JP4719375B2 - High speed electrodeposition drum and its manufacturing method - Google Patents

High speed electrodeposition drum and its manufacturing method Download PDF

Info

Publication number
JP4719375B2
JP4719375B2 JP2001142255A JP2001142255A JP4719375B2 JP 4719375 B2 JP4719375 B2 JP 4719375B2 JP 2001142255 A JP2001142255 A JP 2001142255A JP 2001142255 A JP2001142255 A JP 2001142255A JP 4719375 B2 JP4719375 B2 JP 4719375B2
Authority
JP
Japan
Prior art keywords
drum
copper
support
electrodeposition
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001142255A
Other languages
Japanese (ja)
Other versions
JP2002332587A (en
Inventor
博 佐藤
正史 原
Original Assignee
株式会社ナイカイアーキット
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナイカイアーキット filed Critical 株式会社ナイカイアーキット
Priority to JP2001142255A priority Critical patent/JP4719375B2/en
Publication of JP2002332587A publication Critical patent/JP2002332587A/en
Application granted granted Critical
Publication of JP4719375B2 publication Critical patent/JP4719375B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、電解メッキ法により銅箔、ニッケル箔などの金属箔を製造する高速電着ドラムとその製造方法に関する。
【0002】
【従来の技術】
プリント配線板用電解銅箔を中心とする金属箔の製造に使用されるチタンを電着面とする電解銅箔製造装置は、銅メッキ液の器となる浴槽の中心に回転ドラム陰極が回転軸の両端を軸受によりセットされ、その容積の約1/2が銅メッキ浴に浸漬され、陰極に対面して配置される陽極との間に集電リング、整流器を介して直流が通電されメッキ浴の一方の側から浴に浸入したチタン面に銅がメッキされ始め他方の側の浴面から出るまでに所定の厚みの銅箔となった後、チタン面から剥がされてボビンに巻き取られるごとくして連続的に製造される。
【0003】
従来の回転ドラム陰極は、回転軸を中心に構成されるステンレス鋼又は炭素鋼製インナードラムの外周面に電着面となるチタン製アウタードラムが焼き嵌めによって嵌合された上表面を機械仕上げ後研磨して使用される。
【0004】
しかして、チタン製アウタードラムの支持体としてのインナードラムは、近年ステンレス鋼又は炭素鋼が一般に用いられているが、往時は特公昭46-90号、特公昭58-24507号に見られるように、チタンよりも大きい熱膨張率を有する鉛あるいは銅合金製とすることが、これに焼き嵌めされるチタン製アウタードラムとの電気的接触を良くして電着面の電流分布を均一にし銅箔の厚みのバラツキを小さくする上で有効であるとして提案されている。
【0005】
【発明が解決すべき課題】
近年プリント配線基板用銅箔の需要がますます増大したことから、銅箔の生産性を上げるために既設電着ドラムは通電電流を構造体の能力限度一杯に高めると共に、新設電着ドラムは、従前より遙かに大きい大電流高電流密度仕様とすることが求められるようになった。例えば、従来2.0〜2.3mφ×50A/dm2であったものが近年2.7〜3.0mφ×70〜80A/dm2あるいは100A/dm2を越える性能が求められるようになった。
【0006】
また、銅箔の厚みに関しても、精密度が高度に発達した電子機器印刷回路用銅箔に要求される厚みが従来の35ミクロンから18ミクロン以下あるいは10ミクロン以下が求められるようになり、かつ厚みのバラツキが厳しく問われるようになった。
【0007】
かかる高電流化は従来のステンレス鋼又は炭素鋼製インナードラムにチタン製アウタードラムを焼き嵌めして製作される一般的な電着ドラムでは、インナーからアウター間の接触に関する諸種の改善提案によって進歩してきたにもかかわらず、インナードラム材質の電流容量の不足と焼き嵌め接触の均一性の欠如が主因となって、電着面の局所加熱や箔厚のバラツキが大きくなることが避けられず、電流増加に伴う新たな問題として浮かび上がってきた。
【0008】
このような情勢から本発明者らは銅箔メーカーらの求める生産性の高い大電流高電流密度のもとで厚みのバラツキのない薄箔を円滑に生産できる高速電着ドラムを開発することを課題として検討、試験を重ねてきた。
【0009】
一般に、厚みのバラツキのない銅箔は電流分布が均一な陰極表面から得られる。そして電流分布が均一であるためには電着面に流入する電流を円滑に支持体であるインナードラムに導電させることが必要で、それにはインナードラム外周面に焼き嵌めされるアウタードラムの内周面とインナードラムの外周面が完全に嵌り合っていて焼き嵌め接触面全体の電気抵抗が均一であることが求められる。
【0010】
更に大電流に対応させるには、電流容量、電気伝導度の小さいチタン製アウタードラムの電着面に垂直に流入する電流を可能な限り、ストレートに電流容量と電気伝導度を充分大きくしたインナードラムに導電させることが必要である。
【0011】
従って、インナードラムを構成する金属材料はアウタードラムの支持体としての機械的強度と同時に、アウタードラムと嵌合する接触面の密着度を充分ならしめ、接触抵抗を均一にしてインナードラムに導電させるための接触性と導電性に優れた特性を具備することが必要である。そしてこの必要性は既に早くから提案されており特公昭46-90号では鉛が、特公昭58-24507号では、銅又は青銅合金が焼き嵌めされるアウタードラムの材質であるチタンより大きい熱膨張率と導電率及び良好な可塑性を有することから、高い運転温度のもとでアウタードラム内周面に膨張密着して接触効果を高めるとの理由により提案されている。
【0012】
本発明者らは、大電流高電流密度及び薄箔の要求が著しく高まった現在、チタン製アウタードラムの支持体構成材料を見直す必要があると考えた。その理由は電流が大きくなるにつれて、電着ドラムを構成する構造体の電気抵抗が大きくなり、槽電圧を高めて電力ロスを増大し、ジュール熱によるドラム温度、メッキ浴温度を高めて、ドラム及び循環銅メッキ液を冷却する必要が発生するおそれがあることに対して、支持体全体を電気抵抗の小さい銅又は銅合金で構成すれば構造体抵抗を最小にできるので、発熱に繋がる消費電力を節約でき、かつ大電流を受け入れるに十分な電流容量を保有させることが容易に実現できるからである。
【0013】
すなわち、電気的には支持体全体を電気抵抗が最も小さく導電性に優れた銅又は銅合金とするのが理想である。しかし、今日一般的に使用されているチタン電着ドラムのインナードラムの多くは電気抵抗の比較的大きいステンレス鋼又は炭素鋼で形成されている。何故、近年アウタードラム支持体に銅又は銅合金が一般に使用されなかったかについては、銅又は銅合金は材料費が比較的に高く、かつ溶接及び機械切削の加工性並びに構造体の機械的強度がステンレス鋼又は炭素鋼に比べて劣る上、製作コストが高くつくことが主因で、従前の通電電流が比較的に低く、かつ求められる電流容量が小さかったことによると推測される。
【0014】
本発明者らは、銅又は銅合金が高電流の目的には適材であるが、加工性、経済性にやや問題があることに留意し、近年一般的に使用されているステンレス鋼又は炭素鋼の長所をも活かして大電流高電流密度に適応するアウタードラム支持体を簡易な手段により構成する方法について検討し経験を重ねてきた結果、次の構成手段により銅箔厚みのバラツキのない薄箔が高電流密度のもとでホットスポットなどの不具合を生じることなく安定して生産できることを確認し、本発明を完成するに至った。
【0015】
本発明における銅又は銅合金は、例えば特許第3121775号に見られるごときアウタードラム内周面とインナードラム外周面との間に介存させる中間素材としてではなく、チタン製アウタードラムの支持体及び導電体としてのインナードラム構成体の主要材料として、前記した往時の提案を見直し、加工性、経済性、実効性の問題を解決したものである。
【0016】
【問題を解決するための手段】
したがって、本発明の要旨は以下のとおりである。すなわち、チタン製アウタードラムとその支持体となるインナードラムからなり、該支持体は、内部支持体がステンレス鋼又は炭素鋼で構成され、外部支持体が銅又は銅合金の導電支持層で構成された複合支持体からなる電着ドラムにおいて前記導電支持層は、ステンレス鋼又は炭素鋼製内部支持体表面に銅又は銅合金を溶射又は溶接により肉盛りして形成した外部支持体からなることを特徴とする高速電着ドラムである。ここで、導電支持層は、ステンレス鋼又は炭素鋼製内部支持体の外周に銅又は銅合金製リングを焼き嵌めして形成した外部支持体とすることもできるが、ステンレス鋼又は炭素鋼製支持ドラムの内部支持体表面に銅又は銅合金を溶射又は溶接により肉盛りして形成した外部支持体とするのが好ましい。
【0017】
更に、これら導電支持層は、その製造に際して、外周部を機械仕上げした銅又は銅合金製外部支持体とその表面の錫被覆層とし、該錫被覆層の表面に内周面が白金被覆層を有するチタン製アウタードラムを焼き嵌めすることにより得られる白金被覆層とで構成すると、より好ましい高速電着ドラムとなる。
【0018】
したがって、これらの高速電着ドラムは、次のような2種類の製造方法で能率よく得ることができる。すなわち、まず第1には、
1)インナードラムである内部支持体をステンレス鋼又は炭素鋼で形成し、
2)電着面に流入する電流を受け入れるに十分な厚みの圧延銅板又は銅合金板により、銅板製導電リングを形成し、銅材の物性を損なわない加熱温度でインナードラムに焼き嵌め密着して外部支持体を形成し、
3)焼き嵌め後、銅を表面とするインナードラム表面を機械加工して表面精度、真円度及び円筒度を高め、
4)次いで銅表面を防食と良好な電気的接触を目的として錫メッキをし、
5)同じく防食と優れた電気的接触を得るために内周面を白金被覆したチタン製アウタードラムを銅表面に錫被覆したインナードラムに焼き嵌めして良好な導電支持層を有する電着ドラムを形成することを特徴とする高速電着ドラムの製造方法である。
【0019】
また、チタン製アウタードラムとその支持体となるインナードラムからなる電着ドラムの製造に際して次のように変更してもよい。この第2の方法によれば、
1)インナードラムである内部支持体をステンレス鋼又は炭素鋼で形成し、
2)電着面に流入する電流を受け入れるに十分な厚みに銅又は銅合金の溶射又は溶接による肉盛り層を形成して外部支持体を形成し、
3)該溶射又は溶接による肉盛り層を表面とするインナードラム表面を機械加工して表面精度、真円度及び円筒度を高め、
4)次いで銅表面を防食と良好な電気的接触を目的として錫メッキをし、
5)同じく防食と優れた電気的接触を得るために内周面を白金被覆したチタン製アウタードラムを銅表面に錫被覆したインナードラムに焼き嵌めして良好な導電支持層を有する電着ドラムを形成することを特徴とする高速電着ドラムの製造方法とするのである。
【0020】
前項3)〜5)におけるインナードラム銅表面の機械加工及び錫被覆とチタン製アウタードラム内周面の白金被覆は、本発明の効果をより高めるために必要な手段である。すなわち、特公昭46-90号における鉛、特公昭58-24507号における銅又は銅合金、あるいは近年の提案、すなわち、特許第3121775号におけるアウタードラム内周面とインナードラム外周面との間に介存させる銅板若しくは銅合金板、特開2001-49482号におけるインナードラム形成素材に爆着する導電性軟質中間素材などは、いずれもそれら素材のチタンより高い熱膨張率をこれに対面するチタン面に密着せしめる要因としている。
