JP4721900B2 - Rubber composition for footwear - Google Patents

Rubber composition for footwear Download PDF

Info

Publication number
JP4721900B2
JP4721900B2 JP2005515070A JP2005515070A JP4721900B2 JP 4721900 B2 JP4721900 B2 JP 4721900B2 JP 2005515070 A JP2005515070 A JP 2005515070A JP 2005515070 A JP2005515070 A JP 2005515070A JP 4721900 B2 JP4721900 B2 JP 4721900B2
Authority
JP
Japan
Prior art keywords
group
weight
modified polymer
parts
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005515070A
Other languages
Japanese (ja)
Other versions
JPWO2005040267A1 (en
Inventor
春夫 山田
博 房前
孝昭 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2005515070A priority Critical patent/JP4721900B2/en
Publication of JPWO2005040267A1 publication Critical patent/JPWO2005040267A1/en
Application granted granted Critical
Publication of JP4721900B2 publication Critical patent/JP4721900B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/04Plastics, rubber or vulcanised fibre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/005Methods for mixing in batches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7495Systems, i.e. flow charts or diagrams; Plants for mixing rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L13/00Compositions of rubbers containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2321/00Characterised by the use of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2421/00Characterised by the use of unspecified rubbers

Description

本発明は、ゴム状重合体成分及び官能基含有原子団が結合した変性重合体と無機充填剤を予め混合したマスターバッチ成分とからなるゴム状重合体組成物であって、特に引き裂き強度、耐摩耗性、接着性に優れる新規な履物用ゴム組成物に関する。  The present invention is a rubber-like polymer composition comprising a rubber-like polymer component and a modified polymer having a functional group-containing atomic group bonded thereto and a masterbatch component in which an inorganic filler is preliminarily mixed. The present invention relates to a novel rubber composition for footwear excellent in wear and adhesion.

従来、履物用の原料としてゴム状重合体が種々の履物用途で使用されている。その用途に応じて要求される特性を付与するために、ゴム状重合体を主成分とし、さらに各種の無機充填剤、添加剤、着色剤等を配合したゴム組成物が原料として用いられている。履物等の各種ゴム製品においては、製品の外観性を向上させるためにシリカ等の白色系充填剤が補強剤として広く使用されている。しかし、シリカを補強充填剤として用いた場合、従来のカーボンブラックと比較してゴムとの親和性が低いため、シリカのゴム中への分散性が必ずしも良くなく、この分散性不良によって耐摩耗性の低下、機械強度の低下がおこりがちである。そこで、カーボンブラックのような高い補強性を得るために、ゴム組成物へのシリカ配合にはビス−(3−トリエトキシシリルプロピル)テトラスルフィドに代表されるシランカップリング剤を使用してシリカの分散を改良することがおこなわれており、製品コストの上昇を余儀なくされている。
靴底材料として求められる特性して、耐摩耗性や耐ウエットスキッド性が良好であること、ミッドソールやアッパーとの接着性が良好であることが挙げられる。
また、シリカ粉体の使用は、靴の製造工程において粉体が舞い上がり作業性が劣るという問題があり、また、更に、近年、靴工場の作業環境改善の観点から、靴の製造に使用する接着剤を有機溶剤系から水性接着剤へと変える動きが活発化している。しかしながら、満足のゆく接着強度が得られていないのが現状である。
ゴム組成物を改良する方法として、特許文献1には、シリカとシランカップリング剤を限定しゴムに熱可塑性樹脂を混合することにより着色性と耐摩耗性が優れる靴底に関するものが開示されているが、水性接着剤を使用した時の接着強度に優れたゴム組成物は得られていない。 特許文献2にははハイシスポリブタジエンとスチレンレジンとシリカからなる、軽量化、耐摩耗性靴底材が開示されている。特許文献3には、特定のポリシロキサン化合物を用いて耐摩耗性を改良する履物用ゴム組成物が開示されている。また、特許文献4には、特定構造の変性重合体とシリカの組み合わせによって、耐摩耗性や耐ウエットスキッド性に優れる履物用ゴム組成物が開示されているが、いずれも水性接着剤を使用した時の接着強度に優れたゴム組成物は得られていない。
特許文献5及び特許文献6には、変性重合体と補強性充填剤からなるマスターバッチを用いたゴム組成物が開示されているが、履物用ゴム組成物として重要な特性である接着強度の記載が全くない。
特開昭62−137002号公報 特開2000−236905号公報 特開2002−191401号公報 特開2002−284931号公報 特開平8−231766号公報 特開2000−136269号公報
Conventionally, rubbery polymers have been used as footwear materials in various footwear applications. In order to give the properties required depending on the application, a rubber composition containing a rubbery polymer as a main component and further blended with various inorganic fillers, additives, colorants and the like is used as a raw material. . In various rubber products such as footwear, a white filler such as silica is widely used as a reinforcing agent in order to improve the appearance of the product. However, when silica is used as a reinforcing filler, the affinity with rubber is low compared to conventional carbon black, so the dispersibility of silica in rubber is not always good, and this poor dispersibility results in wear resistance. Decrease, and mechanical strength tends to decrease. Therefore, in order to obtain a high reinforcing property such as carbon black, a silane coupling agent typified by bis- (3-triethoxysilylpropyl) tetrasulfide is used for compounding silica into the rubber composition, and silica is used. Improvements in dispersion are being made, increasing product costs.
The characteristics required as a shoe sole material include good wear resistance and wet skid resistance, and good adhesion to the midsole and upper.
In addition, the use of silica powder has a problem that the powder rises in the shoe manufacturing process and the workability is inferior, and moreover, in recent years, from the viewpoint of improving the working environment of a shoe factory, it is an adhesive used for shoe manufacturing. There is a growing movement to change the adhesive from organic solvent to water-based adhesive. However, the present situation is that satisfactory adhesive strength is not obtained.
As a method for improving a rubber composition, Patent Document 1 discloses a shoe sole that is excellent in colorability and wear resistance by limiting silica and a silane coupling agent and mixing a thermoplastic resin with rubber. However, a rubber composition excellent in adhesive strength when a water-based adhesive is used has not been obtained. Patent Document 2 discloses a lightweight, wear-resistant shoe sole material made of high-cis polybutadiene, styrene resin, and silica. Patent Document 3 discloses a rubber composition for footwear that improves wear resistance by using a specific polysiloxane compound. Further, Patent Document 4 discloses a rubber composition for footwear which is excellent in wear resistance and wet skid resistance by a combination of a modified polymer having a specific structure and silica, and both use an aqueous adhesive. A rubber composition having excellent adhesive strength at the time has not been obtained.
Patent Document 5 and Patent Document 6 disclose a rubber composition using a masterbatch composed of a modified polymer and a reinforcing filler, but description of adhesive strength, which is an important characteristic as a rubber composition for footwear. There is no.
Japanese Patent Laid-Open No. 62-137002 JP 2000-236905 A JP 2002-191401 A JP 2002-284931 A JP-A-8-231766 JP 2000-136269 A

本発明は、ゴム状重合体と無機充填剤から得られるゴム組成物において、官能基含有原子団が結合している変性重合体と無機充填剤のマスターバッチを作製し、該マスターバッチとゴム状重合体を含むゴム組成物とすることで、引き裂き強度、耐摩耗性、接着性に優れ、また靴工場の作業環境を改善できる履物用ゴム組成物を提供することにある。
本発明者らは、共役ジエン系重合体又はビニル芳香族炭化水素と共役ジエン系単量体からなる共重合体、或いはこれらの水添物と無機充填剤とのゴム組成物の特性改良について鋭意検討した結果、ゴム状重合体と無機充填剤を含むゴム組成物を製造する際に、特定の官能基を付与した変性重合体と無機充填剤を予め混練したマスターバッチを使用することで、引き裂き強度、耐摩耗性、接着性に優れた履物用ゴム組成物が得られることを見出し、本発明を完成するに至った。
すなわち、本発明は下記の通りである。
1.成分(1)ゴム状重合体:100重量部;及び成分(2)共役ジエン系重合体又は共役ジエン系単量体とビニル芳香族炭化水素からなる共重合体又はそれらの水添物に官能基含有原子団が少なくとも1個結合している変性重合体から選ばれる少なくとも1種の変性重合体100重量部に無機充填剤5〜300重量部を混練して得られるマスターバッチ:1〜150重量部を含む履物用ゴム組成物。
2.成分(2)が無機充填剤5〜300重量部の全量を予め混練機に投入して混練し、次いで変性重合体を加えて混練して得られるマスターバッチである前項1に記載の履物用ゴム組成物。
3.成分(2)が無機充填剤5〜300重量部を2回以上分割して混練機に投入して順次混練して得られるマスターバッチである前項1に記載の履物用ゴム組成物。
4.成分(2)が無機充填剤の20〜80重量%を予め混練機に投入して混練し、次いで変性重合体を加え、更に当該無機充填剤の残量を加えて混練したマスターバッチである前項1に記載の履物用ゴム組成物。
5.成分(3)として、更に無機充填剤を0.1〜150重量部含む前項1に記載の履物用ゴム組成物。
6.変性重合体の官能基含有原子団が、水酸基、エポキシ基、アミノ基、イミノ基、シラノール基、アルコキシシラン基から選ばれる官能基を少なくとも1個有する原子団である前項1に記載の履物用ゴム組成物。
7.変性重合体が、下記式(1)〜(14)から選ばれる原子団が少なくとも1個結合している変性重合体である前項1に記載の履物用ゴム組成物。

Figure 0004721900
(上記式(1)〜(14)において、 Nは窒素原子、Siは珪素原子、Oは酸素原子、Cは炭素原子、Hは水素原子を表し、R,Rは各々独立に水素原子又は炭素数1〜24の炭化水素基を表し、且つ、該炭化水素基は、所望により、各々独立に、水酸基、エポキシ基、アミノ基、炭素数1〜24の炭化水素基を有するイミノ基、シラノール基及び炭素数1〜24のアルコキシシラン基からなる群より選ばれる少なくとも1種の官能基を有してもよく、各Rは各々独立に炭素数1〜48の2価の炭化水素基を表し、且つ、所望により、各々独立に、水酸基、エポキシ基、アミノ基、炭素数1〜24の炭化水素基を有するイミノ基、シラノール基及び炭素数1〜24のアルコキシシラン基からなる群より選ばれる少なくとも1種の官能基を有してもよく、各Rは各々独立に水素原子又は炭素数1〜24の炭化水素基を表す。)
8.成分(2)が、当該変性重合体と無機充填剤の混練の際に、更に当該変性重合体に結合している官能基と反応性を有する化合物(4)を当該変性重合体100重量部に対して0.01〜20重量部添加して得られたマスターバッチである前項1に記載の履物用ゴム組成物。
9.成分(2)が、当該変性重合体と無機充填剤の混練物に、更に当該変性重合体に結合している官能基と反応性を有する化合物(4)を当該変性重合体100重量部に対して0.01〜20重量部混練して得られたマスターバッチである前項1に記載の履物用ゴム組成物。
10.成分(2)に使用する変性重合体が、当該変性重合体に結合している官能基と反応性を有する化合物(4)を当該変性重合体に結合している官能基1当量あたり0.3〜10モルを用いて反応させた変性重合体である前項1に記載の履物用ゴム組成物。
11.化合物(4)がカルボキシル基、酸無水物基、イソシアネート基、エポキシ基、シラノール基、アルコキシシラン基から選ばれる官能基を有する化合物である前項8または9に記載の履物用ゴム組成物。
12.成分(1)ゴム状重合体:100重量部;及び成分(2)共役ジエン系重合体又は共役ジエン系単量体とビニル芳香族炭化水素からなる共重合体又はそれらの水添物に官能基含有原子団が少なくとも1個結合している変性重合体から選ばれる少なくとも1種の変性重合体100重量部に無機充填剤5〜300重量部を混練して得られるマスターバッチ:1〜150重量部を混練する工程を含む履物用ゴム組成物の製造方法。
13.成分(2)が無機充填剤5〜300重量部の全量を混練機に投入して混練し、次いで変性重合体を加えて混練して得られるマスターバッチである前項12に記載の履物用ゴム組成物の製造方法。
14.成分(2)が無機充填剤5〜300重量部を2回以上分割して混練機に投入して順次混練して得られるマスターバッチである前項12に記載の履物用ゴム組成物の製造方法。
15.無機充填剤5〜300重量部の全量を混練機に投入して混練し、次いで変性重合体を加えて混練する前項1に記載のマスターバッチの製造方法。
16.無機充填剤の20〜80重量%を予め混練機に投入して混練し、次いで変性重合体を加え混練し、更に当該無機充填剤の残量を加えて混練する前項1に記載のマスターバッチの製造方法。
特定の官能基含有原子団が結合している変性重合体と無機充填剤のマスターバッチを用いて製造した本発明の履物用ゴム組成物は、引き裂き強度、耐摩耗性、水性接着を用いた時の接着性に優れ、また、靴工場の作業環境を改善できるゴム組成物である。The present invention relates to a rubber composition obtained from a rubbery polymer and an inorganic filler, and a masterbatch of a modified polymer and an inorganic filler to which a functional group-containing atomic group is bonded is prepared. An object of the present invention is to provide a rubber composition for footwear that is excellent in tear strength, abrasion resistance, and adhesiveness, and can improve the working environment of a shoe factory by using a rubber composition containing a polymer.
The present inventors have earnestly improved the properties of a conjugated diene polymer or a copolymer comprising a vinyl aromatic hydrocarbon and a conjugated diene monomer, or a rubber composition of these hydrogenated product and inorganic filler. As a result of investigation, when a rubber composition containing a rubbery polymer and an inorganic filler is produced, tearing can be achieved by using a master batch in which a modified polymer having a specific functional group and an inorganic filler are previously kneaded. The present inventors have found that a rubber composition for footwear excellent in strength, wear resistance, and adhesiveness can be obtained, and completed the present invention.
That is, the present invention is as follows.
1. Component (1) Rubber-like polymer: 100 parts by weight; and Component (2) Conjugated diene polymer or copolymer comprising conjugated diene monomer and vinyl aromatic hydrocarbon or hydrogenated product thereof Master batch obtained by kneading 5 to 300 parts by weight of an inorganic filler with 100 parts by weight of at least one modified polymer selected from modified polymers having at least one containing atomic group bonded: 1 to 150 parts by weight A rubber composition for footwear, comprising:
2. The rubber for footwear according to the preceding item 1, wherein the component (2) is a masterbatch obtained by previously charging a total amount of 5 to 300 parts by weight of an inorganic filler into a kneader and then kneading by adding a modified polymer. Composition.
3. 2. The rubber composition for footwear according to item 1 above, wherein the component (2) is a master batch obtained by dividing 5 to 300 parts by weight of an inorganic filler twice or more, charging the mixture into a kneader and sequentially kneading.
4). The above-mentioned master batch in which component (2) is 20-80% by weight of the inorganic filler previously charged in a kneader and kneaded, then the modified polymer is added, and the remaining amount of the inorganic filler is added and kneaded. 2. The rubber composition for footwear according to 1.
5. 2. The rubber composition for footwear according to item 1, further comprising 0.1 to 150 parts by weight of an inorganic filler as component (3).
6). 2. The rubber for footwear according to item 1, wherein the functional group-containing atomic group of the modified polymer is an atomic group having at least one functional group selected from a hydroxyl group, an epoxy group, an amino group, an imino group, a silanol group, and an alkoxysilane group. Composition.
7). 2. The rubber composition for footwear according to item 1, wherein the modified polymer is a modified polymer in which at least one atomic group selected from the following formulas (1) to (14) is bonded.
Figure 0004721900
(In the above formulas (1) to (14), N represents a nitrogen atom, Si represents a silicon atom, O represents an oxygen atom, C represents a carbon atom, H represents a hydrogen atom, and R 1 and R 2 are each independently a hydrogen atom. Or a hydrocarbon group having 1 to 24 carbon atoms, and the hydrocarbon groups are each independently, optionally, a hydroxyl group, an epoxy group, an amino group, an imino group having a hydrocarbon group having 1 to 24 carbon atoms, It may have at least one functional group selected from the group consisting of a silanol group and an alkoxysilane group having 1 to 24 carbon atoms, and each R 3 is independently a divalent hydrocarbon group having 1 to 48 carbon atoms. And optionally, each independently selected from the group consisting of a hydroxyl group, an epoxy group, an amino group, an imino group having a hydrocarbon group having 1 to 24 carbon atoms, a silanol group, and an alkoxysilane group having 1 to 24 carbon atoms. At least one government official It may have a group, each R 4 each independently represents a hydrogen atom or a C24 hydrocarbon group.)
8). When the component (2) is kneaded with the modified polymer and the inorganic filler, the compound (4) having reactivity with the functional group bonded to the modified polymer is further added to 100 parts by weight of the modified polymer. The rubber composition for footwear according to the preceding item 1, which is a masterbatch obtained by adding 0.01 to 20 parts by weight to the rubber.
9. Component (2) is a mixture of the modified polymer and inorganic filler, and further compound (4) having reactivity with the functional group bonded to the modified polymer is added to 100 parts by weight of the modified polymer. 2. A rubber composition for footwear according to item 1, which is a masterbatch obtained by kneading 0.01 to 20 parts by weight.
10. The modified polymer used for the component (2) has a compound (4) having a reactivity with the functional group bonded to the modified polymer, 0.3 per equivalent of the functional group bonded to the modified polymer. 2. The rubber composition for footwear according to item 1 above, which is a modified polymer reacted with 10 mol.
11. 10. The rubber composition for footwear according to 8 or 9 above, wherein the compound (4) is a compound having a functional group selected from a carboxyl group, an acid anhydride group, an isocyanate group, an epoxy group, a silanol group, and an alkoxysilane group.
12 Component (1) Rubber-like polymer: 100 parts by weight; and Component (2) Conjugated diene polymer or copolymer comprising conjugated diene monomer and vinyl aromatic hydrocarbon or hydrogenated product thereof Master batch obtained by kneading 5 to 300 parts by weight of an inorganic filler with 100 parts by weight of at least one modified polymer selected from modified polymers having at least one containing atomic group bonded: 1 to 150 parts by weight The manufacturing method of the rubber composition for footwear including the process of kneading | mixing.
13. 13. The rubber composition for footwear according to item 12 above, wherein the component (2) is a masterbatch obtained by adding a total amount of 5 to 300 parts by weight of an inorganic filler to a kneader and then kneading by adding a modified polymer. Manufacturing method.
14 13. The method for producing a rubber composition for footwear according to 12 above, wherein the component (2) is a masterbatch obtained by dividing 5 to 300 parts by weight of the inorganic filler twice or more, charging the mixture into a kneader and sequentially kneading.
15. 2. The method for producing a masterbatch according to item 1, wherein the total amount of 5 to 300 parts by weight of the inorganic filler is put into a kneader and kneaded, and then the modified polymer is added and kneaded.
16. 20 to 80% by weight of the inorganic filler is previously charged in a kneader and kneaded, then the modified polymer is added and kneaded, and the remaining amount of the inorganic filler is added and kneaded. Production method.
The rubber composition for footwear of the present invention manufactured by using a master batch of a modified polymer to which a specific functional group-containing atomic group is bonded and an inorganic filler is used when tear strength, abrasion resistance, and water-based adhesion are used. It is a rubber composition that is excellent in adhesiveness and can improve the working environment of a shoe factory.

