JP4721759B2 - Method for producing hydrotreating catalyst for light oil - Google Patents

Method for producing hydrotreating catalyst for light oil Download PDF

Info

Publication number
JP4721759B2
JP4721759B2 JP2005124053A JP2005124053A JP4721759B2 JP 4721759 B2 JP4721759 B2 JP 4721759B2 JP 2005124053 A JP2005124053 A JP 2005124053A JP 2005124053 A JP2005124053 A JP 2005124053A JP 4721759 B2 JP4721759 B2 JP 4721759B2
Authority
JP
Japan
Prior art keywords
catalyst
alumina
oxygen
aqueous solution
inorganic oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005124053A
Other languages
Japanese (ja)
Other versions
JP2006297313A (en
Inventor
久也 石原
隆 亀岡
雄二 葭村
誠 鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
JGC Catalysts and Chemicals Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, JGC Catalysts and Chemicals Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005124053A priority Critical patent/JP4721759B2/en
Publication of JP2006297313A publication Critical patent/JP2006297313A/en
Application granted granted Critical
Publication of JP4721759B2 publication Critical patent/JP4721759B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Description

本発明は、軽油の水素化処理触媒の製造方法に関し、さらに詳しくは、軽油中の芳香族炭化水素および硫黄分を低減させる水素化処理に使用して高い水素化および脱硫活性を示し、しかも活性劣化が小さい軽油の水素化処理触媒の製造方法に関する。   The present invention relates to a method for producing a hydrotreating catalyst for light oil, and more particularly, shows high hydrotreating and desulfurization activity when used in hydrotreating to reduce aromatic hydrocarbons and sulfur content in light oil. The present invention relates to a method for producing a hydroprocessing catalyst for light oil with little deterioration.

ディーゼルエンジンは、良燃費、高耐久性、低CO排出など高い経済的優位性や地球環境保全に対する優位性を持つが、一方でディーゼル排ガスによる大気汚染は都市部や街道沿いにて大きな悪影響を与えている。特に粒子状物質(すす、有機溶剤不溶解分、硫酸塩、水分などから形成)の健康への影響が重大問題となっている。
この粒子状物質を排ガス中から低減させる方法の1つとして、軽油の品質を向上させる事が世界的にも認識されつつある。このため、軽油中の硫黄分を低減させると同時に芳香族炭化水素の低減を可能にする高性能触媒の開発が重要な課題となっており、種々の軽油の水素化処理触媒およびその製造方法が提案されている。
Diesel engines have high economic advantages such as good fuel consumption, high durability, and low CO 2 emissions, as well as global environmental conservation. On the other hand, air pollution caused by diesel exhaust gas has a major negative impact on urban areas and roads. Giving. In particular, the impact on the health of particulate matter (formed from soot, organic solvent insoluble matter, sulfate, moisture, etc.) is a serious problem.
As one of the methods for reducing the particulate matter from the exhaust gas, it has been recognized worldwide that the quality of light oil is improved. For this reason, the development of a high-performance catalyst that can reduce sulfur content in gas oil and at the same time reduce aromatic hydrocarbons has become an important issue. Proposed.

例えば、特許文献1には、炭化水素油の水素化処理触媒とその製造方法およびその活性化方法が提案されており、γ−アルミナ担体に、周期律表第6族金属から選ばれた少なくとも1種の活性金属、周期律表第9族または第10族金属から選ばれた少なくとも1種の活性金属およびリンの酸化物を担持した触媒にさらに有機添加剤を含浸して水素化触媒を製造する方法において、該有機添加剤は、1分子当たりの炭素数が2〜10の2〜3価のアルコール類またはそれらのエーテル類、ポリエチレングリコール類、単糖類、二糖類および多糖類からなる群から選ばれた1種または2種以上であり、かつ該有機添加剤が触媒中に残留するような条件で乾燥することを特徴とする炭化水素油の水素化処理触媒の製造方法が記載されている。
しかし、従来のアルミナなどの多孔性無機酸化物担体にニッケル−モリブデンやニッケル−タングステンなどの活性成分を担持した水素化処理触媒は、軽油中の硫黄分を低減させる効果はある程度有するものの軽油中の芳香族炭化水素を低減させる水素化能力が低く、この種の触媒は芳香族水素化触媒としては適切でなかった。
For example, Patent Document 1 proposes a hydrotreating catalyst for hydrocarbon oil, a method for producing the same, and a method for activating the same, and the γ-alumina support has at least one selected from Group 6 metals in the periodic table. A hydrogenation catalyst is produced by impregnating an organic additive on a catalyst supporting at least one active metal selected from group 9 or group 10 metal of the periodic table and an oxide of phosphorus. In the method, the organic additive is selected from the group consisting of 2 to 3 carbon alcohols having 2 to 10 carbon atoms per molecule or ethers thereof, polyethylene glycols, monosaccharides, disaccharides and polysaccharides. A method for producing a hydrocarbon oil hydrotreating catalyst is characterized in that it is dried under such a condition that the organic additive remains in the catalyst.
However, a conventional hydrotreating catalyst in which an active component such as nickel-molybdenum or nickel-tungsten is supported on a porous inorganic oxide carrier such as alumina has some effect of reducing the sulfur content in the light oil, but in the light oil. This type of catalyst was not suitable as an aromatic hydrogenation catalyst because of its low hydrogenation ability to reduce aromatic hydrocarbons.

一方、貴金属を活性成分に用いた触媒は、高い芳香環水素化活性を持つが、逆に硫黄被毒などの反応阻害を受けやすく劣化し易いという欠点を持っていた。そこで硫黄など被毒物質に対する耐性の高い貴金属系水素化触媒が提案されている。
例えば、本発明者らによる特許文献2には、重希土類元素で修飾した超安定化Y型ゼオライト担体にパラジウム及び/又は白金を担持させたことを特徴とする水素化用触媒が記載されており、特許文献3には、重希土類元素から選ばれた少なくとも1種の元素と周期律表第VIII族貴金属から選ばれた少なくとも一種貴金属を含有することを特徴とする芳香族炭化水素の水素化触媒組成物が記載されている。
しかし、これらの改良した触媒においても、工業的に使用する場合には問題となる程度の経時的な活性劣化が見られた。特に軽油中に含まれる塩基性の窒素化合物は、担体上の酸点に強く吸着し、酸を中和して活性金属の耐硫黄性を下げ、さらに貴金属を凝集するため、それによって触媒の活性劣化が促進されるという問題があった。
On the other hand, a catalyst using a noble metal as an active ingredient has a high aromatic ring hydrogenation activity, but conversely has a drawback that it is susceptible to reaction inhibition such as sulfur poisoning and easily deteriorates. Thus, noble metal hydrogenation catalysts having high resistance to poisoning substances such as sulfur have been proposed.
For example, Patent Document 2 by the present inventors describes a hydrogenation catalyst characterized in that palladium and / or platinum is supported on an ultra-stabilized Y-type zeolite carrier modified with heavy rare earth elements. Patent Document 3 discloses an aromatic hydrocarbon hydrogenation catalyst comprising at least one element selected from heavy rare earth elements and at least one noble metal selected from Group VIII noble metals of the periodic table A composition is described.
However, even with these improved catalysts, the deterioration of the activity over time was observed to the extent that would be a problem when used industrially. In particular, basic nitrogen compounds contained in light oil strongly adsorb to the acid sites on the carrier, neutralize the acid and lower the sulfur resistance of the active metal, and further aggregate the noble metal, thereby increasing the activity of the catalyst. There was a problem that deterioration was promoted.

特開平8−332385号公報JP-A-8-332385 特開2001−29792号公報JP 2001-29792 A 特開2001−246253号公報JP 2001-246253 A

本発明の目的は、前述の問題点を解決し、硫黄化合物や窒素化合物を含む軽油の水素化処理に使用して、芳香族炭化水素の水素化において高い水素化活性を有すると共に高い脱硫活性を有し、しかも硫黄化合物や窒素化合物に対して高い耐性を有し、水素化および脱硫活性の劣化が小さい軽油の水素化処理触媒の製造方法を提供することにある。   The object of the present invention is to solve the above-mentioned problems and use it for hydrogenation treatment of light oil containing sulfur compounds and nitrogen compounds to have high hydrogenation activity and high desulfurization activity in hydrogenation of aromatic hydrocarbons. It is another object of the present invention to provide a method for producing a gas oil hydrotreating catalyst having high resistance to sulfur compounds and nitrogen compounds and having little deterioration in hydrogenation and desulfurization activities.

