally, the object image is displayed as an electronic image on the monitor 404, the monitor of the communication partner, or both. The processing means includes a signal processing function. When transmitting an image to a communication partner, this function converts information on the object image received by the electronic image sensor chip 162 into a signal that can be transmitted.

以上のように、本発明の結像光学系及びそれを用いた電子撮像装置は、特許請求の範囲に記載された発明の他に、次のような特徴を備えている。   As described above, the imaging optical system of the present invention and the electronic imaging device using the same have the following features in addition to the invention described in the claims.

(1)次の条件式を満足することを特徴とする請求項1に記載の結像光学系。
1.48<β<2.04
ここで、Ndは接合レンズに用いられる硝材の屈折率、νdは接合レンズに用いられる硝材のアッベ数をそれぞれ表し、Nd=α×νd+βの関係を満たす。
(1) The imaging optical system according to claim 1, wherein the following conditional expression is satisfied.
1.48 <β <2.04
Here, Nd represents the refractive index of the glass material used for the cemented lens, and νd represents the Abbe number of the glass material used for the cemented lens, and satisfies the relationship Nd = α × νd + β.

(2)次の条件式を満足することを特徴とする請求項1に記載の結像光学系。
1.50<β<2.00
ここで、Ndは接合レンズに用いられる硝材の屈折率、νdは接合レンズに用いられる硝材のアッベ数をそれぞれ表し、Nd=α×νd+βの関係を満たす。
(2) The imaging optical system according to claim 1, wherein the following conditional expression is satisfied.
1.50 <β <2.00
Here, Nd represents the refractive index of the glass material used for the cemented lens, and νd represents the Abbe number of the glass material used for the cemented lens, and satisfies the relationship Nd = α × νd + β.

(3)次の条件式を満足することを特徴とする請求項1に記載の結像光学系。
1.60<Nd<2.10
但しNdは接合レンズに用いられる硝材の屈折率である。
(3) The imaging optical system according to claim 1, wherein the following conditional expression is satisfied.
1.60 <Nd <2.10
Nd is the refractive index of the glass material used for the cemented lens.

(4)次の条件式を満足することを特徴とする請求項1に記載の結像光学系。
1.63<Nd<1.95
但しNdは接合レンズに用いられる硝材の屈折率である。
(4) The imaging optical system according to claim 1, wherein the following conditional expression is satisfied.
1.63 <Nd <1.95
Nd is the refractive index of the glass material used for the cemented lens.

(5)次の条件式を満足することを特徴とする請求項1に記載の結像光学系。
5<νd<30
但しνdは接合レンズに用いられる硝材のアッベ数である。
(5) The imaging optical system according to claim 1, wherein the following conditional expression is satisfied.
5 <νd <30
Where νd is the Abbe number of the glass material used for the cemented lens.

(6)次の条件式を満足することを特徴とする請求項1に記載の結像光学系。
6<νd<25
但しνdは接合レンズに用いられる硝材のアッベ数である。
(6) The imaging optical system according to claim 1, wherein the following conditional expression is satisfied.
6 <νd <25
Where νd is the Abbe number of the glass material used for the cemented lens.

(7)前記ズームレンズが、ほぼ無限遠物点合焦時に次の条件式を満足することを特徴とする請求項10に記載の電子撮像装置。
0.75 < y07/(fw・tanω07w) < 0.94
但し、y07は前記電子撮像素子の有効撮像面内(撮像可能な面内)で中心から最も遠い点までの距離(最大像高)をy10としたとき、y07=0.7y10として表される。また、ω07wは広角端における前記撮像面上の中心からy07の位置に結ぶ像点に対応する物点方向の光軸に対する角度である。
(7) The electronic imaging apparatus according to (10), wherein the zoom lens satisfies the following conditional expression when focusing on an object point at infinity.
0.75 <y 07 / (fw · tan ω 07w ) <0.94
However, y 07 is y 07 = 0.7y 10 , where y 10 is the distance (maximum image height) from the center to the farthest point in the effective imaging plane (in the plane where imaging is possible) of the electronic imaging device. expressed. Further, ω 07w is an angle with respect to the optical axis in the object point direction corresponding to the image point connecting from the center on the imaging surface to the position of y 07 at the wide angle end.