本発明について、以下具体的説明する。
本発明の履物用ゴム組成物を構成する成分(1)であるゴム状重合体の種類は特に限定されないが、共役ジエン系重合体またはその水添物、共役ジエン系単量体とビニル芳香族炭化水素からなるランダム共重合体またはその水添物、共役ジエン系単量体とビニル芳香族炭化水素からなるブロック共重合体またはその水添物、非ジエン系重合体、天然ゴム等があげられる。具体的には、ブタジエンゴム又はその水素添加物、イソプレンゴム又はその水素添加物、スチレン−ブタジエンゴム又はその水素添加物、スチレン−ブタジエンブロック共重合体又はその水素添加物、スチレン−イソプレンブロック共重合体又はその水素添加物等のスチレン系エラストマー、アクリロニトリル−ブタジエンゴム又はその水素添加物等であり、また、非ジエン系重合体としては、エチレン−プロピレンゴム、エチレン−プロピレン−ジエンゴム、エチレン−ブテン−ジエンゴム、エチレン−ブテンゴム、エチエン−ヘキセンゴム、エチレン−オクテンゴム等のオレフィン系エラストマー、ブチルゴム、臭素化ブチルゴム、アクリルゴム、フッ素ゴム、シリコーンゴム、塩素化ポリエチレンゴム、エピクロルヒドリンゴム、α、β−不飽和ニトリル−アクリル酸エステル−共役ジエン共重合ゴム、ウレタンゴム等などがあげられる。これらのゴム状重合体は、官能基を付与した変性ゴムであっても良い。上記ゴム状重合体を単独で、或いは、2種類以上のゴム状重合体を混合した混合物として使用することがでる。
本発明の履物用ゴム組成物を構成する成分(2)は、共役ジエン系重合体又は共役ジエン系単量体とビニル芳香族炭化水素からなる共重合体又はそれらの水添物に官能基含有原子団が少なくとも1個結合している変性重合体から選ばれる少なくとも1種の変性重合体と無機充填剤を予め混練してマスターバッチ化したゴム組成物である。
本発明の成分(2)において用いられる変性共役ジエン系重合体又は共役ジエン系単量体とビニル芳香族炭化水素からなる変性共重合体は、少なくとも1種類の共役ジエン系単量体及び少なくとも1種類のビニル芳香族芳香族炭化水素とを有機リチウム触媒の存在下で溶液重合させることにより製造することができる。本発明の変性重合体の製造方法は、本発明の構造を有する重合体を得ることができれば、如何なる製造方法も採用することができる。
本発明における共役ジエン系単量体とは一対の共役二重結合を有するジオレフィンであり、例えば1,3−ブタジエン、2−メチル−1,3−ブタジエン(イソプレン)、2,3−ジメチル−1,3−ブタジエン、1,3−ペンタジエン、1,3−ヘキサジエンなどが挙げられるが、特に一般的なものとしては1,3−ブタジエン、イソプレンが挙げられる。これらは重合体の製造において一種のみならず二種以上を使用してもよい。
また、ビニル芳香族炭化水素としては、スチレン、o−メチルスチレン、p−メチルスチレン、p−tert−ブチルスチレン、1,3−ジメチルスチレン、α−メチルスチレン、ビニルナフタレン、ビニルアントラセンなどが挙げられるが、特に一般的なものとしてはスチレン、α−メチルスチレンが挙げられる。これらは重合体の製造において一種のみならず二種以上を使用してもよい。
変性重合体の製造に用いられる溶媒としては、ブタン、ペンタン、ヘキサン、イソペンタン、ヘプタン、オクタン、イソオクタン等の脂肪族炭化水素、シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の脂環式炭化水素、或いはベンゼン、トルエン、エチルベンゼン、キシレン等の芳香族炭化水素などの炭化水素系溶媒が使用できる。これらは一種のみならず二種以上を混合して使用してもよい。
また、変性重合体の製造に用いられる有機リチウム化合物は、分子中に1個以上のリチウム原子を結合した化合物であり、例えばエチルリチウム、n−プロピルリチウム、イソプロピルリチウム、n−ブチルリチウム、sec−ブチルリチウム、tert−ブチルリチウム、ヘキサメチレンジリチウム、ブタジエニルジリチウム、イソプレニルジリチウムなどが挙げられる。さらに、米国特許第5,708,092号明細書、英国特許第2,241,239号明細書、米国特許第5,527,753号明細書等に開示されているアミドリチウムなどの有機アルカリ金属化合物も使用することができる。これらは一種のみならず二種以上を混合して使用してもよい。又、有機リチウム化合物は、重合体の製造において重合途中で1回以上分割添加してもよい。
本発明において、重合体を製造している時の重合速度の調整、重合体中の共役ジエン部分のミクロ構造の変更、共役ジエン系単量体とビニル芳香族炭化水素との反応性比の調整などの目的で極性化合物やランダム化剤を使用することができる。極性化合物やランダム化剤としては、エーテル類、アミン類、チオエーテル類、ホスホルアミド、アルキルベンゼンスルホン酸のカリウム塩又はナトリウム塩、カリウムまたはナトリウムのアルコキシドなどが挙げられる。
エーテル類の例としてはジメチルエーテル、ジエチルエーテル、ジフェニルエーテル、テトラヒドロフラン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル等が挙げられる。アミン類としては第三級アミン、トリメチルアミン、トリエチルアミン、テトラメチルエチレンジアミン、その他環状第三級アミン等が挙げられる。ホスフィン及びホスホルアミドとしては、トリフェニルホスフィン、ヘキサメチルホスホルアミドなどが挙げられる。
重合体を製造する際の重合温度は、好ましくは−10〜150℃、より好ましくは30〜120℃である。重合に要する時間は条件によって異なるが、好ましくは48時間以内であり、特に好適には0.5〜10時間である。又、重合系の雰囲気は窒素ガスなどの不活性ガス雰囲気にすることが好ましい。重合系の圧力は、上記の重合温度範囲でモノマー及び溶媒を液相に維持するのに充分な圧力の範囲にすればよく、特に限定されるものではないが、通常0.2〜2MPaであり、好ましくは0.3〜1.5MPaである。反応温度は、0〜150℃の範囲が好ましく、より好ましくは20〜120℃、更に好ましくは50〜100℃の範囲である。更に、重合系内は触媒及びリビングポリマーを不活性化させるような不純物、例えば水、酸素、炭酸ガスなどが混入しないようにすることが好ましい。
本発明の成分(2)で使用する共役ジエン系重合体又はその水添物の変性重合体は、共役ジエン系単量体単独重合体またはビニル芳香族炭化水素含有量が5wt%未満の共役ジエン系重合体の変性重合体である。共役ジエン系重合体又はその水添物の構造は直鎖状であっても分岐状であっても、また、これらの任意の混合物であっても良い。また、共役ジエン系単量体とビニル芳香族炭化水素からなる共重合体又はその水添物は、ランダム共重合体であってもブロック共重合体であっても良い。また、変性共重合体又はその水添物の構造は、直鎖状であっても分岐状であっても、これらの任意の混合物であっても良い。
本発明の成分(2)で使用する共役ジエン系単量体とビニル芳香族炭化水素からなるランダム共重合体又はその水添物のビニル芳香族炭化水素含有量は通常5〜95wt%の範囲であり、好ましくは10〜90wt%、更に好ましくは15〜85wt%の範囲である。またランダム共重合体又はその水添物の重合体鎖には、ビニル芳香族炭化水素含有量の異なるランダム共重合体ブロックが2個以上存在しても、更には共役ジエン重合体ブロック又はその水添物が1個以上存在しても良い。
共役ジエン系重合体の変性重合体やランダム共重合体の変性重合体は、共役ジエン系重合体やランダム共重合体のリビング末端に後述する変性剤を付加反応することにより得られる。
本発明の成分(2)で使用する共役ジエン系単量体とビニル芳香族炭化水素からなるブロック共重合体又はその水添物のビニル芳香族炭化水素含有量は、通常5〜95wt%の範囲であり、より好ましくは10〜90wt%、更に好ましくは15〜85wt%の範囲である。ブロック共重合体又はその水添物のビニル芳香族炭化水素含有量が60wt%以上、好ましくは65wt%以上の場合は樹脂的な特性を有し、60wt%未満、好ましくは55wt%以下の場合は弾性的な特性を有する。
ブロック共重合体の製造方法としては、例えば特公昭36−19286号公報、特公昭43−17979号公報、特公昭46−32415号公報、特公昭49−36957号公報、特公昭48−2423号公報、特公昭48−4106号公報、特公昭56−28925号公報、特公昭51−49567号公報、特開昭59−166518号公報、特開昭60−186577号公報などに記載された方法が挙げられる。
これらの方法で得られるブロック共重合体のリビング末端に後述する変性剤を付加反応することにより本発明で使用するブロック共重合体の変性重合体が得られ、例えば下記一般式で表される構造を有する。
(A−B)n−X、 A−(B−A)n−X、
B−(A−B)n−X、 X−(A−B)n、
X−(A−B)n−X、 X−A−(B−A)n−X、
X−B−(A−B)n−X、 [(B−A)n]m−X、
[(A−B)n]m−X、 [(B−A)n−B]m−X、
[(A−B)n−A]m−X
(上式において、Aはビニル芳香族炭化水素を主体とする重合体ブロックであり、Bは共役ジエン系単量体を主体とする重合体ブロックである。AブロックとBブロックとの境界は必ずしも明瞭に区別される必要はない。又、nは1以上の整数、好ましくは1〜5の整数である。mは2以上の整数、好ましくは2〜11の整数である。Xは、後述する官能基を有する原子団が結合している変性剤の残基を示す。Xを後述するメタレーション反応で付加させる場合は、Aブロック及び/又はBブロックの側鎖に結合している)
尚、上記の一般式で示した構造において、ビニル芳香族炭化水素を主体とする重合体ブロックAはビニル芳香族炭化水素を好ましくは50wt%以上、より好ましくは70wt%以上含有するビニル芳香族炭化水素と共役ジエン系単量体との共重合体ブロック又はビニル芳香族炭化水素の単独重合体ブロックであり、ビニル芳香族炭化水素は均一に分布していても、又テーパー状に分布していてもよい。共役ジエン系単量体を主体とする重合体ブロックBは共役ジエン系単量体を好ましくは50wt%を超える量で、より好ましくは60wt%以上含有する共役ジエン系単量体とビニル芳香族炭化水素との共重合体ブロック又は共役ジエン系単量体の単独重合体ブロックである。
また、該変性ブロック共重合体中には、ビニル芳香族炭化水素が均一に分布している部分及び/又はテーパー状に分布している部分がそれぞれ複数個共存していてもよい。本発明で使用する変性ブロック共重合体は、上記一般式で表される変性ブロック共重合体の任意の混合物でもよい。
変性ブロック共重合体に組み込まれているビニル芳香族炭化水素重合体ブロックの割合(ビニル芳香族炭化水素のブロック率という)は、耐摩耗性を重視する場合50wt%未満、好ましくは5〜45wt%、更に好ましくは10〜40wt%にすることが、また成形品の剛性保持の点から50wt%以上、好ましくは50〜97wt%、更に好ましくは60〜95wt%、とりわけ好ましくは70〜92wt%に調整することが推奨される。
ブロック共重合体に組み込まれているビニル芳香族炭化水素のブロック率の測定は、四酸化オスミウムを触媒としてターシャリーブチルハイドロパーオキサイドによりブロック共重合体を酸化分解する方法(I.M.KOLTHOFF,etal.,J.Polym.Sci.1,429(1946)に記載の方法)により得たビニル芳香族炭化水素重合体ブロック成分(但し平均重合度が約10以下のビニル芳香族炭化水素重合体成分は除かれている)を用いて、次の式から求めることができる。
ビニル芳香族炭化水素のブロック率(wt%)
=(ブロック共重合体中のビニル芳香族炭化水素重合体ブロックの重量)
/ブロック共重合体中の全ビニル芳香族炭化水素の重量)×100
本発明において、変性共役ジエン系重合体又は共役ジエン系単量体とビニル芳香族炭化水素からなる変性共重合体中の共役ジエン部分のミクロ構造(シス、トランス、ビニルの比率)は、後述する極性化合物等の使用により任意に変えることができる。ビニル結合含有量は特に限定されないが、共役ジエン系単量体として1,3−ブタジエンを使用した場合には、ビニル結合量は好ましくは5〜90%、より好ましくは10〜80%、共役ジエン系単量体としてイソプレンを使用した場合又は1,3−ブタジエンとイソプレンを併用した場合には、1,2−ビニル結合と3,4−ビニル結合の合計であるビニル結合量は好ましくは3〜80%、より好ましくは5〜70%である。ここで、ビニル結合含有量とは,重合体中に1,2−結合、3,4−結合及び1,4−結合の結合様式で組み込まれている共役ジエン系単量体のうち,1,2−結合及び3,4−結合で組み込まれているものの割合である。変性重合体中のビニル結合は重合体鎖中に均一に分布していても、テーパー状に分布していても、或いはビニル結合の異なる重合体ブロックが2個以上存在しても良い。ビニル結合含有量は後述する極性化合物等の使用により任意に変えることができる。
但し、変性ブロック共重合体の水添物を使用する場合、そのミクロ構造は共役ジエン系単量体として1,3−ブタジエンを使用した場合には、ビニル結合量は好ましくは10〜80%、更に好ましくは25〜75%であり、共役ジエン系単量体としてイソプレンを使用した場合又は1,3−ブタジエンとイソプレンを併用した場合には、1,2−ビニル結合と3,4−ビニル結合の合計であるビニル結合量は好ましくは5〜70%であることが推奨される。変性重合体中の共役ジエン系単量体に基づくビニル結合含有量は、核磁気共鳴装置(NMR)を用いて知ることができる。
共役ジエン系重合体や共役ジエン系単量体とビニル芳香族炭化水素からなる共重合体の製造において、共役ジエン系単量体としてイソプレンと1,3−ブタジエンを併用する場合、イソプレンと1,3−ブタジエンの重量比は好ましくは95/5〜5/95、より好ましくは90/10〜10/90、更に好ましくは85/15〜15/85である。特に、低温特性に優れたゴム組成物を得る場合には、イソプレンと1,3−ブタジエンの重量比は好ましくは49/51〜5/95、より好ましくは45/55〜10/90、更に好ましくは40/60〜15/85であることが推奨される。イソプレンと1,3−ブタジエンを併用すると高温での成形加工においても機械的特性の良好なゴム組成物が得られる。
次に、本発明の成分(2)で使用する変性重合体について説明する。変性重合体は、有機リチウム化合物を重合触媒として得た重合体のリビング末端に官能基含有変性剤を反応させて、官能基含有原子団を付加することで製造することができる。該官能基含有原子団は重合体の少なくとも1つの重合体鎖末端に結合している。
変性重合体に結合している官能基含有原子団の官能基の例として、水酸基、カルボニル基、チオカルボニル基、酸ハロゲン化物基、酸無水物基、カルボキシル基、チオカルボキシル酸基、アルデヒド基、チオアルデヒド基、カルボン酸エステル基、アミド基、スルホン酸基、スルホン酸エステル基、リン酸基、リン酸エステル基、アミノ基、イミノ基、シアノ基、ピリジル基、キノリン基、エポキシ基、チオエポキシ基、スルフィド基、イソシアネート基、イソチオシアネート基、ハロゲン化ケイ素基、シラノール基、アルコキシシラン基、ハロゲン化スズ基、アルコキシスズ基、フェニルスズ基等からなる群より選ばれる少なくとも1種の官能基が挙げられる。上記の官能基のうち、水酸基、エポキシ基、アミノ基、イミノ基、シラノール基、アルコキシシラン基が特に好ましい。
水酸基、エポキシ基、アミノ基、イミノ基、シラノール基、アルコキシシラン基からなる群から選ばれる少なくとも1種の官能基を有する原子団の好ましい例として、下記式(1)〜(14)からなる群より選ばれる式で表される少なくとも1種のものが挙げられる。