本発明者らは、前述の目的を達成するために鋭意研究を重ねた結果、軽油の貴金属系水素化処理触媒の製造方法において、特定の含酸素有機化合物を含む水溶液を含浸し、比較的低温で焼成して得られた触媒は、水素化および脱硫活性の劣化が小さいことを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above-mentioned object, the inventors of the present invention impregnated an aqueous solution containing a specific oxygen-containing organic compound in a method for producing a noble metal-based hydrotreating catalyst for light oil, at a relatively low temperature. The catalyst obtained by calcining with NO was found to have little deterioration in hydrogenation and desulfurization activity, and the present invention was completed.

即ち、本発明の第1は、多孔性無機酸化物担体に糖類及びその誘導体よりなる群から選ばれた少なくとも一種の含酸素有機化合物を含む水溶液を含浸し、乾燥した後、周期律表第VIII族貴金属から選ばれた少なくとも一種の貴金属を含む水溶液を含浸し、乾燥し、焼成することにより、残存炭素を含有し且つ赤外吸収スペクトルにおいて2200cm−1に明瞭な吸収を持つ触媒を得ることを特徴とする軽油の水素化処理触媒の製造方法に関する。
本発明の第2は、多孔性無機酸化物担体に周期律表第VIII族貴金属から選ばれた少なくとも一種の貴金属と、糖類及びその誘導体よりなる群から選ばれた少なくとも一種の含酸素有機化合物とを含む水溶液を含浸し、乾燥し、焼成することにより、残存炭素を含有し且つ赤外吸収スペクトルにおいて2200cm−1に明瞭な吸収を持つ触媒を得ることを特徴とする軽油の水素化処理触媒の製造方法に関する。
本発明の第3は、多孔性無機酸化物担体に周期律表第VIII族貴金属から選ばれた少なくとも一種の貴金属を含む水溶液と、糖類及びその誘導体よりなる群から選ばれた少なくとも一種の含酸素有機化合物を含む水溶液とを異なる導入口より同時に導入することにより含浸し、乾燥し、焼成することにより、残存炭素を含有し且つ赤外吸収スペクトルにおいて2200cm−1に明瞭な吸収を持つ触媒を得ることを特徴とする軽油の水素化処理触媒の製造方法に関する。
本発明の第4は、多孔性無機酸化物担体に周期律表第VIII族貴金属から選ばれた少なくとも一種の貴金属を含む水溶液を含浸し、乾燥した後、糖類及びその誘導体よりなる群から選ばれた少なくとも一種の含酸素有機化合物を含む水溶液を含浸し、乾燥し、焼成することにより、残存炭素を含有し且つ赤外吸収スペクトルにおいて2200cm−1に明瞭な吸収を持つ触媒を得ることを特徴とする軽油の水素化処理触媒の製造方法に関する。
本発明の第5は、前記多孔性無機酸化物担体が結晶性アルミノシリケートゼオライト、アルミナ、シリカ、チタニア、ジルコニア、アルミナ−シリカ、アルミナ−ボリア、アルミナ−チタニア、アルミナ−シリカ−ボリア、シリカ−チタニア、アルミナ−シリカ−チタニア、アルミナ−チタニア−ボリア、アルミナ−リン、アルミナ−リン−ボリア、アルミナ−シリカ−リン及びアルミナ−チタニア−リン−ボリアよりなる群から選ばれた無機酸化物からなることを特徴とする請求項1〜4のいずれかに記載の軽油の水素化処理触媒の製造方法に関する。
本発明の第6は、前記貴金属の含浸量が触媒基準で金属として0.1〜10wt%の範囲にあることを特徴とする請求項1〜5のいずれかに記載の軽油の水素化処理触媒の製造方法に関する。
本発明の第7は、前記貴金属がパラジウム(Pd)及び白金(Pt)からなり、Pd/Pt原子比が0.1/1〜10/1の範囲にあることを特徴とする請求項1〜6のいずれかに記載の軽油の水素化処理触媒の製造方法に関する。
本発明の第8は、前記含酸素有機化合物が単糖類、二糖類、多糖類、アルドン酸類糖酸類、ウロン酸類、ラクトン類よりなる群から選ばれた含酸素有機化合物であることを特徴とする請求項1〜7のいずれかに記載の軽油の水素化処理触媒の製造方法に関する。
本発明の第9は、前記含酸素有機化合物の含浸量が前記多孔性無機酸化物担体に対して1〜20wt%の範囲にあることを特徴とする請求項1〜8のいずれかに記載の軽油の水素化処理触媒の製造方法に関する。
本発明の第10は、前記水素化処理触媒に含まれる残存炭素量が触媒基準で炭素として0.5〜10wt%の範囲にあることを特徴とする請求項1〜9のいずれかに記載の軽油の水素化処理触媒の製造方法に関する。
That is, according to the first aspect of the present invention, a porous inorganic oxide carrier is impregnated with an aqueous solution containing at least one oxygen-containing organic compound selected from the group consisting of saccharides and derivatives thereof, dried, and then subjected to periodic table VIII. Impregnating an aqueous solution containing at least one kind of noble metal selected from group noble metals, drying and calcining to obtain a catalyst containing residual carbon and having a clear absorption at 2200 cm −1 in the infrared absorption spectrum. The present invention relates to a method for producing a featured gas oil hydrotreating catalyst.
In the second aspect of the present invention, the porous inorganic oxide support includes at least one noble metal selected from Group VIII noble metals in the periodic table, and at least one oxygen-containing organic compound selected from the group consisting of saccharides and derivatives thereof. An oil hydrotreating catalyst characterized in that a catalyst containing residual carbon and having a clear absorption at 2200 cm −1 in an infrared absorption spectrum is obtained by impregnating an aqueous solution containing It relates to a manufacturing method.
The third aspect of the present invention is an aqueous solution containing at least one kind of noble metal selected from Group VIII noble metals of the periodic table on a porous inorganic oxide support, and at least one kind of oxygen containing substance selected from the group consisting of saccharides and derivatives thereof. Impregnation by simultaneously introducing an aqueous solution containing an organic compound through different inlets, drying, and firing to obtain a catalyst containing residual carbon and having a clear absorption at 2200 cm −1 in the infrared absorption spectrum The present invention relates to a method for producing a gas oil hydrotreating catalyst.
In the fourth aspect of the present invention, the porous inorganic oxide support is impregnated with an aqueous solution containing at least one noble metal selected from Group VIII noble metals in the periodic table, dried, and then selected from the group consisting of saccharides and derivatives thereof. It is characterized in that a catalyst containing residual carbon and having a clear absorption at 2200 cm −1 in an infrared absorption spectrum is obtained by impregnating an aqueous solution containing at least one oxygen-containing organic compound, drying and firing. The present invention relates to a method for producing a gas oil hydrotreating catalyst.
In the fifth aspect of the present invention, the porous inorganic oxide carrier is crystalline aluminosilicate zeolite, alumina, silica, titania, zirconia, alumina-silica, alumina-boria, alumina-titania, alumina-silica-boria, silica-titania. An inorganic oxide selected from the group consisting of alumina-silica-titania, alumina-titania-boria, alumina-phosphorus, alumina-phosphorus-boria, alumina-silica-phosphorus, and alumina-titania-phosphorus-boria. The present invention relates to a method for producing a gas oil hydrotreating catalyst according to any one of claims 1 to 4.
The sixth aspect of the present invention is the gas oil hydrotreating catalyst according to any one of claims 1 to 5, wherein the impregnation amount of the noble metal is in a range of 0.1 to 10 wt% as a metal on a catalyst basis. It relates to the manufacturing method.
According to a seventh aspect of the present invention, the noble metal is composed of palladium (Pd) and platinum (Pt), and the Pd / Pt atomic ratio is in the range of 0.1 / 1 to 10/1. 6. A method for producing a gas oil hydrotreating catalyst according to any one of 6 above.
According to an eighth aspect of the present invention, the oxygen-containing organic compound is an oxygen-containing organic compound selected from the group consisting of monosaccharides, disaccharides, polysaccharides, aldonic acids , sugar acids, uronic acids, and lactones. The present invention relates to a method for producing a gas oil hydrotreating catalyst according to any one of claims 1 to 7.
The ninth aspect of the present invention is that the amount of impregnation of the oxygen-containing organic compound is in the range of 1 to 20 wt% with respect to the porous inorganic oxide support. The present invention relates to a method for producing a gas oil hydrotreating catalyst.
The tenth aspect of the present invention is that the amount of residual carbon contained in the hydroprocessing catalyst is in the range of 0.5 to 10 wt% as carbon on a catalyst basis. The present invention relates to a method for producing a gas oil hydrotreating catalyst.