(8)前記ズームレンズが、ほぼ無限遠物点合焦時に次の条件式を満足することを特徴とする請求項10に記載の電子撮像装置。
0.80 < y07/(fw・tanω07w) < 0.92
但し、y07は前記電子撮像素子の有効撮像面内(撮像可能な面内)で中心から最も遠い点までの距離(最大像高)をy10としたとき、y07=0.7y10として表される。また、ω07wは広角端における前記撮像面上の中心からy07の位置に結ぶ像点に対応する物点方向の光軸に対する角度である。
(8) The electronic imaging apparatus according to (10), wherein the zoom lens satisfies the following conditional expression when focusing on an object point at infinity.
0.80 <y 07 / (fw · tan ω 07w ) <0.92
However, y 07 is y 07 = 0.7y 10 , where y 10 is the distance (maximum image height) from the center to the farthest point in the effective imaging plane (in the plane where imaging is possible) of the electronic imaging device. expressed. Further, ω 07w is an angle with respect to the optical axis in the object point direction corresponding to the image point connecting from the center on the imaging surface to the position of y 07 at the wide angle end.

なお、本発明は、その趣旨を逸脱しない範囲で様々な変形例をとることができる。   The present invention can take various modifications without departing from the spirit of the present invention.

本発明の実施例1にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。It is sectional drawing which follows the optical axis which shows the optical structure at the time of infinity object point focusing in the wide angle end of the zoom lens concerning Example 1 of this invention. 実施例1にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 3 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 1 is focused on an object point at infinity, where (a) is the wide-angle end, (b) is the middle, (c) Indicates the state at the telephoto end. 本発明の実施例2にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。It is sectional drawing which follows the optical axis which shows the optical structure at the time of infinity object point focusing in the wide angle end of the zoom lens concerning Example 2 of this invention. 実施例2にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 7 is a diagram illustrating spherical aberration, astigmatism, distortion, and lateral chromatic aberration when the zoom lens according to Example 2 is focused on an object point at infinity, where (a) is a wide-angle end, (b) is an intermediate, (c) Indicates the state at the telephoto end. 本発明の実施例3にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。It is sectional drawing which follows the optical axis which shows the optical structure at the time of infinity object point focusing in the wide angle end of the zoom lens concerning Example 3 of this invention. 実施例3にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 10 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 3 is focused on an object point at infinity, where (a) is a wide-angle end, (b) is a middle, (c) Indicates the state at the telephoto end. 本発明の実施例4にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。It is sectional drawing which follows the optical axis which shows the optical structure at the time of infinity object point focusing in the wide angle end of the zoom lens concerning Example 4 of this invention. 実施例4にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 10 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 4 is focused on an object point at infinity, where (a) is a wide-angle end, (b) is a middle, (c) Indicates the state at the telephoto end. 本発明の実施例5にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。FIG. 10 is a cross-sectional view along an optical axis showing an optical configuration at the time of focusing on an object point at infinity at the wide angle end of a zoom lens according to Example 5 of the present invention; 実施例5にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 10 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 5 is focused on an object point at infinity, where (a) is a wide-angle end, (b) is a middle, (c) Indicates the state at the telephoto end. 本発明の実施例6にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。It is sectional drawing which follows the optical axis which shows the optical structure at the time of infinity object point focusing in the wide angle end of the zoom lens concerning Example 6 of this invention. 実施例6にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 10 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 6 is focused on an object point at infinity, where (a) is a wide-angle end, (b) is a middle, (c) Indicates the state at the telephoto end. 本発明の実施例7にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。It is sectional drawing which follows the optical axis which shows the optical structure at the time of infinity object point focusing in the wide angle end of the zoom lens concerning Example 7 of this invention. 実施例7にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 10 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 7 is focused on an object point at infinity, where (a) is a wide-angle end, (b) is a middle, (c) Indicates the state at the telephoto end. 本発明の実施例8にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。It is sectional drawing which follows the optical axis which shows the optical structure at the time of infinity object point focusing in the wide angle end of the zoom lens concerning Example 8 of this invention. 実施例8にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 10 is a diagram illustrating spherical aberration, astigmatism, distortion aberration, and chromatic aberration of magnification when the zoom lens according to Example 8 is focused on an object point at infinity, where (a) is a wide-angle end, (b) is an intermediate position, (c) Indicates the state at the telephoto end. 本発明の実施例9にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。It is sectional drawing which follows the optical axis which shows the optical structure at the time of an infinite object point focusing in the wide angle end of the zoom lens concerning Example 9 of this invention. 実施例9にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 10 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 9 is focused on an object point at infinity, where (a) is a wide-angle end, (b) is an intermediate, and (c). Indicates the state at the telephoto end. 本発明の実施例10にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。It is sectional drawing which follows the optical axis which shows the optical structure at the time of infinity object point focusing in the wide angle end of the zoom lens concerning Example 10 of this invention. 実施例10にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 11 is a diagram illustrating spherical aberration, astigmatism, distortion, and lateral chromatic aberration when the zoom lens according to Example 10 is focused on an object point at infinity, where (a) is a wide-angle end, (b) is an intermediate, (c) Indicates the state at the telephoto end. 本発明の実施例11にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。It is sectional drawing which follows the optical axis which shows the optical structure at the time of infinity object point focusing in the wide angle end of the zoom lens concerning Example 11 of this invention. 