Figure 0004721900
上記式(1)〜(14)において、 Nは窒素原子、Siは珪素原子、Oは酸素原子、Cは炭素原子、Hは水素原子を表し、R,Rは各々独立に水素原子又は炭素数1〜24の炭化水素基を表し、且つ、該炭化水素基は、所望により、各々独立に、水酸基、エポキシ基、アミノ基、炭素数1〜24の炭化水素基を有するイミノ基、シラノール基及び炭素数1〜24のアルコキシシラン基からなる群より選ばれる少なくとも1種の官能基を有してもよく、各Rは各々独立に炭素数1〜48の2価の炭化水素基を表し、且つ、所望により、各々独立に、水酸基、エポキシ基、アミノ基、炭素数1〜24の炭化水素基を有するイミノ基、シラノール基及び炭素数1〜24のアルコキシシラン基からなる群より選ばれる少なくとも1種の官能基を有してもよく、各Rは各々独立に水素原子又は炭素数1〜24の炭化水素基を表す。
本発明において、変性重合体に結合している上記の官能基含有原子団を形成するために用いることができる変性剤としては、上記の官能基を有する公知の化合物及び/又は形成し得る公知の化合物を用いることができる。例えば特公平4−39495号公報(米国特許第5,115,035号に対応)に記載された末端変性処理剤を用いることができる、具体的には、下記のものが挙げられる。
上記式(1)〜(6)の官能基を有する変性剤の例としては、テトラグリシジルメタキシレンジアミン、テトラグリシジル−1,3−ビスアミノメチルシクロヘキサン、テトラグリシジル−p−フェニレンジアミン、テトラグリシジルジアミノジフェニルメタン、ジグリシジルアニリン、ジグリシジルオルソトルイジン、N−(1,3−ジブチルブチリデン)−3−(トリエトキシシリル)−1−プロパンアミン、4−ジ(β−トリメトキシシリルエチル)アミノスチレン、4−ジ(β−トリエトキシシリルエチル)アミノスチレン、4−ジ(γ−トリメトキシシリルプロピル)アミノスチレン、4−ジ(γ−トリエトキシシリルプロピル)アミノスチレンが挙げられる。
上記式(7)の官能基を有する変性剤の例としては、ε−カプロラクトン、δ−バレロラクトン、ブチロラクトン、γ−カプロラクトン、γ−バレロラクトンなどの環状ラクトンが挙げられる。
上記式(8)の官能基を有する変性剤の例としては、4−メトキシベンゾフェノン、4−エトキシベンゾフェノン、4,4’−ビス(メトキシ)ベンゾフェノン、4,4’−ビス(エトキシ)ベンゾフェノン、γ−グリシドキシエチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシランが挙げられる。
上記式(9)及び(10)の官能基を有する変性剤の例としては、γ−グリシドキシブチルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリプロポキシシラン、γ−グリシドキシプロピルトリブトキシシランが挙げられる。
上記式(11)の官能基を有する変性剤の例としては、1,3−ジメチル−2−イミダゾリジノン、1,3−ジエチル−2−イミダゾリジノンが挙げられる。
上記式(12)の官能基を有する変性剤の例としては、N,N’−ジメチルプロピレンウレア、N−メチルピロリドンなどが挙げられる。
また、上記式(13)及び(14)の官能基を有する原子団を有する変性重合体は、それぞれ、上記式(11)及び(12)の官能基含有原子団を有する非水添変性重合体を水添することによって得られる。
本発明の成分(2)で使用する変性重合体の水添物は、重合体を変性してから水添することによっても製造できるし、重合体を水添した後、変性することによっても製造できる。たとえば、重合体を変性してから水添する場合、有機リチウム化合物を重合触媒として用いて得られた重合体のリビング末端に、上記の変性剤と反応させることにより変性重合体を得、得られた変性重合体を水添することにより、水添物の変性重合体が得られる。
また、本発明の成分(2)で使用する変性重合体を得る他の方法として、重合体に有機リチウム化合物等の有機アルカリ金属化合物を反応(メタレーション反応)させ、有機アルカリ金属化合物が付加した重合体を得、これに上記の変性剤を付加反応させる方法が挙げられる。この場合は、重合体の水添物を得た後にメタレーション反応させ、上記の変性剤を反応させて水添物の変性重合体を得ることもできる。
なお、変性剤の種類により、変性剤を反応させた段階で水酸基やアミノ基等は有機金属塩となっていることもあるが、その場合には水やアルコールなどの活性水素を有する化合物で処理することにより、水酸基やアミノ基等にすることができる。
本発明において、変性反応をおこなう際の反応圧力は特に限定されるものではないが、通常0.2〜2MPaであり、好ましくは0.3〜1MPaである。反応温度は、0〜150℃の範囲が好ましく、より好ましくは20〜120℃、更に好ましくは50〜100℃の範囲である。変性反応に要する時間は、一般に調整する際の反応温度に左右されるが1秒から10時間の範囲であり、好ましくは1秒〜3時間の範囲である。
本発明においては、重合体に変性剤を反応させた後に変性されていない重合体が変性重合体に混在していてもよい。変性重合体に混在する未変性の重合体の量は、変性重合体の重量に対して好ましくは70重量%以下、より好ましくは60重量%以下、更に好ましくは50重量%以下である。
本発明において、変性重合体の水添物は、上記で得られた変性重合体を水素添加することにより得られる。水添触媒としては、特に制限されず、従来から公知である(1)Ni、Pt、Pd、Ru等の金属をカーボン、シリカ、アルミナ、ケイソウ土等に担持させた担持型不均一系水添触媒、(2)Ni、Co、Fe、Cr等の有機酸塩又はアセチルアセトン塩などの遷移金属塩と有機アルミニウム等の還元剤とを用いる、いわゆるチーグラー型水添触媒、(3)Ti、Ru、Rh、Zr等の有機金属化合物等のいわゆる有機金属錯体等の均一系水添触媒が用いられる。
具体的な水添触媒としては、特公昭42−8704号公報、特公昭43−6636号公報、特公昭63−4841号公報、特公平1−37970号公報、特公平1−53851号公報、特公平2−9041号公報に記載された水添触媒を使用することができる。好ましい水添触媒としてはチタノセン化合物および/または還元性有機金属化合物との混合物があげられる。チタノセン化合物としては、特開平8−109219号公報に記載された化合物が使用できるが、具体例としては、ビスシクロペンタジエニルチタンジクロライド、モノペンタメチルシクロペンタジエニルチタントリクロライド等の(置換)シクロペンタジエニル骨格、インデニル骨格あるいはフルオレニル骨格を有する配位子を少なくとも1つ以上もつ化合物があげられる。また、還元性有機金属化合物としては、有機リチウム等の有機アルカリ金属化合物、有機マグネシウム化合物、有機アルミニウム化合物、有機ホウ素化合物あるいは有機亜鉛化合物等があげられる。
水添反応は好ましくは0〜200℃、より好ましくは30〜150℃の温度範囲で実施される。水添反応に使用される水素の圧力は、好ましくは0.1〜15MPa、より好ましくは0.2〜10MPa、更に好ましくは0.3〜5MPaが推奨される。また、水添反応時間は好ましくは3分〜10時間、より好ましくは10分〜5時間である。水添反応は、バッチプロセス、連続プロセス、或いはそれらの組み合わせのいずれでも用いることができる。
本発明に使用される変性重合体の水添物において、共役ジエン系単量体単位に基づく不飽和二重結合のトータル水素添加率は目的に合わせて任意に選択でき、特に限定されない。熱安定性及び耐候性の良好な変性重合体の水添物を得る場合、変性重合体中の共役ジエン系単量体単位に基づく不飽和二重結合の70%以上、好ましくは80%以上、更に好ましくは90%以上が水添されていていることが推奨される。また、一部のみが水添されていても良い。一部のみを水添する場合には、水添率が10%以上70%未満、或いは15%以上65%未満、所望によっては20%以上60%未満にすることが好ましい。更に、水素添加前の共役ジエン系単量体に基づくビニル結合の水素添加率は、好ましくは85%以上、より好ましくは90%以上、更に好ましくは95%以上であることが、熱安定性に優れたゴム組成物を得る上で推奨される。ここで、ビニル結合の水素添加率とは、変性重合体中に組み込まれている水素添加前の共役ジエン系単量体に基づくビニル結合のうち水素添加されたビニル結合の割合をいう。なお、変性ランダム共重合体や変性ブロック共重合体中のビニル芳香族炭化水素に基づく芳香族二重結合の水添率については特に制限はないが、好ましくは50%以下、より好ましくは30%以下、更に好ましくは20%以下が推奨される。水添率は、核磁気共鳴装置(NMR)により知ることができる。
次に、本発明において、マスターバッチの調整で使用する変性重合体に結合している官能基と反応性を有する化合物(4)を反応させた二次変性重合体を用いることもできる。二次変性重合体とは、化合物(4)である二次変性剤を本発明の変性重合体と反応させることによって得られるものであって、該二次変性剤は該変性重合体の官能基と反応性を有する官能基を有する化合物である。
化合物(4)である二次変性剤の官能基の好ましい例として、カルボキシル基、酸無水物基、イソシアネート基、エポキシ基、シラノール基及びアルコキシシラン基から選ばれる少なくとも1種が挙げられる。上記の官能基を少なくとも2個以上有している二次変性剤が特に好ましい。但し、官能基が酸無水物基である場合は、酸無水物基を1個のみ有する二次変性剤も特に好ましい。変性重合体に二次変性剤を反応させる場合の二次変性剤の量は、変性重合体に結合されている官能基1当量あたり、通常0.3〜10モル、好ましくは0.4〜5モル、更に好ましくは0.5〜4モルの範囲である。
変性重合体に二次変性剤を反応させる方法は、特に制限されるものではないが公知の方法が利用できる。例えば、後述する溶融混練方法や各成分を溶媒等に溶解又は分散混合して反応させる方法などが挙げられる。各成分を溶媒等に溶解又は分散混合して反応させる方法において、溶媒としては各成分を溶解又は分散するものであれば特に限定はなく、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素などの炭化水素溶媒の他、含ハロゲン系溶媒、エステル系溶媒、エーテル系溶媒などが使用できる。かかる方法において変性重合体に二次変性剤を反応させる温度は、通常−10〜150℃、好ましくは30〜120℃である。反応に要する時間は一般に調整する際の反応温度に左右されるが、通常3時間以内であり、好ましくは数秒〜1時間である。特に好ましい方法は、製造した変性重合体の溶液中に二次変性剤を添加して反応させることにより二次変性重合体を得る方法である。
次に二次変性剤の具体例について説明する。カルボキシル基を有する二次変性剤の例としては、マレイン酸、シュウ酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、カルバリル酸、シクロヘキサンジカルボン酸、シクロペンタンジカルボン酸等の脂肪族カルボン酸;テレフタル酸、イソフタル酸、オルトフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、トリメシン酸、トリメリット酸、ピロメリット酸等の芳香族カルボン酸が挙げられる。
酸無水物基を有する二次変性剤の例としては、無水マレイン酸、無水イタコン酸、無水ピロメリット酸、シス−4−シクロヘキサン−1,2−ジカルボン酸無水物、1,2,4,5−ベンゼンテトラカルボン酸二無水物、5−(2,5−ジオキシテトラヒドロ−3−フラニル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物が挙げられる。
イソシアナート基を有する二次変性剤の例としては、トルイレンジイソシアナート、ジフェニルメタンジイソシアナート、多官能芳香族イソシアナート(即ちイソシアナート基が3個以上芳香族環に結合した化合物)等が挙げられる。
エポキシ基を有する二次変性剤の例としてはテトラグリジジル−1,3−ビスアミノメチルシクロヘキサン、テトラグリシジル−m−キシレンジアミン、ジグリシジルアニリン、エチレングリコールジグリシジル、プロピレングリコールジグリシジル、テレフタル酸ジグリシジルエステルアクリレート等が挙げられる。
シラノール基を有する二次変性剤の例としては、変性重合体を得るために使用される変性剤として記載した上記のアルコキシシラン化合物の加水分解物等が挙げられる。
アルコキシシラン基を有する二次変性剤の例としては、ビス−(3−トリエトキシシリルプロピル)−テトラスルファン、ビス−(3−トリエトキシシリルプロピル)−ジスルファン、エトキシシロキサンオリゴマーが挙げられる。
また、反応性を有する官能性オリゴマーも二次変性剤として使用することもできる。官能性オリゴマーの官能基は、変性重合体に結合している官能基と反応性を有する官能基であれば、特に限定はない。官能性オリゴマーの好ましい例として、水酸基、アミノ基、カルボキシル基、酸無水物基、イソシアネート基、エポキシ基、シラノール基、アルコキシシラン基からなる群より選ばれる少なくとも一種の官能基を有する官能性オリゴマーが挙げられる。これらの官能性オリゴマーの数平均分子量は、通常300以上で3,0000未満、好ましくは500以上で15,000未満、更に好ましくは1,000以上で20,000未満である。官能性オリゴマーの具体例としては、上記官能基を少なくとも1個有するブタジエンオリゴマーまたはその水添物、上記官能基を少なくとも1個有するイソプレンオリゴマーまたはその水添物、上記官能基を少なくとも1個有するエチレンオリゴマー、上記官能基を少なくとも1個有するプロピレンオリゴマー、エチレンオキサイドオリゴマー、プロピレンオキサイドオリゴマー、エチレンオキサイド−プロピレンオキサイド共重合オリゴマー、スチレン−無水マレイン酸共重合体オリゴマー、エチレン−酢酸ビニル共重合オリゴマーのケン化物等が挙げられる。
本発明において特に好ましい二次変性剤の例として、カルボキシル基を2個以上有するカルボン酸又はその酸無水物、或いは酸無水物基、イソシアネート基、エポキシ基、シラノール基、アルコキシシラン基を2個以上有す変性剤であり、具体例として、無水マレイン酸、無水ピロメリット酸、1,2,4,5−ベンゼンテトラカルボン酸二無水物、トルイレンジイソシアナート、テトラグリジジル−1,3−ビスアミノメチルシクロヘキサン、ビス−(3−トリエトキシシリルプロピル)−テトラスルファン、スチレン−無水マレイン酸共重合体オリゴマー等が挙げられる。
また、成分(2)のマスターバッチを調整する際に、変性重合体と無機充填剤の他に上記の化合物(4)である二次変性剤を添加することができる。二次変性剤の量は、当該変性重合体100重量部に対して0.01〜20重量部、好ましくは0.02〜10重量部、更に好ましくは0.05〜7重量部の範囲である。
本発明の成分(2)で使用する変性重合体又は二次変性重合体の重量平均分子量は、ゴム組成物の機械的強度及び耐摩耗性の点から3万以上、加工性の点から120万以下であることが好ましく、より好ましくは5万〜100万、更に好ましくは10〜80万の範囲である。変性重合体の重量平均分子量は、ゲルパーミュエーションクロマトグラフィー(GPC)による測定を行い、クロマトグラムのピークの分子量を、市販の標準ポリスチレンの測定から求めた検量線(標準ポリスチレンのピーク分子量を使用して作成)を使用して求めることができる。
上記のようにして得られた変性重合体の溶液は、必要に応じて触媒残渣を除去し、変性重合体を溶液から分離することができる。溶媒の分離の方法としては、例えば重合後又は水添後の溶液にアセトンまたはアルコール等の重合体に対する貧溶媒となる極性溶媒を加えて重合体を沈澱させて回収する方法、変性重合体の溶液を撹拌下熱湯中に投入し、スチームストリッピングにより溶媒を除去して回収する方法、または直接重合体溶液を加熱して溶媒を留去する方法等を挙げることができる。尚、本発明で使用する変性重合体又はその水添物には、各種フェノール系安定剤、リン系安定剤、イオウ系安定剤、アミン系安定剤等の安定剤を添加することができる。
本発明において、成分(2)のマスターバッチの原料として用いられる無機充填剤又は成分(3)の無機充填剤は、公知の補強性充填剤、例えば、天然シリカ、湿式法又は乾式法で製造した合成シリカ、カオリン、マイカ、タルク、クレイ、モンモリロナイト、ゼオライト、天然ケイ酸塩、ケイ酸カルシウム、ケイ酸アルミニウム等の合成ケイ酸塩、水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウム、水酸化バリウム等の金属水酸化物、アルミナ、酸化チタン、酸化マグネシウム、酸化亜鉛等の金属酸化物、軽質炭酸カルシウム、重質炭酸カルシウム、種々の表面処理炭酸カルシウム、炭酸マグネシウムなどの金属炭酸化物、硫酸バリウム、硫酸マグネシウム、硫酸カルシウム等の金属硫酸化物、アルミニウム、ブロンズ等の金属粉、カーボンブラック等の少なくとも1種の成分である。好ましい無機充填剤として、シリカ系無機充填剤、金属酸化物、金属水酸化物、カーボンが挙げられる。上記の無機充填剤を単独で使用しても良いし、2種類以上を組み合わせて使用することもできる。
シリカ系無機充填剤とは化学式SiO2を構成単位の主成分とする固体粒子のことをいい、例えばシリカ、クレイ、タルク、マイカ、珪藻土、ウォラストナイト、モンモリロナイト、ゼオライト、ガラス繊維等の無機繊維状物質などを用いることができる。また表面を疎水化したシリカ系無機充填剤や、シリカ系無機充填剤とシリカ系以外の無機充填剤の混合物も使用できる。本発明においてはシリカが好ましい。シリカとしては乾式法ホワイトカーボン、湿式法ホワイトカーボン、合成ケイ酸塩系ホワイトカーボン、コロイダルシリカと呼ばれているもの等が使用できる。これらは粒径が0.01〜150μmのものが好ましい。また本発明の組成物において、シリカが組成物中に分散し、シリカの添加効果を十分に発揮するためには、平均分散粒子径0.05〜1μmが好ましく、より好ましくは0.05〜0.5μmである。
次に金属酸化物とは、化学式MxOy(Mは金属原子、x、yは各々1〜6の整数)を構成単位の主成分とする固体粒子のことをいい、例えばアルミナ、酸化チタン、酸化マグネシウム、酸化亜鉛等を用いることができる。また金属酸化物と金属酸化物以外の無機充填剤の混合物も使用できる。また本発明で用いる金属水酸化物は、水酸化アルミニウム、水酸化マグネシウム、水酸化ジルコニウム、水和珪酸アルミニウム、水和珪酸マグネシウム、塩基性炭酸マグネシウム、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、酸化錫の水和物、硼砂等の無機金属化合物の水和物等、水和系無機充填材であり、中でも水酸化マグネシウム、水酸化アルミニウムが好ましい。
カーボンブラックとしては、FT、SRF、FEF、HAF、ISAF、SAF等の各クラスのカーボンブラックが使用でき、窒素吸着比表面積が50mg/g以上、DBP吸油量が80ml/100gのカーボンブラックが好ましい。
本発明において、成分(2)のマスターバッチの調整に使用する無機充填剤の量は、変性重合体100重量部に対して5〜300重量部、好ましくは5〜200重量部、更に好ましくは10〜150重量部の範囲である。無機充填剤の量が300重量部を超えると、無機充填剤の分散性が劣りマスターバッチの加工性が悪くなる。また、5重量部未満では本発明の効果である接着性が劣る。
また、本発明において成分(3)の無機充填剤の配合量は、成分(1)のゴム状重合体100重量部に対し0.1〜150量部、好ましくは5〜100重量部、更に好ましくは5〜50量部である。無機充填剤の配合量が150重量部を超えると無機充填剤の分散性が劣り、加工性及び機械強度が劣るため好ましくない。
本発明の履物用ゴム組成物の製造にシリカ系無機充填剤を用いた場合、シランカップリング剤を使用することができる。シランカップリング剤は、ゴム状重合体と無機充填剤の相互作用を緊密にするためのものであり、ゴム状重合体と無機充填剤とにそれぞれ親和性あるいは結合性の基を有しているものである。具体的には、ビス−[3−(トリエトキシシリル)−プロピル]−テトラスルフィド、ビス−[3−(トリエトキシシリル)−プロピル]−ジスルフィド、ビス−[2−(トリエトキシシリル)−エチル]−テトラスルフィド、3−メルカプトプロピル−トリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン等があげられる。
好ましいシランカップリング剤は、アルコキシシランを有すると同時に硫黄が2個以上連結したポリスルフィド結合を有するものであり、その例としてはビス−[3−(トリエトキシシリル)−プロピル]−テトラスルフィド、ビス−[3−(トリエトキシシリル)−プロピル]−ジスルフィドなどがあげられる。シランカップリング剤の配合量は、補強性充填剤に対して、0.1〜30重量%、好ましくは0.5〜20重量%、更に好ましくは1〜15重量%である。
本発明の成分(2)のマスターバッチにおいて、無機充填剤と親和性が高い官能基が結合している変性重合体を使用することで、無機充填剤の表面に存在する官能基と変性重合体との間で、化学的な結合や水素結合等の物理的な相互作用が効果的に発現され、引き裂き強度、耐摩耗性、接着性に優れた履物用ゴム組成物を得ることができる。
本発明の成分(2)であるマスターバッチの製造方法は、特に制限されるものではなく公知の方法が利用できる。例えば、バンバリ−ミキサ−、単軸スクリュー押出機、2軸スクリュ−押出機、コニ−ダ、多軸スクリュー押出機、ロール等の一般的な混合機を用いた混練方法、各成分を溶解、混合した後、溶剤を加熱除去する方法等が用いられる。好ましい方法はバンバリーミキサー、コニーダーで各成分を混練する方法である。
マスターバッチを製造するにあたり、変性重合体及び無機充填剤の添加順序には制限が無く、全成分を一度に混練機に入れて混合する方法、各成分を2回以上分割して混合機に入れて順次混練する方法、変性重合体を混練機に入れて混練し、その後無機充填剤を加えて混練する方法、無機充填剤を混練機に入れて混練し、その後変性重合体を加えて混練する方法、無機充填剤を連続的に混練機に入れて混練する方法等が採用できる。
マスターバッチを製造する際の混練温度は、変性重合体の劣化や変性重合体と無機充填剤の相互作用を促進し無機充填剤の分散性の良いマスターバッチを得る為に、一般に80〜300℃が好ましく、より好ましくは130〜250℃、更に好ましくは150〜220℃の範囲である。また、混練時間は、無機充填剤の分散性、マスターバッチの生産性、変性重合体の劣化等の点から、一般に0.2〜60分が好ましく、より好ましくは0.5〜30分、更に好ましくは1〜20分の範囲である。
特に好ましい方法は、無機充填剤の全量を予め混練機に入れて混練し、次いで変性重合体を加えて混練して製造する方法、無機充填剤を2回以上分割して混練機に投入して変性重合体と無機充填剤を混練して製造する方法である。
無機充填剤を2回以上分割して混練機に入れる方法としては、マスターバッチを製造する工程の煩雑さを考慮すると、無機充填剤を2〜10回に分割して添加することが好ましく、特に2〜5回に分割して添加する方法が好ましい。具体的には、無機充填剤の20〜80重量%、好ましくは30〜80重量%、更に好ましくは40〜80重量%を予め混練機に投入し、混練時間を1秒〜60分、好ましくは0.5分〜30分、更に好ましくは1分〜20分の範囲で混練した後、変性重合体を入れて混練時間を1秒〜60分、好ましくは20秒〜30分、更に好ましくは1分〜20分の範囲で混練し、次いで残りの無機充填剤を加えて、混練時間を1秒〜60分、好ましくは0.5分〜30分、更に好ましくは1分〜20分の範囲で混練して製造する方法である。もう一つの好ましい方法として、無機充填剤の全量を予め混練機に投入し、混練時間を1秒〜60分、好ましくは0.5分〜30分、更に好ましくは1分〜20分の範囲で混練した後、変性重合体を入れて混練時間を1秒〜60分、好ましくは0.5分〜30分、更に好ましくは1分〜20分の範囲で混練して製造する方法がある。
特に好ましい形態のマスターバッチを調整する為に最も重要なことは、無機充填剤5〜300重量部の少なくとも20重量%以上を予め混練機に入れ、温度を50〜300℃、好ましくは70〜250℃、更に好ましくは100〜200℃の範囲で混練し、その後残りの成分を入れて混練することでマスターバッチを調整することである。
本発明の履物用ゴム組成物は、ゴム状重合体(成分1)及びマスターバッチ(成分2)、又はゴム状重合体(成分1)及びマスターバッチ(成分2)及び無機充填剤(成分3)を含むゴム組成物である。マスターバッチの量は、ゴム状重合体(成分1)100重量部に対して1〜150重量部、好ましくは5〜100重量部、更に好ましくは10〜70重量部の範囲である。
本発明の履物用ゴム組成物の製造方法は、特に制限されるものではなく、公知の方法が利用できる。例えば、バンバリ−ミキサ−、単軸スクリュー押出機、2軸スクリュ−押出機、コニ−ダ、多軸スクリュー押出機等の一般的な混和機を用いた混練方法等が用いられる。
また本発明の履物用ゴム組成物を製造するにあたり、各成分の添加順序には制限が無く、成分(1)、成分(2)、成分(3)を一度に混練機に入れて混練する方法、任意の成分を予備混合した後、残りの成分を添加する等の方法が採用できる。混練温度は、ゴム状重合体や変性重合体の熱劣化の点から、50〜300℃が好ましく、より好ましくは70〜250℃、更に好ましくは100〜200℃である。また、混練時間は、無機充填剤の分散性やゴム組成物の生産性、変性重合体やゴム状重合体の劣化等の点から、一般に0.2〜60分が好ましく、より好ましくは0.5〜30分、更に好ましくは1〜20分の範囲である。
本発明の履物用ゴム組成物は、変性重合体と無機充填剤を上記に示した特定の製造方法で混練して得られる無機フィラーの分散性に優れるマスターバッチを用いることに特徴がある。従来から行われているゴム状重合体又は変性重合体と無機充填剤とを混練して得られる履物用ゴム組成物と比較して、無機充填剤の分散性が向上したことによって耐摩耗性と接着性に優れる履物用ゴム組成物を得ることができる。ゴム組成物中の無機充填剤の分散性は、透過型電子顕微鏡や走査型プローブ顕微鏡装置等を用いることによって確認することができる。
本発明において、その他必要に応じて任意の添加剤を配合することができる。添加剤の種類は、ゴム状重合体の配合に一般的に用いられるものであれば特に制限はない。亜鉛華、ステアリン酸、加硫助剤、老化防止剤、加工助剤、ベヘニン酸、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム、エチレンビスステアロアミド等の滑剤、離型剤、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイル、パラフィン、有機ポリシロキサン、ミネラルオイル等の軟化剤・可塑剤、ヒンダードフェノール系酸化防止剤、リン系熱安定剤等の酸化防止剤、ヒンダードアミン系光安定剤、ベンゾトリアゾール系紫外線吸収剤、難燃剤、帯電防止剤、有機繊維、ガラス繊維、炭素繊維、金属ウィスカー等の補強剤、着色剤、その他添加剤或いはこれらの混合物、「ゴム・プラスチック配合薬品」(ラバーダイジェスト社編)などに記載されたものが挙げられる。The present invention will be specifically described below.
The kind of the rubbery polymer which is the component (1) constituting the rubber composition for footwear of the present invention is not particularly limited, but is a conjugated diene polymer or a hydrogenated product thereof, a conjugated diene monomer and a vinyl aromatic. Random copolymers consisting of hydrocarbons or hydrogenated products thereof, block copolymers consisting of conjugated diene monomers and vinyl aromatic hydrocarbons or hydrogenated products thereof, non-diene polymers, natural rubber, etc. . Specifically, butadiene rubber or hydrogenated product thereof, isoprene rubber or hydrogenated product thereof, styrene-butadiene rubber or hydrogenated product thereof, styrene-butadiene block copolymer or hydrogenated product thereof, styrene-isoprene block copolymerized Styrene elastomer such as coalescence or hydrogenated product thereof, acrylonitrile-butadiene rubber or hydrogenated product thereof, and non-diene polymers include ethylene-propylene rubber, ethylene-propylene-diene rubber, ethylene-butene- Olefin-based elastomers such as diene rubber, ethylene-butene rubber, ethylene-hexene rubber, ethylene-octene rubber, butyl rubber, brominated butyl rubber, acrylic rubber, fluorine rubber, silicone rubber, chlorinated polyethylene rubber, epichlorohydrin rubber, α, β -Unsaturated nitrile-acrylic acid ester-conjugated diene copolymer rubber, urethane rubber and the like. These rubber-like polymers may be modified rubbers provided with functional groups. The rubber-like polymer can be used alone or as a mixture in which two or more kinds of rubber-like polymers are mixed.
Component (2) constituting the rubber composition for footwear of the present invention contains a conjugated diene polymer or a copolymer comprising a conjugated diene monomer and a vinyl aromatic hydrocarbon, or a hydrogenated product thereof. A rubber composition obtained by previously kneading at least one modified polymer selected from modified polymers having at least one atomic group bonded thereto and an inorganic filler into a master batch.
The modified conjugated diene polymer or modified copolymer comprising a conjugated diene monomer and a vinyl aromatic hydrocarbon used in component (2) of the present invention is at least one conjugated diene monomer and at least 1 It can be produced by subjecting various types of vinyl aromatic aromatic hydrocarbons to solution polymerization in the presence of an organolithium catalyst. As the method for producing the modified polymer of the present invention, any production method can be adopted as long as the polymer having the structure of the present invention can be obtained.
The conjugated diene monomer in the present invention is a diolefin having a pair of conjugated double bonds, such as 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl- 1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene and the like can be mentioned, and particularly common ones include 1,3-butadiene and isoprene. These may be used alone or in combination of two or more in the production of the polymer.
Examples of the vinyl aromatic hydrocarbon include styrene, o-methyl styrene, p-methyl styrene, p-tert-butyl styrene, 1,3-dimethyl styrene, α-methyl styrene, vinyl naphthalene, and vinyl anthracene. However, styrene and α-methylstyrene are particularly common. These may be used alone or in combination of two or more in the production of the polymer.
Solvents used for the production of modified polymers include aliphatic hydrocarbons such as butane, pentane, hexane, isopentane, heptane, octane, isooctane, and alicyclic rings such as cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, and ethylcyclohexane. Or hydrocarbon solvents such as aromatic hydrocarbons such as benzene, toluene, ethylbenzene, and xylene. These may be used alone or in combination of two or more.
The organolithium compound used for the production of the modified polymer is a compound in which one or more lithium atoms are bonded in the molecule. For example, ethyllithium, n-propyllithium, isopropyllithium, n-butyllithium, sec- Examples thereof include butyl lithium, tert-butyl lithium, hexamethylene dilithium, butadienyl dilithium, and isoprenyl dilithium. Further, organic alkali metals such as amidolithium disclosed in US Pat. No. 5,708,092, British Patent 2,241,239, US Pat. No. 5,527,753, etc. Compounds can also be used. These may be used alone or in combination of two or more. In addition, the organolithium compound may be divided and added one or more times during the polymerization in the production of the polymer.
In the present invention, adjustment of the polymerization rate during production of the polymer, change of the microstructure of the conjugated diene moiety in the polymer, adjustment of the reactivity ratio between the conjugated diene monomer and the vinyl aromatic hydrocarbon A polar compound or a randomizing agent can be used for the purpose. Examples of polar compounds and randomizing agents include ethers, amines, thioethers, phosphoramides, potassium or sodium salts of alkylbenzene sulfonic acids, potassium or sodium alkoxides, and the like.
Examples of ethers include dimethyl ether, diethyl ether, diphenyl ether, tetrahydrofuran, diethylene glycol dimethyl ether, diethylene glycol dibutyl ether and the like. Examples of amines include tertiary amine, trimethylamine, triethylamine, tetramethylethylenediamine, and other cyclic tertiary amines. Examples of phosphine and phosphoramide include triphenylphosphine and hexamethylphosphoramide.
The polymerization temperature at the time of producing the polymer is preferably -10 to 150 ° C, more preferably 30 to 120 ° C. The time required for the polymerization varies depending on the conditions, but is preferably within 48 hours, particularly preferably 0.5 to 10 hours. The polymerization atmosphere is preferably an inert gas atmosphere such as nitrogen gas. The pressure of the polymerization system may be a pressure range sufficient to maintain the monomer and solvent in the liquid phase within the above polymerization temperature range, and is not particularly limited, but is usually 0.2 to 2 MPa. , Preferably 0.3 to 1.5 MPa. The reaction temperature is preferably in the range of 0 to 150 ° C, more preferably in the range of 20 to 120 ° C, and still more preferably in the range of 50 to 100 ° C. Furthermore, it is preferable that impurities such as water, oxygen, carbon dioxide gas, etc. that inactivate the catalyst and living polymer are not mixed in the polymerization system.
The modified polymer of the conjugated diene polymer or its hydrogenated product used in the component (2) of the present invention is a conjugated diene monomer homopolymer or a conjugated diene having a vinyl aromatic hydrocarbon content of less than 5 wt%. It is a modified polymer of a polymer. The structure of the conjugated diene polymer or its hydrogenated product may be linear or branched, or any mixture thereof. Further, the copolymer composed of a conjugated diene monomer and a vinyl aromatic hydrocarbon or a hydrogenated product thereof may be a random copolymer or a block copolymer. Further, the structure of the modified copolymer or its hydrogenated product may be linear, branched, or any mixture thereof.
The vinyl aromatic hydrocarbon content of the random copolymer consisting of the conjugated diene monomer and vinyl aromatic hydrocarbon used in component (2) of the present invention or its hydrogenated product is usually in the range of 5 to 95 wt%. Yes, preferably 10 to 90 wt%, more preferably 15 to 85 wt%. Further, even if two or more random copolymer blocks having different vinyl aromatic hydrocarbon contents are present in the polymer chain of the random copolymer or its hydrogenated product, the conjugated diene polymer block or its water is further present. One or more additives may be present.
A modified polymer of a conjugated diene polymer or a modified polymer of a random copolymer can be obtained by addition reaction of a modifying agent described later to the living terminal of the conjugated diene polymer or random copolymer.