本発明の軽油の水素化処理触媒の製造方法は、多孔性無機酸化物担体に糖類及びその誘導体よりなる群から選ばれた少なくとも一種の含酸素有機化合物を含む水溶液並びに周期律表第VIII族貴金属から選ばれた少なくとも一種の貴金属を含む水溶液を含浸し、乾燥し、焼成することにより、残存炭素を含有し且つ赤外吸収スペクトルにおいて2200cm −1 に明瞭な吸収を持つ触媒を得ることを特徴とする。 Method for producing a gas oil hydrotreating catalysts of the present invention, the porous inorganic oxide support to a saccharide and water solution and the Group VIII of periodic table including at least one oxygen-containing organic compound selected from the group consisting of a derivative thereof A catalyst containing a residual carbon and having a clear absorption at 2200 cm −1 in an infrared absorption spectrum is obtained by impregnating an aqueous solution containing at least one kind of noble metal selected from noble metals, drying and firing. And

本発明での多孔性無機酸化物担体は、通常、軽油などの水素化処理触媒に使用される多孔性無機酸化物担体が使用可能である。
該多孔性無機酸化物担体としては、結晶性アルミノシリケートゼオライト、及び/又はアルミナ、シリカ、チタニア、ジルコニア、アルミナ−シリカ、アルミナ−ボリア、アルミナ−チタニア、アルミナ−シリカ−ボリア、シリカ−チタニア、アルミナ−シリカ−チタニア、アルミナ−チタニア−ボリア、アルミナ−リン、アルミナ−リン−ボリア、アルミナ−シリカ−リン、アルミナ−チタニア−リン−ボリアから選ばれた無機酸化物からなるものが好ましい。
前記結晶性アルミノシリケートゼオライトとしては、A型ゼオライト、X型ゼオライト、Y型ゼオライト、L型ゼオタイト、ベータ型ゼオライト、モルデナイト、チャバサイト、エリオナイト、AlPO、SAPOやZSMゼオライトで代表されるペンタシル型ゼオライトなどのMFI型ゼオライトなどが例示される。
特に、SiO/Alモル比が5以上、好ましくは10〜1000、さらに好ましくは10〜300の超安定Y型ゼオライトは、適当な固体酸を有するので好適である。該結晶性アルミノシリケートゼオライトは、単独又は他の無機酸化物との併用で担体として使用される。
前記多孔性無機酸化物担体は、周知の形状、例えば、円柱状、円筒状、三葉形状、四葉形状などの任意の寸法のものが使用可能である。なお、本発明での多孔性無機酸化物担体はこれらに限定されるものではない。
As the porous inorganic oxide carrier in the present invention, a porous inorganic oxide carrier that is usually used for a hydrotreating catalyst such as light oil can be used.
Examples of the porous inorganic oxide carrier include crystalline aluminosilicate zeolite and / or alumina, silica, titania, zirconia, alumina-silica, alumina-boria, alumina-titania, alumina-silica-boria, silica-titania, and alumina. -An inorganic oxide selected from silica-titania, alumina-titania-boria, alumina-phosphorus, alumina-phosphorus-boria, alumina-silica-phosphorus, and alumina-titania-phosphorus-boria is preferable.
As the crystalline aluminosilicate zeolite, pentasil type represented by A-type zeolite, X-type zeolite, Y-type zeolite, L-type zeolite, beta-type zeolite, mordenite, chabazite, erionite, AlPO 4 , SAPO and ZSM zeolite. Examples include MFI type zeolite such as zeolite.
In particular, an ultrastable Y-type zeolite having a SiO 2 / Al 2 O 3 molar ratio of 5 or more, preferably 10 to 1000, more preferably 10 to 300, is suitable because it has a suitable solid acid. The crystalline aluminosilicate zeolite is used as a carrier alone or in combination with other inorganic oxides.
As the porous inorganic oxide support, those having a known shape such as a columnar shape, a cylindrical shape, a trilobal shape, and a four-leaf shape can be used. In addition, the porous inorganic oxide support | carrier in this invention is not limited to these.

前述の多孔性無機酸化物担体に含浸する糖類及びその誘導体よりなる群から選ばれた少なくとも一種の含酸素有機化合物としては、水に溶解する含酸素有機化合物が使用される。
該糖類及び/又はその誘導体としては、D−グルコース(ブドウ糖)、D−フルクトース(果糖)、D−ガラクトースをはじめとするアルドースやケトースなどの単糖類、スクロース(ショ糖)やマルトースなどの二糖類、デンプンなどの多糖類、グルコン酸やマンノン酸などのアルドン酸類(カルボキシル基が1個、アルコール基が5個)、糖酸やマンノ糖酸、粘液酸などの糖酸類(カルボキシル基が2個、アルコール基が4個)、グルクウロン酸、ガラクトウロン酸などのウロン酸類(カルボキシル基が1個、アルコール基が4個)、グルコラクトンなどの分子内で環状エステルを形成したラクトン類から選ばれた少なくとも一種の含酸素有機化合物であることが好ましい。
As the at least one oxygen-containing organic compound selected from the group consisting of saccharides impregnated in the porous inorganic oxide carrier and derivatives thereof, an oxygen-containing organic compound that dissolves in water is used.
Examples of the saccharide and / or derivative thereof include D-glucose (glucose), D-fructose (fructose), monosaccharides such as aldose and ketose including D-galactose, and disaccharides such as sucrose (sucrose) and maltose. , Polysaccharides such as starch, aldonic acids such as gluconic acid and mannonic acid (one carboxyl group, five alcohol groups), sugar acids such as sugar acid, mannosugar acid and mucic acid (two carboxyl groups, 4 alcohol groups), uronic acids such as glucuronic acid and galacturonic acid (1 carboxyl group and 4 alcohol groups), and at least selected from lactones that form a cyclic ester in the molecule such as glucolactone A kind of oxygen-containing organic compound is preferable.

前記含酸素有機化合物の含浸量は、前記多孔性無機酸化物担体に対して1〜20wt%の範囲にあることが好ましい。
該含酸素有機化合物の含浸量が1wt%より少ない場合には、得られる触媒は軽油の水素化処理に使用して所望の水素化および脱硫活性の劣化防止効果が得られないことがあり、また、該含酸素有機化合物の含浸量が20wt%より多くても効果に差がない。該含酸素有機化合物の含浸量は、さらに好ましくは2〜15wt%の範囲にあることが望ましい。
The impregnation amount of the oxygen-containing organic compound is preferably in the range of 1 to 20 wt% with respect to the porous inorganic oxide support.
When the impregnation amount of the oxygen-containing organic compound is less than 1 wt%, the obtained catalyst may not be used for the hydrogenation treatment of light oil to obtain the desired effect of preventing deterioration of the hydrogenation and desulfurization activities. Even if the impregnation amount of the oxygen-containing organic compound is more than 20 wt%, there is no difference in the effect. The impregnation amount of the oxygen-containing organic compound is more preferably in the range of 2 to 15 wt%.

本発明で用いられる周期律表第VIII族貴金属としては、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金などが例示される。前述の貴金属の含浸量は、触媒基準(担体と金属成分)で金属として0.1〜10wt%の範囲であることが好ましい。
該貴金属の含浸量が0.1wt%より少ない場合には所望の水素化および脱硫活性が得られないことがあり、また、10wt%より多くしても水素化および脱硫活性の増加は少なく、製造原価が高くなる傾向にある。
該貴金属の含浸量は、さらに好ましくは金属として0.5〜5wt%の範囲にあることが望ましい。
Examples of the Group VIII noble metals in the periodic table include ruthenium, rhodium, palladium, osmium, iridium, platinum and the like. The amount of impregnation of the above-mentioned noble metal is preferably in the range of 0.1 to 10 wt% as a metal on the basis of the catalyst (support and metal component).
When the impregnation amount of the noble metal is less than 0.1 wt%, the desired hydrogenation and desulfurization activity may not be obtained. Costs tend to be high.
The amount of impregnation of the noble metal is more preferably in the range of 0.5 to 5 wt% as a metal.

本発明では、前記貴金属がパラジウム(Pd)及び白金(Pt)からなり、Pd/Pt原子比が0.1/1〜10/1の範囲にあることが好ましい。パラジウムと白金を組み合わせて使用することにより、高い水素化機能を維持し硫黄化合物に対する耐性が増大される。
これは、パラジウムが硫黄との親和性が高いため白金の硫黄被毒を保護していると推定される。
また該パラジウムと白金の組み合わせは、Pd/Pt原子比で0.1/1〜10/1の範囲が望ましい。該Pd/Pt原子比が0.1/1より小さい場合、若しくは10/1より大きい場合には、硫黄化合物に対する耐性が低下することがあり、高い水素化機能を維持できないことがある。
In the present invention, the noble metal is preferably composed of palladium (Pd) and platinum (Pt), and the Pd / Pt atomic ratio is preferably in the range of 0.1 / 1 to 10/1. By using a combination of palladium and platinum, a high hydrogenation function is maintained and resistance to sulfur compounds is increased.
This is presumably because palladium has a high affinity for sulfur and thus protects platinum from poisoning.
The combination of palladium and platinum is preferably in the range of 0.1 / 1 to 10/1 in terms of Pd / Pt atomic ratio. If the Pd / Pt atomic ratio is less than 0.1 / 1 or greater than 10/1, the resistance to sulfur compounds may decrease, and a high hydrogenation function may not be maintained.