【0021】
しかし、発明者らの実験によれば銅若しくは銅合金の硬度(H=35〜75)がチタンのそれ(H=約120)に比較して小さいとはいえ、狭い面積の局所接触ではなく広い面積の面接触であるアウタードラムとインナードラムの焼き嵌め接触面においては、爆発圧接のごとき大きな応力を加えない限り、100℃以下の温度における熱膨張力のみでは材質が炭素鋼の場合と略同様にアウタードラムのチタン面に完全密着する現象は起こらず、チタン製アウタードラムの内面粗さとドラムの円筒精度に相応する隙間を生じることは程度の差はあっても基本的に避けられないことが判った。
【0022】
このことはチタン製アウタードラムとインナードラムとの焼き嵌め接触の不完全さの改善を目的とする特公昭58-24507号の提案はそれを裏付けるものであり、インナードラムの材質を熱膨張率の高い銅又は銅合金とするだけでなく、接触の不足を補うために銅又は銅合金の表面に凹凸溝を切り表面積を1/3に減らして焼き嵌めの緊縛力を3倍に増やす手段を主体にしていることからも明らかである。
【0023】
本発明において、インナードラム内部支持体のステンレス鋼又は炭素鋼製内部支持体(図3、9-1)の外周部に一体化した銅又は銅合金製外部支持体(図3、9-2)を機械加工して、インナードラムの表面精度及び円筒精度を完全にした上で銅表面を錫被覆し、白金被覆したチタン製アウタードラムを焼き嵌めする補助手段は、銅系導電材の温度変化によって変化する体積の膨張収縮を接触の必須要因とする手段の不確定さを補って安定化させるもので、これによって長期間安定して高電流製箔運転が可能になることが確認された。
【0024】
以上から明らかなように、本発明は前記に引用した特公昭58-24507号の提案すなわち、焼き嵌めされるチタン製アウタードラムとの電気的接触を良好にするために「インナードラム全体を銅合金製とする」とする提案に内在する加工性、経済性の問題を改善するために、主として支持体の強度を受け持つインナードラム内部支持体はステンレス鋼又は炭素鋼で構成し、電気的に必要なその外周部のみを銅又は銅合金の外部支持体で構成することによって大電流高電流密度の高速電着ドラムの製造を有利な加工性、経済性のもとで実現させるものである。
【0025】
【発明の実施の形態】
本発明の実施形態を直径2.7m、幅1.3m、通電電流60,000Aのチタン電着ドラムを例にして説明する。図1は電解銅箔製造装置の正面略図である。図2は本発明チタン電着ドラムの一部破断正面図を、図3は図2のAで囲った部位の詳細を示す断面図である。
プリント配線板用電解銅箔を中心とする金属箔の製造に使用されるチタンを電着面とする電解銅箔製造装置は、図1に示すように銅メッキ液の器となる浴槽1の中心に回転陰極式電着ドラム2が回転軸3の両端を軸受4によりセットされ、その容積の約1/2が銅メッキ浴5に浸漬され、陰極に対面して配置される陽極6との間に集電リング7、整流器8を介して直流が通電され銅メッキ浴の一方の側から浴に浸入したチタン面に銅がメッキされ始め、他方の側の浴面から出るまでに所定の厚みの銅箔となった後、チタン面から剥がされてボビンに巻き取られるごとくして連続的に製造される。
【0026】
実施例1
図2に示すチタン製アウタードラム10はインナードラム9の表面に焼き嵌めして相互の電気的接触が完成するが、本発明の実施例1においては、インナードラム内部支持体9-1は厚み約20mmのステンレス鋼板により外径約2680mm、幅1300mmに成形した。次いで、所要厚みの圧延銅板をロール曲げして両端部を突き合わせ、プラズマ溶接してその内径がステンレス製円筒の内部支持体(図3、9-1)の外径より数mm小さい銅製導電リングの外部支持体(図3、9-2)を成形した。次いで、銅リングを焼き嵌め炉に垂直にセットし、その表面全体を均一に加熱し適温(この場合、約200℃)に昇温した。この加熱により膨張して内径が拡張された銅リングにステンレス鋼製インナードラムを垂直に挿入して放熱し焼き嵌めをした。次いで、ステンレス鋼製インナードラムに一体化した銅リングの表面を機械加工にかけて表層数mmを切削して所要厚みの導電層を形成すると同時に、円筒度、表面精度が充分な銅材導電層を表層とするインナードラムが完成した。次いで、特許第2927726号に準じたメッキ装置により、銅表面に錫被覆11を施した。
一方、厚み8mmのチタン圧延板により銅を表面とするインナードラムの外形より数mm小さい内径約2680mmのアウタードラム10を製作した後、その内周面を特許第2927726号に準じて白金被覆12を形成した後、前記の錫被覆された銅リングを表層とするインナードラムに焼き嵌めして高速電着ドラムを完成した。
【0027】
実施例2
実施例1と同様に厚み約20mmの炭素鋼板製円筒に側板、回転軸を取り付けてインナードラム基体の内部支持体9-1を形成した後、次の順序によってその表面に銅系導電層の外部支持体9-2を形成した。
(ア)銅箔メッキ装置に準じた表面処理装置にセットしてドラムの約1/4を処理液浴槽中に浸漬するように配置された。
(イ)浴槽にアルカリ脱脂液を張ってドラムを数時間回転させて炭素鋼表面を脱脂処理した。
(ウ)脱脂液を抜き出した後、回転する表面を純水で充分水洗いした上、熱風乾燥した。
(エ)浴槽に硫酸を主成分とするエッチング液を張って、回転するドラム表面を数時間エッチングして粗面化した。
(オ)エッチング液を抜き出して、表面を水洗、乾燥した。
(カ)アルゴンガスをシールドガスとするティグ溶接機をセットして、線状銅系肉盛り材により、ドラム表面の一辺から逐次ドラムを回転しながら肉盛り溶接を繰り返して、所要厚みの銅層からなる外部支持体9-2を形成した。
(キ)次いで、ドラムを機械加工装置に移して銅層の粗い表層を切削し、所要厚みの銅層に仕上げると同時に真円度、円筒度が充分な銅材を導電層とするインナードラムを完成した。
(ク)実施例1と同じく、銅表面に錫被覆を施した。
(ケ)一方、実施例1と同様に厚み8mmのチタン圧延板によりアウタードラムを製作し、その内周面を白金被覆した後、錫被覆された銅を表面とするインナードラムに焼き嵌めして高速電着ドラムを完成した。
【0028】
【発明の効果】
上述のごとく、本発明におけるアウタードラムの支持体としてのインナードラムは、内部支持体をステンレス鋼又は炭素鋼で構成し、大電流を受け入れる表層部の外部支持体を銅又は銅合金で構成し、かつその表面が機械加工されることによってインナードラムの円筒精度が確保される上に、防食と電気的接触効果を高める錫被覆が施されるので、その内周面が電気的接触に優れた白金被覆されたアウタードラムの焼き嵌めによって完成した電着ドラムの電気的性能は、チタン電着面の電流分布を均整化して銅箔厚みを均一化すると共に、ホットスポットなどの障害を起こすことなく生産性、安定性の高い高電流密度操業を実現できることになる。
【図面の簡単な説明】
【図1】電解銅箔製造装置の正面略図である。
【図2】インナードラムにアウタードラムを焼き嵌め接合した一般的電着ドラム構造と接合境界面を示す一部破断正面図である。
【図3】図2A部に相当する本発明における拡大図で内周面を白金被覆したチタン製アウタードラムと外周面を錫被覆した銅系導電層を有するインナードラムとの焼き嵌め接合部の詳細断面図である。
【符号の説明】
1 浴槽
2 回転陰極式電着ドラム
3 回転軸
6 陽極
9 一般的インナードラムの外周板
9-1 本発明インナードラム内部支持体
9-2 本発明インナードラム外部支持体
10 アウタードラム
11 錫被覆
12 白金被覆
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-speed electrodeposition drum for producing a metal foil such as a copper foil or a nickel foil by an electrolytic plating method and a method for producing the same.
[0002]
[Prior art]
Electrolytic copper foil production equipment with electrodeposited titanium used for the production of metal foils centering on electrolytic copper foils for printed wiring boards has a rotating drum cathode at the center of a bathtub serving as a container for copper plating solution. Both ends are set by bearings, about 1/2 of the volume is immersed in a copper plating bath, and direct current is passed through a current collector ring and rectifier between the anode and the anode, and the plating bath As the copper surface begins to be plated on the titanium surface that has entered the bath from one side of the copper foil, the copper foil has a predetermined thickness until it comes out of the bath surface on the other side, and then is peeled off from the titanium surface and wound around the bobbin. Manufactured continuously.
[0003]
The conventional rotating drum cathode has a machine finish on the upper surface of a stainless steel or carbon steel inner drum constructed around the rotating shaft and fitted with a titanium outer drum as an electrodeposition surface by shrink fitting. Used after polishing.
[0004]
In recent years, stainless steel or carbon steel has been generally used as the support for the titanium outer drum, but in the past, as seen in Japanese Patent Publication Nos. 46-90 and 58-24507. It is made of lead or copper alloy having a thermal expansion coefficient larger than that of titanium, and the copper foil makes the current distribution on the electrodeposition surface uniform by improving the electrical contact with the titanium outer drum that is shrink-fitted into this. It has been proposed as being effective in reducing the variation in thickness of the film.
[0005]
[Problems to be Solved by the Invention]