The vinyl aromatic hydrocarbon content of the block copolymer consisting of a conjugated diene monomer and a vinyl aromatic hydrocarbon or a hydrogenated product thereof used in the component (2) of the present invention is usually in the range of 5 to 95 wt%. More preferably, it is 10-90 wt%, More preferably, it is the range of 15-85 wt%. When the vinyl aromatic hydrocarbon content of the block copolymer or its hydrogenated product is 60 wt% or more, preferably 65 wt% or more, it has resin-like characteristics, and when it is less than 60 wt%, preferably 55 wt% or less. Has elastic properties.
Examples of the method for producing the block copolymer include Japanese Patent Publication No. 36-19286, Japanese Patent Publication No. 43-17879, Japanese Patent Publication No. 46-32415, Japanese Patent Publication No. 49-36957, Japanese Patent Publication No. 48-2423. And the methods described in JP-B-48-4106, JP-B-56-28925, JP-B-51-49567, JP-A-59-166518, JP-A-60-186777, and the like. It is done.
A modified polymer of the block copolymer used in the present invention is obtained by addition reaction of a modifying agent described later to the living terminal of the block copolymer obtained by these methods. For example, a structure represented by the following general formula Have
(A-B) n-X, A- (B-A) n-X,
B- (AB) n-X, X- (AB) n,
X- (A-B) n-X, X-A- (BA) n-X,
X-B- (AB) n-X, [(B-A) n] m-X,
[(AB) n] mX, [(BA) nB] mX,
[(AB) n-A] m-X
(In the above formula, A is a polymer block mainly composed of vinyl aromatic hydrocarbon, and B is a polymer block mainly composed of conjugated diene monomer. The boundary between A block and B block is not necessarily limited. It is not necessary to distinguish clearly, and n is an integer of 1 or more, preferably an integer of 1 to 5. m is an integer of 2 or more, preferably an integer of 2 to 11. X is described later. It shows the residue of the modifying agent to which an atomic group having a functional group is bonded.When X is added by a metallation reaction described later, it is bonded to the side chain of the A block and / or B block)
In the structure represented by the above general formula, the polymer block A mainly composed of vinyl aromatic hydrocarbon preferably contains 50 wt% or more, more preferably 70 wt% or more of vinyl aromatic hydrocarbon. It is a copolymer block of hydrogen and a conjugated diene monomer or a homopolymer block of vinyl aromatic hydrocarbon, and the vinyl aromatic hydrocarbon is distributed uniformly or in a tapered shape. Also good. The polymer block B mainly composed of a conjugated diene monomer preferably contains a conjugated diene monomer in an amount exceeding 50 wt%, more preferably 60 wt% or more, and a vinyl aromatic carbonization. It is a copolymer block with hydrogen or a homopolymer block of a conjugated diene monomer.
In the modified block copolymer, a plurality of portions where the vinyl aromatic hydrocarbons are uniformly distributed and / or a portion where they are distributed in a tapered shape may coexist. The modified block copolymer used in the present invention may be any mixture of modified block copolymers represented by the above general formula.
The ratio of the vinyl aromatic hydrocarbon polymer block incorporated in the modified block copolymer (referred to as the block ratio of vinyl aromatic hydrocarbon) is less than 50 wt%, preferably 5 to 45 wt% when wear resistance is important. More preferably, it is adjusted to 10 to 40 wt%, and from the viewpoint of maintaining the rigidity of the molded product, it is adjusted to 50 wt% or more, preferably 50 to 97 wt%, more preferably 60 to 95 wt%, and particularly preferably 70 to 92 wt%. It is recommended to do.
The block ratio of the vinyl aromatic hydrocarbon incorporated in the block copolymer is measured by a method of oxidatively decomposing the block copolymer with tertiary butyl hydroperoxide using osmium tetroxide as a catalyst (IM KOLTHOFF, et al., J. Polym. Sci. 1, 429 (1946)) vinyl aromatic hydrocarbon polymer block component (however, the vinyl aromatic hydrocarbon polymer component having an average degree of polymerization of about 10 or less) Can be obtained from the following equation:
Vinyl aromatic hydrocarbon block ratio (wt%)
= (Weight of vinyl aromatic hydrocarbon polymer block in block copolymer)
/ Weight of all vinyl aromatic hydrocarbons in the block copolymer) × 100
In the present invention, the microstructure (ratio of cis, trans, vinyl) of the conjugated diene moiety in the modified conjugated diene polymer or the modified copolymer comprising a conjugated diene monomer and a vinyl aromatic hydrocarbon will be described later. It can be arbitrarily changed by using a polar compound or the like. The vinyl bond content is not particularly limited, but when 1,3-butadiene is used as the conjugated diene monomer, the vinyl bond content is preferably 5 to 90%, more preferably 10 to 80%, and the conjugated diene. When isoprene is used as the system monomer or when 1,3-butadiene and isoprene are used in combination, the amount of vinyl bonds, which is the sum of 1,2-vinyl bonds and 3,4-vinyl bonds, is preferably 3 to 80%, more preferably 5 to 70%. Here, the vinyl bond content is 1 of the conjugated diene monomers incorporated in the polymer in 1,2-bond, 3,4-bond and 1,4-bond bond modes. It is the ratio of those incorporated by 2-bond and 3,4-bond. The vinyl bonds in the modified polymer may be uniformly distributed in the polymer chain, may be distributed in a tapered shape, or two or more polymer blocks having different vinyl bonds may exist. The vinyl bond content can be arbitrarily changed by using a polar compound described later.
However, in the case of using a hydrogenated product of a modified block copolymer, the microstructure is such that when 1,3-butadiene is used as the conjugated diene monomer, the vinyl bond amount is preferably 10 to 80%, More preferably, it is 25 to 75%. When isoprene is used as a conjugated diene monomer or when 1,3-butadiene and isoprene are used in combination, 1,2-vinyl bond and 3,4-vinyl bond It is recommended that the vinyl bond amount, which is the sum of the above, is preferably 5 to 70%. The vinyl bond content based on the conjugated diene monomer in the modified polymer can be known using a nuclear magnetic resonance apparatus (NMR).
In the production of a conjugated diene polymer or a copolymer comprising a conjugated diene monomer and a vinyl aromatic hydrocarbon, when isoprene and 1,3-butadiene are used in combination as the conjugated diene monomer, isoprene and 1, The weight ratio of 3-butadiene is preferably 95/5 to 5/95, more preferably 90/10 to 10/90, and still more preferably 85/15 to 15/85. In particular, when obtaining a rubber composition having excellent low-temperature characteristics, the weight ratio of isoprene to 1,3-butadiene is preferably 49/51 to 5/95, more preferably 45/55 to 10/90, still more preferably. Is recommended to be 40/60 to 15/85. When isoprene and 1,3-butadiene are used in combination, a rubber composition having good mechanical properties can be obtained even in molding at a high temperature.
Next, the modified polymer used in the component (2) of the present invention will be described. The modified polymer can be produced by adding a functional group-containing atomic group by reacting a functional group-containing modifier with a living terminal of a polymer obtained using an organolithium compound as a polymerization catalyst. The functional group-containing atomic group is bonded to at least one polymer chain end of the polymer.
Examples of the functional group of the functional group-containing atomic group bonded to the modified polymer include a hydroxyl group, a carbonyl group, a thiocarbonyl group, an acid halide group, an acid anhydride group, a carboxyl group, a thiocarboxylate group, an aldehyde group, Thioaldehyde group, carboxylic acid ester group, amide group, sulfonic acid group, sulfonic acid ester group, phosphoric acid group, phosphoric ester group, amino group, imino group, cyano group, pyridyl group, quinoline group, epoxy group, thioepoxy group And at least one functional group selected from the group consisting of sulfide groups, isocyanate groups, isothiocyanate groups, silicon halide groups, silanol groups, alkoxysilane groups, tin halide groups, alkoxytin groups, and phenyltin groups. . Of the above functional groups, a hydroxyl group, an epoxy group, an amino group, an imino group, a silanol group, and an alkoxysilane group are particularly preferable.
As a preferred example of an atomic group having at least one functional group selected from the group consisting of a hydroxyl group, an epoxy group, an amino group, an imino group, a silanol group, and an alkoxysilane group, a group consisting of the following formulas (1) to (14) The at least 1 type represented by the formula chosen from more is mentioned.
Figure 0004721900
In the above formulas (1) to (14), N represents a nitrogen atom, Si represents a silicon atom, O represents an oxygen atom, C represents a carbon atom, H represents a hydrogen atom, R 1 , R 2 Each independently represents a hydrogen atom or a hydrocarbon group having 1 to 24 carbon atoms, and the hydrocarbon groups are each independently a hydroxyl group, an epoxy group, an amino group, or a hydrocarbon group having 1 to 24 carbon atoms, if desired. Each group may have at least one functional group selected from the group consisting of an imino group having a group, a silanol group, and an alkoxysilane group having 1 to 24 carbon atoms. 3 Each independently represents a divalent hydrocarbon group having 1 to 48 carbon atoms, and if desired, each independently, a hydroxyl group, an epoxy group, an amino group, an imino group having a hydrocarbon group having 1 to 24 carbon atoms, Each R may have at least one functional group selected from the group consisting of a silanol group and an alkoxysilane group having 1 to 24 carbon atoms. 4 Each independently represents a hydrogen atom or a hydrocarbon group having 1 to 24 carbon atoms.
In the present invention, as the modifying agent that can be used to form the functional group-containing atomic group bonded to the modified polymer, a known compound having the functional group and / or a known known compound that can be formed. Compounds can be used. For example, the terminal modification treatment agent described in Japanese Patent Publication No. 4-39495 (corresponding to US Pat. No. 5,115,035) can be used. Specific examples include the following.
Examples of modifiers having functional groups of the above formulas (1) to (6) include tetraglycidyl metaxylenediamine, tetraglycidyl-1,3-bisaminomethylcyclohexane, tetraglycidyl-p-phenylenediamine, and tetraglycidyldiamino. Diphenylmethane, diglycidyl aniline, diglycidyl orthotoluidine, N- (1,3-dibutylbutylidene) -3- (triethoxysilyl) -1-propanamine, 4-di (β-trimethoxysilylethyl) aminostyrene, Examples include 4-di (β-triethoxysilylethyl) aminostyrene, 4-di (γ-trimethoxysilylpropyl) aminostyrene, and 4-di (γ-triethoxysilylpropyl) aminostyrene.
Examples of the modifier having the functional group represented by the formula (7) include cyclic lactones such as ε-caprolactone, δ-valerolactone, butyrolactone, γ-caprolactone, and γ-valerolactone.
Examples of the modifier having the functional group of the formula (8) include 4-methoxybenzophenone, 4-ethoxybenzophenone, 4,4′-bis (methoxy) benzophenone, 4,4′-bis (ethoxy) benzophenone, γ -Glycidoxyethyl trimethoxysilane, (gamma) -glycidoxypropyl trimethoxysilane is mentioned.
Examples of modifiers having the functional groups of the above formulas (9) and (10) include γ-glycidoxybutyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, and γ-glycidoxypropyltripropoxysilane. , Γ-glycidoxypropyl tributoxysilane.
Examples of the modifier having the functional group of the formula (11) include 1,3-dimethyl-2-imidazolidinone and 1,3-diethyl-2-imidazolidinone.
Examples of the modifier having the functional group of the above formula (12) include N, N′-dimethylpropylene urea, N-methylpyrrolidone and the like.
The modified polymers having atomic groups having the functional groups of the above formulas (13) and (14) are non-hydrogenated modified polymers having the functional group-containing atomic groups of the above formulas (11) and (12), respectively. Obtained by hydrogenation.
The hydrogenated product of the modified polymer used in the component (2) of the present invention can be produced by modifying the polymer and then hydrogenating it, or can be produced by hydrogenating and then modifying the polymer. it can. For example, when the polymer is modified and then hydrogenated, a modified polymer can be obtained by reacting the living end of the polymer obtained using an organolithium compound as a polymerization catalyst with the above modifier. The modified polymer of hydrogenated product is obtained by hydrogenating the modified polymer.
In addition, as another method for obtaining a modified polymer used in the component (2) of the present invention, an organic alkali metal compound such as an organic lithium compound is reacted (metalation reaction) with the polymer, and the organic alkali metal compound is added. The method of obtaining a polymer and carrying out addition reaction of said modifier to this is mentioned. In this case, it is possible to obtain a hydrogenated modified polymer by obtaining a hydrogenated polymer and then subjecting it to a metallation reaction and reacting with the above modifier.
Depending on the type of modifier, hydroxyl groups and amino groups may be organometallic salts at the stage of reaction of the modifier, but in that case, treatment with a compound having active hydrogen such as water or alcohol. By doing so, a hydroxyl group, an amino group, or the like can be obtained.
In the present invention, the reaction pressure for carrying out the modification reaction is not particularly limited, but is usually 0.2 to 2 MPa, preferably 0.3 to 1 MPa. The reaction temperature is preferably in the range of 0 to 150 ° C, more preferably in the range of 20 to 120 ° C, and still more preferably in the range of 50 to 100 ° C. The time required for the denaturation reaction is generally in the range of 1 second to 10 hours, preferably in the range of 1 second to 3 hours, although it depends on the reaction temperature during adjustment.
In the present invention, a polymer that has not been modified after reacting the polymer with a modifier may be present in the modified polymer. The amount of the unmodified polymer mixed in the modified polymer is preferably 70% by weight or less, more preferably 60% by weight or less, and still more preferably 50% by weight or less based on the weight of the modified polymer.
In the present invention, the hydrogenated product of the modified polymer can be obtained by hydrogenating the modified polymer obtained above. The hydrogenation catalyst is not particularly limited and is conventionally known (1) A supported heterogeneous hydrogenation in which a metal such as Ni, Pt, Pd, or Ru is supported on carbon, silica, alumina, diatomaceous earth, or the like. A catalyst, (2) a so-called Ziegler-type hydrogenation catalyst using an organic acid salt such as Ni, Co, Fe, Cr or a transition metal salt such as acetylacetone salt and a reducing agent such as organic aluminum, (3) Ti, Ru, A homogeneous hydrogenation catalyst such as a so-called organometallic complex such as an organometallic compound such as Rh or Zr is used.
Specific examples of the hydrogenation catalyst include Japanese Patent Publication No. 42-8704, Japanese Patent Publication No. 43-6636, Japanese Patent Publication No. 63-4841, Japanese Patent Publication No. 1-337970, Japanese Patent Publication No. 1-53851, The hydrogenation catalyst described in Japanese Utility Model Publication No. 2-9041 can be used. A preferred hydrogenation catalyst is a mixture with a titanocene compound and / or a reducing organometallic compound. As the titanocene compound, compounds described in JP-A-8-109219 can be used. Specific examples thereof include (substitution) such as biscyclopentadienyl titanium dichloride and monopentamethylcyclopentadienyl titanium trichloride. Examples thereof include compounds having at least one ligand having a cyclopentadienyl skeleton, an indenyl skeleton, or a fluorenyl skeleton. Examples of the reducing organometallic compound include organic alkali metal compounds such as organolithium, organomagnesium compounds, organoaluminum compounds, organoboron compounds, and organozinc compounds.
The hydrogenation reaction is preferably carried out in a temperature range of 0 to 200 ° C, more preferably 30 to 150 ° C. The pressure of hydrogen used for the hydrogenation reaction is preferably 0.1 to 15 MPa, more preferably 0.2 to 10 MPa, and still more preferably 0.3 to 5 MPa. The hydrogenation reaction time is preferably 3 minutes to 10 hours, more preferably 10 minutes to 5 hours. The hydrogenation reaction can be any of a batch process, a continuous process, or a combination thereof.
In the hydrogenated product of the modified polymer used in the present invention, the total hydrogenation rate of the unsaturated double bond based on the conjugated diene monomer unit can be arbitrarily selected according to the purpose and is not particularly limited. When obtaining a hydrogenated product of a modified polymer having good thermal stability and weather resistance, 70% or more of the unsaturated double bond based on the conjugated diene monomer unit in the modified polymer, preferably 80% or more, More preferably, 90% or more is recommended to be hydrogenated. Moreover, only a part may be hydrogenated. When only a part is hydrogenated, the hydrogenation rate is preferably 10% or more and less than 70%, or 15% or more and less than 65%, or more preferably 20% or more and less than 60%. Furthermore, the hydrogenation rate of the vinyl bond based on the conjugated diene monomer before hydrogenation is preferably 85% or more, more preferably 90% or more, and still more preferably 95% or more. Recommended for obtaining an excellent rubber composition. Here, the hydrogenation rate of vinyl bonds refers to the ratio of hydrogenated vinyl bonds among vinyl bonds based on conjugated diene monomers incorporated in the modified polymer before hydrogenation. The hydrogenation rate of the aromatic double bond based on the vinyl aromatic hydrocarbon in the modified random copolymer or modified block copolymer is not particularly limited, but is preferably 50% or less, more preferably 30%. Hereinafter, more preferably 20% or less is recommended. The hydrogenation rate can be known by a nuclear magnetic resonance apparatus (NMR).
Next, in the present invention, a secondary modified polymer obtained by reacting a reactive compound (4) with a functional group bonded to a modified polymer used for preparing a masterbatch can also be used. The secondary modified polymer is obtained by reacting the secondary modifier as the compound (4) with the modified polymer of the present invention, and the secondary modifier is a functional group of the modified polymer. And a compound having a functional group having reactivity.
Preferable examples of the functional group of the secondary modifier as the compound (4) include at least one selected from a carboxyl group, an acid anhydride group, an isocyanate group, an epoxy group, a silanol group, and an alkoxysilane group. A secondary modifier having at least two of the above functional groups is particularly preferred. However, when the functional group is an acid anhydride group, a secondary modifier having only one acid anhydride group is particularly preferable. The amount of the secondary modifier when the secondary polymer is reacted with the modified polymer is usually 0.3 to 10 mol, preferably 0.4 to 5 per equivalent of the functional group bonded to the modified polymer. Mol, more preferably in the range of 0.5 to 4 mol.
The method of reacting the modified polymer with the secondary modifier is not particularly limited, but a known method can be used. Examples thereof include a melt kneading method described later and a method of reacting each component by dissolving or dispersing in a solvent or the like. In the method in which each component is dissolved or dispersed and reacted in a solvent, the solvent is not particularly limited as long as each component is dissolved or dispersed, and aliphatic hydrocarbon, alicyclic hydrocarbon, aromatic carbonization In addition to hydrocarbon solvents such as hydrogen, halogen-containing solvents, ester solvents, ether solvents and the like can be used. In this method, the temperature at which the secondary polymer is reacted with the modified polymer is usually −10 to 150 ° C., preferably 30 to 120 ° C. The time required for the reaction generally depends on the reaction temperature at the time of adjustment, but is usually within 3 hours, preferably several seconds to 1 hour. A particularly preferred method is a method in which a secondary modified polymer is obtained by adding a secondary modifier to the solution of the produced modified polymer and reacting it.
Next, specific examples of the secondary modifier will be described. Examples of secondary modifiers having a carboxyl group include aliphatic acids such as maleic acid, oxalic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, carbaryl acid, cyclohexanedicarboxylic acid, cyclopentanedicarboxylic acid, etc. Carboxylic acids; aromatic carboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, trimesic acid, trimellitic acid, and pyromellitic acid.
Examples of secondary modifiers having an acid anhydride group include maleic anhydride, itaconic anhydride, pyromellitic anhydride, cis-4-cyclohexane-1,2-dicarboxylic anhydride, 1,2,4,5 -Benzenetetracarboxylic dianhydride, 5- (2,5-dioxytetrahydro-3-furanyl) -3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride.
Examples of secondary modifiers having an isocyanate group include toluylene diisocyanate, diphenylmethane diisocyanate, polyfunctional aromatic isocyanate (that is, a compound in which three or more isocyanate groups are bonded to an aromatic ring), and the like. It is done.
Examples of secondary modifiers having an epoxy group include tetraglycidyl-1,3-bisaminomethylcyclohexane, tetraglycidyl-m-xylenediamine, diglycidylaniline, ethylene glycol diglycidyl, propylene glycol diglycidyl, diterephthalate Examples include glycidyl ester acrylate.
Examples of secondary modifiers having a silanol group include hydrolysates of the above alkoxysilane compounds described as modifiers used to obtain modified polymers.
Examples of secondary modifiers having an alkoxysilane group include bis- (3-triethoxysilylpropyl) -tetrasulfane, bis- (3-triethoxysilylpropyl) -disulfane, and ethoxysiloxane oligomers.
Moreover, the functional oligomer which has reactivity can also be used as a secondary modifier. The functional group of the functional oligomer is not particularly limited as long as it is reactive with the functional group bonded to the modified polymer. Preferred examples of the functional oligomer include a functional oligomer having at least one functional group selected from the group consisting of a hydroxyl group, an amino group, a carboxyl group, an acid anhydride group, an isocyanate group, an epoxy group, a silanol group, and an alkoxysilane group. Can be mentioned. The number average molecular weight of these functional oligomers is usually 300 or more and less than 3,0000, preferably 500 or more and less than 15,000, more preferably 1,000 or more and less than 20,000. Specific examples of the functional oligomer include a butadiene oligomer having at least one functional group or a hydrogenated product thereof, an isoprene oligomer having at least one functional group or a hydrogenated product thereof, and ethylene having at least one functional group. Saponified product of oligomer, propylene oligomer having at least one functional group, ethylene oxide oligomer, propylene oxide oligomer, ethylene oxide-propylene oxide copolymer oligomer, styrene-maleic anhydride copolymer oligomer, ethylene-vinyl acetate copolymer oligomer Etc.
Examples of particularly preferred secondary modifiers in the present invention include two or more carboxylic acids having two or more carboxyl groups or acid anhydrides thereof, or acid anhydride groups, isocyanate groups, epoxy groups, silanol groups, and alkoxysilane groups. Specific examples include maleic anhydride, pyromellitic anhydride, 1,2,4,5-benzenetetracarboxylic dianhydride, toluylene diisocyanate, tetraglycidyl-1,3-bis. Examples include aminomethylcyclohexane, bis- (3-triethoxysilylpropyl) -tetrasulfane, and styrene-maleic anhydride copolymer oligomer.
Moreover, when adjusting the masterbatch of a component (2), the secondary modifier which is said compound (4) other than a modified polymer and an inorganic filler can be added. The amount of the secondary modifier is 0.01 to 20 parts by weight, preferably 0.02 to 10 parts by weight, more preferably 0.05 to 7 parts by weight with respect to 100 parts by weight of the modified polymer. .
The weight average molecular weight of the modified polymer or secondary modified polymer used in the component (2) of the present invention is 30,000 or more from the viewpoint of mechanical strength and abrasion resistance of the rubber composition, and 1,200,000 from the viewpoint of workability. It is preferable that it is below, More preferably, it is 50,000-1 million, More preferably, it is the range of 100,000-800,000. The weight average molecular weight of the modified polymer was measured by gel permeation chromatography (GPC), and the molecular weight of the peak of the chromatogram was determined from a standard polystyrene measurement curve (the peak molecular weight of standard polystyrene was used). Can be determined using).
In the modified polymer solution obtained as described above, the catalyst residue can be removed if necessary, and the modified polymer can be separated from the solution. Solvent separation methods include, for example, a method in which a polar solvent that is a poor solvent for a polymer such as acetone or alcohol is added to a solution after polymerization or hydrogenation to precipitate and recover the polymer, or a solution of a modified polymer Can be added to hot water with stirring and the solvent removed by steam stripping, or the polymer solution can be heated directly to distill off the solvent. In addition, stabilizers, such as various phenol type stabilizers, phosphorus type stabilizers, sulfur type stabilizers, and amine type stabilizers, can be added to the modified polymer or hydrogenated product thereof used in the present invention.
In the present invention, the inorganic filler used as the raw material for the masterbatch of component (2) or the inorganic filler of component (3) was produced by a known reinforcing filler such as natural silica, wet method or dry method. Synthetic silica, kaolin, mica, talc, clay, montmorillonite, zeolite, natural silicate, calcium silicate, aluminum silicate and other synthetic silicates, magnesium hydroxide, aluminum hydroxide, calcium hydroxide, barium hydroxide, etc. Metal hydroxide, alumina, titanium oxide, magnesium oxide, metal oxide such as zinc oxide, light calcium carbonate, heavy calcium carbonate, various surface treatment calcium carbonate, metal carbonate such as magnesium carbonate, barium sulfate, sulfuric acid Metal sulfates such as magnesium and calcium sulfate, gold such as aluminum and bronze Flour, at least one component such as carbon black. Preferred inorganic fillers include silica-based inorganic fillers, metal oxides, metal hydroxides, and carbon. Said inorganic filler may be used independently and can also be used in combination of 2 or more type.
Silica-based inorganic filler refers to solid particles whose main component is the chemical formula SiO2, for example, silica, clay, talc, mica, diatomaceous earth, wollastonite, montmorillonite, zeolite, glass fiber, etc. Substances can be used. Further, a silica-based inorganic filler having a hydrophobic surface or a mixture of a silica-based inorganic filler and a non-silica inorganic filler can also be used. In the present invention, silica is preferred. As silica, dry process white carbon, wet process white carbon, synthetic silicate-based white carbon, and what is called colloidal silica can be used. These preferably have a particle size of 0.01 to 150 μm. Further, in the composition of the present invention, in order that silica is dispersed in the composition and the effect of adding silica is sufficiently exhibited, the average dispersed particle diameter is preferably 0.05 to 1 μm, more preferably 0.05 to 0. .5 μm.
Next, the metal oxide refers to solid particles having the chemical formula MxOy (M is a metal atom, x and y are integers of 1 to 6) as the main component, for example, alumina, titanium oxide, magnesium oxide. Zinc oxide or the like can be used. A mixture of a metal oxide and an inorganic filler other than the metal oxide can also be used. The metal hydroxide used in the present invention includes aluminum hydroxide, magnesium hydroxide, zirconium hydroxide, hydrated aluminum silicate, hydrated magnesium silicate, basic magnesium carbonate, hydrotalcite, calcium hydroxide, barium hydroxide, Hydrated inorganic fillers such as hydrates of tin oxide and hydrates of inorganic metal compounds such as borax, among which magnesium hydroxide and aluminum hydroxide are preferred.
As the carbon black, carbon black of each class such as FT, SRF, FEF, HAF, ISAF, SAF and the like can be used, and carbon black having a nitrogen adsorption specific surface area of 50 mg / g or more and a DBP oil absorption of 80 ml / 100 g is preferable.
In the present invention, the amount of the inorganic filler used for the preparation of the master batch of component (2) is 5 to 300 parts by weight, preferably 5 to 200 parts by weight, more preferably 10 to 100 parts by weight of the modified polymer. It is the range of -150 weight part. When the amount of the inorganic filler exceeds 300 parts by weight, the dispersibility of the inorganic filler is poor and the processability of the masterbatch is deteriorated. Moreover, if it is less than 5 weight part, the adhesiveness which is an effect of this invention is inferior.
In the present invention, the amount of the inorganic filler of component (3) is 0.1 to 150 parts by weight, preferably 5 to 100 parts by weight, more preferably 100 parts by weight of the rubbery polymer of component (1). Is 5 to 50 parts by weight. If the blending amount of the inorganic filler exceeds 150 parts by weight, the dispersibility of the inorganic filler is inferior, and the workability and mechanical strength are inferior.
When a silica-based inorganic filler is used in the production of the rubber composition for footwear of the present invention, a silane coupling agent can be used. The silane coupling agent is for tightly interacting the rubber-like polymer and the inorganic filler, and has an affinity group or a binding group for the rubber-like polymer and the inorganic filler, respectively. Is. Specifically, bis- [3- (triethoxysilyl) -propyl] -tetrasulfide, bis- [3- (triethoxysilyl) -propyl] -disulfide, bis- [2- (triethoxysilyl) -ethyl ] -Tetrasulfide, 3-mercaptopropyl-trimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane and the like.
A preferred silane coupling agent has an alkoxysilane and a polysulfide bond in which two or more sulfur are linked. Examples thereof include bis- [3- (triethoxysilyl) -propyl] -tetrasulfide, bis -[3- (triethoxysilyl) -propyl] -disulfide and the like. The compounding quantity of a silane coupling agent is 0.1-30 weight% with respect to a reinforcing filler, Preferably it is 0.5-20 weight%, More preferably, it is 1-15 weight%.
In the masterbatch of the component (2) of the present invention, the functional group present on the surface of the inorganic filler and the modified polymer are obtained by using a modified polymer having a functional group having high affinity with the inorganic filler. Thus, physical interactions such as chemical bonds and hydrogen bonds are effectively expressed, and a rubber composition for footwear having excellent tear strength, wear resistance, and adhesiveness can be obtained.
The manufacturing method of the masterbatch which is a component (2) of this invention is not restrict | limited in particular, A well-known method can be utilized. For example, a kneading method using a general mixer such as a Banbury mixer, a single screw extruder, a twin screw extruder, a conider, a multi-screw extruder, a roll, etc., dissolving and mixing each component Then, a method of removing the solvent by heating is used. A preferred method is a method of kneading each component with a Banbury mixer or a kneader.
There are no restrictions on the order of addition of the modified polymer and inorganic filler in the production of the masterbatch, a method in which all components are mixed in a kneader at once, and each component is divided twice or more into a mixer. The method of kneading in order, the modified polymer is put in a kneader and kneaded, and then the inorganic filler is added and kneaded, the inorganic filler is put in the kneader and kneaded, and then the modified polymer is added and kneaded. A method, a method of continuously putting an inorganic filler in a kneader, and kneading can be employed.
The kneading temperature at the time of producing the master batch is generally 80 to 300 ° C. in order to obtain a master batch having good dispersibility of the inorganic filler by promoting the deterioration of the modified polymer and the interaction between the modified polymer and the inorganic filler. Is preferable, more preferably in the range of 130 to 250 ° C, still more preferably in the range of 150 to 220 ° C. The kneading time is generally preferably 0.2 to 60 minutes, more preferably 0.5 to 30 minutes, more preferably from the viewpoints of dispersibility of the inorganic filler, productivity of the masterbatch, deterioration of the modified polymer, and the like. Preferably it is the range for 1 to 20 minutes.
A particularly preferable method is a method in which the entire amount of the inorganic filler is previously put in a kneader and kneaded, and then the modified polymer is added and kneaded, and the inorganic filler is divided into two or more times and charged into the kneader. In this method, a modified polymer and an inorganic filler are kneaded.
As a method of dividing the inorganic filler into two or more times and putting it in the kneader, it is preferable to add the inorganic filler in two to ten times in consideration of the complexity of the process of producing the master batch, A method of adding in 2 to 5 divided portions is preferred. Specifically, 20 to 80% by weight, preferably 30 to 80% by weight, more preferably 40 to 80% by weight of the inorganic filler is previously charged into the kneader, and the kneading time is 1 second to 60 minutes, preferably After kneading in the range of 0.5 to 30 minutes, more preferably 1 to 20 minutes, the modified polymer is added and the kneading time is 1 second to 60 minutes, preferably 20 seconds to 30 minutes, more preferably 1 Kneading in the range of minutes to 20 minutes, then adding the remaining inorganic filler, and kneading time in the range of 1 second to 60 minutes, preferably 0.5 minutes to 30 minutes, more preferably 1 minute to 20 minutes. It is a method of manufacturing by kneading. As another preferred method, the entire amount of the inorganic filler is previously charged into the kneader, and the kneading time is in the range of 1 second to 60 minutes, preferably 0.5 minutes to 30 minutes, more preferably 1 minute to 20 minutes. There is a method in which after the kneading, the modified polymer is added and the kneading time is 1 second to 60 minutes, preferably 0.5 minutes to 30 minutes, more preferably 1 minute to 20 minutes.
The most important thing for preparing a masterbatch in a particularly preferred form is that at least 20% by weight or more of the inorganic filler 5 to 300 parts by weight is previously put in a kneader and the temperature is 50 to 300 ° C., preferably 70 to 250. The master batch is prepared by kneading in a range of 100 ° C., more preferably in the range of 100 to 200 ° C., and then kneading the remaining components.
The rubber composition for footwear of the present invention comprises a rubber-like polymer (component 1) and a master batch (component 2), or a rubber-like polymer (component 1), a master batch (component 2), and an inorganic filler (component 3). A rubber composition containing The amount of the master batch is 1 to 150 parts by weight, preferably 5 to 100 parts by weight, and more preferably 10 to 70 parts by weight with respect to 100 parts by weight of the rubber-like polymer (component 1).
The production method of the rubber composition for footwear of the present invention is not particularly limited, and a known method can be used. For example, a kneading method using a general mixer such as a Banbury mixer, a single-screw extruder, a twin-screw extruder, a coneer, or a multi-screw extruder is used.
In addition, the production order of the rubber composition for footwear of the present invention is not limited in the order of addition of the respective components, and the method of kneading the components (1), (2) and (3) in a kneader at once. A method of adding the remaining components after preliminarily mixing arbitrary components can be employed. The kneading temperature is preferably 50 to 300 ° C., more preferably 70 to 250 ° C., and still more preferably 100 to 200 ° C., from the viewpoint of thermal deterioration of the rubber-like polymer or modified polymer. The kneading time is generally preferably from 0.2 to 60 minutes, more preferably from the viewpoint of dispersibility of the inorganic filler, productivity of the rubber composition, deterioration of the modified polymer or rubbery polymer, and the like. The range is 5 to 30 minutes, more preferably 1 to 20 minutes.
The rubber composition for footwear of the present invention is characterized by using a master batch excellent in dispersibility of an inorganic filler obtained by kneading a modified polymer and an inorganic filler by the specific production method shown above. Compared with a rubber composition for footwear obtained by kneading a rubbery polymer or modified polymer and an inorganic filler, which has been conventionally performed, the dispersibility of the inorganic filler is improved, and the wear resistance is improved. A rubber composition for footwear excellent in adhesiveness can be obtained. The dispersibility of the inorganic filler in the rubber composition can be confirmed by using a transmission electron microscope, a scanning probe microscope apparatus, or the like.
In the present invention, other optional additives can be blended as necessary. The type of additive is not particularly limited as long as it is generally used for blending rubbery polymers. Zinc flower, stearic acid, vulcanization aid, anti-aging agent, processing aid, behenic acid, zinc stearate, calcium stearate, magnesium stearate, ethylene bisstearamide, lubricant, mold release agent, paraffinic process oil , Naphthenic process oil, aromatic process oil, paraffin, organic polysiloxane, mineral oil and other softeners / plasticizers, hindered phenolic antioxidants, phosphorous heat stabilizers and other antioxidants, hindered amine light Stabilizers, benzotriazole UV absorbers, flame retardants, antistatic agents, organic fibers, glass fibers, carbon fibers, metal whiskers and other reinforcing agents, colorants, other additives or mixtures thereof, "rubber and plastic compounding chemicals "(Edited by Rubber Digest Co., Ltd.).