さらに、前述の貴金属に追加して重希土類元素から選ばれた少なくとも一種の元素を前述の多孔性無機酸化物担体に担持することが望ましい。
重希土類元素とは、イッテルビウム(Yb)、ガドリウム(Gd)、テルビウム(Tb)及びジスプロシウム(Dy)の4つの元素を意味する。
前述の貴金属に追加して重希土類元素を担持することにより、貴金属の耐硫黄被毒性や耐窒素被毒性の効果が増大する。該重希土類元素の担持量は、好ましくは金属として0.5〜40wt%(触媒基準)、さらに好ましくは2.5〜20wt%の範囲にあることが望ましい。該重希土類元素の担持量が0.5wt%より少ない場合には、効果の増大が少なく、該担持量が40wt%より多くしても効果はそれほど変わらず、製造原価が高くなる傾向にある。なお、重希土類元素の担持法としては、含浸法や混練法など周知の方法が採用される。
Furthermore, it is desirable to support at least one element selected from heavy rare earth elements on the aforementioned porous inorganic oxide carrier in addition to the aforementioned noble metal.
The heavy rare earth element means four elements of ytterbium (Yb), gadolinium (Gd), terbium (Tb), and dysprosium (Dy).
By supporting heavy rare earth elements in addition to the above-mentioned noble metals, the effects of sulfur poisoning resistance and nitrogen poisoning resistance of noble metals are increased. The supported amount of the heavy rare earth element is preferably in the range of 0.5 to 40 wt% (catalyst basis), more preferably 2.5 to 20 wt% as a metal. When the loading amount of the heavy rare earth element is less than 0.5 wt%, the increase in the effect is small, and even if the loading amount is more than 40 wt%, the effect does not change so much and the manufacturing cost tends to increase. As a method for supporting heavy rare earth elements, known methods such as an impregnation method and a kneading method are employed.

本発明での前述の多孔性無機酸化物担体に前述の含酸素有機化合物を含む水溶液および/または前述の貴金属を含む水溶液の含浸は、周知の含浸方法が採用される。
例えば、吸着法、平衡吸着法、ポアフィリング法、インシピアント ウエットネス法、蒸発乾固法、噴霧法などの含浸方法が例示される。
前述の多孔性無機酸化物担体に前述の含酸素有機化合物を含む水溶液および/または前述の貴金属を含む水溶液の含浸は、前記の周知の含浸方法により、前述の含酸素有機化合物を含む水溶液を含浸し、乾燥した後、前述の貴金属を含む水溶液を含浸しても良いし、また、前述の貴金属を含む水溶液を含浸し、乾燥した後、前述の含酸素有機化合物を含む水溶液を含浸しても良い。さらに、前述の貴金属と前述の含酸素有機化合物とを含む水溶液を含浸しても良い。また、前述の貴金属を含む水溶液と、前述の含酸素有機化合物を含む水溶液をそれぞれ異なる導入口より同時に噴霧するなどして含浸しても良い。
For the impregnation of the aqueous solution containing the oxygen-containing organic compound and / or the aqueous solution containing the noble metal described above into the porous inorganic oxide carrier described above, a well-known impregnation method is employed.
Examples of the impregnation method include an adsorption method, an equilibrium adsorption method, a pore filling method, an incipient wetness method, an evaporation to dryness method, and a spray method.
The porous inorganic oxide carrier is impregnated with the aqueous solution containing the oxygen-containing organic compound and / or the aqueous solution containing the noble metal described above by the above-described well-known impregnation method. Then, after drying, it may be impregnated with an aqueous solution containing the aforementioned noble metal, or impregnated with an aqueous solution containing the aforementioned noble metal, dried and then impregnated with an aqueous solution containing the aforementioned oxygen-containing organic compound. good. Further, it may be impregnated with an aqueous solution containing the aforementioned noble metal and the aforementioned oxygen-containing organic compound. Further, the aqueous solution containing the above-mentioned noble metal and the aqueous solution containing the above-mentioned oxygen-containing organic compound may be impregnated by simultaneously spraying them from different inlets.

また、本発明の製造方法では、前述の多孔性無機酸化物担体に前述の含酸素有機化合物を含む水溶液および/または前述の貴金属を含む水溶液を前述の含浸方法で含浸した後、乾燥して水分を除去する。
本発明での乾燥は、含浸された含酸素有機化合物が分解燃焼しない温度範囲で水分が10wt%以上、好ましくは50〜100wt%除去される時間行われる。
具体的には、60〜200℃の温度範囲で、0.1〜20時間の乾燥条件などが例示される。
特に、マイクロ波照射による乾燥が好ましい。マイクロ波としては、特に家庭で使用されている電子レンジの2.45GHz周波数が好適である。
また、乾燥した触媒は酸素存在下、好ましくは酸素気流中、比較的低温の範囲で触媒の焼成を行い、活性成分を安定化させる。具体的には、200〜400℃の温度範囲で、0.1〜20時間の焼成条件等が例示される。
この焼成の結果得られる水素化処理触媒は、触媒基準で炭素として0.5〜10wt%の範囲の残存炭素を含むことが望ましい。該残存炭素量が0.5wt%より少ない場合には、得られる触媒は軽油の水素化処理に使用して所望の水素化および脱硫活性の劣化防止効果が得られないことがあり、また、該残存炭素量が10wt%より多くても効果に差がない。
In the production method of the present invention, the porous inorganic oxide carrier is impregnated with the aqueous solution containing the oxygen-containing organic compound and / or the aqueous solution containing the noble metal described above by the impregnation method, and then dried and dried. Remove.
Drying in the present invention is performed for a time during which water is removed by 10 wt% or more, preferably 50 to 100 wt%, in a temperature range in which the impregnated oxygen-containing organic compound does not decompose and burn.
Specifically, the drying conditions for 0.1 to 20 hours are exemplified in the temperature range of 60 to 200 ° C.
In particular, drying by microwave irradiation is preferable. As the microwave, the 2.45 GHz frequency of a microwave oven used at home is particularly suitable.
The dried catalyst is calcined in the presence of oxygen, preferably in a stream of oxygen at a relatively low temperature to stabilize the active component. Specifically, firing conditions for 0.1 to 20 hours and the like are exemplified in a temperature range of 200 to 400 ° C.
The hydrotreating catalyst obtained as a result of this calcination desirably contains residual carbon in the range of 0.5 to 10 wt% as carbon on a catalyst basis. When the amount of residual carbon is less than 0.5 wt%, the obtained catalyst may not be used for the hydrogenation treatment of light oil to obtain the desired effect of preventing deterioration of hydrogenation and desulfurization activity. There is no difference in effect even if the amount of residual carbon is more than 10 wt%.

本発明の製造方法で得られた触媒は、極初期を除き活性劣化が小さい。即ち、該触媒は高い水素化機能を持ちながら活性劣化が極めて少なく寿命の長い芳香族炭化水素の水素化触媒能力を有する。
該触媒が、活性劣化が極めて少ない理由については明らかでないが、触媒中に残存する含酸素有機化合物が活性点を保護し、貴金属の凝集を抑制することや、塩基性窒素化合物などの被毒物質による攻撃を和らげる働きを持つことが推測される。
また、本発明の製造方法で得られた高い安定性を示す、200〜400℃で焼成された触媒は、赤外吸収スペクトルにて2200cm−1に明瞭な吸収を持つ。該明瞭な吸収は前述の含酸素有機化合物を含浸しない触媒では見られず、また貴金属を含まない担体では該吸収は見られない。
該吸収は糖類の有機化合物には見られない特殊な吸収領域に位置している。該吸収は貴金属に近接ないし結合した、炭素の部分酸化物によるものと推測される。
なお、貴金属にCOが吸着した場合には2100cm−1および1950cm−1に吸収が得られる。
The catalyst obtained by the production method of the present invention has little activity deterioration except in the very initial stage. That is, the catalyst has a hydrogenation catalyst ability of an aromatic hydrocarbon having a very long life with little deterioration in activity while having a high hydrogenation function.
Although it is not clear why the catalyst has very little deterioration in activity, the oxygen-containing organic compound remaining in the catalyst protects the active site and suppresses aggregation of noble metals, and poisonous substances such as basic nitrogen compounds It is presumed to have a function to mitigate attacks by.
Moreover, the catalyst baked at 200-400 degreeC which shows the high stability obtained by the manufacturing method of this invention has a clear absorption in 2200cm < -1 > in an infrared absorption spectrum. The clear absorption is not observed in the catalyst not impregnated with the above-mentioned oxygen-containing organic compound, and the absorption is not observed in the support containing no noble metal.
The absorption is located in a special absorption region not found in organic compounds of sugars. The absorption is presumed to be due to a partial oxide of carbon adjacent to or bonded to the noble metal.
In addition, when CO adsorbs to the noble metal, absorption is obtained at 2100 cm −1 and 1950 cm −1 .