実施例11にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 10 is a diagram illustrating spherical aberration, astigmatism, distortion, and lateral chromatic aberration when the zoom lens according to Example 11 is focused on an object point at infinity, where (a) is a wide-angle end, (b) is an intermediate, (c) Indicates the state at the telephoto end. 本発明の実施例12にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。It is sectional drawing which follows the optical axis which shows the optical structure at the time of infinity object point focusing in the wide angle end of the zoom lens concerning Example 12 of this invention. 実施例12にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 14 is a diagram showing spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 12 is focused on an object point at infinity, where (a) is a wide-angle end, (b) is an intermediate, (c) Indicates the state at the telephoto end. 本発明の実施例13にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。It is sectional drawing which follows the optical axis which shows the optical structure at the time of infinity object point focusing in the wide angle end of the zoom lens concerning Example 13 of this invention. 実施例13にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 14 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 13 is focused on an object point at infinity, where (a) is a wide-angle end, (b) is a middle, (c) Indicates the state at the telephoto end. 本発明の実施例14にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。It is sectional drawing which follows the optical axis which shows the optical structure at the time of infinity object point focusing in the wide angle end of the zoom lens concerning Example 14 of this invention. 実施例14にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 14 is a diagram showing spherical aberration, astigmatism, distortion aberration, and chromatic aberration of magnification when the zoom lens according to Example 14 is focused on an object point at infinity, where (a) is a wide angle end, (b) is an intermediate position, (c) Indicates the state at the telephoto end. 本発明の実施例15にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。It is sectional drawing which follows the optical axis which shows the optical structure at the time of infinity object point focusing in the wide angle end of the zoom lens concerning Example 15 of this invention. 実施例15にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 18 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 15 is focused on an object point at infinity, where (a) is a wide-angle end, (b) is an intermediate position, and (c) Indicates the state at the telephoto end. 本発明の実施例16にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。It is sectional drawing which follows the optical axis which shows the optical structure at the time of infinity object point focusing in the wide angle end of the zoom lens concerning Example 16 of this invention. 実施例16にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 18 is a diagram illustrating spherical aberration, astigmatism, distortion, and lateral chromatic aberration when the zoom lens according to Example 16 is focused on an object point at infinity, where (a) is a wide-angle end, (b) is an intermediate, (c) Indicates the state at the telephoto end. 本発明の実施例17にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。It is sectional drawing which follows the optical axis which shows the optical structure at the time of infinity object point focusing in the wide angle end of the zoom lens concerning Example 17 of this invention. 実施例17にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 18 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 17 is focused on an object point at infinity, where (a) is a wide-angle end, (b) is a middle, (c) Indicates the state at the telephoto end. 本発明の実施例18にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。It is sectional drawing which follows the optical axis which shows the optical structure at the time of infinity object point focusing in the wide angle end of the zoom lens concerning Example 18 of this invention. 実施例18にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 19 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 18 is focused on an object point at infinity, where (a) is a wide-angle end, (b) is an intermediate, and (c) Indicates the state at the telephoto end. 本発明の実施例19にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。It is sectional drawing which follows the optical axis which shows the optical structure at the time of infinity object point focusing in the wide angle end of the zoom lens concerning Example 19 of this invention. 実施例19にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 19 is a diagram illustrating spherical aberration, astigmatism, distortion, and lateral chromatic aberration when the zoom lens according to Example 19 is focused on an object point at infinity, where (a) is a wide-angle end, (b) is an intermediate position, and (c) Indicates the state at the telephoto end. 本発明の実施例20にかかるズームレンズの広角端における無限遠物点合焦時の光学構成を示す光軸に沿う断面図である。It is sectional drawing which follows the optical axis which shows the optical structure at the time of infinity object point focusing in the wide angle end of the zoom lens concerning Example 20 of this invention. 実施例20にかかるズームレンズの無限遠物点合焦時における球面収差、非点収差、歪曲収差、倍率色収差を示す図であり、(a)は広角端、(b)は中間、(c)は望遠端での状態を示している。FIG. 20 is a diagram illustrating spherical aberration, astigmatism, distortion, and chromatic aberration of magnification when the zoom lens according to Example 20 is focused on an object point at infinity, in which (a) is a wide angle end, (b) is an intermediate, (c) Indicates the state at the telephoto end. 本発明によるズーム光学系を組み込んだデジタルカメラ40の外観を示す前方斜視図である。It is a front perspective view which shows the external appearance of the digital camera 40 incorporating the zoom optical system by this invention. デジタルカメラ40の後方斜視図である。2 is a rear perspective view of the digital camera 40. FIG. デジタルカメラ40の光学構成を示す断面図である。2 is a cross-sectional view showing an optical configuration of a digital camera 40. FIG. 本発明のズーム光学系が対物光学系として内蔵された情報処理装置の一例であるパソコン300のカバーを開いた状態の前方斜視図である。1 is a front perspective view of a state in which a cover of a personal computer 300 which is an example of an information processing apparatus in which a zoom optical system of the present invention is built as an objective optical system is opened. FIG. パソコン300の撮影光学系303の断面図である。2 is a cross-sectional view of a photographing optical system 303 of a personal computer 300. パソコン300の側面図である。2 is a side view of a personal computer 300. FIG. 本発明のズーム光学系が撮影光学系として内蔵された情報処理装置の一例である携帯電話を示す図であり、(a)は携帯電話400の正面図、(b)は側面図、(c)は撮影光学系405の断面図である。1A and 1B are diagrams showing a mobile phone as an example of an information processing apparatus in which a zoom optical system of the present invention is incorporated as a photographing optical system, in which FIG. 1A is a front view of the mobile phone 400, FIG. FIG. 4 is a sectional view of the photographing optical system 405. 各実施例の数値データにおけるr及びdの番号と、光学構成(レンズ面、肉厚、空気間隔)との関係を示す図である。It is a figure which shows the relationship between the number of r and d in the numerical data of each Example, and an optical structure (a lens surface, thickness, an air space | interval).