本発明を実施例に基づいて説明するが、本発明はこれらの例によって何ら限定されるものではない。
[スチレン・ブタジエンゴムの分析方法]
(1)結合スチレン量
紫外分光光度計(日本分光社製 V−520 UV)で、標準ポリスチレンのUV吸収強度と比較して求めた。
(2)ブタジエン中の1,2ビニル結合量
赤外分光光度計(日本分光社製 V−520 UV)で測定しハンプトン法で求めた。
(3)分子量
GPC(装置:島津製作所社製LC10、カラム:島津製作所社製Shimpac GPC805+GPC804+GPC804+GPC803)で測定した。溶媒にはテトラヒドロフランを用い、測定条件は、温度35℃で行った。分子量は、クロマトグラムのピークの分子量を、市販の標準ポリスチレンの測定から求めた検量線(標準ポリスチレンのピーク分子量を使用して作成)を使用して求めた重量平均分子量である。
(4)未変性重合体の割合
テトラヒロドロフラン20mlに変性重合体10mgと重量平均分子量8000の低分子量内部標準ポリスチレン10mgを溶解して試料溶液とした。試料溶液について、上記(3)と同様の方法でGPC測定を行い、得られたクロマトグラムから標準ポリスチレンに対する変性重合体の比(i)を求めた。また、上記試料溶液について、米国デュポン社製のカラムであるZorbax(シリカ系ゲル充填剤)のカラムを用いた以外、上記(3)と同様の方法でGPC測定を行い、クロマトグラムを得た。変性した重合体はシリカ系ゲルを充填剤としたGPCカラムに吸着するが、未変性の重合体は該GPCカラムには吸着しないので、得られたクロマトグラムからは、標準ポリスチレンに対する未変性重合体の比(ii)を求めることができる。上記の比(i)及び比(ii)から、変性反応後の共重合体中の変性重合体の割合(%)を式:(1−比(ii)/比(i))X100によって計算した。
[ゴム状重合体組成物の物性測定]
(1)引張試験
JIS K6251に準拠し、23℃恒温室で測定した。
(2)引き裂き試験
JIS K6252に準拠し、23℃恒温室で測定した。
(3)硬度の測定
高分子計器(株)製 ASKER硬度計 型式Cを使用して、23℃恒温室で測定した。
(4)透明性
日本電色工業(株)製HAZEメーター、NDH−1001DP型を使用し、厚さ5mmの板サンプルのHAZE値と全光線透過率を測定した。
(5)耐摩耗性指数
アクロン型試験機で、サンプルの摩耗減量を測定し、下記式で求められる指数を耐摩耗性の指標として求めた。
指数=〔(サンプルの摩耗減量)/(標準サンプルの摩耗減量)〕×100
(6)接着性試験
水性プライマー(AQUACE PR−503)及び水性接着剤(AQUACE W−06)を用いて、ゴム組成物と被着体(レザー、ナイロン、EVA)を接着させた後の剥離強度を測定した。
[ジエン系重合体の調製]
(SBR−Aの製造)
窒素置換した攪拌機付き10Lオートクレーブに精製したシクロヘキサン5.5kgとスチレンモノマー0.40kg及び1,3−ブタジエン0.45kgを入れ、攪拌しながら温度を60℃まで昇温してテトラヒドロフラン32gとn−ブチルリチウム0.83g(15%シクロヘキサン溶液)を添加して重合反応を開始した。重合の途中から最高温度の92℃になるまでの5分間1,3−ブタジエン0.15kgを重合系中に連続して添加した。 重合の最高温度から1分後に、重合開始剤として使用したn−ブチルリチウムに対して、0.38モルのテトラグリシジル−1,3−ビスアミノメチルシクロヘキサンを添加して反応させてSBR−Aを得た。その後、重合体溶液に安定剤として2,6−ジ−tertブチル−4−メチルフェノールをゴム100重量部当たり0.5重量部添加し、ドラムドライヤーで脱溶媒、乾燥して仕上げた。得られたポリマーを分析したところ,スチレン含有量は40重量%、ブタジエン部のビニル結合含量は33重量%であった。ブロックスチレン量の分析値よりスチレンのブロックは存在していなかった。また、重量平均分子量は49.3万、変性率は71%であった。
(SBR−Bの製造)
窒素置換した攪拌機付き10Lオートクレーブに精製したシクロヘキサン5.5kgとスチレンモノマー0.40kg及び1,3−ブタジエン0.45kgを入れ、攪拌しながら温度を60℃まで昇温してテトラヒドロフラン32gとn−ブチルリチウム0.83g(15%シクロヘキサン溶液)を添加して重合反応を開始した。重合の途中から最高温度の92℃になるまでの5分間1,3−ブタジエン0.15kgを重合系中に連続して添加した。 重合の最高温度から1分後に、重合開始剤として使用したn−ブチルリチウムに対して、1モルの1,3−ジメチル−2−イミダゾリジノンを添加して反応させてSBR−Bを得た。その後、重合体溶液に安定剤として2,6−ジ−tertブチル−4−メチルフェノールをゴム100重量部当たり0.5重量部添加し、ドラムドライヤーで脱溶媒、乾燥して仕上げた。得られたポリマーを分析したところ,スチレン含有量は40重量%、ブタジエン部のビニル結合含量は33重量%であった。ブロックスチレン量の分析値よりスチレンのブロックは存在していなかった。また、重量平均分子量は49.1万、変性率は80%であった。
(SBR−Cの製造)
上記で得られたSBR−B:180gに2次変性剤である無水マレイン酸をO.1gブレンドし、温度制御装置を付属した密閉混練機(内容量0.3リットル)を使用し、混練温度100℃、混練時間3分の条件で混練することで二次変性重合体を得た。
(SBR−Dの製造)
窒素置換した攪拌機付き10Lオートクレーブに精製したシクロヘキサン5.5kgとスチレンモノマー0.40kg及び1,3−ブタジエン0.45kgを入れ、攪拌しながら温度を60℃まで昇温してテトラヒドロフラン32gとn−ブチルリチウム0.83g(15%シクロヘキサン溶液)を添加して重合反応を開始した。重合の途中から最高温度の89℃になるまでの5分間1,3−ブタジエン0.15kgを重合系中に連続して添加した。 最高温度が89℃になり3分後に重合体溶液を抜き出しn−ブチルリチウムの10倍モルの水で失活してSBR−Cを得た。その後、重合体溶液に安定剤として2,6−ジ−tertブチル−4−メチルフェノールをゴム100重量部当たり0.5重量部添加し、ドラムドライヤーで脱溶媒、乾燥して仕上げた。得られたポリマーを分析したところ,スチレン含有量は40重量%、ブタジエン部のビニル結合含量は33重量%であった。ブロックスチレン量の分析値よりスチレンのブロックは存在していなかった。また、重量平均分子量は48.5万であった。
[マスターバッチの作製]
(MB−1)
外部より循環水による温度制御装置を付属した密閉混練機(内容量1.7リットル)を使用し、充填率65%、ローター回転数66/77rpmの条件で、最初に25部のシリカを混練機に投入し4分間混練した。次いで重合体75部及びステアリン酸0.15部を投入して4分間混練を続けた。排出後のゴム組成物の温度は170℃であった。冷却後、50℃に設定したオープンロールにて再度混練して重合体/シリカのマスターバッチを作製した。表1に配合処方を示す。
(MB−2、3、4、6)
外部より循環水による温度制御装置を付属した密閉混練機(内容量1.7リットル)を使用し、充填率65%、ローター回転数66/77rpmの条件で、最初に12.5部のシリカを混練機に投入し4分間混練した。次いで重合体75部及びステアリン酸0.15部を投入し3分間混練した後、更にシリカ12.5部を投入し3分間混練を続けた。排出後のゴム組成物の温度は170℃であった。冷却後、50℃に設定したオープンロールにて再度混練して重合体/シリカのマスターバッチを作製した。表1に配合処方を示す。
(MB−5)
外部より循環水による温度制御装置を付属した密閉混練機(内容量1.7リットル)を使用し、充填率65%、ローター回転数66/77rpmの条件で、シリカ25部及び重合体75部及びステアリン酸0.15部を投入して5分間混練を続けた。排出後のゴム組成物の温度は170℃であった。冷却後、50℃に設定したオープンロールにて再度混練して重合体/シリカのマスターバッチを作製した。表1に配合処方を示す。
[実施例1〜5]
外部より循環水による温度制御装置を付属した密閉混練機(内容量1.7リットル)を使用し、充填率65%、ローター回転数66/77rpmの条件で、表2に示す配合処方で各成分を一括して混練機に投入し混練することでゴム組成物を得た。排出後の温度は161℃であった。こうして得られたゴム組成物を70℃に設定したオープンロールにて硫黄、加硫促進剤を入れ混練した後、160℃で20分間加硫して試験片を作製した。表2に加硫物の物性を示す。本発明の変性重合体とシリカのマスターバッチを用いて作製したゴム組成物は、引き裂き強度と耐摩耗性に優れることがわかる。
[比較例1〜2]
実施例1と同様の方法により、表2に示す配合処方で各成分を一括して混練機に投入し混練することでゴム状重合体組成物を得た。排出後の温度は160℃であった。こうして得られたゴム組成物を70℃に設定したオープンロールにて硫黄、加硫促進剤を入れ混練した後、160℃で20分間加硫して試験片を作製した。表2に加硫物の物性を示す。
[実施例6〜12]
外部より循環水による温度制御装置を付属した密閉混練機(内容量1.7リットル)を使用し、充填率65%、ローター回転数66/77rpmの条件で、表3に示す配合処方で各成分を一括して混練機に投入し混練することでゴム組成物を得た。排出後の温度は160℃であった。こうして得られたゴム組成物を70℃に設定したオープンロールにて硫黄、加硫促進剤を入れ混練した後、160℃で20分間加硫して試験片を作製した。表3に加硫物の接着強度を示す。本発明の変性重合体とシリカのマスターバッチを用いて作製したゴム組成物は、接着性に優れることがわかる。
[比較例3〜4]
実施例6と同様の方法により、表3に示す配合処方で各成分を一括して混練機に投入し混練することでゴム組成物を得た。こうして得られたゴム組成物を70℃に設定したオープンロールにて硫黄、加硫促進剤を入れ混練した後、160℃で20分間加硫して試験片を作製した。

Figure 0004721900
Figure 0004721900
Figure 0004721900
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
本出願は、2003年10月29日出願の日本特許出願(特願2003−369255)に基づくものであり、その内容はここに参照として取り込まれる。The present invention will be described based on examples, but the present invention is not limited to these examples.
[Analytical method of styrene-butadiene rubber]
(1) Amount of bound styrene The amount of bound styrene was determined by comparison with the UV absorption intensity of standard polystyrene using an ultraviolet spectrophotometer (V-520 UV manufactured by JASCO Corporation).
(2) Amount of 1,2-vinyl bond in butadiene Measured with an infrared spectrophotometer (V-520 UV manufactured by JASCO Corporation) and determined by the Hampton method.
(3) Molecular weight Measured by GPC (apparatus: LC10 manufactured by Shimadzu Corporation, column: Shimpac GPC805 + GPC804 + GPC804 + GPC803 manufactured by Shimadzu Corporation). Tetrahydrofuran was used as the solvent, and the measurement was performed at a temperature of 35 ° C. The molecular weight is a weight average molecular weight obtained by using a calibration curve (created using the peak molecular weight of standard polystyrene) obtained by measuring the molecular weight of the peak of the chromatogram from measurement of commercially available standard polystyrene.
(4) Ratio of unmodified polymer 10 mg of a modified polymer and 10 mg of a low molecular weight internal standard polystyrene having a weight average molecular weight of 8000 were dissolved in 20 ml of tetrahydrofurofuran to prepare a sample solution. The sample solution was subjected to GPC measurement by the same method as in (3) above, and the ratio (i) of the modified polymer to standard polystyrene was determined from the obtained chromatogram. Further, the sample solution was subjected to GPC measurement in the same manner as in the above (3) except that a column of Zorbax (silica gel filler), which is a column manufactured by DuPont, USA, was used, and a chromatogram was obtained. The modified polymer is adsorbed on the GPC column using silica gel as a filler, but the unmodified polymer is not adsorbed on the GPC column. From the obtained chromatogram, the unmodified polymer with respect to standard polystyrene is used. The ratio (ii) can be obtained. From the above ratio (i) and ratio (ii), the ratio (%) of the modified polymer in the copolymer after the modification reaction was calculated by the formula: (1−ratio (ii) / ratio (i)) X100. .
[Measurement of physical properties of rubbery polymer composition]
(1) Tensile test Based on JIS K6251, it measured in a 23 degreeC thermostatic chamber.
(2) Tear test Based on JIS K6252, it measured in a 23 degreeC thermostat.
(3) Measurement of hardness Using an ASKER hardness meter Model C manufactured by Kobunshi Keiki Co., Ltd., the hardness was measured at 23 ° C in a constant temperature room.
(4) Transparency Using a Nippon Denshoku Industries Co., Ltd. HAZE meter, NDH-1001DP type, the HAZE value and total light transmittance of a 5 mm thick plate sample were measured.
(5) Abrasion resistance index The abrasion loss of the sample was measured with an Akron-type testing machine, and an index obtained by the following formula was determined as an index of the abrasion resistance.
Index = [(weight loss of sample) / (weight loss of standard sample)] × 100
(6) Adhesion test Peel strength after adhering rubber composition and adherend (leather, nylon, EVA) using water-based primer (AQUACE PR-503) and water-based adhesive (AQUACE W-06) Was measured.
[Preparation of diene polymer]
(Manufacture of SBR-A)
Purified 5.5 kg of purified cyclohexane, 0.40 kg of styrene monomer and 0.45 kg of 1,3-butadiene in a 10 L autoclave equipped with a nitrogen-replaced stirrer. The temperature was raised to 60 ° C. while stirring and 32 g of tetrahydrofuran and n-butyl were added. Lithium 0.83g (15% cyclohexane solution) was added to initiate the polymerization reaction. 0.15 kg of 1,3-butadiene was continuously added to the polymerization system for 5 minutes from the middle of the polymerization to the maximum temperature of 92 ° C. One minute from the maximum temperature of the polymerization, 0.38 mol of tetraglycidyl-1,3-bisaminomethylcyclohexane was added to the n-butyllithium used as the polymerization initiator and reacted to give SBR-A. Obtained. Thereafter, 0.5 parts by weight of 2,6-di-tertbutyl-4-methylphenol as a stabilizer was added to the polymer solution per 100 parts by weight of the rubber, and the solvent was removed with a drum dryer and dried. When the obtained polymer was analyzed, the styrene content was 40% by weight and the vinyl bond content of the butadiene portion was 33% by weight. From the analytical value of the amount of block styrene, no block of styrene was present. The weight average molecular weight was 493,000 and the modification rate was 71%.
(Manufacture of SBR-B)
Purified 5.5 kg of purified cyclohexane, 0.40 kg of styrene monomer and 0.45 kg of 1,3-butadiene in a 10 L autoclave equipped with a nitrogen-replaced stirrer. The temperature was raised to 60 ° C. while stirring and 32 g of tetrahydrofuran and n-butyl were added. Lithium 0.83g (15% cyclohexane solution) was added to initiate the polymerization reaction. 0.15 kg of 1,3-butadiene was continuously added to the polymerization system for 5 minutes from the middle of the polymerization to the maximum temperature of 92 ° C. One minute after the maximum temperature of the polymerization, 1 mol of 1,3-dimethyl-2-imidazolidinone was added to the n-butyllithium used as the polymerization initiator and reacted to obtain SBR-B. . Thereafter, 0.5 parts by weight of 2,6-di-tertbutyl-4-methylphenol as a stabilizer was added to the polymer solution per 100 parts by weight of the rubber, and the solvent was removed with a drum dryer and dried. When the obtained polymer was analyzed, the styrene content was 40% by weight and the vinyl bond content of the butadiene portion was 33% by weight. From the analytical value of the amount of block styrene, no block of styrene was present. The weight average molecular weight was 491,000 and the modification rate was 80%.
(Manufacture of SBR-C)
SBR-B obtained above: 180 g of maleic anhydride, a secondary modifier, was added to O.D. A secondary modified polymer was obtained by blending 1 g and kneading using a closed kneader (with an internal volume of 0.3 liter) equipped with a temperature controller at a kneading temperature of 100 ° C. and a kneading time of 3 minutes.
(Manufacture of SBR-D)
Purified 5.5 kg of purified cyclohexane, 0.40 kg of styrene monomer and 0.45 kg of 1,3-butadiene in a 10 L autoclave equipped with a nitrogen-replaced stirrer. The temperature was raised to 60 ° C. while stirring and 32 g of tetrahydrofuran and n-butyl were added. Lithium 0.83g (15% cyclohexane solution) was added to initiate the polymerization reaction. 0.15 kg of 1,3-butadiene was continuously added to the polymerization system for 5 minutes from the middle of the polymerization to the maximum temperature of 89 ° C. Three minutes after the maximum temperature reached 89 ° C., the polymer solution was taken out and deactivated with 10-fold mol water of n-butyllithium to obtain SBR-C. Thereafter, 0.5 parts by weight of 2,6-di-tertbutyl-4-methylphenol as a stabilizer was added to the polymer solution per 100 parts by weight of the rubber, and the solvent was removed with a drum dryer and dried. When the obtained polymer was analyzed, the styrene content was 40% by weight and the vinyl bond content of the butadiene portion was 33% by weight. From the analytical value of the amount of block styrene, no block of styrene was present. Moreover, the weight average molecular weight was 485,000.
[Production of master batch]
(MB-1)
First, 25 parts of silica was kneaded under the conditions of a filling rate of 65% and a rotor rotational speed of 66/77 rpm, using a closed kneader (with an internal volume of 1.7 liters) attached with a temperature controller using circulating water from the outside. And kneaded for 4 minutes. Next, 75 parts of polymer and 0.15 part of stearic acid were added and kneading was continued for 4 minutes. The temperature of the rubber composition after discharging was 170 ° C. After cooling, the mixture was kneaded again with an open roll set at 50 ° C. to prepare a polymer / silica master batch. Table 1 shows the formulation.
(MB-2, 3, 4, 6)
Using a closed kneader (with an internal volume of 1.7 liters) attached with a temperature control device using circulating water from the outside, 12.5 parts of silica was initially added under the conditions of a filling rate of 65% and a rotor rotational speed of 66/77 rpm. The mixture was put into a kneader and kneaded for 4 minutes. Next, 75 parts of a polymer and 0.15 part of stearic acid were added and kneaded for 3 minutes, and then 12.5 parts of silica was further added and kneading was continued for 3 minutes. The temperature of the rubber composition after discharging was 170 ° C. After cooling, the mixture was kneaded again with an open roll set at 50 ° C. to prepare a polymer / silica master batch. Table 1 shows the formulation.
(MB-5)
Using a closed kneader (with an internal volume of 1.7 liters) attached with a temperature control device using circulating water from the outside, under the conditions of a filling rate of 65% and a rotor rotational speed of 66/77 rpm, 25 parts of silica and 75 parts of polymer 0.15 part of stearic acid was added and kneading was continued for 5 minutes. The temperature of the rubber composition after discharging was 170 ° C. After cooling, the mixture was kneaded again with an open roll set at 50 ° C. to prepare a polymer / silica master batch. Table 1 shows the formulation.
[Examples 1 to 5]
Using a closed kneader (with an internal volume of 1.7 liters) attached with a temperature controller using circulating water from the outside, each component with the formulation shown in Table 2 under the conditions of a filling rate of 65% and a rotor rotational speed of 66/77 rpm Were put into a kneader in a lump and kneaded to obtain a rubber composition. The temperature after discharge was 161 ° C. The rubber composition thus obtained was kneaded with sulfur and a vulcanization accelerator in an open roll set at 70 ° C., and then vulcanized at 160 ° C. for 20 minutes to prepare a test piece. Table 2 shows the physical properties of the vulcanizate. It can be seen that the rubber composition prepared using the master polymer of the modified polymer of the present invention and silica is excellent in tear strength and wear resistance.
[Comparative Examples 1-2]
By the same method as in Example 1, the components were collectively put into a kneader according to the formulation shown in Table 2 and kneaded to obtain a rubbery polymer composition. The temperature after discharge was 160 ° C. The rubber composition thus obtained was kneaded with sulfur and a vulcanization accelerator in an open roll set at 70 ° C., and then vulcanized at 160 ° C. for 20 minutes to prepare a test piece. Table 2 shows the physical properties of the vulcanizate.
[Examples 6 to 12]
Using a closed kneader (with an internal volume of 1.7 liters) attached with a temperature control device using circulating water from the outside, each component with the formulation shown in Table 3 under the conditions of a filling rate of 65% and a rotor rotational speed of 66/77 rpm Were put into a kneader in a lump and kneaded to obtain a rubber composition. The temperature after discharge was 160 ° C. The rubber composition thus obtained was kneaded with sulfur and a vulcanization accelerator in an open roll set at 70 ° C., and then vulcanized at 160 ° C. for 20 minutes to prepare a test piece. Table 3 shows the adhesive strength of the vulcanizate. It can be seen that the rubber composition prepared using the master batch of the modified polymer of the present invention and silica is excellent in adhesiveness.
[Comparative Examples 3 to 4]
By the same method as in Example 6, the respective components were collectively put into a kneader and kneaded according to the formulation shown in Table 3 to obtain a rubber composition. The rubber composition thus obtained was kneaded with sulfur and a vulcanization accelerator in an open roll set at 70 ° C., and then vulcanized at 160 ° C. for 20 minutes to prepare a test piece.
Figure 0004721900
Figure 0004721900
Figure 0004721900
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application (Japanese Patent Application No. 2003-369255) filed on Oct. 29, 2003, the contents of which are incorporated herein by reference.

本発明の履物用ゴム組成物は、優れた引き裂き強度と耐摩耗性を有し、更に靴の材料であるナイロン、レザー、EVAとの接着性に極めて優れる。本発明の組成物は、これらの特徴を生かして各種シューズのソール材として極めて有効な材料である。また、各種形状の成型品に加工でき、自動車部品(自動車内装材料、自動車外装材料)、食品包装容器などの各種容器、家電用品、医療機器部品、工業部品、玩具等に用いることができる。  The rubber composition for footwear of the present invention has excellent tear strength and abrasion resistance, and is extremely excellent in adhesion to nylon, leather, and EVA, which are shoe materials. The composition of the present invention is an extremely effective material as a sole material for various shoes taking advantage of these characteristics. Moreover, it can be processed into molded products of various shapes, and can be used for various parts such as automobile parts (car interior materials, car exterior materials), food packaging containers, household appliances, medical equipment parts, industrial parts, toys and the like.

Claims (16)

成分(1)ゴム状重合体:100重量部;及び
成分(2)共役ジエン系重合体又は共役ジエン系単量体とビニル芳香族炭化水素からなる共重合体又はそれらの水添物に官能基含有原子団が少なくとも1個結合している変性重合体から選ばれる少なくとも1種の変性重合体100重量部にシリカ系無機充填剤5〜300重量部を混練して得られるマスターバッチ:1〜150重量部
を含む履物用ゴム組成物。
Component (1) Rubber-like polymer: 100 parts by weight; and Component (2) Conjugated diene polymer or copolymer composed of conjugated diene monomer and vinyl aromatic hydrocarbon or hydrogenated product thereof. Master batch obtained by kneading 5 to 300 parts by weight of silica-based inorganic filler with 100 parts by weight of at least one modified polymer selected from modified polymers having at least one containing atomic group bonded: 1 to 150 A rubber composition for footwear comprising parts by weight.
成分(2)が無機充填剤5〜300重量部の全量を予め混練機に投入して混練し、次いで変性重合体を加えて混練して得られるマスターバッチである請求項1に記載の履物用ゴム組成物。2. The footbatch according to claim 1, wherein the component (2) is a master batch obtained by previously charging a total amount of 5 to 300 parts by weight of an inorganic filler into a kneader and kneading and then kneading by adding a modified polymer. Rubber composition. 成分(2)が無機充填剤5〜300重量部を2回以上分割して混練機に投入して順次混練して得られるマスターバッチである請求項1に記載の履物用ゴム組成物。The rubber composition for footwear according to claim 1, wherein the component (2) is a masterbatch obtained by dividing 5 to 300 parts by weight of the inorganic filler twice or more, charging the mixture into a kneader and sequentially kneading. 成分(2)が無機充填剤の20〜80重量%を予め混練機に投入して混練し、次いで変性重合体を加え混練し、更に当該無機充填剤の残量を加えて混練したマスターバッチである請求項1に記載の履物用ゴム組成物。Component (2) is a master batch in which 20 to 80% by weight of the inorganic filler is previously charged in a kneader and kneaded, then the modified polymer is added and kneaded, and the remaining amount of the inorganic filler is added and kneaded. The rubber composition for footwear according to claim 1. 成分(3)として、更に無機充填剤を0.1〜150重量部含む請求項1に記載の履物用ゴム組成物。The rubber composition for footwear according to claim 1, further comprising 0.1 to 150 parts by weight of an inorganic filler as the component (3). 変性重合体の官能基含有原子団が、水酸基、エポキシ基、アミノ基、イミノ基、シラノール基、アルコキシシラン基から選ばれる官能基を少なくとも1個有する原子団である請求項1に記載の履物用ゴム組成物。2. The footwear according to claim 1, wherein the functional group-containing atomic group of the modified polymer is an atomic group having at least one functional group selected from a hydroxyl group, an epoxy group, an amino group, an imino group, a silanol group, and an alkoxysilane group. Rubber composition. 変性重合体が、下記式(1)〜(14)から選ばれる原子団が少なくとも1個結合している変性重合体である請求項1に記載の履物用ゴム組成物。
Figure 0004721900
(上記式(1)〜(14)において、 Nは窒素原子、Siは珪素原子、Oは酸素原子、Cは炭素原子、Hは水素原子を表し、R,Rは各々独立に水素原子又は炭素数1〜24の炭化水素基を表し、且つ、該炭化水素基は、所望により、各々独立に、水酸基、エポキシ基、アミノ基、炭素数1〜24の炭化水素基を有するイミノ基、シラノール基及び炭素数1〜24のアルコキシシラン基からなる群より選ばれる少なくとも1種の官能基を有してもよく、各Rは各々独立に炭素数1〜48の2価の炭化水素基を表し、且つ、所望により、各々独立に、水酸基、エポキシ基、アミノ基、炭素数1〜24の炭化水素基を有するイミノ基、シラノール基及び炭素数1〜24のアルコキシシラン基からなる群より選ばれる少なくとも1種の官能基を有してもよく、各Rは各々独立に水素原子又は炭素数1〜24の炭化水素基を表す。)
The rubber composition for footwear according to claim 1, wherein the modified polymer is a modified polymer in which at least one atomic group selected from the following formulas (1) to (14) is bonded.
Figure 0004721900
(In the above formulas (1) to (14), N represents a nitrogen atom, Si represents a silicon atom, O represents an oxygen atom, C represents a carbon atom, H represents a hydrogen atom, and R 1 and R 2 are each independently a hydrogen atom. Or a hydrocarbon group having 1 to 24 carbon atoms, and the hydrocarbon groups are each independently, optionally, a hydroxyl group, an epoxy group, an amino group, an imino group having a hydrocarbon group having 1 to 24 carbon atoms, It may have at least one functional group selected from the group consisting of a silanol group and an alkoxysilane group having 1 to 24 carbon atoms, and each R 3 is independently a divalent hydrocarbon group having 1 to 48 carbon atoms. And optionally, each independently selected from the group consisting of a hydroxyl group, an epoxy group, an amino group, an imino group having a hydrocarbon group having 1 to 24 carbon atoms, a silanol group, and an alkoxysilane group having 1 to 24 carbon atoms. At least one government official It may have a group, each R 4 each independently represents a hydrogen atom or a C24 hydrocarbon group.)
成分(2)が、当該変性重合体と無機充填剤の混練の際に、更に当該変性重合体に結合している官能基と反応性を有する化合物(4)を当該変性重合体100重量部に対して0.01〜20重量部添加して得られたマスターバッチである請求項1に記載の履物用ゴム組成物。When the component (2) is kneaded with the modified polymer and the inorganic filler, the compound (4) having reactivity with the functional group bonded to the modified polymer is further added to 100 parts by weight of the modified polymer. The rubber composition for footwear according to claim 1, which is a masterbatch obtained by adding 0.01 to 20 parts by weight to the rubber. 成分(2)が、当該変性重合体と無機充填剤の混練物に、更に当該変性重合体に結合している官能基と反応性を有する化合物(4)を当該変性重合体100重量部に対して0.01〜20重量部混練して得られたマスターバッチである請求項1に記載の履物用ゴム組成物。Component (2) is a mixture of the modified polymer and inorganic filler, and further compound (4) having reactivity with the functional group bonded to the modified polymer is added to 100 parts by weight of the modified polymer. The rubber composition for footwear according to claim 1, which is a master batch obtained by kneading 0.01 to 20 parts by weight. 成分(2)に使用する変性重合体が、当該変性重合体に結合している官能基と反応性を有する化合物(4)を当該変性重合体に結合していろ官能基1当量あたり0.3〜10モルを用いて反応させた変性重合体である請求項1に記載の履物用ゴム組成物。The modified polymer used for the component (2) is bonded to the modified polymer with the compound (4) having reactivity with the functional group bonded to the modified polymer. The rubber composition for footwear according to claim 1, which is a modified polymer reacted with 10 to 10 mol. 化合物(4)がカルボキシル基、酸無水物基、イソシアネート基、エポキシ基、シラノール基、アルコキシシラン基から選ばれる官能基を有する化合物である請求項8または9に記載の履物用ゴム組成物。The rubber composition for footwear according to claim 8 or 9, wherein the compound (4) is a compound having a functional group selected from a carboxyl group, an acid anhydride group, an isocyanate group, an epoxy group, a silanol group, and an alkoxysilane group. 成分(1)ゴム状重合体:100重量部;及び
成分(2)共役ジエン系重合体又は共役ジエン系単量体とビニル芳香族炭化水素からなる共重合体又はそれらの水添物に官能基含有原子団が少なくとも1個結合している変性重合体から選ばれる少なくとも1種の変性重合体100重量部にシリカ系無機充填剤5〜300重量部を混練して得られるマスターバッチ:1〜150重量部
を混練する工程を含む履物用ゴム組成物の製造方法。
Component (1) Rubber-like polymer: 100 parts by weight; and Component (2) Conjugated diene polymer or copolymer composed of conjugated diene monomer and vinyl aromatic hydrocarbon or hydrogenated product thereof. Master batch obtained by kneading 5 to 300 parts by weight of silica-based inorganic filler with 100 parts by weight of at least one modified polymer selected from modified polymers having at least one containing atomic group bonded: 1 to 150 A method for producing a rubber composition for footwear, comprising a step of kneading parts by weight.
成分(2)が無機充填剤5〜300重量部の全量を混練機に投入して混練し、次いで変性重合体を加えて混練して得られるマスターバッチである請求項12に記載の履物用ゴム組成物の製造方法。The rubber for footwear according to claim 12, wherein the component (2) is a masterbatch obtained by adding the total amount of 5 to 300 parts by weight of an inorganic filler into a kneader and kneading, and then kneading by adding a modified polymer. A method for producing the composition. 成分(2)が無機充填剤5〜300重量部を2回以上分割して混練機に投入して順次混練して得られるマスターバッチである請求項12に記載の履物用ゴム組成物の製造方法。The method for producing a rubber composition for footwear according to claim 12, wherein component (2) is a masterbatch obtained by dividing 5 to 300 parts by weight of an inorganic filler twice or more, charging the mixture into a kneader and sequentially kneading. . 無機充填剤5〜300重量部の全量を混練機に投入して混練し、次いで変性重合体を加えて混練する請求項1に記載のマスターバッチの製造方法。The method for producing a masterbatch according to claim 1, wherein 5 to 300 parts by weight of the inorganic filler is put into a kneader and kneaded, and then the modified polymer is added and kneaded. 無機充填剤の20〜80重量%を予め混練機に投入して混練し、次いで変性重合体を加え混練し、更に当該無機充填剤の残量を加えて混練する請求項1に記載のマスターバッチの製造方法。The master batch according to claim 1, wherein 20 to 80% by weight of the inorganic filler is previously charged in a kneader and kneaded, then the modified polymer is added and kneaded, and the remaining amount of the inorganic filler is added and kneaded. Manufacturing method.
JP2005515070A 2003-10-29 2004-10-29 Rubber composition for footwear Active JP4721900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005515070A JP4721900B2 (en) 2003-10-29 2004-10-29 Rubber composition for footwear

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003369255 2003-10-29
JP2003369255 2003-10-29
JP2005515070A JP4721900B2 (en) 2003-10-29 2004-10-29 Rubber composition for footwear
PCT/JP2004/016465 WO2005040267A1 (en) 2003-10-29 2004-10-29 Rubber composition for footwear

Publications (2)

Publication Number Publication Date
JPWO2005040267A1 JPWO2005040267A1 (en) 2007-03-15
JP4721900B2 true JP4721900B2 (en) 2011-07-13

Family

ID=34510378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005515070A Active JP4721900B2 (en) 2003-10-29 2004-10-29 Rubber composition for footwear

Country Status (5)

Country Link
JP (1) JP4721900B2 (en)
KR (1) KR100746054B1 (en)
CN (1) CN1875063B (en)
TW (1) TWI283693B (en)
WO (1) WO2005040267A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1908036B (en) * 2006-07-26 2010-04-21 华南理工大学 Preparation method of hydrogen bond composite inorganic-organic hybridization network modified polymer
JP5184776B2 (en) * 2006-12-28 2013-04-17 旭化成ケミカルズ株式会社 Masterbatch composition, composite material composition, composite material molded body, and production method thereof
EP2070952A1 (en) * 2007-12-14 2009-06-17 Continental Aktiengesellschaft Vulcanizable rubber mixture and its use for rubber products
JP5311956B2 (en) * 2008-10-02 2013-10-09 住友ゴム工業株式会社 Method for producing rubber composition, rubber composition obtained thereby, and tire using the rubber composition
CN101935473B (en) * 2010-09-01 2013-04-17 福建省二轻工业研究所 Preparation method of high-activity wollastonite powder and application thereof in sneaker sole material
CN102002182B (en) * 2010-11-02 2014-01-15 泰亚鞋业股份有限公司 High adhesion ethylene-vinyl acetate copolymer (EVA) foam sneaker sole formula and manufacture method thereof
KR101037383B1 (en) * 2011-03-22 2011-05-26 (주)하이코리아 Insulating materials and preparing method thereof
WO2013004008A1 (en) * 2011-07-05 2013-01-10 Basf Se Filled elastomer comprising polyurethane
KR20140008872A (en) * 2012-07-12 2014-01-22 주식회사 에이로 Lightweight outsole
CN103254536B (en) * 2013-05-22 2015-09-30 吴江市德佐日用化学品有限公司 A kind of high-low temperature resistant sizing material for rubber shoe sole
JP6345000B2 (en) * 2014-07-01 2018-06-20 住友ゴム工業株式会社 Method for kneading rubber material for tire and method for manufacturing tire
CN105254939A (en) * 2015-11-14 2016-01-20 际华三五一五皮革皮鞋有限公司 Dual-density Goodyear large bottom internal timing and quantitative foam rubber and preparing method thereof
CN106243470A (en) * 2016-07-31 2016-12-21 谢新莉 A kind of wear resistant shoe product material and preparation method
CN106723647A (en) * 2016-11-29 2017-05-31 江西省东鹏鞋业有限公司 A kind of on-slip shoes and preparation method thereof
KR102151409B1 (en) * 2018-04-20 2020-09-03 주식회사 나노텍세라믹스(Nanotech Ceramics Co., Ltd.) Composition for manufacturing lightweight footwear having improved heat-resistance and lightweight footwear manufactured using the same
KR102034733B1 (en) * 2018-08-23 2019-10-21 주식회사 에이로 Safety boots using polyurethane composition
KR102092723B1 (en) * 2018-11-15 2020-03-24 한국신발피혁연구원 rubber composition for shoes outsole having abrasion resistance and anti slip function
CN109602122B (en) * 2018-12-11 2021-04-06 泉州邦尼生物科技有限公司 Compression-resistant breathable insole

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131641A (en) * 1983-01-18 1984-07-28 Nippon Zeon Co Ltd Blended rubber composition
JPH08231766A (en) * 1994-12-28 1996-09-10 Yokohama Rubber Co Ltd:The Rubber composition and its production
JP2001081244A (en) * 1999-08-23 2001-03-27 Bayer Ag Aggregated rubber gel-containing rubber mixture and vulcanizate therefrom
JP2001139603A (en) * 1999-11-12 2001-05-22 Jsr Corp Conjugated diene polymer and rubber composition
JP2003514078A (en) * 1999-11-12 2003-04-15 株式会社ブリヂストン Modified polymers produced using lanthanide-based catalysts
JP2003201312A (en) * 2001-08-10 2003-07-18 Asahi Kasei Corp Functional group-containing block copolymer and its composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1100087C (en) * 1998-06-18 2003-01-29 中国科学院化学研究所 Stuffing mother particle for toughening polyolefine and preparation process and usage thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131641A (en) * 1983-01-18 1984-07-28 Nippon Zeon Co Ltd Blended rubber composition
JPH08231766A (en) * 1994-12-28 1996-09-10 Yokohama Rubber Co Ltd:The Rubber composition and its production
JP2001081244A (en) * 1999-08-23 2001-03-27 Bayer Ag Aggregated rubber gel-containing rubber mixture and vulcanizate therefrom
JP2001139603A (en) * 1999-11-12 2001-05-22 Jsr Corp Conjugated diene polymer and rubber composition
JP2003514078A (en) * 1999-11-12 2003-04-15 株式会社ブリヂストン Modified polymers produced using lanthanide-based catalysts
JP2003201312A (en) * 2001-08-10 2003-07-18 Asahi Kasei Corp Functional group-containing block copolymer and its composition

Also Published As

Publication number Publication date
KR100746054B1 (en) 2007-08-03
TW200533707A (en) 2005-10-16
JPWO2005040267A1 (en) 2007-03-15
TWI283693B (en) 2007-07-11
WO2005040267A1 (en) 2005-05-06
CN1875063B (en) 2011-01-05
KR20060081717A (en) 2006-07-13
CN1875063A (en) 2006-12-06

Similar Documents

Publication Publication Date Title
JP4721900B2 (en) Rubber composition for footwear
JP5911524B2 (en) Modified conjugated diene polymer and modified conjugated diene polymer composition
TWI648294B (en) Modified conjugated diene polymer, rubber composition, and tire
JP5898212B2 (en) Method for producing modified conjugated diene polymer, modified conjugated diene polymer, modified conjugated diene polymer composition, rubber composition, and tire
KR100535199B1 (en) Modified block copolymer composition
KR102141469B1 (en) Modified conjugated diene polymer and rubber composition thereof, and tire
JP2018028018A (en) Modified conjugated diene-based polymer composition, rubber composition for tread, and tire
JP7381725B2 (en) Hydrogenated conjugated diene polymer, hydrogenated conjugated diene polymer composition, rubber composition, and method for producing hydrogenated conjugated diene polymer
JP2018002986A (en) Modified conjugated diene polymer composition, rubber composition for side wall, and tire
JP4060105B2 (en) Hydrogenated copolymer composition
JP4761697B2 (en) Hydrogenated polymer
JP5965608B2 (en) Modified conjugated diene polymer composition for tire sidewall
JP6487220B2 (en) Modified conjugated diene polymer, method for producing modified conjugated diene polymer, and composition thereof
JP2019151808A (en) Conjugated diene-based polymer composition, and tire
JP4748965B2 (en) Olefin resin composition
JP4698135B2 (en) Olefin resin composition
JP4911913B2 (en) Copolymer composition and film thereof
JP5866161B2 (en) Method for producing modified conjugated diene polymer, modified conjugated diene polymer, modified conjugated diene polymer composition, and tire
JP3872375B2 (en) Dynamic cross-linking modified block copolymer composition
JP3895213B2 (en) Dynamically crosslinked block copolymer composition
JP4462399B2 (en) Modified block copolymer and composition thereof
JP2021123711A (en) Polymer composition, crosslinked polymer, and tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110404

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4721900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350