本発明の製造方法で得られた触媒は、通常の軽油の水素化反応条件が採用可能であり、具体的な水素化条件としては、水素分圧が2.9〜14.7MPa、好ましくは3.9〜7.8MPa,反応温度が200〜400℃、好ましくは250〜350℃,液空間速度が0.1〜5.0h−1、好ましくは2.0〜4.0h−1などを例示することができる。 The catalyst obtained by the production method of the present invention can employ ordinary light oil hydrogenation reaction conditions. Specific hydrogenation conditions include a hydrogen partial pressure of 2.9 to 14.7 MPa, preferably 3 9.9 to 7.8 MPa, reaction temperature is 200 to 400 ° C., preferably 250 to 350 ° C., liquid space velocity is 0.1 to 5.0 h −1 , preferably 2.0 to 4.0 h −1, etc. can do.

本発明の水素化触媒組成物は、芳香族及び複素芳香族炭化水素の水素化において高い水素化活性と硫黄及び窒素化合物に対して高い耐性を有し、硫黄及び窒素化合物が共存する各種芳香族炭化水素及び/又は複素芳香族化合物に対する水素化触媒として用いることができる。
本発明の水素化触媒組成物は、軽油中の芳香族成分並びに硫黄成分を同時に低減させるための水素化触媒として用いることができる。
The hydrogenation catalyst composition of the present invention has high hydrogenation activity and high resistance to sulfur and nitrogen compounds in hydrogenation of aromatic and heteroaromatic hydrocarbons, and various aromatics in which sulfur and nitrogen compounds coexist. It can be used as a hydrogenation catalyst for hydrocarbons and / or heteroaromatic compounds.
The hydrogenation catalyst composition of the present invention can be used as a hydrogenation catalyst for simultaneously reducing the aromatic component and sulfur component in light oil.

以下に実施例を示し本発明を具体的に説明するが、本発明はこれにより限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereby.

実施例1(触媒の調製)
アルミナとして濃度5wt%のアルミン酸ナトリウム水溶液10kgを調合容器に入れ、この水溶液を攪拌しながら濃度2wt%の硫酸アルミニウム水溶液をpHが7になるまで添加し、擬ベーマイトアルミナ水和物を生成させた。このスラリーを洗浄、熟成した後加熱捏和して、アルミナ捏和物を得た。
次に、該アルミナ捏和物450g(乾燥基準)と超安定化Y型ゼオライト(東ソー(株):HSZ−360HUA SiO/Alモル比=13.9、H型ゼオライト)1050g(乾燥基準)とを混合捏和し、直径1/16インチの円柱状に押し出し成型した。得られた成型物を110℃で16時間乾燥し、550℃で3時間焼成して超安定化Y型ゼオライト(70wt%)とアルミナ(30wt%)の多孔性無機酸化物担体を調製した。
該多孔性無機酸化物担体10g(乾燥基準)を、グルコース0.5g(5wt%に相当)を純水に溶解したグルコース水溶液に浸漬した。次いで、この含浸品を110℃で10時間乾燥した。次いでこの乾燥品を、Ybとして5wt%の酢酸イッテルビウム4水和物1.31g、Pdとして0.82wt%のテトラアンミンパラジウム塩化物0.22g、Ptとして0.38wt%のテトラアンミン白金塩化物0.073gを純水に溶解して調製したYb−Pd−Pt混合金属塩水溶液に浸漬した。次いで、この含浸品を2.45GHzの周波数を持つマイクロ波を10分間照射して乾燥し、酸素気流中において260℃で3時間(昇温温度:0.5℃/min)焼成して触媒Aを得た。
Example 1 (Preparation of catalyst)
10 kg of an aqueous solution of sodium aluminate having a concentration of 5 wt% as alumina was put into a preparation container, and an aqueous solution of aluminum sulfate having a concentration of 2 wt% was added until the pH reached 7 while stirring the aqueous solution to produce pseudoboehmite alumina hydrate. . This slurry was washed and aged, and then kneaded with heating to obtain an alumina kneaded product.
Next, 450 g of the alumina hydrate (dry basis) and 1050 g of ultra-stabilized Y-type zeolite (Tosoh Corporation: HSZ-360HUA SiO 2 / Al 2 O 3 molar ratio = 13.9, H-type zeolite) And the mixture was extruded into a cylindrical shape having a diameter of 1/16 inch. The obtained molded product was dried at 110 ° C. for 16 hours and calcined at 550 ° C. for 3 hours to prepare a porous inorganic oxide support of ultra-stabilized Y-type zeolite (70 wt%) and alumina (30 wt%).
10 g of the porous inorganic oxide carrier (dry basis) was immersed in an aqueous glucose solution in which 0.5 g of glucose (corresponding to 5 wt%) was dissolved in pure water. The impregnated product was then dried at 110 ° C. for 10 hours. The dried product was then mixed with Yb 5 wt% ytterbium acetate tetrahydrate 1.31 g, Pd 0.82 wt% tetraamminepalladium chloride 0.22 g, and Pt 0.38 wt% tetraammineplatinum chloride 0.073 g. Was immersed in a Yb—Pd—Pt mixed metal salt aqueous solution prepared by dissolving in water. Next, this impregnated product was dried by irradiation with microwaves having a frequency of 2.45 GHz for 10 minutes, and calcined in an oxygen stream at 260 ° C. for 3 hours (temperature increase temperature: 0.5 ° C./min) to form catalyst A. Got.

実施例2(触媒の調製)
実施例1で得た超安定化Y型ゼオライトとアルミナの多孔性無機酸化物担体10g(乾燥基準)を、D−フルクトース(果糖)0.5g(5wt%に相当)を純水に溶解したフルクトース水溶液に浸漬した。次いで、この含浸品を110℃で10時間乾燥した。
次いでこの乾燥品を、Ybとして5wt%の酢酸イッテルビウム4水和物1.31g、Pdとして0.82wt%のテトラアンミンパラジウム塩化物0.22g、Ptとして0.38wt%のテトラアンミン白金塩化物0.073gを純水に溶解して調製したYb−Pd−Pt混合金属塩水溶液に浸漬した。
次いで、この含浸品を2.45GHzの周波数を持つマイクロ波を10分間照射して乾燥し、酸素気流中において260℃で3時間(昇温温度:0.5℃/min)焼成して触媒Bを得た。
Example 2 (Preparation of catalyst)
Fructose obtained by dissolving 10 g (dry basis) of the ultra-stabilized Y-type zeolite and alumina porous inorganic oxide carrier obtained in Example 1 and 0.5 g (corresponding to 5 wt%) of D-fructose (fructose) in pure water. It was immersed in an aqueous solution. The impregnated product was then dried at 110 ° C. for 10 hours.
The dried product was then mixed with Yb 5 wt% ytterbium acetate tetrahydrate 1.31 g, Pd 0.82 wt% tetraamminepalladium chloride 0.22 g, and Pt 0.38 wt% tetraammineplatinum chloride 0.073 g. Was immersed in a Yb—Pd—Pt mixed metal salt aqueous solution prepared by dissolving in water.
Next, the impregnated product was dried by irradiation with microwaves having a frequency of 2.45 GHz for 10 minutes, and calcined in an oxygen stream at 260 ° C. for 3 hours (temperature increase temperature: 0.5 ° C./min) to obtain catalyst B. Got.