符号の説明Explanation of symbols

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
G5 第5レンズ群
L111〜L242 各レンズ
CG カバーガラス
I 撮像面
E 観察者の眼球
40 デジタルカメラ
41 撮影光学系
42 撮影用光路
43 ファインダー光学系
44 ファインダー用光路
45 シャッター
46 フラッシュ
47 液晶表示モニター
49 CCD
50 撮像面
51 処理手段
53 ファインダー用対物光学系
55 ポロプリズム
57 視野枠
59 接眼光学系
66 フォーカス用レンズ
67 結像面
100 対物光学系
102 カバーガラス
162 電子撮像素子チップ
166 端子
300 パソコン
301 キーボード
302 モニター
303 撮影光学系
304 撮影光路
305 画像
400 携帯電話
401 マイク部
402 スピーカ部
403 入力ダイアル
404 モニター
405 撮影光学系
406 アンテナ
407 撮影光路
G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G5 5th lens group L111-L242 Each lens CG Cover glass I Imaging surface E Eyeball of observer 40 Digital camera 41 Shooting optical system 42 Shooting Optical path 43 Viewfinder optical system 44 Optical path for viewfinder 45 Shutter 46 Flash 47 LCD monitor 49 CCD
DESCRIPTION OF SYMBOLS 50 Image pick-up surface 51 Processing means 53 Finder objective optical system 55 Porro prism 57 Field frame 59 Eyepiece optical system 66 Focus lens 67 Imaging surface 100 Objective optical system 102 Cover glass 162 Electronic image pick-up element chip | tip 166 Terminal 300 Personal computer 301 Keyboard 302 Monitor 303 Imaging Optical System 304 Imaging Optical Path 305 Image 400 Mobile Phone 401 Microphone Unit 402 Speaker Unit 403 Input Dial 404 Monitor 405 Imaging Optical System 406 Antenna 407 Imaging Optical Path

Claims (10)