In recent years, the demand for copper foil for printed circuit boards has increased, so in order to increase the productivity of copper foil, the existing electrodeposition drum will increase the current to the full capacity of the structure, and the new electrodeposition drum will It is now required to have a large current and high current density specification that is much larger than before. For example, what was conventionally 2.0 to 2.3 mφ × 50 A / dm 2 has recently been required to have performance exceeding 2.7 to 3.0 mφ × 70 to 80 A / dm 2 or 100 A / dm 2 .
[0006]
Also, regarding the thickness of copper foil, the required thickness of copper foil for electronic device printed circuit with high precision has been required from 35 microns to 18 microns or less, or 10 microns or less. The variation of has come to be strictly asked.
[0007]
This increase in current has been progressed by various proposals for improving the contact between the inner and the outer in a general electrodeposition drum manufactured by shrink fitting a titanium outer drum on a conventional stainless steel or carbon steel inner drum. In spite of this, the lack of current capacity of the inner drum material and the lack of uniformity of shrink-fitting contact inevitably cause local heating of the electrodeposited surface and large variations in foil thickness. It has emerged as a new problem with the increase.
[0008]
Under these circumstances, the present inventors have developed a high-speed electrodeposition drum that can smoothly produce thin foils with no variation in thickness under high productivity and high current density required by copper foil manufacturers. It has been studied and tested as an issue.
[0009]
In general, a copper foil having no thickness variation is obtained from a cathode surface with a uniform current distribution. In order for the current distribution to be uniform, it is necessary to smoothly conduct the current flowing into the electrodeposition surface to the inner drum, which is the support, and to this end, the inner periphery of the outer drum that is shrink-fitted to the outer peripheral surface of the inner drum. It is required that the surface and the outer peripheral surface of the inner drum are completely fitted and the electric resistance of the entire shrink contact surface is uniform.
[0010]
In order to cope with a larger current, an inner drum that has a sufficiently large current capacity and electrical conductivity straight as much as possible to the current flowing perpendicularly to the electrodeposition surface of the titanium outer drum with small current capacity and electrical conductivity. It is necessary to conduct electricity.
[0011]
Therefore, the metal material composing the inner drum is not only mechanically strong as a support for the outer drum, but also has a sufficiently close contact with the outer drum so as to conduct the inner drum with uniform contact resistance. Therefore, it is necessary to have excellent characteristics of contact and conductivity. This necessity has already been proposed earlier, and the coefficient of thermal expansion is larger than that of titanium, which is the material of the outer drum on which lead is applied in Japanese Patent Publication No. 46-90, and copper or bronze alloy is applied in Japanese Patent Publication No. 58-24507. Therefore, it has been proposed for the reason that it expands and adheres to the inner peripheral surface of the outer drum at a high operating temperature to enhance the contact effect.
[0012]
The present inventors thought that it was necessary to review the material constituting the support body of the titanium outer drum at the present time when the demands for large current, high current density and thin foil were remarkably increased. The reason is that as the current increases, the electrical resistance of the structure constituting the electrodeposition drum increases, the tank voltage is increased to increase power loss, the drum temperature due to Joule heat, the plating bath temperature is increased, the drum and Contrary to the fact that it may be necessary to cool the circulating copper plating solution, if the entire support is made of copper or copper alloy having a low electrical resistance, the structure resistance can be minimized, so the power consumption leading to heat generation can be reduced. This is because it can easily be realized to save current capacity sufficient to accept a large current.
[0013]
That is, it is ideal that the entire support is made of copper or a copper alloy having the lowest electrical resistance and excellent conductivity. However, most of the inner drums of titanium electrodeposition drums commonly used today are made of stainless steel or carbon steel having a relatively high electrical resistance. The reason why copper or copper alloys have not been generally used for outer drum supports in recent years is that copper or copper alloys have a relatively high material cost, and the workability of welding and machine cutting as well as the mechanical strength of the structure. It is inferred that it is inferior to stainless steel or carbon steel, and that the production cost is high, which is mainly due to the relatively low current flow and the required current capacity.
[0014]
The present inventors have noted that copper or a copper alloy is a suitable material for the purpose of high current, but there are some problems in workability and economy, and stainless steel or carbon steel that is commonly used in recent years. As a result of investigating and gaining experience in constructing an outer drum support that adapts to high current and high current density by simple means, taking advantage of the advantages of Has been confirmed to be able to be stably produced without causing problems such as hot spots under a high current density, and the present invention has been completed.
[0015]
The copper or copper alloy in the present invention is not used as an intermediate material interposed between the outer peripheral surface of the outer drum and the outer peripheral surface of the inner drum as shown in, for example, Japanese Patent No. 3121775, but the support and conductive material of the titanium outer drum. As the main material of the inner drum structure as a body, the previous proposals were reviewed to solve the problems of workability, economy and effectiveness.
[0016]
[Means for solving problems]
Therefore, the gist of the present invention is as follows. In other words, Ri Do from the inner drum serving as titanium outer drum and its support, the support is an internal support is constructed of stainless steel or carbon steel, construction external support with a conductive supporting layer of copper or a copper alloy In the electrodeposited drum comprising a composite support , the conductive support layer is made of an external support formed by depositing copper or a copper alloy on the surface of an internal support made of stainless steel or carbon steel by thermal spraying or welding. It is a high-speed electrodeposition drum characterized by. Here, the conductive support layer may be an external support formed by shrink fitting a copper or copper alloy ring on the outer periphery of the stainless steel or carbon steel internal support, but the stainless steel or carbon steel support It is preferable to use an external support formed by depositing copper or a copper alloy on the surface of the internal support of the drum by thermal spraying or welding.
[0017]
Further, in the production of these conductive support layers , an outer support made of copper or copper alloy whose outer peripheral portion is machined and a tin coating layer on the surface thereof, and a platinum coating layer on the inner surface of the tin coating layer. When it comprises with the platinum coating layer obtained by carrying out shrink fitting of the titanium outer drum which it has, it will become a more preferable high-speed electrodeposition drum.
[0018]
Therefore, these high-speed electrodeposition drum, Ru can efficiently obtained Rukoto in following two manufacturing methods. That is, first of all,
1) The inner support which is an inner drum is formed of stainless steel or carbon steel,
2) A copper ring conductive ring is formed of a rolled copper plate or a copper alloy plate having a thickness sufficient to receive the current flowing into the electrodeposition surface, and it is shrink-fitted to the inner drum at a heating temperature that does not impair the physical properties of the copper material. Forming an external support,
3) After shrink fitting, machine the inner drum surface with copper as the surface to increase the surface accuracy, roundness and cylindricity,
4) Next, tin the copper surface for anticorrosion and good electrical contact,
5) Similarly, in order to obtain corrosion prevention and excellent electrical contact, an electrodeposition drum having a good conductive support layer is obtained by shrink fitting a titanium outer drum with an inner peripheral surface coated with platinum onto an inner drum coated with tin on a copper surface. It is a manufacturing method of the high-speed electrodeposition drum characterized by forming.
[0019]
Further, when manufacturing an electrodeposition drum comprising a titanium outer drum and an inner drum as a support thereof, the following changes may be made. According to this second method,
1) The inner support which is an inner drum is formed of stainless steel or carbon steel,
2) Form an external support by forming a build-up layer by thermal spraying or welding of copper or copper alloy to a thickness sufficient to receive the current flowing into the electrodeposition surface,
3) Machining the inner drum surface with the surface layered by thermal spraying or welding to improve surface accuracy, roundness and cylindricity,
4) Next, tin the copper surface for anticorrosion and good electrical contact,
5) Similarly, in order to obtain corrosion prevention and excellent electrical contact, an electrodeposition drum having a good conductive support layer is obtained by shrink fitting a titanium outer drum with an inner peripheral surface coated with platinum onto an inner drum coated with tin on a copper surface. The high speed electrodeposition drum manufacturing method is characterized in that it is formed.
[0020]
The machining of the inner drum copper surface and the tin coating on the inner peripheral surface of the titanium outer drum and the platinum coating on the inner peripheral surface of the titanium outer drum in the preceding items 3) to 5) are necessary means for further enhancing the effects of the present invention. That is, lead in JP-B-46-90, copper or copper alloy in JP-B-58-24507, or a recent proposal, that is, between the inner peripheral surface of the outer drum and the outer peripheral surface of the inner drum in Japanese Patent No. 3121775. Existing copper plate or copper alloy plate, conductive soft intermediate material exploding to the inner drum forming material in JP-A-2001-49482, etc., all have a higher thermal expansion coefficient than titanium of the material on the titanium surface facing this This is a factor that causes close contact.
[0021]
However, according to the experiments by the inventors, although the hardness of copper or copper alloy (H B = 35 to 75) is smaller than that of titanium (H B = about 120), the local contact in a narrow area is not possible. The outer drum and inner drum contact surfaces that have a large area contact, and the thermal expansion force at a temperature of 100 ° C or less is the same as that of carbon steel unless a large stress such as explosion welding is applied. In the same way, the phenomenon of close contact with the titanium surface of the outer drum does not occur, and it is basically inevitable that there will be a gap corresponding to the inner surface roughness of the titanium outer drum and the cylinder accuracy of the drum, although there is a difference in degree. I found out.
[0022]
This is supported by the proposal of Japanese Patent Publication No. 58-24507, which aims to improve the imperfection of the shrink-fit contact between the titanium outer drum and the inner drum. Mainly means not only to make high copper or copper alloy, but also to cut the concave and convex grooves on the surface of copper or copper alloy to reduce the surface area to 1/3 to increase the tightness of shrink fitting by 3 times to compensate for the lack of contact It is clear from the fact that
[0023]
In the present invention, an external support made of copper or copper alloy (FIGS. 3 and 9-2) integrated with an outer peripheral portion of a stainless steel or carbon steel internal support (FIGS. 3 and 9-1) of the inner drum internal support. Auxiliary means for machining the inner surface of the inner drum to complete the surface accuracy and cylindrical accuracy of the copper, tin-coating the copper surface, and shrink-plating the platinum-coated titanium outer drum is based on the temperature change of the copper-based conductive material. It was confirmed that the expansion and contraction of the changing volume compensates for the uncertainties of the means that makes contact an essential factor, and it has been confirmed that this enables stable high-current foil-making operation for a long period of time.
[0024]
As is clear from the above, the present invention proposes the above-mentioned proposal of Japanese Patent Publication No. 58-24507, that is, in order to improve the electrical contact with the titanium outer drum to be shrink-fitted, the entire inner drum is made of a copper alloy. In order to improve the workability and economic problems inherent in the proposal “to make”, the inner drum inner support mainly responsible for the strength of the support is made of stainless steel or carbon steel and is electrically necessary. By constructing only the outer peripheral portion of the outer support of copper or copper alloy, production of a high-speed electrodeposition drum having a large current and a high current density can be realized with advantageous workability and economy.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described by taking a titanium electrodeposition drum having a diameter of 2.7 m, a width of 1.3 m, and an energization current of 60,000 A as an example. FIG. 1 is a schematic front view of an electrolytic copper foil manufacturing apparatus. FIG. 2 is a partially broken front view of the titanium electrodeposition drum of the present invention, and FIG. 3 is a cross-sectional view showing details of a portion surrounded by A in FIG.
As shown in FIG. 1, an electrolytic copper foil manufacturing apparatus having a titanium electrodeposition surface used for manufacturing a metal foil centering on an electrolytic copper foil for a printed wiring board is the center of a bathtub 1 serving as a container for a copper plating solution. The rotary cathode type electrodeposition drum 2 is set at both ends of the rotary shaft 3 by bearings 4, and about 1/2 of the volume is immersed in a copper plating bath 5 between the anode 6 and facing the cathode. Then, a direct current is passed through the current collecting ring 7 and the rectifier 8, and copper begins to be plated on the titanium surface that has entered the bath from one side of the copper plating bath and has a predetermined thickness until it comes out of the bath surface on the other side. After becoming a copper foil, it is continuously manufactured as it is peeled off from the titanium surface and wound on a bobbin.
[0026]
Example 1