実施例3(触媒の調製)
実施例1で得た超安定化Y型ゼオライトとアルミナの多孔性無機酸化物担体10g(乾燥基準)を、サッカロース(ショ糖)0.5g(5wt%に相当)を純水に溶解したサッカロース水溶液に浸漬した。次いで、この含浸品を110℃で10時間乾燥した。次いでこの乾燥品を、Ybとして5wt%の酢酸イッテルビウム4水和物1.31g、Pdとして0.82wt%のテトラアンミンパラジウム塩化物0.22g、Ptとして0.38wt%のテトラアンミン白金塩化物0.073gを純水に溶解して調製したYb−Pd−Pt混合金属塩水溶液に浸漬した。
次いで、この含浸品を2.45GHzの周波数を持つマイクロ波を10分間照射して乾燥し、酸素気流中において260℃で3時間(昇温温度:0.5℃/min)焼成して触媒Cを得た。
Example 3 (Preparation of catalyst)
A sucrose aqueous solution in which 0.5 g (corresponding to 5 wt%) of saccharose (sucrose) was dissolved in pure water of 10 g (dry basis) of a porous inorganic oxide carrier of ultra-stabilized Y-type zeolite and alumina obtained in Example 1 Soaked in. The impregnated product was then dried at 110 ° C. for 10 hours. The dried product was then mixed with Yb 5 wt% ytterbium acetate tetrahydrate 1.31 g, Pd 0.82 wt% tetraamminepalladium chloride 0.22 g, and Pt 0.38 wt% tetraammineplatinum chloride 0.073 g. Was immersed in a Yb—Pd—Pt mixed metal salt aqueous solution prepared by dissolving in water.
Next, the impregnated product was dried by irradiation with microwaves having a frequency of 2.45 GHz for 10 minutes, and calcined in an oxygen stream at 260 ° C. for 3 hours (temperature increase temperature: 0.5 ° C./min) to obtain catalyst C. Got.

実施例4(触媒の調製)
実施例1で得た超安定化Y型ゼオライトとアルミナの多孔性無機酸化物担体10g(乾燥基準)を、サッカロース(ショ糖)0.5g、Ybとして5wt%の酢酸イッテルビウム4水和物1.31g、Pdとして0.82wt%のテトラアンミンパラジウム塩化物0.22g、Ptとして0.38wt%のテトラアンミン白金塩化物0.073gを純水に溶解して調製したサッカロース−Yb−Pd−Pt混合金属塩水溶液に浸漬した。
次いで、この含浸品を2.45GHzの周波数を持つマイクロ波を10分間照射して乾燥し、酸素気流中において260℃で3時間(昇温温度:0.5℃/min)焼成して触媒Dを得た。
Example 4 (Preparation of catalyst)
10 g (dry basis) of a porous inorganic oxide carrier of ultra-stabilized Y-type zeolite and alumina obtained in Example 1, 0.5 g of saccharose (sucrose) and 5 wt% ytterbium acetate tetrahydrate as Yb Saccharose-Yb-Pd-Pt mixed metal salt prepared by dissolving 31 g, 0.22 g of tetraamminepalladium chloride as Pd and 0.073 g of tetraammineplatinum chloride as Pt in 0.38 wt% in pure water It was immersed in an aqueous solution.
Next, the impregnated product was dried by irradiation with microwaves having a frequency of 2.45 GHz for 10 minutes, and calcined in an oxygen stream at 260 ° C. for 3 hours (temperature increase temperature: 0.5 ° C./min) to obtain catalyst D. Got.

実施例5(触媒の調製)
実施例1で得た超安定化Y型ゼオライトとアルミナの多孔性無機酸化物担体10g(乾燥基準)を、Ybとして5wt%の酢酸イッテルビウム4水和物1.31g、Pdとして0.82wt%のテトラアンミンパラジウム塩化物0.22g、Ptとして0.38wt%のテトラアンミン白金塩化物0.073gを純水に溶解して調製したYb−Pd−Pt混合金属塩水溶液に浸漬し、2.45GHzの周波数を持つマイクロ波を10分間照射して乾燥した。
次いでこの乾燥品を、サッカロース(ショ糖)0.5g(5wt%に相当)を純水に溶解したサッカロース水溶液に浸漬した。
次いで、この含浸品を2.45GHzの周波数を持つマイクロ波を10分間照射して乾燥し、酸素気流中において260℃で3時間(昇温温度:0.5℃/min)焼成して触媒Eを得た。
Example 5 (Preparation of catalyst)
10 g (dry basis) of the ultra-stabilized Y-zeolite and alumina porous inorganic oxide support obtained in Example 1 were used as Yb, 5 wt% ytterbium acetate tetrahydrate 1.31 g, and Pd 0.82 wt%. It is immersed in a Yb-Pd-Pt mixed metal salt aqueous solution prepared by dissolving 0.23 g of tetraamminepalladium chloride and 0.073 g of tetraammineplatinum chloride as Pt in pure water, and setting a frequency of 2.45 GHz. It was dried by irradiation with microwaves for 10 minutes.
Next, this dried product was immersed in an aqueous saccharose solution in which 0.5 g (corresponding to 5 wt%) of saccharose (sucrose) was dissolved in pure water.
Next, the impregnated product was dried by irradiation with microwaves having a frequency of 2.45 GHz for 10 minutes, and calcined in an oxygen stream at 260 ° C. for 3 hours (temperature increase temperature: 0.5 ° C./min) to obtain catalyst E. Got.

比較例1(触媒の調製)
実施例1で得た超安定化Y型ゼオライトとアルミナの多孔性無機酸化物担体10gを、Ybとして5wt%の酢酸イッテルビウム4水和物1.31g、Pdとして0.82wt%のテトラアンミンパラジウム塩化物0.22g、Ptとして0.38wt%のテトラアンミン白金塩化物0.073gを純水に溶解して調製したYb−Pd−Pt混合金属塩水溶液に浸漬した。
次いで、この含浸品を2.45GHzの周波数を持つマイクロ波を10分間照射して乾燥し、酸素気流中において260℃で3時間(昇温温度:0.5℃/min)焼成して触媒Fを得た。
Comparative Example 1 (Preparation of catalyst)
10 g of the porous inorganic oxide support of ultra-stabilized Y-type zeolite and alumina obtained in Example 1 was used. Yb was 5 wt% ytterbium acetate tetrahydrate 1.31 g and Pd was 0.82 wt% tetraamminepalladium chloride. 0.22 g, 0.038 g of tetraammineplatinum chloride as Pt was dissolved in pure water and immersed in a Yb—Pd—Pt mixed metal salt aqueous solution.
Next, the impregnated product was dried by irradiation with microwaves having a frequency of 2.45 GHz for 10 minutes, and calcined in an oxygen stream at 260 ° C. for 3 hours (temperature increase temperature: 0.5 ° C./min) to obtain catalyst F. Got.

実施例6(触媒の分析)
実施例1〜5、比較例1で調製した触媒A〜Fを、燃焼法で乾燥触媒中の炭素量を測定した。その結果を表1に示す。
また、実施例3及び比較例1で調製した触媒C、Fについて、フーリエ変換赤外吸収スペクトル測定装置で拡散反射法にて赤外線吸収スペクトルの測定を行った。
先ず測定に先駆けて、各サンプルを粉砕し、サンプルホルダーにセットした。その後前処理としてHe気流中110℃で2時間乾燥させた。この赤外線吸収スペクトルの結果を図1に示す。
図1から分かるように、実施例3の触媒Cは比較例1の触媒Fと比較して2200cm−1に明瞭な吸収が見られる。
Example 6 (Analysis of catalyst)
The amount of carbon in the dry catalyst was measured for the catalysts A to F prepared in Examples 1 to 5 and Comparative Example 1 by a combustion method. The results are shown in Table 1.
Moreover, about the catalysts C and F prepared in Example 3 and Comparative Example 1, the infrared absorption spectrum was measured with the diffuse reflection method with the Fourier-transform infrared absorption spectrum measuring apparatus.
First, prior to measurement, each sample was pulverized and set in a sample holder. Then, it was dried at 110 ° C. for 2 hours in a He stream as a pretreatment. The result of this infrared absorption spectrum is shown in FIG.
As can be seen from FIG. 1, the catalyst C of Example 3 has a clear absorption at 2200 cm −1 compared to the catalyst F of Comparative Example 1.

実施例7(触媒の評価)
実施例1〜5、比較例1調製した触媒A〜Fを用いて硫黄及び窒素化合物を含む芳香族炭化水素油の水素化脱硫活性と水素化活性を評価した。
先ず反応に先駆けて、各成形触媒を粉砕し、22〜48meshにそろえた。また反応前処理として還元処理を行った。
すなわち、触媒を反応管に充填し、水素気流中(常圧、0.2L/min)で300℃で3時間(昇温速度0.5℃/min)還元した。
反応試験は、高圧固定床流通式反応装置(アップフローモード)で、モデル化合物をフィードに用いた。モデル化合物は、テトラリン/n−ヘキサデカン=約30wt%/約70wt%の混合液に4,6−ジメチルジベンゾチオフェン(4,6−DMDBT)硫黄濃度300ppm相当、n−ブチルアミン窒素濃度20ppm相当を添加したものを使用した。
反応は、触媒量0.25g、水素分圧3.9MPa、反応温度280℃、空間速度(WHSV)16h−1、H/Oil比500Nl/lの条件で行った。
液体生成物は定期的に採取し、FID検出機付ガスクロマトグラムで分析した。また、硫黄の分析には蛍光紫外法による分析装置を用いた。
水素化活性はテトラリンの(デカリン等への)転化率、脱硫活性は生成液中の硫黄濃度の減少度で評価した。
その結果を図2(水素化活性)と図3(水素化脱硫活性)に示す。
該反応条件は、加速寿命試験のため実装置での水素化反応条件より過酷な条件となっている。
図2及び図3から分かる様に、本発明の製造方法で得られた触媒A〜Eは、比較例の触媒Fに比較して、高い水素化活性および水素化脱硫活性を示し、触媒の活性劣化が小さいことがわかる。
なお、Ni−MoやNi−Wなどを担持した触媒を硫化処理して用いた場合、当反応条件では水素化活性、水素化脱硫活性共に5%以下の活性しか確認できなかった。