正のレンズ群と、負のレンズ群と、絞りとを有する結像光学系において、
前記絞りより像面側に前記負のレンズ群が配置され、
前記負のレンズ群が複数のレンズを接合してなる接合レンズを有し、
横軸をNd、及び縦軸をνdとする直交座標系において、Nd=α×νd+β(但し、α=−0.017)で表される直線を設定したときに、
以下の条件式(1)の範囲の下限値であるときの直線、及び上限値であるときの直線で定まる領域と、以下の条件式(2)及び(3)で定まる領域との両方の領域に、前記接合レンズを構成する少なくとも一つのレンズのNd及びνdが含まれることを特徴とする結像光学系。
1.45<β<2.15 …(1)
1.58<Nd<2.20…(2)
3<νd<40 …(3)
ここで、Ndは屈折率、νdはアッベ数をそれぞれ表す。
In an imaging optical system having a positive lens group, a negative lens group, and a diaphragm,
The negative lens group is disposed closer to the image plane than the stop,
The negative lens group has a cemented lens formed by cementing a plurality of lenses,
When a straight line represented by Nd = α × νd + β (where α = −0.017) is set in an orthogonal coordinate system in which the horizontal axis is Nd and the vertical axis is νd,
The area defined by the straight line when the lower limit value is within the range of the following conditional expression (1) and the straight line when the upper limit value is satisfied, and the area determined by the following conditional expressions (2) and (3) An imaging optical system including Nd and νd of at least one lens constituting the cemented lens
1.45 <β <2.15 (1)
1.58 <Nd <2.20 (2)
3 <νd <40 (3)
Here, Nd represents a refractive index and νd represents an Abbe number.
Nd及びνdが前記両方の領域に含まれる一つのレンズを所定のレンズとしたとき、該所定のレンズの光軸中心厚が、該接合レンズを構成する他のレンズの光軸中心厚よりも薄いことを特徴とする請求項1に記載の結像光学系。   When one lens in which both Nd and νd are included in both the areas is a predetermined lens, the optical axis center thickness of the predetermined lens is thinner than the optical axis center thickness of the other lenses constituting the cemented lens The imaging optical system according to claim 1. 次の条件式を満足することを特徴とする請求項2に記載の結像光学系。
0.22<t1<2.0
但し、t1は前記所定のレンズの光軸中心厚である。
The imaging optical system according to claim 2, wherein the following conditional expression is satisfied.
0.22 <t1 <2.0
However, t1 is the optical axis center thickness of the predetermined lens.
前記接合レンズは、該接合レンズを構成する一つのレンズのレンズ表面に樹脂を密着硬化させてなる複合レンズであることを特徴とする請求項1に記載の結像光学系。   The image forming optical system according to claim 1, wherein the cemented lens is a compound lens obtained by bonding and curing a resin on a lens surface of one lens constituting the cemented lens. 前記接合レンズは、該接合レンズを構成する一つのレンズのレンズ表面にガラスを密着硬化させてなる複合レンズであることを特徴とする請求項1に記載の結像光学系。   The imaging optical system according to claim 1, wherein the cemented lens is a compound lens formed by closely bonding and curing glass on a lens surface of one lens constituting the cemented lens. 前記結像光学系は最も物体側が正群であるズームレンズであることを特徴とする請求項1に記載の結像光学系。   The imaging optical system according to claim 1, wherein the imaging optical system is a zoom lens having a positive group closest to the object side. 前記結像光学系は最も物体側が負群であるズームレンズであることを特徴とする請求項1に記載の結像光学系。   The imaging optical system according to claim 1, wherein the imaging optical system is a zoom lens having a negative group closest to the object side. 前記結像光学系は屈曲のためのプリズムを有することを特徴とする請求項1に記載の結像光学系。   The imaging optical system according to claim 1, wherein the imaging optical system includes a prism for bending. 前記プリズムは最も物体側の群にあることを特徴とする請求項8に記載の結像光学系。   9. The imaging optical system according to claim 8, wherein the prism is in a group closest to the object side. 請求項1〜9のいずれか一項に記載の結像光学系と、電子撮像素子と、前記結像光学系を通じて結像した像を前記電子撮像素子で撮像することによって得られた画像データを加工して前記像の形状を変化させた画像データとして出力する画像処理手段とを有し、前記結像光学系がズームレンズであり、該ズームレンズが、無限遠物点合焦時に次の条件式を満足することを特徴とする電子撮像装置。
0.7 < y07/(fw・tanω07w) < 0.96
但し、y07は前記電子撮像素子の有効撮像面内(撮像可能な面内)で中心から最も遠い点までの距離(最大像高)をy10としたときy07=0.7y10として表される。また、ω07wは広角端における前記撮像面上の中心からy07の位置に結ぶ像点に対応する物点方向の光軸に対する角度である。
The imaging optical system according to any one of claims 1 to 9, an electronic imaging device, and image data obtained by imaging an image formed through the imaging optical system with the electronic imaging device. Image processing means for processing and outputting as image data in which the shape of the image is changed, and the imaging optical system is a zoom lens, and the zoom lens satisfies the following conditions when focusing on an object point at infinity An electronic imaging apparatus characterized by satisfying the formula:
0.7 <y 07 / (fw · tan ω 07w ) <0.96
However, y 07 is expressed as y 07 = 0.7y 10 when the distance (maximum image height) from the center to the farthest point in the effective imaging plane (within the imaging plane) of the electronic imaging device is y 10. Is done. Further, ω 07w is an angle with respect to the optical axis in the object point direction corresponding to the image point connecting from the center on the imaging surface to the position of y 07 at the wide angle end.
JP2006241590A 2005-09-13 2006-09-06 Imaging optical system and electronic imaging apparatus having the same Active JP4722796B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006241590A JP4722796B2 (en) 2005-09-13 2006-09-06 Imaging optical system and electronic imaging apparatus having the same
PCT/JP2006/318450 WO2007032512A1 (en) 2005-09-13 2006-09-11 Image forming optical system and electronic imaging device having the same
US11/991,905 US7715108B2 (en) 2005-09-13 2006-09-11 Image forming optical system and electronic image pickup apparatus using image forming optical system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005264643 2005-09-13
JP2005264643 2005-09-13
JP2006241590A JP4722796B2 (en) 2005-09-13 2006-09-06 Imaging optical system and electronic imaging apparatus having the same