The titanium outer drum 10 shown in FIG. 2 is shrink-fitted onto the surface of the inner drum 9 to complete mutual electrical contact. However, in Example 1 of the present invention, the inner drum internal support 9-1 has a thickness of about A 20 mm stainless steel plate was formed to an outer diameter of about 2680 mm and a width of 1300 mm. Next, a rolled copper plate having a required thickness is roll-bended, both ends are butted, plasma-welded, and the inner diameter of the copper conductive ring is several mm smaller than the outer diameter of the stainless steel cylindrical inner support (FIGS. 3 and 9-1). An external support (FIGS. 3 and 9-2) was molded. Next, the copper ring was set vertically in a shrink-fitting furnace, and the entire surface was heated uniformly to raise the temperature to an appropriate temperature (in this case, about 200 ° C.). A stainless steel inner drum was inserted vertically into a copper ring that was expanded by heating to expand its inner diameter, and then radiated and shrink-fitted. Next, the surface of the copper ring integrated with the stainless steel inner drum is machined to cut a surface layer of several mm to form a conductive layer with the required thickness, and at the same time, a copper conductive layer with sufficient cylindricity and surface accuracy is formed on the surface layer. The inner drum is completed. Next, tin coating 11 was applied to the copper surface by a plating apparatus according to Japanese Patent No. 2927726.
On the other hand, an outer drum 10 having an inner diameter of about 2680 mm, which is a few mm smaller than the outer diameter of the inner drum having copper as the surface, is manufactured by a rolled titanium plate having a thickness of 8 mm, and the inner peripheral surface thereof is coated with platinum coating 12 according to Japanese Patent No. 2927726. After the formation, a high-speed electrodeposition drum was completed by shrink fitting with an inner drum having the tin-coated copper ring as a surface layer.
[0027]
Example 2
As in Example 1, a side plate and a rotary shaft were attached to a carbon steel cylinder having a thickness of about 20 mm to form an inner support 9-1 for the inner drum base, and then the outer surface of the copper-based conductive layer was formed on the surface in the following order. Support 9-2 was formed.
(A) It set to the surface treatment apparatus according to a copper foil plating apparatus, and it has arrange | positioned so that about 1/4 of a drum may be immersed in a process liquid bath.
(A) The surface of the carbon steel was degreased by applying an alkaline degreasing solution to the bathtub and rotating the drum for several hours.
(C) After removing the degreasing solution, the rotating surface was thoroughly washed with pure water and then dried with hot air.
(D) An etching solution containing sulfuric acid as a main component was put in the bath, and the surface of the rotating drum was etched for several hours to roughen the surface.
(E) The etching solution was extracted, and the surface was washed with water and dried.
(F) Set up a TIG welding machine using argon gas as the shielding gas, and repeat the build-up welding while rotating the drum sequentially from one side of the drum surface with the linear copper-based build-up material, and the copper layer of the required thickness An external support 9-2 was formed.
(G) Next, the drum is transferred to a machining device, the rough surface layer of the copper layer is cut, and the copper layer having the required thickness is finished. At the same time, the inner drum is made of a copper material having a sufficient roundness and cylindricity. completed.
(H) As in Example 1, the copper surface was coated with tin.
(K) On the other hand, an outer drum was manufactured from a titanium rolled plate having a thickness of 8 mm as in Example 1, and the inner peripheral surface thereof was coated with platinum, and then shrink-fitted on an inner drum having tin-coated copper as a surface. A high-speed electrodeposition drum was completed.
[0028]
【The invention's effect】
As described above, the inner drum as the outer drum support in the present invention, the inner support is made of stainless steel or carbon steel, the outer support of the surface layer portion that receives a large current is made of copper or a copper alloy, In addition, the surface of the inner drum is machined to ensure the cylindrical accuracy of the inner drum, and the tin coating that enhances the anticorrosion and electrical contact effect is applied, so the inner peripheral surface of platinum is excellent in electrical contact. The electrical performance of the electrodeposition drum completed by shrink-fitting the coated outer drum makes the current distribution on the titanium electrodeposition surface uniform, uniforming the copper foil thickness, and producing without causing hot spots and other obstacles High stability and high current density operation.
[Brief description of the drawings]
FIG. 1 is a schematic front view of an electrolytic copper foil manufacturing apparatus.
FIG. 2 is a partially broken front view showing a general electrodeposition drum structure in which an outer drum is shrink-fitted and joined to an inner drum and a joining interface.
FIG. 3 is an enlarged view corresponding to FIG. 2A, showing details of a shrink-fitted joint between a titanium outer drum whose inner peripheral surface is platinum-coated and an inner drum having a copper-based conductive layer whose outer peripheral surface is tin-coated. It is sectional drawing.
[Explanation of symbols]
1 Bathtub 2 Rotating Cathode Electrodeposition Drum 3 Rotating Shaft 6 Anode 9 Outer Plate of General Inner Drum
9-1 Inner drum internal support of the present invention
9-2 Inner drum external support of the present invention
10 Outer drum
11 Tin coating
12 Platinum coating

Claims (3)

チタン製アウタードラムとその支持体となるインナードラムからなり、該支持体は、内部支持体がステンレス鋼又は炭素鋼で構成され、外部支持体が銅又は銅合金の導電支持層で構成された複合支持体からなる電着ドラムにおいて、
前記導電支持層は、ステンレス鋼又は炭素鋼製内部支持体表面に銅又は銅合金を溶射又は溶接により肉盛りして形成した外部支持体からなることを特徴とする高速電着ドラム。
Ri Do from the inner drum serving as titanium outer drum and its support, the support is an internal support is constructed of stainless steel or carbon steel, external supports are composed of a conductive supporting layer of copper or a copper alloy In an electrodeposition drum consisting of a composite support ,
The high-speed electrodeposition drum is characterized in that the conductive support layer comprises an external support formed by depositing copper or a copper alloy on the surface of an internal support made of stainless steel or carbon steel by thermal spraying or welding .
チタン製アウタードラムとその支持体となるインナードラムからなる電着ドラムの製造に際して、
1)インナードラムである内部支持体をステンレス鋼又は炭素鋼で形成し、
2)電着面に流入する電流を受け入れるに十分な厚みの圧延銅板又は銅合金板により、銅板製導電リングを形成し、銅材の物性を損なわない加熱温度でインナードラムに焼き嵌め密着して外部支持体を形成し、
3)焼き嵌め後、銅を表面とするインナードラム表面を機械加工して表面精度、真円度及び円筒度を高め、
4)次いで銅表面を防食と良好な電気的接触を目的として錫メッキをし、
5)同じく防食と優れた電気的接触を得るために内周面を白金被覆したチタン製アウタードラムを銅表面に錫被覆したインナードラムに焼き嵌めして良好な導電支持層を有する電着ドラムを形成することを特徴とする高速電着ドラムの製造方法。
When manufacturing an electrodeposition drum consisting of an outer drum made of titanium and an inner drum as its support,
1) The inner support which is an inner drum is formed of stainless steel or carbon steel,
2) A copper ring conductive ring is formed of a rolled copper plate or a copper alloy plate having a thickness sufficient to receive the current flowing into the electrodeposition surface, and it is shrink-fitted to the inner drum at a heating temperature that does not impair the physical properties of the copper material. Forming an external support,
3) After shrink fitting, machine the inner drum surface with copper as the surface to increase the surface accuracy, roundness and cylindricity,
4) Next, tin the copper surface for anticorrosion and good electrical contact,
5) Similarly, in order to obtain corrosion prevention and excellent electrical contact, an electrodeposition drum having a good conductive support layer is obtained by shrink fitting a titanium outer drum with an inner peripheral surface coated with platinum onto an inner drum coated with tin on a copper surface. A method for producing a high-speed electrodeposition drum characterized by comprising:
チタン製アウタードラムとその支持体となるインナードラムからなる電着ドラムの製造に際して、
1)インナードラムである内部支持体をステンレス鋼又は炭素鋼で形成し、
2)電着面に流入する電流を受け入れるに十分な厚みに銅又は銅合金の溶射又は溶接による肉盛り層を形成して外部支持体を形成し、
3)該溶射又は溶接による肉盛り層を表面とするインナードラム表面を機械加工して表面精度、真円度及び円筒度を高め、
4)次いで銅表面を防食と良好な電気的接触を目的として錫メッキをし、
5)同じく防食と優れた電気的接触を得るために内周面を白金被覆したチタン製アウタードラムを銅表面に錫被覆したインナードラムに焼き嵌めして良好な導電支持層を有する電着ドラムを形成することを特徴とする高速電着ドラムの製造方法。
When manufacturing an electrodeposition drum consisting of an outer drum made of titanium and an inner drum as its support,
1) The inner support which is an inner drum is formed of stainless steel or carbon steel,
2) forming an external support by forming a build-up layer by thermal spraying or welding of copper or copper alloy to a thickness sufficient to receive the current flowing into the electrodeposition surface;
3) Machining the inner drum surface with the surface of the thermal spraying or welding to increase the surface accuracy, roundness and cylindricity,
4) Next, tin the copper surface for anticorrosion and good electrical contact,
5) Similarly, in order to obtain corrosion prevention and excellent electrical contact, an electrodeposition drum having a good conductive support layer is obtained by shrink fitting a titanium outer drum with an inner peripheral surface coated with platinum onto an inner drum coated with tin on a copper surface. A method for producing a high-speed electrodeposition drum characterized by comprising:
JP2001142255A 2001-05-11 2001-05-11 High speed electrodeposition drum and its manufacturing method Expired - Lifetime JP4719375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001142255A JP4719375B2 (en) 2001-05-11 2001-05-11 High speed electrodeposition drum and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001142255A JP4719375B2 (en) 2001-05-11 2001-05-11 High speed electrodeposition drum and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2002332587A JP2002332587A (en) 2002-11-22
JP4719375B2 true JP4719375B2 (en) 2011-07-06

Family

ID=18988591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001142255A Expired - Lifetime JP4719375B2 (en) 2001-05-11 2001-05-11 High speed electrodeposition drum and its manufacturing method

Country Status (1)

Country Link
JP (1) JP4719375B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5032802B2 (en) * 2006-06-30 2012-09-26 日本ステンレス工材株式会社 Electrodeposition drum
KR102273727B1 (en) 2017-11-09 2021-07-05 주식회사 엘지에너지솔루션 Manufacturing apparatus of electrolytic copper foil
KR102260510B1 (en) * 2019-05-16 2021-06-03 이문찬 The method Cathode drum and Cathode drum for electrolytic deposition
KR102463041B1 (en) * 2021-03-12 2022-11-03 세일정기 (주) Cathode drum

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03247787A (en) * 1990-02-26 1991-11-05 Furukawa Saakitsuto Foil Kk Electrodeposition drum
JPH09272993A (en) * 1996-04-05 1997-10-21 Naikai Aakit:Kk Drum for metal foil electrodeposition
JPH09287089A (en) * 1996-02-23 1997-11-04 Nippon Stainless Kozai Kk Titanium electrodeposition drum
JPH10140387A (en) * 1996-11-11 1998-05-26 Naikai Aakit:Kk Drum for electrodeposition of metallic foil
JPH10219493A (en) * 1996-12-04 1998-08-18 Nippon Stainless Kozai Kk Electrodeposition drum
JP2001049482A (en) * 1999-08-02 2001-02-20 Nippon Stainless Kozai Kk Manufacture of electrodeposition drum

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03247787A (en) * 1990-02-26 1991-11-05 Furukawa Saakitsuto Foil Kk Electrodeposition drum
JPH09287089A (en) * 1996-02-23 1997-11-04 Nippon Stainless Kozai Kk Titanium electrodeposition drum
JPH09272993A (en) * 1996-04-05 1997-10-21 Naikai Aakit:Kk Drum for metal foil electrodeposition
JPH10140387A (en) * 1996-11-11 1998-05-26 Naikai Aakit:Kk Drum for electrodeposition of metallic foil
JPH10219493A (en) * 1996-12-04 1998-08-18 Nippon Stainless Kozai Kk Electrodeposition drum
JP2001049482A (en) * 1999-08-02 2001-02-20 Nippon Stainless Kozai Kk Manufacture of electrodeposition drum

Also Published As

Publication number Publication date
JP2002332587A (en) 2002-11-22

Similar Documents

Publication Publication Date Title
JP2019157270A (en) Cathode drum for electrolytic deposition
JPS6344820B2 (en)
US4240894A (en) Drum for electrodeposited copper foil production
JP4719375B2 (en) High speed electrodeposition drum and its manufacturing method
US7833403B2 (en) Plating, chemical plating technique using partial chemical oxidation for aluminum or aluminum copper radiator
CN113755931A (en) Novel corrosion-resistant large-current conductive roller and manufacturing process
US6639194B2 (en) Method for manufacturing a multiple walled tube
US3451903A (en) Conductor roll and method of making the same
CN1784280B (en) Mold and method of manufacturing the same
JP2008266763A (en) Conductor roll for electrolytic treatment in metal electroplating and electrolytic copper foil equipment
US5019221A (en) Electroplating drum cathode with high current-carrying capability
JP2927726B2 (en) Metal foil electrodeposition drum
CN113770658A (en) Production process of cathode plate cross beam for electrolytic zinc
JP2880212B2 (en) Electroplated drum
CN215887278U (en) Novel corrosion-resistant heavy current conducting roller
JPH10140387A (en) Drum for electrodeposition of metallic foil
JP2985012B2 (en) Manufacturing method of electrodeposition drum
JP2003201591A (en) Electro-deposition drum, and manufacturing method thereof
JP3531136B2 (en) Electrodeposition drum for metal foil
JP2012058644A (en) Method for manufacturing endless metallic thin film
JP2880213B2 (en) Electroplated drum
JP5314968B2 (en) Power feeding roll and power feeding roll manufacturing method
JP2713350B2 (en) Electrode wire for wire electric discharge machining
JPH03247787A (en) Electrodeposition drum
JPH10330982A (en) Metallic foil electrodeposition drum

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4719375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term