JP4722276B2 - Electric motor stator - Google Patents

Electric motor stator Download PDF

Info

Publication number
JP4722276B2
JP4722276B2 JP2000297822A JP2000297822A JP4722276B2 JP 4722276 B2 JP4722276 B2 JP 4722276B2 JP 2000297822 A JP2000297822 A JP 2000297822A JP 2000297822 A JP2000297822 A JP 2000297822A JP 4722276 B2 JP4722276 B2 JP 4722276B2
Authority
JP
Japan
Prior art keywords
stator
slot
winding
electric motor
windings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000297822A
Other languages
Japanese (ja)
Other versions
JP2002112488A (en
Inventor
伊藤  猛
重貴 中村
Original Assignee
アイチエレック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイチエレック株式会社 filed Critical アイチエレック株式会社
Priority to JP2000297822A priority Critical patent/JP4722276B2/en
Publication of JP2002112488A publication Critical patent/JP2002112488A/en
Application granted granted Critical
Publication of JP4722276B2 publication Critical patent/JP4722276B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、産業用機器、事務用機器、家電用機器に使用される電動機の固定子に関する。
【0002】
【従来の技術】
従来の実施例を図7に示し説明する。図7には3相4極の固定子を示している。前記電動機の固定子鉄心1は、軸方向に薄板の電磁鋼板を多数積層させた積層体により形成されている。この積層体を一体固着させる方法としては、積層体の外周部を溶接により固着したものや、プレス等により凸凹部を各薄板の電磁鋼板に形成し、この凸凹部を其々嵌め合わすことにより一体固着した周知のオートクランプ方式等により固定子鉄心1を形成している。
【0003】
固定子鉄心1にはスロット5が形成されており、固定子歯部S1、S2、S3、S4、S5、S6にはスロット絶縁4を介して集中巻方式により直接巻線が巻き付けられている。歯部S1にはU1相の巻線3が巻き付けられており、同様に歯部S2にはV1相、歯部S3にはW1相、歯部S4にはU2相、歯部S5にはV2相、歯部S6にはW2相の巻線3が巻き付けられている。U1相とU2相、V1相とV2相、W1相とW2相は、其々各相を繋ぐ渡り線により結ばれており、各相の一方の端部は接続され中性点を形成し他方の端部は口出線に接続し三相Y結線(直列)を構成している。
【0004】
また、別の結線方法としてU1相とU2相とを並列に配置しU1相の一方の端部とU2相の一方の端部、U1相の他方の端部とU2相の他方の端部を其々接続し、U1相とU2相の一方の端部を中性点へ接続し、U1相とU2相の他方の端部を口出線に接続する。その他の相においてはV1相とV2相、W1相とW2相を其々同様に接続し三相2Y結線(並列)を構成している。
【0005】
近年、このような電動機においては、小型で高性能な電動機の要求が非常に強くなってきており、この要求に対して高性能な永久磁石を有した永久磁石形電動機が増えてきている。通常、この永久磁石形電動機の永久磁石を備えた回転子に着磁を施す場合、電動機のハウジング等に組み付ける前に、着磁巻線を備えた着磁装置にセットし、この着磁巻線に直流電流を通電することによって回転子を永久磁石化している。
【0006】
しかしながら、前記界磁を製作した回転子を電動機のハウジング等に組み込むまでの工程において、永久磁石化された回転子に鉄粉等が付着して電動機運転中に回転障害を起こしたり、回転子が磁性体の治具に吸着して扱い難いといった問題が発生していた。
【0007】
前記問題を解決するために電動機ハウジングに固定子と回転子を組み込んだ後に、この固定子巻線を着磁巻線として使用することにより、固定子と対向配置された回転子に着磁を施すいわゆる組み込み着磁と称される着磁方法が採用されている。図8は、電動機の固定子により組み込み着磁を行う場合の着磁結線を示している。前記した直列接続の三相Y結線、並列接続の三相2Y結線において同様の方法で組み込み着磁をすることができるため、ここでは直列接続された三相Y結線についてのみ説明する。
【0008】
固定子巻線のU1相の口出線側を着磁電源Eのプラス側に接続した場合、V1相及びW1相はマイナス側に接続し、この固定子巻線に直流の大電流を流すことにより固定子内に対向配置された回転子を着磁することができる。また、前記結線は固定子の三相巻線全てを使用し組み込み着磁する方法であるが、固定子巻線の特定の2相を使用し1回目の着磁を施した後に、所定の角度分着磁位置を変え2回目の着磁を施す着磁方法でも着磁をすることが可能である。
【0009】
【発明が解決しようとする課題】
このような従来の集中巻された電動機においては、固定子スロット内に集中巻される巻線の割合がそれ程高くなかったため固定子スロット内での隣り合う相の絶縁空間距離を保つことができていたが、前述したように小形、高性能化の要求に伴い固定子スロット内に集中巻される巻線の割合が非常に高くなっており固定子スロット内の各相の絶縁を保つことが出来なくなっている。
【0010】
特に、電動機の起動時にはスロット内の隣り合う相の巻線に大電流が流れるため各相の巻線が振動し巻線の被膜を傷つけ相間の電位差により絶縁破壊を引き起こし重大な市場不良となっている。その結果、著しく信頼性を損ねている。
【0011】
また最近、エアコン及び冷蔵庫の駆動源となる圧縮機に搭載する電動機には、固定子の歯に直接巻線を巻き付けた集中巻方式の電動機を採用するようになってきている。このような電動機において小型、高性能化するために回転子に永久磁石を備えた永久磁石形電動機が用いられる様になってきている。
【0012】
このような永久磁石形電動機を用いられる圧縮機においては、前述したように圧縮機に組み込む前の永久磁石を有する回転子に着磁を施すと、回転子に鉄粉等が付着し易く、そのまま圧縮機に組み込まれると運転障害となったり、また回転子が磁性体の治具に吸着して圧縮機ハウジングに組み付けしずらいといった問題があるため、圧縮機ハウジングに固定子と回転子を組み込んだ後に、この固定子巻線を着磁巻線として固定子と対向配置された回転子に着磁をおこなっている。
【0013】
エアコン及び冷蔵庫の圧縮機に採用される電動機は、小型、高性能化の要求に伴い固定子スロット内に集中巻される巻線の割合が非常に高いため固定子巻線を着磁巻線として使用した場合、固定子のスロット内の隣り合う相の巻線に非常に大きな着磁電流が流れるため各相の巻線が激しくぶつかり合うことにより巻線の被膜を傷つけ、相間の電位差により絶縁破壊を引き起こしている。
【0014】
【課題を解決するための手段】
固定子の歯に直接巻線を巻き付ける集中巻方式の電動機において、前記固定子の各スロット内で隣接する巻線相互間に介挿される相間絶縁樹脂の断面形状がV字に形成された絶縁部材であって、前記相間絶縁樹脂の断面形状がV字に形成された絶縁部材の開口部を、前記固定子内径側の各スロット開口部に面して介挿し、
前記相間絶縁樹脂の断面形状がV字に形成された絶縁部材の開口部の端部にスロット開口部とは反対側に折り曲げられた折り曲げ部が形成され、前記折り曲げ部が固定子の歯に巻き付けられた巻線と、固定子スロット内の固定子内径側の鉄心部側との間に介挿した電動機の固定子とする。
【0015】
また、電動機の固定子のスロット数が3n個(nは自然数)であり、極数が2n個(nは自然数)である電動機の固定子とする。
【0016】
また、永久磁石を備えた回転子を具備する電動機とする。
【0017】
また、前記固定子の各スロット内で隣接する巻線相互間に介挿される前記相間絶縁樹脂の絶縁部材の材料が、エンプラ(エンジニアリング・プラスチック)または、スーパーエンプラ(スーパー・エンジニアリング・プラスチック)である電動機の固定子とする。
【0018】
【発明の実施の形態】
本発明の実施例について図面を用いて説明する。図1は本実施例における電動機の固定子のスロット拡大図である。固定子鉄心1のスロット5にスロット絶縁4が挿入されている。このスロット絶縁4は、樹脂で一体成形したものや薄板の絶縁フィルムで形成したものがある。このスロット絶縁4が固定子鉄心1に施された後、スロットとスロットにより挟まれた歯部2に直接巻線が巻かれる集中巻方式により巻線3が巻かれている。スロット5内の隣り合う相の巻線3には、電動機の起動時に大電流が流れるため各相の巻線3が振動し巻線3同士が擦れ被膜を傷つけることになる。その後、相間の電位差によりこの傷ついて薄く弱い部分において絶縁破壊を起こしている。
【0019】
本発明はこのことに鑑みてなされたものであり、固定子鉄心1のスロット5内の巻線3を断面形状がV字に形成された相間絶縁樹脂7(以下、V字形相間絶縁樹脂7とする)を介挿することにより確実に隣り合う相を分けることができ巻線3同士が振動し擦れることを防ぎ、大きな電位差を生じても絶縁破壊が起こらないようにするものである。固定子鉄心1の各スロット開口部6側に面してV字形相間絶縁樹脂7の絶縁部材の開口部側をスロット開口部6側に面して介挿している。また、V字形相間絶縁樹脂7の開口部側端部は、スロット5内の固定子内径側鉄心部側に突き当てるように介挿することによってスロット5内でV字形相間絶縁樹脂7が湾曲し各巻線3をスロット5内に押さえ込む効果を有している。然るに、従来より問題となっている巻線3の固定子内径への飛び出しも同時に防ぐことができる。
【0020】
従って、V字形相間絶縁樹脂7が狭い巻線相互間の間に介挿することにより、このV字形相間絶縁樹脂7のバネ効果を得ることができ固定子鉄心1より巻線3の飛び出しを防ぎ尚且つ、固定子鉄心1からV字形相間絶縁樹脂7が脱落することがないのでスロット5内の隣り合う巻線3の相互間を確実に分けることができ、巻線3同士が振動し擦れることを防ぎ、大きな電位差を生じても絶縁破壊が起こらないようにすることができる。尚、図2は本実施例のV字形相間絶縁樹脂7の斜視図である。また、V字形相間絶縁樹脂7の開口部の開口角度は適宜巻線3の使用量により決定され、バネ効果を損なわない程度に設定すると良い。
【0021】
また、別の実施例を図3に示して説明する。図3は固定子のスロット拡大図である。図1と同様に固定子鉄心1のスロット5にスロット絶縁4が挿入されている。このスロット絶縁4は、樹脂で一体成形したものや薄板の絶縁フィルムで形成したものがありスロット絶縁4が固定子鉄心1に施された後に、スロットとスロットにより挟まれた歯部2に直接巻線が巻かれる集中巻方式により巻線3が巻かれている。本実施例は図3に示すようにスロット5内の巻線3が占める割合が少ない場合において適用することにより、非常に良好な効果を得ることができる。
【0022】
固定子鉄心1の歯部に直接巻きつけられた巻線3とスロット5内に装着したスロット絶縁4との間に断面形状がV字に形成された絶縁部材の相間絶縁樹脂8(以下、V字形相間絶縁樹脂8とする)のV字形状端部においてスロット開口部6側とは反対側に折り曲げられた折り曲げ部を形成し、この折り曲げ部を巻線3と固定子鉄心1との間に挟み込むことによってV字形相間絶縁樹脂8を更に確実にスロット5内の相間に固定することができる。この場合、V字形状端部の折れ曲がり部は固定子鉄心1とスロット絶縁4の間に挟み込んでも良いが、巻線3とスロット絶縁4との間に挟み込んでも良い。また、V字形状端部の折れ曲がり角度は、前記V字形相間絶縁樹脂8のバネ効果を損なわない角度に設定することが好ましい。
【0023】
従って、特にスロット5内の巻線3が占める割合が少ない場合においても、スロット5内の隣り合う巻線3の相互間を確実に分けることができ、尚且つV字形相間絶縁樹脂8が固定子鉄心1より脱落することなく確実に固定することができるため、巻線3同士が振動し擦れることを防ぎ、大きな電位差を生じても巻線3の被膜を破壊し絶縁不良を生じることは無い。尚、図4は本実施例のV字形の端部に折れ曲がり部を備えたV字形相間絶縁樹脂8の斜視図である。
【0024】
また、固定子鉄心1のスロットとスロットにより挟まれた歯部2に直接巻線が巻かれる集中巻方式により巻線3が巻かれ、スロット5内において隣り合う相の巻線3同士が振動し擦れ、巻線3の被膜を破壊し絶縁不良を生じる電動機や、相間に大きな電位差を生じる電動機、つまり固定子のスロット数が3n個(nは自然数)であり、極数が2n個(nは自然数)である電動機において、スロット5内の巻線3をV字形相間絶縁樹脂7及び8を介挿することにより隣り合う相を確実に分けることができるため、巻線3同士が振動し擦れることがなくなり、大きな電位差を生じても巻線3の被膜を破壊するような絶縁破壊を起こすことがなくなる。
【0025】
また、図5及び図6に示す電動機は、固定子鉄心1のスロット5に樹脂で一体成形したものか、もしくは薄板の絶縁フィルムで形成したスロット絶縁4が施された後、このスロットとスロットにより挟まれた歯部2に直接巻線が巻かれる集中巻方式により巻線3が巻かれており、この固定子内径には、永久磁石11を備えた回転子9,10を配置している。
【0026】
このような永久磁石を有した回転子を備えた電動機を、特にエアコン及び冷蔵庫の駆動源となる圧縮機に採用した場合、圧縮機に組み込む前に回転子9,10に着磁を施すと回転子9,10に鉄粉等が付着し易くなり、そのまま圧縮機に組み込まれると圧縮機の運転障害となったり、また着磁した回転子9,10が磁性体の治具に吸着して圧縮機ハウジングに組み込みしずらいといった問題が発生する。このため圧縮機ハウジングに固定子と回転子9,10を組み込んだ後に、固定子の巻線3を着磁巻線として回転子9,10を着磁している。
【0027】
この場合、固定子の1つのスロット内に集中巻された隣り合う相の巻線3に非常に大きな着磁電流が流れ各相の巻線3が激しくぶつかり合い巻線3の被膜を傷つけ相間の電位差により絶縁破壊を引き起こしてしまう。然るに、このような絶縁破壊を防ぐためにV字形相間絶縁樹脂7及び8を介挿することによりスロット内の隣り合う相の巻線3を確実に分けることができため絶縁不良を起こすことがなくなる。従って、固定子の歯に直接巻線を巻き付ける集中巻方式の電動機をケーシングに組み込んだ後に、前記電動機の固定子巻線を利用して永久磁石を備えた回転子を問題なく着磁することができる。
【0028】
尚、回転子の構造は図5に示すように永久磁石を回転子鉄心内に埋め込む、埋め込み形永久磁石回転子でも、図6に示す永久磁石を回転子表面に装着させた、表面装着形永久磁石回転子であてもよい。
【0029】
また、固定子の各スロット5内で隣接する相間に介挿するV字形相間絶縁樹脂7及び8の材料を、電動機の運転環境が100℃以上ある場合はエンプラを、電動機の運転環境が150℃以上ある場合はスーパーエンプラを使用することにより電動機の温度上昇による絶縁材料の劣化に起因する絶縁不良を減らすことができる。その結果、固定子スロット5内の隣り合う相の巻線3同士が振動し絶縁材料を破壊することもなく、大きな電位差を生じても巻線3の被膜を破壊し絶縁不良を起こすこともなくなる。また、電動機の仕様によってエンプラまたは、スーパーエンプラを適宜選択することにより材料費を節約することもできる。
【0030】
また、スロット内の巻線の占積率が非常に高い場合、スロット内の巻線相互間に介挿するV字形相間絶縁樹脂7及び8をエンプラまたは、スーパーエンプラのフィルム形状にすることによって相間の隙間が少ない場合でも確実に介挿することができるため、巻線3の被膜が破壊され絶縁不良となることはない。尚、V字形相間絶縁樹脂7及び8をフィルム形状にすることにより絶縁材料の使用量の低減及び加工性が向上し、更に固定子スロット内への挿入性もよくなり取り扱いを容易にすることができる。
【0031】
エンプラとしては、例えばポリアミド(PA)、ポリアセタール(POM)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、シンジオタクチック・ポリスチレン(SPS)等がある。また、スーパーエンプラとしては、例えば、ポリエチレンナフタレート(PEN)、ポリフェニレンサルファイド(PPS)、液晶ポリマー樹脂(LCP)、フッ素樹脂、ポリエーテルエーテルケトン(PEEK)等がある。
【0032】
また、特に環境問題等により従来、エアコンや冷蔵庫に使用される冷媒がCFC12、CFC22等で冷凍機油がナフテン系、パラフィン系の鉱油またはアルキルベンゼン系油を採用していたが、代替冷媒であるHFC134a、HFC410a、HFC407c等の冷媒と、冷凍機油であるポリアルキレングリコール系油やポリエステル系油またはエーテル系油等の混合油を使用する場合、V字形相間絶縁樹脂7及び8の材料をスーパーエンプラとすることにより冷凍機油内に含まれる水分量による絶縁物の加水分解を極力少なくすることができる。尚、説明するまでも無いが、スロット絶縁4の材料をスーパーエンプラとすることによりスロット絶縁4の加水分解も極力少なくすることができる。
【0033】
【発明の効果】
本発明は、電動機の固定子の歯に直接巻線を巻きつける集中巻方式の電動機において1つのスロット内に隣り合う相の巻線間に、V字形相間絶縁樹脂を介挿することにより確実に隣り合う相を分けることができ、巻線同士が振動により擦れることを防ぎ、大きな電位差が生じても巻線の被膜が破壊することがなくなる。
【0034】
また、固定子鉄心内径側のスロットの開口部側に面してV字形相間絶縁樹脂の開口部側を介挿し、前記V字形相間絶縁樹脂の開口部の端部にスロット開口部とは反対側に折り曲げられた折り曲げ部を形成し、前記折り曲げ部を固定子の歯に巻き付けられた巻線と、固定子スロット内の固定子内径側の鉄心部側との間に介挿することによって、スロット内のV字形相間絶縁樹脂が脱落することなく確実に固定することができる。また、従来より問題となっている巻線の固定子内径への飛び出しもV字形相間絶縁樹脂のバネ効果によって、巻線をスロット内に押さえ込むことができるため巻線の固定子内径への飛び出しも防いでいる。
【0035】
特に、スロット内の巻線が占める割合が少ない場合においても、スロット内の隣り合う巻線の相互間を確実に分けることができ、尚且つV字形相間絶縁樹脂が固定子鉄心より脱落することなく確実に固定することができる
【0036】
また、電動機の固定子のスロット数が3n個(nは自然数)であり、極数が2n個(nは自然数)の固定子に本発明を適用することによって確実に1つのスロット内に隣り合う相の巻線間を絶縁することができる。
【0037】
また、前記電動機の回転子に永久磁石を備えている永久磁石形電動機において本発明を適用することにより、ハウジング内に組み込まれた後に固定子巻線を着磁巻線として着磁する場合においても、着磁電流に起因する巻線の絶縁破壊をなくすことができる。
【0038】
また、前記固定子の各スロット内で隣接する巻線相互間に介挿される前記V字形相間絶縁樹脂の材料が、エンプラまたは、スーパーエンプラとすることによってエアコンや冷蔵庫の駆動源である圧縮機に仕様することができる。
【0039】
これらのことより、V字形相間絶縁樹脂によって、隣り合う相間の絶縁を確実に行うことができ電位差による巻線の絶縁不良をなくすことができるため品質及び信頼性を向上することができる。
【図面の簡単な説明】
【図1】 本発明の実施例を示す固定子の部分断面図。
【図2】 図1のV字形相間絶縁樹脂の斜視図。
【図3】 本発明の実施例を示す固定子の部分断面図。
【図4】 図3のV字形相間絶縁樹脂の斜視図。
【図5】 本発明の実施例を示す回転子に永久磁石を備えた電動機の横断面図。
【図6】 本発明の実施例を示す回転子に永久磁石を備えた電動機の横断面図。
【図7】 従来例を示す固定子の横断面図。
【図8】 本発明の電動機の固定子巻線を着磁巻線として使用する場合の結線図。
【符号の説明】
1…固定子鉄心、2,S1〜S6…歯部、3…巻線、4…スロット絶縁、5…スロット、6…スロット開口部、7,8…V字形相間絶縁樹脂、9,10…回転子、11…永久磁石、U1,V1,W1,U2,V2,W2…相、E…着磁電源。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a stator for an electric motor used in industrial equipment, office equipment, and home appliances.
[0002]
[Prior art]
A conventional embodiment will be described with reference to FIG. FIG. 7 shows a three-phase four-pole stator. The stator core 1 of the electric motor is formed of a laminated body in which a large number of thin electromagnetic steel plates are laminated in the axial direction. As a method of integrally fixing the laminated body, the outer peripheral portion of the laminated body is fixed by welding, or by forming a concave / convex portion on each thin steel plate with a press or the like, and then fitting the convex / concave portions together. The stator core 1 is formed by a well-known auto-clamp method or the like that is fixed.
[0003]
A slot 5 is formed in the stator core 1, and a winding is directly wound around the stator teeth S 1, S 2, S 3, S 4, S 5, S 6 via the slot insulation 4 by a concentrated winding method. The tooth portion S1 is wound with a U1 phase winding 3, and similarly, the tooth portion S2 has a V1 phase, the tooth portion S3 has a W1 phase, the tooth portion S4 has a U2 phase, and the tooth portion S5 has a V2 phase. The W3 phase winding 3 is wound around the tooth portion S6. The U1 phase and the U2 phase, the V1 phase and the V2 phase, the W1 phase and the W2 phase are connected by a connecting wire that connects the respective phases, and one end of each phase is connected to form a neutral point. Is connected to the lead wire to form a three-phase Y-connection (in series).
[0004]
As another connection method, the U1 phase and the U2 phase are arranged in parallel, and one end of the U1 phase, one end of the U2 phase, the other end of the U1 phase, and the other end of the U2 phase Connect each one, connect one end of the U1 phase and U2 phase to the neutral point, and connect the other end of the U1 phase and U2 phase to the lead wire. In the other phases, the V1 phase and the V2 phase, and the W1 phase and the W2 phase are connected in the same manner to form a three-phase 2Y connection (parallel).
[0005]
In recent years, in such electric motors, the demand for small and high-performance motors has become very strong, and in response to this demand, the number of permanent magnet motors having high-performance permanent magnets has increased. Normally, when magnetizing a rotor having a permanent magnet of this permanent magnet type electric motor, set it in a magnetizing device having a magnetized winding before assembling it to a motor housing or the like. The rotor is made permanent magnet by applying a direct current to the rotor.
[0006]
However, in the process until the rotor with the magnetic field is assembled in the motor housing or the like, iron powder or the like adheres to the permanent magnetized rotor, causing rotation failure during motor operation, There has been a problem that it is difficult to handle by being attracted to a magnetic jig.
[0007]
In order to solve the above problem, after the stator and the rotor are assembled in the motor housing, the stator winding is used as a magnetizing winding, thereby magnetizing the rotor arranged opposite to the stator. A so-called built-in magnetization method is employed. FIG. 8 shows the magnetization connection when the built-in magnetization is performed by the stator of the electric motor. Since the built-in magnetization can be performed in the same manner in the above-described series-connected three-phase Y connection and parallel-connected three-phase 2Y connection, only the three-phase Y connection connected in series will be described here.
[0008]
When the lead wire side of the U1 phase of the stator winding is connected to the plus side of the magnetizing power source E, the V1 phase and the W1 phase are connected to the minus side, and a large DC current flows through this stator winding. This makes it possible to magnetize the rotor disposed opposite to the stator. Further, the connection is a method in which all three phase windings of the stator are used for built-in magnetization, and after the first magnetization is performed using specific two phases of the stator windings, a predetermined angle is used. Magnetization can also be performed by a magnetization method in which the second magnetization is performed by changing the partial magnetization position.
[0009]
[Problems to be solved by the invention]
In such a conventional concentrated-winding motor, the ratio of the windings concentrated in the stator slot is not so high, so that the insulation space distance between adjacent phases in the stator slot can be maintained. However, as described above, with the demand for smaller size and higher performance, the percentage of windings concentrated in the stator slot is very high, and insulation of each phase in the stator slot can be maintained. It is gone.
[0010]
In particular, when a motor is started, a large current flows through the adjacent phase windings in the slot, so that the windings of each phase vibrate and damage the coating of the windings, causing a dielectric breakdown due to the potential difference between the phases, resulting in a serious market failure. Yes. As a result, the reliability is significantly impaired.
[0011]
Recently, an electric motor mounted on a compressor serving as a driving source for an air conditioner and a refrigerator has come to employ a concentrated winding type electric motor in which windings are directly wound around the teeth of a stator. In order to improve the size and performance of such an electric motor, a permanent magnet type electric motor having a permanent magnet in a rotor has been used.
[0012]
In a compressor using such a permanent magnet type electric motor, if the rotor having the permanent magnet before being incorporated into the compressor is magnetized as described above, iron powder or the like is likely to adhere to the rotor, and it remains as it is. Incorporating a stator and a rotor into the compressor housing is problematic because it may cause operational problems when incorporated in a compressor, and the rotor may be attracted to a magnetic jig and difficult to assemble into the compressor housing. Thereafter, the stator winding is used as a magnetizing winding, and the rotor arranged opposite to the stator is magnetized.
[0013]
Electric motors used in compressors for air conditioners and refrigerators have a very high ratio of windings concentrated in the stator slots in response to demands for smaller size and higher performance. When used, a very large magnetizing current flows in the windings of adjacent phases in the stator slot, causing the windings of each phase to collide violently, damaging the coating of the windings, and causing dielectric breakdown due to the potential difference between the phases. Is causing.
[0014]
[Means for Solving the Problems]
In a concentrated winding type motor in which windings are wound directly around the teeth of the stator, an insulating member in which the cross-sectional shape of the interphase insulating resin inserted between adjacent windings in each slot of the stator is formed in a V shape And the opening of the insulating member in which the cross-sectional shape of the interphase insulating resin is formed in a V shape is inserted facing each slot opening on the inner diameter side of the stator,
A bent portion is formed at the end of the opening of the insulating member having a V-shaped cross-sectional shape of the interphase insulating resin, and the bent portion is wound around the teeth of the stator. The stator of the motor is interposed between the wound winding and the iron core side on the stator inner diameter side in the stator slot.
[0015]
Further, the stator of the electric motor has 3n slots (n is a natural number) and 2n poles (n is a natural number).
[0016]
Moreover, it is set as the electric motor which comprises the rotor provided with the permanent magnet.
[0017]
The material of the insulating member of the interphase insulating resin inserted between adjacent windings in each slot of the stator is engineering plastic (engineering plastic) or super engineering plastic (super engineering plastic). The stator of the motor.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an enlarged view of a slot of a stator of an electric motor in the present embodiment. A slot insulation 4 is inserted into a slot 5 of the stator core 1. The slot insulation 4 may be formed integrally with resin or formed with a thin insulating film. After the slot insulation 4 is applied to the stator core 1, the winding 3 is wound by a concentrated winding method in which the winding is wound directly around the tooth portion 2 sandwiched between the slots. Since a large current flows in the windings 3 of adjacent phases in the slot 5 when the motor is started, the windings 3 of each phase vibrate and the windings 3 rub against each other and damage the coating. After that, due to the potential difference between the phases, dielectric breakdown occurs in the damaged and thin part.
[0019]
The present invention has been made in view of this, and the winding 3 in the slot 5 of the stator core 1 has an interphase insulating resin 7 (hereinafter referred to as a V-shaped interphase insulating resin 7) having a V-shaped cross section. In this case, adjacent phases can be surely separated from each other, and the windings 3 are prevented from vibrating and rubbing, so that dielectric breakdown does not occur even if a large potential difference occurs. The stator core 1 is inserted so as to face each slot opening 6 side and the opening side of the insulating member of the V-shaped interphase insulating resin 7 faces the slot opening 6 side. Also, the V-shaped interphase insulating resin 7 is curved in the slot 5 by inserting the end portion on the opening side of the V-shaped interphase insulating resin 7 so as to abut against the iron core side on the stator inner diameter side in the slot 5. In addition, each winding 3 has an effect of pressing into the slot 5. However, it is possible to simultaneously prevent the winding 3 from jumping out to the inner diameter of the stator, which has been a problem.
[0020]
Therefore, when the V-shaped interphase insulating resin 7 is interposed between the narrow windings, the spring effect of the V-shaped interphase insulating resin 7 can be obtained, and the winding 3 is prevented from popping out from the stator core 1. Moreover, since the V-shaped interphase insulating resin 7 does not fall off from the stator core 1, the adjacent windings 3 in the slot 5 can be reliably separated from each other, and the windings 3 vibrate and rub. It is possible to prevent dielectric breakdown even if a large potential difference occurs. FIG. 2 is a perspective view of the V-shaped interphase insulating resin 7 of this embodiment. Further, the opening angle of the opening of the V-shaped interphase insulating resin 7 is appropriately determined by the amount of use of the winding 3, and may be set to an extent that does not impair the spring effect.
[0021]
Another embodiment will be described with reference to FIG. FIG. 3 is an enlarged view of the slot of the stator. As in FIG. 1, the slot insulation 4 is inserted into the slot 5 of the stator core 1. The slot insulation 4 is made of resin or formed of a thin insulating film. After the slot insulation 4 is applied to the stator core 1, the slot insulation 4 is directly wound around the teeth 2 sandwiched between the slots. The winding 3 is wound by a concentrated winding method in which a wire is wound. As shown in FIG. 3, the present embodiment can be applied when the proportion of the windings 3 in the slots 5 is small, whereby a very good effect can be obtained.
[0022]
Interphase insulating resin 8 (hereinafter referred to as V) of an insulating member having a V-shaped cross-section formed between the winding 3 wound directly around the teeth of the stator core 1 and the slot insulation 4 mounted in the slot 5. A bent portion is formed at the V-shaped end portion of the V-shaped interphase insulating resin 8) opposite to the slot opening 6 side, and this bent portion is formed between the winding 3 and the stator core 1. By sandwiching, the V-shaped interphase insulating resin 8 can be more reliably fixed between the phases in the slot 5. In this case, the bent portion of the V-shaped end portion may be sandwiched between the stator core 1 and the slot insulation 4, or may be sandwiched between the winding 3 and the slot insulation 4. Further, the bending angle of the V-shaped end is preferably set to an angle that does not impair the spring effect of the V-shaped interphase insulating resin 8.
[0023]
Accordingly, even when the ratio of the windings 3 in the slots 5 is small, the adjacent windings 3 in the slots 5 can be reliably separated from each other, and the V-shaped interphase insulating resin 8 is used as the stator. Since it can be reliably fixed without falling off from the iron core 1, it is possible to prevent the windings 3 from vibrating and rubbing, and even if a large potential difference occurs, the coating of the winding 3 is not broken and insulation failure does not occur. FIG. 4 is a perspective view of the V-shaped interphase insulating resin 8 provided with a bent portion at the V-shaped end of the present embodiment.
[0024]
Further, the winding 3 is wound by the concentrated winding method in which the winding is directly wound around the tooth portion 2 sandwiched between the slot of the stator core 1 and the windings 3 of adjacent phases in the slot 5 vibrate. An electric motor that rubs and breaks the coating of the winding 3 to cause insulation failure, or an electric motor that generates a large potential difference between phases, that is, the number of stator slots is 3n (n is a natural number), and the number of poles is 2n (n is In an electric motor that is a natural number), adjacent windings can be reliably separated by inserting the V-shaped interphase insulating resins 7 and 8 in the winding 3 in the slot 5, so that the windings 3 vibrate and rub against each other. Therefore, even if a large potential difference occurs, dielectric breakdown that destroys the coating of the winding 3 is not caused.
[0025]
5 and FIG. 6, the slot 5 of the stator core 1 is integrally molded with resin or slot insulation 4 formed of a thin insulating film is applied, and then the slot and the slot are used. The winding 3 is wound by a concentrated winding method in which the winding is wound directly around the sandwiched tooth portion 2, and the rotors 9 and 10 including the permanent magnet 11 are disposed on the inner diameter of the stator.
[0026]
When such an electric motor having a rotor having a permanent magnet is employed in a compressor which is a driving source of an air conditioner and a refrigerator, if the rotors 9 and 10 are magnetized before being incorporated in the compressor, the motor rotates. Iron powder or the like easily adheres to the cores 9 and 10, and if incorporated in the compressor as it is, the compressor operation is disturbed, and the magnetized rotors 9 and 10 are attracted to the magnetic jig and compressed. There is a problem that it is difficult to install in the machine housing. For this reason, after incorporating the stator and the rotors 9 and 10 into the compressor housing, the rotors 9 and 10 are magnetized using the stator winding 3 as a magnetizing winding.
[0027]
In this case, a very large magnetizing current flows in the windings 3 of adjacent phases concentrated in one slot of the stator and the windings 3 of each phase collide violently and damage the coating of the windings 3 between the phases. Dielectric breakdown is caused by the potential difference. However, by interposing the V-shaped interphase insulating resins 7 and 8 in order to prevent such dielectric breakdown, the windings 3 of adjacent phases in the slot can be reliably separated, so that no insulation failure occurs. Therefore, after a concentrated winding type electric motor in which a winding is directly wound around the teeth of the stator is incorporated in the casing, the rotor having a permanent magnet can be magnetized without any problem using the stator winding of the electric motor. it can.
[0028]
The structure of the rotor is a surface-mounted permanent magnet in which a permanent magnet is embedded in the rotor core as shown in FIG. 5 and the permanent magnet shown in FIG. 6 is mounted on the rotor surface. It may be a magnet rotor.
[0029]
Further, the materials of the V-shaped interphase insulating resins 7 and 8 inserted between adjacent phases in each slot 5 of the stator are made of engineering plastic when the operating environment of the motor is 100 ° C. or more, and the operating environment of the motor is 150 ° C. In such a case, by using a super engineering plastic, it is possible to reduce insulation failure caused by deterioration of the insulating material due to the temperature rise of the electric motor. As a result, the windings 3 of adjacent phases in the stator slot 5 do not vibrate to destroy the insulating material, and even if a large potential difference occurs, the coating of the winding 3 is not destroyed and insulation failure does not occur. . In addition, material costs can be saved by appropriately selecting engineering plastics or super engineering plastics according to the specifications of the motor.
[0030]
When the space factor of the windings in the slot is very high, the V-shaped interphase insulating resins 7 and 8 inserted between the windings in the slot are made into engineering plastic or super engineering plastic film shape. Even when the gap is small, it can be reliably inserted, so that the coating of the winding 3 is not broken and insulation failure does not occur. The V-shaped interphase insulating resins 7 and 8 are formed into a film shape, thereby reducing the amount of insulating material used and improving the workability, and further improving the ease of insertion into the stator slot and facilitating handling. it can.
[0031]
Examples of engineering plastics include polyamide (PA), polyacetal (POM), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and syndiotactic polystyrene (SPS). Examples of super engineering plastics include polyethylene naphthalate (PEN), polyphenylene sulfide (PPS), liquid crystal polymer resin (LCP), fluororesin, and polyetheretherketone (PEEK).
[0032]
In addition, the refrigerant used for air conditioners and refrigerators has conventionally been CFC12, CFC22, etc. and the refrigeration oil has been naphthenic, paraffinic mineral oil or alkylbenzene oil, especially due to environmental problems, etc. When using refrigerants such as HFC410a and HFC407c and mixed oils such as polyalkylene glycol oils, polyester oils, or ether oils that are refrigeration oils, the materials for the V-shaped interphase insulating resins 7 and 8 should be super engineering plastics. Thus, hydrolysis of the insulator due to the amount of water contained in the refrigerator oil can be minimized. Needless to say, hydrolysis of the slot insulation 4 can be minimized by using super engineering plastic as the material of the slot insulation 4.
[0033]
【The invention's effect】
In the concentrated winding type motor in which the winding is directly wound around the teeth of the stator of the motor, the present invention is ensured by inserting a V-shaped interphase insulating resin between the windings of adjacent phases in one slot. Adjacent phases can be separated, the windings are prevented from rubbing by vibration, and the coating of the windings is not broken even if a large potential difference occurs.
[0034]
In addition, the opening side of the V-shaped interphase insulating resin faces the opening side of the slot on the inner diameter side of the stator core, and the end of the opening of the V-shaped interphase insulating resin is opposite to the slot opening. Forming a bent portion that is bent into a slot, and inserting the bent portion between the winding wound around the teeth of the stator and the iron core side on the stator inner diameter side in the stator slot. Inner V-shaped interphase insulating resin can be securely fixed without falling off. In addition, since the spring effect of the V-shaped interphase insulating resin allows the winding to be pushed into the slot, the winding of the winding to the stator inner diameter has also become a problem. It is preventing.
[0035]
In particular, even when the proportion of the windings in the slot is small, the adjacent windings in the slot can be reliably separated from each other, and the V-shaped interphase insulating resin does not fall off from the stator core. Can be securely fixed. [0036]
Further, by applying the present invention to a stator having 3n slots (n is a natural number) and 2n poles (n is a natural number), the stator of the motor is surely adjacent to one slot. The phase windings can be insulated.
[0037]
Further, by applying the present invention to a permanent magnet type motor having a permanent magnet in the rotor of the motor, even when the stator winding is magnetized as a magnetized winding after being incorporated in the housing. In addition, it is possible to eliminate the dielectric breakdown of the winding caused by the magnetizing current.
[0038]
Further, the material of the V-shaped interphase insulating resin inserted between adjacent windings in each slot of the stator is an engineering plastic or a super engineering plastic so that it can be used as a driving source for an air conditioner or a refrigerator. Can be specified.
[0039]
For these reasons, the V-shaped interphase insulating resin can reliably perform insulation between adjacent phases, and can eliminate the insulation failure of the winding due to the potential difference, thereby improving the quality and reliability.
[Brief description of the drawings]
FIG. 1 is a partial sectional view of a stator showing an embodiment of the present invention.
2 is a perspective view of the V-shaped interphase insulating resin in FIG. 1. FIG.
FIG. 3 is a partial sectional view of a stator showing an embodiment of the present invention.
4 is a perspective view of the V-shaped interphase insulating resin in FIG. 3. FIG.
FIG. 5 is a cross-sectional view of an electric motor having a permanent magnet on a rotor according to an embodiment of the present invention.
FIG. 6 is a cross-sectional view of an electric motor having a permanent magnet on a rotor according to an embodiment of the present invention.
FIG. 7 is a cross-sectional view of a stator showing a conventional example.
FIG. 8 is a connection diagram when the stator winding of the motor of the present invention is used as a magnetized winding.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Stator core, 2, S1-S6 ... Tooth part, 3 ... Winding, 4 ... Slot insulation, 5 ... Slot, 6 ... Slot opening, 7, 8 ... V-shaped interphase insulation resin, 9, 10 ... Rotation Child, 11 ... permanent magnet, U1, V1, W1, U2, V2, W2 ... phase, E ... magnetized power source.

Claims (4)

固定子の歯に直接巻線を巻き付ける集中巻方式の電動機において、前記固定子の各スロット内で隣接する巻線相互間に介挿される相間絶縁樹脂の断面形状がV字に形成された絶縁部材であって、前記相間絶縁樹脂の断面形状がV字に形成された絶縁部材の開口部を、前記固定子内径側の各スロット開口部に面して介挿し、
前記相間絶縁樹脂の断面形状がV字に形成された絶縁部材の開口部の端部にスロット開口部とは反対側に折り曲げられた折り曲げ部が形成され、前記折り曲げ部が固定子の歯に巻き付けられた巻線と、固定子スロット内の固定子内径側の鉄心部側との間に介挿したことを特徴とする電動機の固定子。
In a concentrated winding type motor in which windings are directly wound around the teeth of the stator, an insulating member in which the cross-sectional shape of the interphase insulating resin inserted between adjacent windings in each slot of the stator is formed in a V shape a is, the phase between the openings of the insulating member cross section is formed in a V-shaped insulating resin, and interposed facing each slot opening of the stator inner diameter side,
A bent portion is formed at the end portion of the opening portion of the insulating member having a V-shaped cross-sectional shape of the interphase insulating resin, and the bent portion is wound around the teeth of the stator. A stator for an electric motor, wherein the stator is interposed between the wound winding and an iron core side on the inner diameter side of the stator in the stator slot.
前記電動機の固定子のスロット数が3n個(nは自然数)であり、極数が2n個(nは自然数)であることを特徴とする請求項1項に記載の電動機の固定子。The stator of an electric motor according to claim 1, wherein the number of slots of the stator of the electric motor is 3n (n is a natural number) and the number of poles is 2n (n is a natural number). 前記電動機は、永久磁石を具備する回転子を備えたことを特徴とする請求項2項に記載の電動機。The electric motor according to claim 2 , wherein the electric motor includes a rotor having a permanent magnet. 前記固定子の各スロット内で隣接する巻線相互間に介挿される相間絶縁樹脂の絶縁部材の材料が、エンプラ(エンジニアリング・プラスチック)またはスーパーエンプラ(スーパー・エンジニアリング・プラスチック)であることを特徴とする請求項1項または請求項2項に記載の電動機の固定子。A material of an insulating member of an interphase insulating resin inserted between adjacent windings in each slot of the stator is engineering plastic (engineering plastic) or super engineering plastic (super engineering plastic). The stator of the electric motor according to claim 1 or 2 .
JP2000297822A 2000-09-29 2000-09-29 Electric motor stator Expired - Lifetime JP4722276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000297822A JP4722276B2 (en) 2000-09-29 2000-09-29 Electric motor stator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000297822A JP4722276B2 (en) 2000-09-29 2000-09-29 Electric motor stator

Publications (2)

Publication Number Publication Date
JP2002112488A JP2002112488A (en) 2002-04-12
JP4722276B2 true JP4722276B2 (en) 2011-07-13

Family

ID=18779873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000297822A Expired - Lifetime JP4722276B2 (en) 2000-09-29 2000-09-29 Electric motor stator

Country Status (1)

Country Link
JP (1) JP4722276B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4942259B2 (en) 2001-07-11 2012-05-30 パナソニック株式会社 Electric motor
JP4898338B2 (en) * 2006-08-01 2012-03-14 アイチエレック株式会社 Electric motor
JP5456375B2 (en) * 2009-06-01 2014-03-26 アイチエレック株式会社 Electric motor
JP5297364B2 (en) * 2009-12-17 2013-09-25 アイチエレック株式会社 Electric motor
DE102011086181A1 (en) * 2011-11-11 2013-05-16 Robert Bosch Gmbh Slot closure element for sealing groove opening of machine element e.g. stator of rotatory electric machine e.g. synchronous machine, has plane segments connected to each other in single plane, having predetermined angle
CN104365000A (en) 2012-01-26 2015-02-18 大陆汽车有限公司 Rotor for a rotating electric machine
EP2807727B1 (en) 2012-01-26 2020-03-11 Vitesco Technologies GmbH Rotor for a rotating electric machine and rotating electric machine
DE202012000842U1 (en) 2012-01-26 2012-02-03 Continental Automotive Gmbh Rotor for a rotating electric machine and electric motor
JP2013247696A (en) * 2012-05-23 2013-12-09 Jtekt Corp Dynamo-electric machine
JP6070665B2 (en) * 2014-09-30 2017-02-01 トヨタ自動車株式会社 Rotating electrical machine stator
KR101745127B1 (en) * 2015-08-26 2017-06-08 현대자동차주식회사 Armature of rotating electric machine
JP6869768B2 (en) * 2017-03-24 2021-05-12 愛知電機株式会社 Stator and motor
US20210218295A1 (en) 2018-07-06 2021-07-15 Mitsubishi Electric Corporation Rotating electric machine
CN109560624A (en) * 2018-12-25 2019-04-02 合肥旭弘塑胶制品有限公司 A kind of plastic stator of direct current generator
DE102019112534A1 (en) * 2019-05-14 2020-11-19 Hanon Systems Device for driving a compressor with an insulation arrangement
US11581775B2 (en) 2019-05-14 2023-02-14 Hanon Systems Device for driving a compressor with an insulation arrangement
CN112564363B (en) * 2020-11-23 2022-09-06 珠海格力节能环保制冷技术研究中心有限公司 Insulation system, motor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07336921A (en) * 1994-06-08 1995-12-22 Yaskawa Electric Corp Insulation of winding of motor for refrigerator
JPH10126997A (en) * 1996-09-02 1998-05-15 Mitsubishi Electric Corp Insulator for stator core of electric rotating machine
JPH11332152A (en) * 1998-05-08 1999-11-30 Toshiba Corp Stator of motor and its manufacture
JP2000134853A (en) * 1998-10-27 2000-05-12 Calsonic Corp Electric motor
JP2000152569A (en) * 1998-09-07 2000-05-30 Mitsubishi Electric Corp Method and apparatus for assembling and magnetizing dc brushless motor, assembling and magnetizing method of dc brushless motor-for compressor, compressor and refrigeration cycle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07336921A (en) * 1994-06-08 1995-12-22 Yaskawa Electric Corp Insulation of winding of motor for refrigerator
JPH10126997A (en) * 1996-09-02 1998-05-15 Mitsubishi Electric Corp Insulator for stator core of electric rotating machine
JPH11332152A (en) * 1998-05-08 1999-11-30 Toshiba Corp Stator of motor and its manufacture
JP2000152569A (en) * 1998-09-07 2000-05-30 Mitsubishi Electric Corp Method and apparatus for assembling and magnetizing dc brushless motor, assembling and magnetizing method of dc brushless motor-for compressor, compressor and refrigeration cycle
JP2000134853A (en) * 1998-10-27 2000-05-12 Calsonic Corp Electric motor

Also Published As

Publication number Publication date
JP2002112488A (en) 2002-04-12

Similar Documents

Publication Publication Date Title
JP4722276B2 (en) Electric motor stator
US10804754B2 (en) Permanent magnet embedded motor, compressor, and refrigerating and air conditioning apparatus
US6836051B2 (en) Motor
US6952064B2 (en) Motor
WO2012090295A1 (en) Stator and rotating electric machine equipped with this stator
JP2003061283A (en) Rotor and stator of dynamo-electric machine, and motor, compressor, and freezing cycle, and method of manufacturing rotor of dynamo-electric machine
JP2002064949A (en) Motor
JP2003047188A (en) Stator for electric motor
WO2018029818A1 (en) Electric motor, compressor, refrigeration and air conditioning device, and method for manufacturing electric motor
JP2002291209A (en) Electric motor for sealed compressor, its manufacturing method and refrigerating cycle
JP6901035B2 (en) Manufacturing methods for rotating electric machines, compressors, and rotating electric machines
JP2003324879A (en) Motor-driven compressor
JPWO2022019074A5 (en)
JP2002101579A (en) Motor and compressor using thereof
JP2001218409A (en) Stator of motor
JP4470168B2 (en) Hermetic electric compressor
JP2007068298A (en) Insulating winding protector, and method of magnetization using same
JP2002112473A (en) Motor and compressor using it
JP2001218407A (en) Stator of motor
CN107852053B (en) Rotor of motor, blower, and refrigeration air conditioner
JP7361806B2 (en) Stator, electric motor, compressor, air conditioner, and stator manufacturing method
JP2003259592A (en) Electric motor
JP2004357468A (en) Motor
JP2003259591A (en) Permanent magnet type motor
JP7450783B2 (en) Consequent pole rotors, electric motors, fans, and air conditioners

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250