Figure 0004721759
Example 7 (Evaluation of catalyst)
The hydrodesulfurization activity and hydrogenation activity of aromatic hydrocarbon oils containing sulfur and nitrogen compounds were evaluated using the catalysts A to F prepared in Examples 1 to 5 and Comparative Example 1.
First, prior to the reaction, each molded catalyst was pulverized and aligned to 22 to 48 mesh. Further, reduction treatment was performed as a pretreatment for the reaction.
That is, the catalyst was filled in a reaction tube, and reduced in a hydrogen stream (normal pressure, 0.2 L / min) at 300 ° C. for 3 hours (temperature increase rate: 0.5 ° C./min).
In the reaction test, a model compound was used for feed in a high-pressure fixed bed flow type reactor (up flow mode). The model compound was tetralin / n-hexadecane = about 30 wt% / about 70 wt% mixed liquid with 4,6-dimethyldibenzothiophene (4,6-DMDBT) sulfur concentration equivalent to 300 ppm and n-butylamine nitrogen concentration equivalent to 20 ppm. I used something.
The reaction was carried out under the conditions of a catalyst amount of 0.25 g, a hydrogen partial pressure of 3.9 MPa, a reaction temperature of 280 ° C., a space velocity (WHSV) of 16 h −1 , and an H 2 / Oil ratio of 500 Nl / l.
Liquid products were collected periodically and analyzed by gas chromatogram with FID detector. In addition, an analysis apparatus using a fluorescent ultraviolet method was used for sulfur analysis.
The hydrogenation activity was evaluated by the conversion rate of tetralin (to decalin or the like), and the desulfurization activity was evaluated by the degree of decrease in the sulfur concentration in the product liquid.
The results are shown in FIG. 2 (hydrogenation activity) and FIG. 3 (hydrodesulfurization activity).
The reaction conditions are more severe than the hydrogenation reaction conditions in the actual apparatus for the accelerated life test.
As can be seen from FIGS. 2 and 3, the catalysts A to E obtained by the production method of the present invention exhibit higher hydrogenation activity and hydrodesulfurization activity than the catalyst F of the comparative example, and the activity of the catalyst It can be seen that the deterioration is small.
When a catalyst carrying Ni—Mo, Ni—W or the like was used after sulfidation treatment, only 5% or less of the activity was confirmed for both the hydrogenation activity and hydrodesulfurization activity under these reaction conditions.
Figure 0004721759

実施例3及び比較例1における触媒の赤外吸収スペクトル図。The infrared absorption spectrum figure of the catalyst in Example 3 and Comparative Example 1. FIG. 各実施例における触媒の通油時間と水素化活性の関係を示す図。The figure which shows the relationship between the oil passing time of a catalyst and hydrogenation activity in each Example. 各実施例における触媒の通油時間と水素化脱硫活性の関係を示す図。The figure which shows the relationship between the oil passing time of a catalyst and hydrodesulfurization activity in each Example.

Claims (10)

多孔性無機酸化物担体に糖類及びその誘導体よりなる群から選ばれた少なくとも一種の含酸素有機化合物を含む水溶液を含浸し、乾燥した後、周期律表第VIII族貴金属から選ばれた少なくとも一種の貴金属を含む水溶液を含浸し、乾燥し、焼成することにより、残存炭素を含有し且つ赤外吸収スペクトルにおいて2200cm −1 に明瞭な吸収を持つ触媒を得ることを特徴とする軽油の水素化処理触媒の製造方法。 The porous inorganic oxide support is impregnated with an aqueous solution containing at least one oxygen-containing organic compound selected from the group consisting of saccharides and derivatives thereof, dried, and then at least one selected from Group VIII noble metals of the periodic table A gas oil hydrotreating catalyst obtained by impregnating an aqueous solution containing a noble metal, drying, and calcining to obtain a catalyst containing residual carbon and having a clear absorption at 2200 cm −1 in an infrared absorption spectrum Manufacturing method. 多孔性無機酸化物担体に周期律表第VIII族貴金属から選ばれた少なくとも一種の貴金属と、糖類及びその誘導体よりなる群から選ばれた少なくとも一種の含酸素有機化合物とを含む水溶液を含浸し、乾燥し、焼成することにより、残存炭素を含有し且つ赤外吸収スペクトルにおいて2200cm −1 に明瞭な吸収を持つ触媒を得ることを特徴とする軽油の水素化処理触媒の製造方法。 Impregnating a porous inorganic oxide support with an aqueous solution containing at least one noble metal selected from Group VIII noble metals of the periodic table and at least one oxygen-containing organic compound selected from the group consisting of sugars and derivatives thereof; A method for producing a hydrotreating catalyst for light oil, characterized by obtaining a catalyst containing residual carbon and having a clear absorption at 2200 cm −1 in an infrared absorption spectrum by drying and calcining. 多孔性無機酸化物担体に周期律表第VIII族貴金属から選ばれた少なくとも一種の貴金属を含む水溶液と、糖類及びその誘導体よりなる群から選ばれた少なくとも一種の含酸素有機化合物を含む水溶液とを異なる導入口より同時に導入することにより含浸し、乾燥し、焼成することにより、残存炭素を含有し且つ赤外吸収スペクトルにおいて2200cm −1 に明瞭な吸収を持つ触媒を得ることを特徴とする軽油の水素化処理触媒の製造方法。 An aqueous solution containing at least one noble metal selected from Group VIII noble metals of the periodic table on a porous inorganic oxide support, and an aqueous solution containing at least one oxygen-containing organic compound selected from the group consisting of saccharides and derivatives thereof It is impregnated by simultaneous introduction from different inlets, dried, and calcined to obtain a catalyst containing residual carbon and having a clear absorption at 2200 cm −1 in the infrared absorption spectrum. A method for producing a hydrotreating catalyst. 多孔性無機酸化物担体に周期律表第VIII族貴金属から選ばれた少なくとも一種の貴金属を含む水溶液を含浸し、乾燥した後、糖類及びその誘導体よりなる群から選ばれた少なくとも一種の含酸素有機化合物を含む水溶液を含浸し、乾燥し、焼成することにより、残存炭素を含有し且つ赤外吸収スペクトルにおいて2200cm −1 に明瞭な吸収を持つ触媒を得ることを特徴とする軽油の水素化処理触媒の製造方法。 The porous inorganic oxide support is impregnated with an aqueous solution containing at least one noble metal selected from Group VIII noble metals in the periodic table, dried and then at least one oxygen-containing organic selected from the group consisting of saccharides and derivatives thereof A gas oil hydrotreating catalyst obtained by impregnating an aqueous solution containing a compound, drying, and calcining to obtain a catalyst containing residual carbon and having a clear absorption at 2200 cm −1 in an infrared absorption spectrum Manufacturing method. 前記多孔性無機酸化物担体が結晶性アルミノシリケートゼオライト、アルミナ、シリカ、チタニア、ジルコニア、アルミナ−シリカ、アルミナ−ボリア、アルミナ−チタニア、アルミナ−シリカ−ボリア、シリカ−チタニア、アルミナ−シリカ−チタニア、アルミナ−チタニア−ボリア、アルミナ−リン、アルミナ−リン−ボリア、アルミナ−シリカ−リン及びアルミナ−チタニア−リン−ボリアよりなる群からから選ばれた無機酸化物からなることを特徴とする請求項1〜4のいずれかに記載の軽油の水素化処理触媒の製造方法。 The porous inorganic oxide carrier is crystalline aluminosilicate zeolite, alumina, silica, titania, zirconia, alumina-silica, alumina-boria, alumina-titania, alumina-silica-boria, silica-titania, alumina-silica-titania, 2. An inorganic oxide selected from the group consisting of alumina-titania-boria, alumina-phosphorus, alumina-phosphorus-boria, alumina-silica-phosphorus, and alumina-titania-phosphorus-boria. The manufacturing method of the hydroprocessing catalyst of the light oil in any one of -4. 前記貴金属の含浸量が触媒基準で金属として0.1〜10wt%の範囲にあることを特徴とする請求項1〜5のいずれかに記載の軽油の水素化処理触媒の製造方法。 The method for producing a gas oil hydrotreating catalyst according to any one of claims 1 to 5 , wherein the amount of impregnation of the noble metal is in the range of 0.1 to 10 wt% as a metal on a catalyst basis. 前記貴金属がパラジウム(Pd)及び白金(Pt)からなり、Pd/Pt原子比が0.1/1〜10/1の範囲にあることを特徴とする請求項1〜6のいずれかに記載の軽油の水素化処理触媒の製造方法。 The said noble metal consists of palladium (Pd) and platinum (Pt), and Pd / Pt atomic ratio exists in the range of 0.1 / 1-10/1, The one in any one of Claims 1-6 characterized by the above-mentioned. A method for producing a hydrotreating catalyst for light oil. 前記含酸素有機化合物が単糖類、二糖類、多糖類、アルドン酸類糖酸類、ウロン酸類、ラクトン類よりなる群から選ばれた含酸素有機化合物であることを特徴とする請求項1〜7のいずれかに記載の軽油の水素化処理触媒の製造方法。 The oxygen-containing organic compound is an oxygen-containing organic compound selected from the group consisting of monosaccharides, disaccharides, polysaccharides, aldonic acids , sugar acids, uronic acids, and lactones. The manufacturing method of the hydroprocessing catalyst of the light oil in any one. 前記含酸素有機化合物の含浸量が前記多孔性無機酸化物担体に対して1〜20wt%の範囲にあることを特徴とする請求項1〜8のいずれかに記載の軽油の水素化処理触媒の製造方法。 The gas oil hydrotreating catalyst according to any one of claims 1 to 8 , wherein the impregnation amount of the oxygen-containing organic compound is in the range of 1 to 20 wt% with respect to the porous inorganic oxide support. Production method. 前記水素化処理触媒に含まれる残存炭素量が触媒基準で炭素として0.5〜10wt%の範囲にあることを特徴とする請求項1〜9のいずれかに記載の軽油の水素化処理触媒の製造方法。 10. The gas hydrotreating catalyst according to claim 1 , wherein the amount of residual carbon contained in the hydrotreating catalyst is in the range of 0.5 to 10 wt% as carbon on a catalyst basis. Production method.
JP2005124053A 2005-04-21 2005-04-21 Method for producing hydrotreating catalyst for light oil Expired - Fee Related JP4721759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005124053A JP4721759B2 (en) 2005-04-21 2005-04-21 Method for producing hydrotreating catalyst for light oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005124053A JP4721759B2 (en) 2005-04-21 2005-04-21 Method for producing hydrotreating catalyst for light oil