Publications (2)

Publication Number Publication Date
JP2007108707A JP2007108707A (en) 2007-04-26
JP4722796B2 true JP4722796B2 (en) 2011-07-13

Family

ID=38034573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006241590A Active JP4722796B2 (en) 2005-09-13 2006-09-06 Imaging optical system and electronic imaging apparatus having the same

Country Status (1)

Country Link
JP (1) JP4722796B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5450256B2 (en) 2010-05-25 2014-03-26 オリンパス株式会社 Imaging optical system and electronic imaging apparatus having the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08320434A (en) * 1995-05-25 1996-12-03 Konica Corp Zoom lens
JP2000121821A (en) * 1998-10-20 2000-04-28 Canon Inc Rear focusing zoom lens having diffraction optical elements
JPH10307257A (en) * 1997-05-09 1998-11-17 Konica Corp Zoom lens
JP4411693B2 (en) * 1999-07-15 2010-02-10 コニカミノルタホールディングス株式会社 Zoom lens and camera with zoom lens
JP4285951B2 (en) * 2002-08-02 2009-06-24 オリンパス株式会社 Zoom lens and electronic imaging apparatus using the same
JP4441189B2 (en) * 2003-03-04 2010-03-31 オリンパス株式会社 Electronic imaging device
JP2005181499A (en) * 2003-12-17 2005-07-07 Konica Minolta Opto Inc Zoom lens

Also Published As

Publication number Publication date
JP2007108707A (en) 2007-04-26

Similar Documents

Publication Publication Date Title
JP5096011B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP5048353B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP5084285B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP5084283B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP2007248952A (en) Bending variable power optical system
JP2007108698A (en) Imaging optical system and electronic imaging device having it
JP2009069794A (en) Image-forming optical system and electronic imaging apparatus including the same
JP5289692B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP2008191306A (en) Imaging optical system and electronic imaging apparatus having the same
JP4839158B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP5084284B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP5497981B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP4839159B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP2007108696A (en) Imaging optical system and electronic imaging device having it
JP5084286B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP2007108702A (en) Imaging optical system and electronic imaging device having it
JP4839160B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP5289693B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP5289691B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP2011247955A (en) Imaging optical system and electronic imaging device having the same
JP2006023323A (en) Variable power optical system and electronic apparatus using same
JP2006023438A (en) Variable power optical system and electronic apparatus using same
JP2008191311A (en) Imaging optical system and electronic imaging apparatus having the same
JP4722796B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP2008122874A (en) Photographic optical system and imaging apparatus with this photographic optical system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4722796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350