Publications (2)

Publication Number Publication Date
JP2006297313A JP2006297313A (en) 2006-11-02
JP4721759B2 true JP4721759B2 (en) 2011-07-13

Family

ID=37466041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005124053A Expired - Fee Related JP4721759B2 (en) 2005-04-21 2005-04-21 Method for producing hydrotreating catalyst for light oil

Country Status (1)

Country Link
JP (1) JP4721759B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105518A1 (en) * 2007-02-28 2008-09-04 National Institute Of Advanced Industrial Science And Technology Method for production of biodiesel fuel, and biodiesel fuel composition
CN101940958B (en) * 2009-07-09 2012-07-18 中国石油化工股份有限公司 Method for preparing low-carbon olefin catalyst by loading iron-based synthetic gas
JP5756972B2 (en) 2010-02-24 2015-07-29 国立研究開発法人産業技術総合研究所 Biodiesel fuel production method and biodiesel fuel composition
WO2011122603A1 (en) * 2010-03-29 2011-10-06 田中貴金属工業株式会社 Method for production of catalyst having supporting surface
JP5730104B2 (en) 2011-03-31 2015-06-03 独立行政法人石油天然ガス・金属鉱物資源機構 Support selection method and hydrotreating catalyst production method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08332385A (en) * 1995-06-08 1996-12-17 Sumitomo Metal Mining Co Ltd Hydrogenating treatment catalyst of hydrocarbon oil, its preparation and activation method
JPH09164333A (en) * 1995-10-09 1997-06-24 Idemitsu Kosan Co Ltd New catalystic composition, its production and hydrotreatment of hydrocarbon oil using catalystic composition
JP2001029792A (en) * 1999-05-20 2001-02-06 Agency Of Ind Science & Technol Hydrogenating catalyst, hydrogenating method and hydrotreatment of light oil
JP2001246253A (en) * 2000-03-08 2001-09-11 Natl Inst Of Advanced Industrial Science & Technology Meti Catalyst composition for hydrogenating aromatic hydrocarbon
JP2003047847A (en) * 2001-08-02 2003-02-18 Sumitomo Metal Mining Co Ltd Catalyst for hydrogenation treatment of hydrocarbon oil and method of producing the same
JP2003284961A (en) * 2002-03-27 2003-10-07 National Institute Of Advanced Industrial & Technology Method for producing hydrocarbon hydrogenation treatment catalyst composition
JP2005000873A (en) * 2003-06-13 2005-01-06 Catalysts & Chem Ind Co Ltd Method for producing hydrotreating catalyst composition of hydrocarbon

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08332385A (en) * 1995-06-08 1996-12-17 Sumitomo Metal Mining Co Ltd Hydrogenating treatment catalyst of hydrocarbon oil, its preparation and activation method
JPH09164333A (en) * 1995-10-09 1997-06-24 Idemitsu Kosan Co Ltd New catalystic composition, its production and hydrotreatment of hydrocarbon oil using catalystic composition
JP2001029792A (en) * 1999-05-20 2001-02-06 Agency Of Ind Science & Technol Hydrogenating catalyst, hydrogenating method and hydrotreatment of light oil
JP2001246253A (en) * 2000-03-08 2001-09-11 Natl Inst Of Advanced Industrial Science & Technology Meti Catalyst composition for hydrogenating aromatic hydrocarbon
JP2003047847A (en) * 2001-08-02 2003-02-18 Sumitomo Metal Mining Co Ltd Catalyst for hydrogenation treatment of hydrocarbon oil and method of producing the same
JP2003284961A (en) * 2002-03-27 2003-10-07 National Institute Of Advanced Industrial & Technology Method for producing hydrocarbon hydrogenation treatment catalyst composition
JP2005000873A (en) * 2003-06-13 2005-01-06 Catalysts & Chem Ind Co Ltd Method for producing hydrotreating catalyst composition of hydrocarbon

Also Published As

Publication number Publication date
JP2006297313A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
AU643146B2 (en) Hydrogenation catalyst and process
AU733354B2 (en) A process for preparing a catalyst
US8932454B2 (en) Mesoporous Y hydrocracking catalyst and associated hydrocracking processes
EP3363878B1 (en) Method for making a hydroprocessing catalyst.
US7429550B2 (en) Hydrogenation catalyst for hydrocarbon oil and process for hydrogenation using the catalyst
US7795168B2 (en) Porous inorganic oxide support and hydrotreating catalyst of catalytic cracking gasoline using the same
DE69432119T2 (en) IMPROVED ZEOLITE-CONTAINING OXIDATION CATALYST AND METHOD FOR ITS USE
KR101120901B1 (en) Gasoline sulfur reduction catalyst for fluid catalytic cracking process
JP4721759B2 (en) Method for producing hydrotreating catalyst for light oil
DE102006007056A1 (en) Oxidation catalyst for exhaust treatment and process for its preparation
RU2626397C1 (en) Crude hydrocarbons hydro-cracking method
JP4643966B2 (en) Process for producing hydrorefined gas oil, hydrorefined gas oil and gas oil composition
DE102004048247A1 (en) Zeolite catalyst for the simultaneous removal of carbon monoxide and hydrocarbons from oxygen-rich exhaust gases and process for its preparation
JP2009543693A (en) Hydrocracking catalyst containing beta and Y zeolite and its use for producing distillate
JP3658703B2 (en) Hydrocarbon oil hydrotreating catalyst and hydrotreating method
JP4439069B2 (en) Aromatic hydrocarbon hydrogenation catalyst composition
JP5537780B2 (en) Light oil composition
JP2001170489A (en) Catalyst composition for hydrogenizing aromatic hydrocarbon
JP2005000873A (en) Method for producing hydrotreating catalyst composition of hydrocarbon
JP4485625B2 (en) Aromatic hydrocarbon hydrogenation catalyst composition
JP2003284961A (en) Method for producing hydrocarbon hydrogenation treatment catalyst composition
US4141860A (en) Hydrocracking catalyst
CA2894483A1 (en) Mesoporous zeolite-y hydrocracking catalyst and associated hydrocracking processes
RU2471854C1 (en) Catalyst for reforming of gasoline fractions, and method of its preparation
WO2019189482A1 (en) Hydrogenation catalyst and method for manufacturing low aromatic solvent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4721759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees