JP4718694B2 - Manufacturing method of fiber reinforced composite material molded article - Google Patents

Manufacturing method of fiber reinforced composite material molded article Download PDF

Info

Publication number
JP4718694B2
JP4718694B2 JP2001046987A JP2001046987A JP4718694B2 JP 4718694 B2 JP4718694 B2 JP 4718694B2 JP 2001046987 A JP2001046987 A JP 2001046987A JP 2001046987 A JP2001046987 A JP 2001046987A JP 4718694 B2 JP4718694 B2 JP 4718694B2
Authority
JP
Japan
Prior art keywords
fiber
composite material
shape
reinforced composite
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001046987A
Other languages
Japanese (ja)
Other versions
JP2002240068A (en
Inventor
恒男 高野
喜春 沼田
巧 石森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2001046987A priority Critical patent/JP4718694B2/en
Publication of JP2002240068A publication Critical patent/JP2002240068A/en
Application granted granted Critical
Publication of JP4718694B2 publication Critical patent/JP4718694B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、立体形状をなす繊維強化複合材料成形品の製造方法及び成形装置に関し、特にプリプレグを使用して曲率の大きな立体形状の成形品を製造するのに適した繊維強化複合材料成形品の製造方法及び成形装置に関する。
【0002】
【従来の技術】
従来、強化繊維に樹脂を含浸させて半硬化させたプリプレグを使用して、容器形状などの立体形状をなす繊維強化複合材料成形品を成形する際、その立体形状が曲率の小さな緩やかな凸形状又は凹形状の場合には、所望の形状をなすプレス型によりプリプレグを両面から押圧、延伸させることにより成形できる。
【0003】
例えば、特開平6−98953号公報に開示されているゴルフクラブの製造方法では、立体形状をなすゴルフクラブのヘッド部分を予備成形する際に、複数のパーツに分割している。各パーツの予備成形品は、所定の形状に切断されたプリプレグをプレス型により押圧成形することで得られる。こうして予備成形されたヘッドの各パーツと、予備成形されたシャフトとを中空の成形型内に挿入し、それら予備成形品の内側から圧力を加えて加熱成形し、ゴルフクラブに接合一体化させている。
【0004】
しかしながら、プリプレグを用いて立体形状の成形品をプレス型により押圧成形する方法では、成形品が曲率の大きな急峻な凸形状又は凹形状をなす場合に、プレス型面にシート状のプリプレグを載置して押圧成形するとシワが入ってしまう。そのため、曲率の大きな立体形状に成形する場合には、プリプレグに予め部分的に切込み又は切欠きを形成し、その切込み又は切欠きの端縁部分同士を重ね合わせてシワが入らないように積層させて成形している。
【0005】
例えば、半球状に成形する場合には、まずプリプレグを円形に裁断する。そして図7に示すように、円形プリプレグ3の中心領域3aを残して放射状に等間隔で複数本の切込み3bを形成し、或いは図8に示すように、円形プリプレグ4の中心領域4aを残して放射状に等間隔で切欠き4bを形成する。その後、円形プリプレグ3,4の中心領域3a,4aを図9に示す半球凸部20aをもつプレス型20の頂点部分に合わせ、或いは図10に示す半球凹部21aをもつプレス型21の底中央部分に合わせて、半球状のプレス型20又は21に積層する。このとき、切込み3b又は切欠き4bの隣り合う端縁部分を互いに重ね合わせる。その後、相手方のプレス型を被せて押圧成形し、全体が半球状の成形品が成形される。
【0006】
この切込み3bや切欠き4bはプリプレグ3,4にシワが生じない程度の本数及び長さで形成されている。特に切欠き4bを形成する場合には、端縁部分のプリプレグを重ね合わせる際に、端縁間に隙間ができない程度に余分なプリプレグを切除できるため、成形品の軽量化を図ることができる。
【0007】
【発明が解決しようとする課題】
ところで、従来はプレス型にプリプレグを載置し、切込み又は切欠きの端縁部分を重ねる工程を、通常は手作業で行っている。そのため、成形品の品質の安定性、均一性や生産性の点で不十分である。また相手方のプレス型を被せてプレス成形を行う際に、引き込まれなどによりシワが入りやすく、また強化繊維の配列を乱すため、高度の強度及び外観が要求される成形品では、前述の方法は採用されていない。
【0008】
本発明は、前述のごとき従来の課題を解決すべくなされたものであり、その具体的な目的は、所定形状に裁断されたプリプレグを用いて、プレス成形により立体形状をなす繊維強化複合材料の成形品を製造する方法及び成形装置において、成形品にシワが生じることがなく、均一な品質の成形品を安定して且つ高効率に製造可能である繊維強化複合材料成形品の製造方法及び成形装置を提供することにある。
【0009】
【課題を解決するための手段】
上述した目的を達成するために、本件請求項1に係る発明の基本構成は、所定形状に裁断された繊維強化樹脂プリプレグに二以上の切込み又は切欠きを形成し、同切込み又は切欠きの隣接する端縁部分同士を重ね合わせて成形し、立体形状をなす繊維強化複合材料成形品を製造する方法において、前記切込み又は切欠きにより分離された一部分離片をプレス成形により立体形状に成形し、前記一部分離片にプレス成形により残部分離片の一部を重ねて、全体を所望の立体形状に成形する、ことを特徴としている。
【0010】
なお、本発明における繊維強化複合材料成形品とは、それ自体が製品となり得る最終成形品だけでなく、後に他の部品と接合一体化させるなどして最終製品に形成する以前の予備成形品をも含むものである。
【0011】
上述した製造方法によれば、先ず、前記切込み又は切欠きにより分離された一部分離片を加熱プレス成形により立体形状に成形し、その後、前記一部分離片に、別途プレス成形により残部分離片の一部を重ねるため、その作業が容易であり、しかも型締めの際にも引き込まれによりシワや強化繊維の配列の乱れも生じることもない。
【0012】
更に、本件請求項2に係る発明によれば、前記一部分離片を位置決め片として、プレス型の所定部位に位置決めセットすることを含んでいる。
このように前記一部分離片を位置決め片として利用することにより、精密な精度で成形が可能となり、しかも作業効率も向上し、高品質の成形品を安定して製造可能である。また、成形の自動化も可能となるため、製造効率も著しく向上する。
【0013】
本件請求項3に係る発明では、炭素繊維を強化繊維として、同炭素繊維が一方向に引き揃えられてなるプリプレグを用いている。或いは本件請求項4に係る発明では、炭素繊維を強化繊維として、同炭素繊維を経糸と緯糸とに使われた炭素繊維二方向性織物であるプリプレグを用いている。これらは繊維強化複合材料の用途や要求される強度などに応じて適宜選択が可能である。
【0014】
また、本件請求項5に係る発明では、前記プリプレグを複数枚重ねて同時に成形する。このようにプリプレグを複数枚重ねることにより、所望の肉厚の繊維強化複合材料成形品を製造可能である。
【0015】
更に、上述した製造方法に適した成形装置として、本件請求項6に係る発明は、第1及び第2の対となるプレス型を備え、請求項1〜5に係る発明方法に好適に適用され、立体形状を有する繊維強化複合材料成形品を成形するための成形装置であって、第1及び第2の対となるプレス型を備え、前記第1プレス型は、裏面側立体形状成形品のネガ形状の一部に前記残部分離片が載置される突起部と、前記突起部に隣接するネガ形状の残部に前記一部分離片が位置決め載置される凹溝部とを有し、前記第2プレス型は、表面側立体形状成形品のネガ形状の一部に前記突起部に嵌着する嵌着形状を有してなる、ことを特徴としている。
【0016】
第1プレス型の前記突起部には前記プリプレグの前記一部分離片を位置決めセットし、第2プレス型との間で前記一部分離片をプレス成形する。
その後、全体が裏面側立体形状成形品のネガ形状をもつプレス型と、全体が表面側立体形状成形品のネガ形状をもつプレス型とにより、残る分離片を折り曲げ、前記分離片と一部重ね合わせ、全体を立体形状にプレス成形される。なお、これらのプレス型は上記第1及び第2プレス型とは別途のものであってもよく、例えば、前記第1及び第2プレス型を凹凸部を可動の駒部材を用いて構成し、第1及び第2プレス型により全体を立体形状にプレス成形することも可能である。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して具体的に説明する。
【0018】
例えば半球状の繊維強化複合材料成形品を製造する場合、先ずプリプレグを円形に裁断する。そしてこの円形プリプレグ1に図5に示すように、中央部分1aを残して2本1組の平行線状の切込み1bを4組、十文字に形成し、周縁を本発明の一部分離片となる矩形の分離片1cと残部分離片となる扇形の分離片1dとに分離する。なお、前記プリプレグの裁断形状は必ずしも円形である必要はなく、必要とする端縁形状となるように適宜の形状に裁断が可能である。
【0019】
次いで、この切込み1bが形成された円形プリプレグ1のうち、先ず、矩形分離片1cのみを半球状に湾曲させて成形した後、扇形分離片1dを半球状に湾曲させて同矩形分離片1cに一部を重ねた状態で成形する。その具体的な成形方法について説明する。
【0020】
前記矩形分離片1cのみを半球状に成形する際には、図2及び図3に示すプレス型10,11を用いる。図2に示す第1プレス型10は、成形品裏面側半球形状のネガ形状の一部、十文字状の半球面凹溝部10aを有し、その他の部位、すなわち、前記円形プリプレグ1の扇形分離片1dに対応する位置には、平坦上面をもつ扇形突起10bが、前記10a半球の頂部と略同一の高さまで突設されている。
【0021】
一方、図3に示す第2プレス型11は、前記半球状凹溝部10aに嵌着するネガ形状を有しており、前記第1プレス型10と所定のクリアランスを取って嵌合する。同第2プレス型11は、枠体11aの中央に円形開口11bが形成されており、同円形開口11bに、前記扇形突起10b間に嵌合し、前記十文字状の凹溝部10aの表面に密着する半球状十文字突起部11cが形成されている。
【0022】
上記プレス型10,11を用いて成形するには、先ず、前記第1プレス型10に前記円形プリプレグ1を載置する。このとき、図4に示すように、円形プリプレグ1の中央部分1aを前記第1プレス型10の半球10aの頂部に載置し、前記矩形分離片1cを前記プレス型10の十文字状の半球凹溝部10a上に沿わせると共に、前記扇形分離片1dを同プレス型10の扇形突起10b上に位置させる。
【0023】
かかる形状のプレス型10を用いることにより、前記矩形分離片1cを前記扇形突起10b間に形成された十文字状の凹溝部10aにより前記円形プリプレグ1は前記プレス型10に対して常に一定の位置に正確に位置決めして載置することができる。また、上記円形プリプレグ1は、2本1組の切込み1bが平行であるため、その2本の切込み1bの間の矩形分離片1cは、隣接する扇形分離片1dを載置するプレス型10の扇形突起10bと干渉することがない。かかる干渉を回避する目的から、前記切込み1bは上述のように互いに平行か、或いは外周に向けて狭まるように形成することが好ましい。
【0024】
この状態で、前記第2プレス型11を前記第1プレス型10に嵌合させて、円形プリプレグ1の中央部分1a及び矩形分離片1cを第1プレス型10の十文字状の凹溝部10aと第2プレス型11の半球状十文字突起部11cとによりプレス成形する。
【0025】
次に、図5及び図9に示すように、半球状の凸部20aをもつ第3プレス型20に、中央部分1aと矩形分離片1cとが半球状に成形された円形プリプレグ1を、前記凸部20aの中心と前記中央部分1aの中心とを位置合わせてして載置し、図10に示す半球状の凹部21aをもつ第4プレス型21を前記第3プレス型20に嵌合させてプレス成形し、扇形分離片1dの端縁部分を矩形分離片1cの端縁部分の表面に重ねる。
【0026】
このとき、上述したように円形プリプレグ1の中央部分1aと矩形分離片1cとが半球状に成形されているため、前記扇形分離片1dはシワなどが生じることなく前記矩形分離片1cの一部表面に容易に重ねることができ、また、型締めの際にも引き込まれによって前記扇形分離片1dにシワが生じることもない。この状態で、半球状にプリフォーム成形され、さらに加熱することで繊維強化複合材料成形品が形成される。
【0027】
このように、半球状の繊維強化複合材料成形品を成形するにあたって、本発明は、中央部分1a及び矩形分離片1cの十文字状の部分を半球状に成形する第一の工程と、残りの扇形分離片1dをその一部を前記矩形分離片1cに重ねて半球状に成形する第二の工程との2つの工程を経て、プレス成形を行う。この方法によれば、第一の工程において円形プリプレグ1は切込み1bを利用してプレス型に正確に位置決めされるため、均一な品質の成形品を製造することができる。また、第二の工程ではその略半分が半球状に成形されているため、残部をシワが生じることなく先に成形された部分に成形一体化される。
【0028】
なお、上述した実施形態にあっては、切込み1bが形成された円形プリプレグ1を採用しているが、図6に示す円形プリプレグ2のように、中央部分2aを残して十文字に切欠き2bを形成し、周縁を矩形分離片2cと扇形分離片2dとに分離してもよい。この場合には、切欠き2bを挟んで隣り合う矩形分離片2cと扇形分離片2dとの重なりを、両者の間に隙間が生じない程度に最小限に抑えることができ、不要な重なりを取り除くことができる。そのため、重なり部分の肉厚差を小さくできる。
【0029】
また、上述した実施形態にあっては、上述した2つの工程をそれぞれ別個のプレス型を用いて行っているが、例えば第1プレス型10の扇形突起10bを可動の駒部材により構成したり、第2プレス型11の円形開口10aに可動式の駒部材を嵌合させるなどにより、一組のプレス型によって成形することも可能である。
【0030】
更に、突起や凹部の形状は必ずしもプリプレグの切込み形状と完全に一致させる必要はなく、所定の立体形状に折り曲げ又は湾曲させたり、重ねることが可能な程度であれば十分である。
【0031】
また、上下のプレス型間に複数枚のプリプレグを積層させて成形できるクリアランスをあけることにより、複数枚のプリプレグを同時に立体形状に成形一体化し厚肉の成形品を製造することができる。この際、複数のプリプレグは、切込みの形成位置を同じ位置としてもよく、或いは切込みを意図的に若干ずらして形成し、上下のプリプレグにおいて切込み端縁同士の重なり部分をずらし、肉厚差を低減し、段差の発生を改善することができる。この際、プレス型の突起は各切り込み位置と距離を保つ必要がある。さらにはガラス繊維、樹脂繊維、金属繊維などの異種材料からなるプリプレグを同時または別途に成形し、一体成形することも可能である。
【0032】
前記プリプレグとしては、強化繊維を一方向に引き揃えたシートにマトリックス樹脂を含浸させたもの、例えば一方向性炭素繊維強化エポキシ樹脂プリプレグを使用することができる。更には、一方向性炭素繊維強化エポキシ樹脂プリプレグを、繊維が0°方向と90°方向との2方向になるよう複数層に積層したものや、それに更に±45°方向を加えたり、これらを繰り返し積層させて成形することもできる。その場合には、他方向にわたって強化繊維による強度が得られ、強度バランスが取りやすい。
【0033】
或いは、たて糸とよこ糸とに強化繊維を用いた織布にマトリックス樹脂を含浸させた、例えば二方向性織布炭素繊維強化エポキシ樹脂プリプレグを採用することもできる。
【0034】
本発明による製造方法は、繊維強化複合材料成形品は半球状に限らず、矩形の箱状、紡錘形状など、様々な立体形状の成形に適用できる。また、この成形品は最終製品に限定されるものではなく、例えば容器形状の予備成形品を本発明の方法により成形し、その後、成形型内で予備成形品を組み合わせ、内圧成形により中空構造の最終製品を製造することも可能である。
上述した本発明による成形品の製造方法は、例えば立体形状のヘルメットや、ゴルフヘッドの製造に好適に適用される。
【0035】
以下、本発明について具体的な実施例及び比較例を挙げて説明する。
(実施例)
炭素繊維織布強化エポキシ樹脂プリプレグとして、三菱レイヨン(株)製「パイロフィルTR350H175S」(炭素繊維含有量56体積%)を、繊維が0°及び90°の方向となるよう積層して使用し、半球状にプリフォーム成形を行った。
【0036】
先ず、プリプレグを円形に裁断し、図1に示す様に切込み1bを形成した。円形プリプレグ1の中央部分1aを図2に示す第1プレス型10の十文字状半球10aの頂部に載置し、矩形分離片1cを前記半球凹溝部10a上に沿わせると共に、扇形分離片1dを同プレス型10の扇形突起10b上に位置させる。次いで図3に示す第2プレス型11を前記第1プレス型10に嵌合させて、前記中央部分1aと矩形分離片1cとを半球状にプレス成形して賦形する。プレス型10及び11を嵌合する前に、プリプレグを軟化させるため、赤外線ヒーターで80℃10秒加熱した。その後、プレス型10,11内をエアブローで20℃冷却した後、プリプレグの形状を固定化し脱型した。
【0037】
取り出したプリプレグを、図5に示す第3プレス型20の半球凸部20a上に、同凸部20aの頂部と前記プリプレグ1の中央領域とを合わせて配置し、赤外線ヒーターで80℃10秒で加熱して軟化させ、図10に示す第4プレス型21を被せて扇形分離片1dを半球状に湾曲させて前記矩形分離片1cに接着させる。その後、プレス型内にエアブローで20℃に冷却した後、プリプレグ形状を固定化して脱型し、プリフォーム成形品を得た。
【0038】
このプリフォーム成形品を成形型にセットして、圧力4Kgf/cm2 でバッグ成形を行い、120℃2時間硬化を行い、成形品を得た。強度や、外観は良好で、生産安定性に優れる製品を得ることができた。
【0039】
(比較例)
図1に示すように切り込みを入れた円形プリプレグ1を、図9及び図10に示すプレス型20,21のみを用いて一度に半球状にプレス成形をした以外は上述した実施例と同様に成形を行った。その結果、プリプレグがプレス型に引き込まれ、シワや繊維の乱れが発生し、十分な品質のプリフォームが得られなかった。
【0040】
以上説明したように、本発明の繊維強化複合材料成形品の製造方法にあっては、曲率が大きな立体形状であっても、シワが生じることなく、且つ均一な品質で効率よく製造することが可能である。更には、従来の手作業での積層を自動化することも可能であり、さらに品質安定性及び製造効率の向上を図ることが可能となる。
【図面の簡単な説明】
【図1】本発明の製造方法において好適に使用されるプリプレグの平面図である。
【図2】本発明の製造方法において第一の成形時に好適に使用される第1プレス型の概略斜視図である。
【図3】図2の第1プレス型に対応した第2プレス型の裏面斜視図である。
【図4】本発明の製造方法における第一の成形時の状態を示す説明図である。
【図5】本発明の製造方法における第二の成形時の状態を示す説明図である。
【図6】本発明の製造方法において好適に使用される他のプリプレグの平面図である。
【図7】従来の製造方法において使用されるプリプレグの平面図である。
【図8】従来の製造方法において使用される他のプリプレグの平面図である。
【図9】従来の製造方法に使用される、及び本発明の製造方法における第二の成形時に好適に使用されるプレス型の概略斜視図である。
【図10】図9のプレス型に対応したプレス型の裏面概略斜視図である。
【符号の説明】
1 円形プリプレグ
1a 中央部分
1b 切込み
1c 矩形分離片(一部分離片)
1d 扇形分離片(残部分離片)
2 円形プリプレグ
2a 中央部分
2b 切欠き
2c 矩形分離片(一部分離片)
2d 扇形分離片(残部分離片)
3 円形プリプレグ
3a 中央部分
3b 切込み
4 円形プリプレグ
4a 中央部分
4b 切欠き
10 第1プレス型
10a 十文字状の凹溝部(凹溝部)
10b 扇形突起(突起部)
11 第2プレス型
11a 枠体
11b 円形開口(嵌着形状)
11c 半球状十文字部
20 第3プレス型
20a 半球状凸部
21 第4プレス型
21a 半球状凹部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for manufacturing a three-dimensional fiber-reinforced composite material molded product, and more particularly, to a fiber-reinforced composite material molded product suitable for manufacturing a three-dimensional molded product having a large curvature using a prepreg. The present invention relates to a manufacturing method and a molding apparatus.
[0002]
[Prior art]
Conventionally, when molding a fiber reinforced composite material molded into a three-dimensional shape such as a container shape using a prepreg obtained by impregnating a resin into a reinforcing fiber and semi-cured, the three-dimensional shape has a gentle convex shape with a small curvature. Or in the case of a concave shape, it can shape | mold by pressing and extending a prepreg from both surfaces with the press type | mold which makes a desired shape.
[0003]
For example, in the golf club manufacturing method disclosed in Japanese Patent Laid-Open No. 6-98953, a head portion of a three-dimensional golf club is divided into a plurality of parts when preformed. The preform of each part is obtained by press-molding a prepreg cut into a predetermined shape with a press die. Each part of the preformed head and the preformed shaft are inserted into a hollow mold, pressure is applied from the inside of the preformed product, heat-molded, and joined and integrated with the golf club. Yes.
[0004]
However, in the method of press molding a three-dimensional molded product using a prepreg using a prepreg, when the molded product has a sharp convex shape or concave shape with a large curvature, a sheet-shaped prepreg is placed on the press mold surface. And when it is press-molded, wrinkles will enter. For this reason, when forming into a three-dimensional shape with a large curvature, a notch or notch is partially formed in advance in the prepreg, and the edge portions of the notch or notch are overlapped so as not to be wrinkled. Are molded.
[0005]
For example, when forming into a hemispherical shape, the prepreg is first cut into a circle. Then, as shown in FIG. 7, a plurality of cuts 3b are formed radially at equal intervals leaving the central region 3a of the circular prepreg 3, or the central region 4a of the circular prepreg 4 is left as shown in FIG. Notches 4b are formed radially at equal intervals. Thereafter, the center regions 3a and 4a of the circular prepregs 3 and 4 are aligned with the apex portion of the press die 20 having the hemispherical convex portion 20a shown in FIG. 9, or the bottom central portion of the press die 21 having the hemispherical concave portion 21a shown in FIG. The hemispherical press die 20 or 21 is laminated according to the above. At this time, adjacent edge portions of the notch 3b or the notch 4b are overlapped with each other. Then, the other press die is put on and press-molded to form a molded product having a hemispherical shape as a whole.
[0006]
The cuts 3b and the cutouts 4b are formed with a number and a length such that the prepregs 3 and 4 are not wrinkled. In particular, when the cutout 4b is formed, when the prepregs at the end edge portions are overlapped, the excess prepreg can be removed to such an extent that there is no gap between the end edges, so that the weight of the molded product can be reduced.
[0007]
[Problems to be solved by the invention]
By the way, conventionally, the process of placing the prepreg on a press die and overlapping the edge portions of the notches or notches is usually performed manually. Therefore, it is insufficient in terms of stability, uniformity and productivity of the quality of the molded product. In addition, when performing press molding with the other side press mold, wrinkles are likely to occur due to being drawn in, etc., and the molded fiber that requires a high degree of strength and appearance because it disturbs the array of reinforcing fibers, the above method is Not adopted.
[0008]
The present invention has been made to solve the conventional problems as described above, and a specific object of the present invention is to use a prepreg cut into a predetermined shape to form a three-dimensional shape by press molding. In a method and a molding apparatus for manufacturing a molded product, there is no wrinkle in the molded product, and a method for manufacturing a fiber-reinforced composite material molded product that can stably and efficiently produce a molded product of uniform quality. To provide an apparatus.
[0009]
[Means for Solving the Problems]
In order to achieve the above-described object, the basic configuration of the invention according to claim 1 is that a fiber-reinforced resin prepreg cut into a predetermined shape is formed with two or more cuts or notches, and adjacent to the cuts or cuts. In the method of manufacturing the fiber reinforced composite material molded article having a three-dimensional shape by overlapping the edge portions to be formed, the partially separated piece separated by the notch or notch is molded into a three-dimensional shape by press molding, A part of the remaining separation piece is overlapped with the partial separation piece by press molding, and the whole is formed into a desired three-dimensional shape.
[0010]
In addition, the fiber reinforced composite material molded product in the present invention is not only a final molded product that can be a product itself, but also a preformed product before being formed into a final product by joining and integrating with other parts later. Is also included.
[0011]
According to the manufacturing method described above, first, the partially separated piece separated by the notch or notch is formed into a three-dimensional shape by hot press molding, and then the remaining separated piece is separately formed on the partially separated piece by press molding. Since the portions are overlapped, the operation is easy, and there is no occurrence of wrinkles or disturbance of the reinforcing fibers due to the drawing even when the mold is clamped.
[0012]
Furthermore, according to the second aspect of the present invention, the method includes positioning and setting a predetermined part of a press die using the partially separated piece as a positioning piece.
In this way, by using the partially separated piece as a positioning piece, molding can be performed with high precision, work efficiency can be improved, and a high-quality molded product can be stably manufactured. Further, since the molding can be automated, the manufacturing efficiency is remarkably improved.
[0013]
In the invention according to claim 3 of the present invention, a prepreg in which carbon fibers are used as reinforcing fibers and the carbon fibers are aligned in one direction is used. Alternatively, the invention according to claim 4 uses a prepreg which is a carbon fiber bi-directional woven fabric in which carbon fibers are used as reinforcing fibers and the carbon fibers are used as warps and wefts. These can be appropriately selected according to the use of the fiber-reinforced composite material and the required strength.
[0014]
In the invention according to claim 5, a plurality of the prepregs are stacked and simultaneously molded. By stacking a plurality of prepregs in this way, a fiber-reinforced composite material molded product having a desired thickness can be manufactured.
[0015]
Furthermore, as a molding apparatus suitable for the manufacturing method described above, the invention according to claim 6 includes first and second pairs of press dies, and is suitably applied to the invention methods according to claims 1 to 5. A molding apparatus for molding a fiber-reinforced composite material molded article having a three-dimensional shape, comprising a first and second pair of press dies, wherein the first press mold is a back-side three-dimensional molded article. A projection part on which the remaining separation piece is placed on a part of the negative shape, and a concave groove part on which the partial separation piece is positioned and placed on a remaining part of the negative shape adjacent to the projection part, The press die is characterized in that it has a fitting shape that fits into the protrusion on a part of the negative shape of the surface side three-dimensional molded product.
[0016]
The partial separation piece of the prepreg is positioned and set on the protrusion of the first press die, and the partial separation piece is press-molded with the second press die.
After that, the remaining separation piece is bent by a press die having a negative shape of the back surface side three-dimensional molded product and a press die having a negative shape of the front surface side three-dimensional shape molding product, and partially overlaps the separation piece. The whole is press-molded into a three-dimensional shape. These press dies may be separate from the first and second press dies. For example, the first and second press dies are configured by using a movable piece member with a concavo-convex portion, It is also possible to press-mold the whole into a three-dimensional shape using the first and second press dies.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
[0018]
For example, when producing a hemispherical fiber-reinforced composite material molded product, first, the prepreg is cut into a circle. Then, as shown in FIG. 5, the circular prepreg 1 is formed with four sets of two parallel line-like cuts 1b, leaving the central portion 1a, in a cross shape, and the periphery of the rectangular prepreg 1 as a partial separation piece of the present invention. The separated piece 1c is separated into a fan-shaped separated piece 1d which becomes the remaining separated piece . The cut shape of the prepreg is not necessarily circular, and can be cut into an appropriate shape so as to have a required edge shape.
[0019]
Next, of the circular prepreg 1 in which the cuts 1b are formed, first, only the rectangular separating piece 1c is formed to be hemispherically curved, and then the fan-shaped separating piece 1d is bent to be hemispherical to form the rectangular separating piece 1c. Mold in a state where a part is piled up. A specific molding method will be described.
[0020]
When only the rectangular separating piece 1c is formed into a hemispherical shape, press dies 10, 11 shown in FIGS. 2 and 3 are used. A first press die 10 shown in FIG. 2 has a negative part of a hemispherical shape on the back side of the molded product, a cross-shaped hemispherical concave groove portion 10a, and the other part, that is, a fan-shaped separation piece of the circular prepreg 1 At a position corresponding to 1d, a fan-shaped protrusion 10b having a flat upper surface protrudes to the same height as the top of the 10a hemisphere.
[0021]
On the other hand, the second press die 11 shown in FIG. 3 has a negative shape to be fitted into the hemispherical concave groove portion 10a, and is fitted with the first press die 10 with a predetermined clearance. The second press die 11 has a circular opening 11b formed at the center of the frame 11a. The circular opening 11b is fitted between the fan-shaped protrusions 10b and is in close contact with the surface of the cross-shaped groove 10a. A hemispherical cross-shaped protrusion 11c is formed.
[0022]
In order to form using the press dies 10 and 11, first, the circular prepreg 1 is placed on the first press die 10. At this time, as shown in FIG. 4, the central portion 1 a of the circular prepreg 1 is placed on the top of the hemisphere 10 a of the first press die 10, and the rectangular separating piece 1 c is formed into a cross-shaped hemispherical recess of the press die 10. The fan-shaped separating piece 1d is positioned on the fan-shaped protrusion 10b of the press die 10 while being along the groove 10a.
[0023]
By using the press die 10 having such a shape, the circular prepreg 1 is always in a fixed position with respect to the press die 10 by the cross-shaped concave groove portion 10a formed between the fan-shaped protrusions 10b. It can be positioned and placed accurately. In addition, since the circular prepreg 1 has two sets of cuts 1b parallel to each other, the rectangular separation piece 1c between the two cuts 1b is formed by the press mold 10 on which the adjacent fan-shaped separation pieces 1d are placed. There is no interference with the fan-shaped protrusion 10b. In order to avoid such interference, the cuts 1b are preferably formed so as to be parallel to each other or narrow toward the outer periphery as described above.
[0024]
In this state, the second press die 11 is fitted to the first press die 10, and the central portion 1a of the circular prepreg 1 and the rectangular separation piece 1c are connected to the cross-shaped concave groove portion 10a of the first press die 10 and the first groove 10a. 2. Press-molding with the hemispherical cross-shaped projection 11c of the press die 11.
[0025]
Next, as shown in FIGS. 5 and 9, the circular prepreg 1 in which the central portion 1 a and the rectangular separating piece 1 c are formed in a hemispherical shape on the third press die 20 having the hemispherical convex portion 20 a, The center of the convex portion 20a and the center of the central portion 1a are aligned and placed, and the fourth press die 21 having the hemispherical concave portion 21a shown in FIG. Then, the edge portion of the fan-shaped separation piece 1d is overlaid on the surface of the edge portion of the rectangular separation piece 1c.
[0026]
At this time, since the central portion 1a of the circular prepreg 1 and the rectangular separating piece 1c are formed in a hemispherical shape as described above, the fan-shaped separating piece 1d is a part of the rectangular separating piece 1c without wrinkles or the like. It can be easily stacked on the surface, and the fan-shaped separation piece 1d is not wrinkled by being pulled in even during clamping. In this state, it is preformed into a hemispherical shape and further heated to form a fiber reinforced composite material molded product.
[0027]
Thus, in forming a hemispherical fiber-reinforced composite material molded product, the present invention includes a first step of forming the cross-shaped portion of the central portion 1a and the rectangular separating piece 1c into a hemispherical shape, and the remaining sector shape. The separation piece 1d is press-molded through two steps including a second step of forming a part of the separation piece 1d on the rectangular separation piece 1c and forming a hemisphere. According to this method, the circular prepreg 1 is accurately positioned in the press die using the cut 1b in the first step, so that a molded product of uniform quality can be manufactured. In the second step, approximately half of the shape is formed into a hemispherical shape, so that the remaining portion is molded and integrated with the previously molded portion without causing wrinkles.
[0028]
In the above-described embodiment, the circular prepreg 1 in which the notch 1b is formed is adopted. However, like the circular prepreg 2 shown in FIG. 6, the notch 2b is formed in the crossed shape leaving the central portion 2a. The peripheral edge may be separated into a rectangular separation piece 2c and a sectoral separation piece 2d. In this case, the overlap between the rectangular separation piece 2c and the fan-shaped separation piece 2d adjacent to each other with the notch 2b interposed therebetween can be minimized to such an extent that no gap is generated therebetween, and unnecessary overlap is removed. be able to. Therefore, the thickness difference in the overlapping portion can be reduced.
[0029]
In the above-described embodiment, the above-described two steps are performed using separate press dies. For example, the fan-shaped protrusion 10b of the first press die 10 is configured by a movable piece member, It is also possible to mold with a set of press dies by fitting a movable piece member into the circular opening 10a of the second press die 11.
[0030]
Furthermore, the shape of the protrusion or the recess does not necessarily need to be completely matched with the cut shape of the prepreg, and may be enough if it can be bent or curved into a predetermined three-dimensional shape or overlapped.
[0031]
Further, by providing a clearance that allows a plurality of prepregs to be laminated between the upper and lower press molds, a plurality of prepregs can be molded and integrated into a three-dimensional shape at the same time to produce a thick molded product. At this time, a plurality of prepregs may be formed with the same cutting position, or the cutting is intentionally slightly shifted, and the overlapping portions of the cutting edges are shifted in the upper and lower prepregs to reduce the difference in wall thickness. In addition, the occurrence of a step can be improved. At this time, the protrusions of the press die need to maintain the respective cutting positions and distances. Furthermore, prepregs made of different materials such as glass fiber, resin fiber, and metal fiber can be molded simultaneously or separately and integrally molded.
[0032]
As the prepreg, a sheet in which reinforcing fibers are aligned in one direction and a matrix resin impregnated, for example, a unidirectional carbon fiber reinforced epoxy resin prepreg can be used. Furthermore, unidirectional carbon fiber reinforced epoxy resin prepregs are laminated in multiple layers so that the fibers are in two directions of 0 ° direction and 90 ° direction. It can also be laminated and molded repeatedly. In that case, the strength by the reinforcing fiber is obtained in the other direction, and the strength balance is easily obtained.
[0033]
Alternatively, for example, a bi-directional woven carbon fiber reinforced epoxy resin prepreg in which a woven fabric using reinforcing fibers for warp and weft is impregnated with a matrix resin may be employed.
[0034]
The manufacturing method according to the present invention can be applied to molding of various three-dimensional shapes such as a rectangular box shape and a spindle shape, without limiting the fiber-reinforced composite material molded product to a hemispherical shape. In addition, this molded product is not limited to the final product. For example, a container-shaped preform is molded by the method of the present invention, and then the preform is combined in a mold, and a hollow structure is formed by internal pressure molding. It is also possible to produce a final product.
The above-described method for manufacturing a molded article according to the present invention is preferably applied to, for example, manufacturing a three-dimensional helmet or a golf head.
[0035]
Hereinafter, the present invention will be described with specific examples and comparative examples.
(Example)
“Pyrofil TR350H175S” (carbon fiber content: 56% by volume) manufactured by Mitsubishi Rayon Co., Ltd. is used as a carbon fiber woven cloth reinforced epoxy resin prepreg, laminated so that the fibers are oriented at 0 ° and 90 °. The preform was molded into a shape.
[0036]
First, the prepreg was cut into a circle, and a cut 1b was formed as shown in FIG. The central portion 1a of the circular prepreg 1 is placed on the top of the cross-shaped hemisphere 10a of the first press mold 10 shown in FIG. 2, the rectangular separating piece 1c is placed along the hemispherical concave groove 10a, and the fan-shaped separating piece 1d is placed. It is positioned on the fan-shaped protrusion 10b of the press die 10. Next, the second press die 11 shown in FIG. 3 is fitted to the first press die 10, and the central portion 1a and the rectangular separating piece 1c are press-formed into a hemispherical shape. Before the press dies 10 and 11 were fitted, in order to soften the prepreg, it was heated at 80 ° C. for 10 seconds with an infrared heater. Thereafter, the inside of the press molds 10 and 11 was cooled by air blow at 20 ° C., and then the shape of the prepreg was fixed and demolded.
[0037]
The extracted prepreg is placed on the hemispherical convex portion 20a of the third press mold 20 shown in FIG. 5 so that the top of the convex portion 20a and the central region of the prepreg 1 are aligned, and an infrared heater at 80 ° C. for 10 seconds. It softens by heating, and covers the fourth press die 21 shown in FIG. 10 to curve the fan-shaped separating piece 1d into a hemispherical shape and adhere it to the rectangular separating piece 1c. Then, after cooling to 20 ° C. by air blow in the press mold, the prepreg shape was fixed and demolded to obtain a preform molded product.
[0038]
This preform molded product was set in a molding die, bag-molded at a pressure of 4 kgf / cm 2 , and cured at 120 ° C. for 2 hours to obtain a molded product. A product with good strength and appearance and excellent production stability could be obtained.
[0039]
(Comparative example)
A circular prepreg 1 with a cut as shown in FIG. 1 is molded in the same manner as in the above-described embodiment except that only the press dies 20 and 21 shown in FIGS. Went. As a result, the prepreg was drawn into the press mold, wrinkles and fiber disturbance occurred, and a preform with sufficient quality could not be obtained.
[0040]
As described above, in the method for producing a fiber-reinforced composite material molded product of the present invention, even a three-dimensional shape with a large curvature can be efficiently produced with uniform quality without causing wrinkles. Is possible. Furthermore, it is possible to automate conventional manual lamination, and it is possible to further improve quality stability and manufacturing efficiency.
[Brief description of the drawings]
FIG. 1 is a plan view of a prepreg preferably used in the production method of the present invention.
FIG. 2 is a schematic perspective view of a first press die preferably used during the first molding in the manufacturing method of the present invention.
3 is a rear perspective view of a second press die corresponding to the first press die of FIG. 2; FIG.
FIG. 4 is an explanatory view showing a state at the time of first molding in the production method of the present invention.
FIG. 5 is an explanatory view showing a state during second molding in the production method of the present invention.
FIG. 6 is a plan view of another prepreg preferably used in the production method of the present invention.
FIG. 7 is a plan view of a prepreg used in a conventional manufacturing method.
FIG. 8 is a plan view of another prepreg used in the conventional manufacturing method.
FIG. 9 is a schematic perspective view of a press die that is used in a conventional manufacturing method and is preferably used during second molding in the manufacturing method of the present invention.
10 is a schematic rear perspective view of a press die corresponding to the press die of FIG. 9. FIG.
[Explanation of symbols]
1 circular prepreg 1a center part 1b notch 1c rectangular separation piece (partial separation piece)
1d Fan-shaped separation piece (remainder separation piece)
2 Circular prepreg 2a Center part 2b Notch 2c Rectangular separation piece (partial separation piece)
2d Fan-shaped separation piece (remainder separation piece)
DESCRIPTION OF SYMBOLS 3 Circular prepreg 3a Center part 3b Notch 4 Circular prepreg 4a Center part 4b Notch 10 1st press die 10a Cross-shaped groove part (concave part)
10b Fan projection (projection)
11 Second press die 11a Frame 11b Circular opening (fit shape)
11c Hemispherical cross section 20 Third press die 20a Hemispherical convex portion 21 Fourth press die 21a Hemispherical concave portion

Claims (6)

所定形状に裁断された繊維強化樹脂プリプレグ(1,2)に二以上の切込み(1b)又は切欠き(2b)を形成し、同切込み又は切欠きの隣接する端縁部分同士を重ね合わせて成形し、立体形状をなす繊維強化複合材料成形品を製造する方法において、
前記切込み(1b)又は切欠き(2b)により分離された一部分離片(1c,2c)をプレス成形により立体形状に成形し、
次に、前記一部分離片(1c,2c)にプレス成形により残部分離片(1d,2d)の一部を重ねて、全体を所望の立体形状に成形する、
ことを特徴とする繊維強化複合材料成形品の製造方法。
Two or more cuts (1b) or notches (2b) are formed in the fiber reinforced resin prepreg (1, 2) cut into a predetermined shape, and the adjacent edge portions of the notches or notches are overlapped and molded. In a method of manufacturing a fiber-reinforced composite material molded article having a three-dimensional shape,
The partially separated pieces (1c, 2c) separated by the notches (1b) or notches (2b) are molded into a three-dimensional shape by press molding,
Next, a part of the remaining separation pieces (1d, 2d) is overlapped by press molding on the partial separation pieces (1c, 2c) , and the whole is formed into a desired three-dimensional shape.
A method for producing a fiber-reinforced composite material molded article.
前記一部分離片(1c,2c)を位置決め片として、プレス型の所定部位に位置決めセットする、請求項1記載の繊維強化複合材料成形品の製造方法。The method of manufacturing a fiber-reinforced composite material molded article according to claim 1, wherein the partial separation piece (1c, 2c) is used as a positioning piece and positioned and set at a predetermined portion of a press die. 炭素繊維を強化繊維として、同炭素繊維が一方向に引き揃えられてなるプリプレグを用いる、請求項1又は2記載の繊維強化複合材料の製造方法。  The method for producing a fiber-reinforced composite material according to claim 1 or 2, wherein a carbon fiber is used as a reinforcing fiber and a prepreg in which the carbon fiber is aligned in one direction is used. 炭素繊維を強化繊維として、同炭素繊維を経糸と緯糸とに使われた炭素繊維二方向性織物であるプリプレグを用いる、請求項1又は2記載の繊維強化複合材料の製造方法。  The manufacturing method of the fiber reinforced composite material of Claim 1 or 2 using the prepreg which is a carbon fiber bi-directional woven fabric which used the carbon fiber as a reinforced fiber and the carbon fiber was used for the warp and the weft. 前記プリプレグを複数枚重ねて同時に成形する、請求項1〜4のいずれかに記載の繊維強化複合材料成形品の製造方法。  The manufacturing method of the fiber reinforced composite material molded product according to any one of claims 1 to 4, wherein a plurality of the prepregs are stacked and simultaneously molded. 請求項1〜5のいずれかに記載の製造方法を実施するための、立体形状を有する繊維強化複合材料成形品を成形する成形装置であって、
第1及び第2の対となるプレス型(10,11)を備え、
前記第1プレス型(10)は、裏面側立体形状成形品のネガ形状の一部に前記残部分離片(1d,2d)が載置される突起部(10b)と、前記突起部(10b)に隣接するネガ形状の残部に前記一部分離片(1c,2c)が位置決め載置される凹溝部(10a)とを有し、
前記第2プレス型(11)は、表面側立体形状成形品のネガ形状の一部に前記突起部(10b)に嵌着する嵌着形状(11b)を有してなる、
ことを特徴とする繊維強化複合材料成形品の成形装置。
A molding apparatus for molding a fiber-reinforced composite material molded article having a three-dimensional shape for carrying out the manufacturing method according to claim 1 ,
Comprising press dies (10, 11) as first and second pairs;
The first press die (10) includes a protrusion (10b) on which the remaining separation piece (1d, 2d) is placed on a part of the negative shape of the back side three-dimensional molded product, and the protrusion (10b). A concave groove (10a) on which the partial separation piece (1c, 2c) is positioned and placed in the negative-shaped remaining portion adjacent to
The second press die (11) has a fitting shape (11b) that fits into the protrusion (10b) in a part of the negative shape of the surface-side three-dimensional molded product.
An apparatus for molding a fiber-reinforced composite material molded product.
JP2001046987A 2001-02-22 2001-02-22 Manufacturing method of fiber reinforced composite material molded article Expired - Lifetime JP4718694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001046987A JP4718694B2 (en) 2001-02-22 2001-02-22 Manufacturing method of fiber reinforced composite material molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001046987A JP4718694B2 (en) 2001-02-22 2001-02-22 Manufacturing method of fiber reinforced composite material molded article

Publications (2)

Publication Number Publication Date
JP2002240068A JP2002240068A (en) 2002-08-28
JP4718694B2 true JP4718694B2 (en) 2011-07-06

Family

ID=18908506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001046987A Expired - Lifetime JP4718694B2 (en) 2001-02-22 2001-02-22 Manufacturing method of fiber reinforced composite material molded article

Country Status (1)

Country Link
JP (1) JP4718694B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5161432B2 (en) * 2006-05-01 2013-03-13 三菱重工業株式会社 Method for forming composite material structural member
JP5292972B2 (en) * 2008-07-30 2013-09-18 東レ株式会社 Manufacturing method of fiber reinforced plastic
JP4969692B2 (en) * 2011-02-16 2012-07-04 三菱重工業株式会社 Method for forming composite material structural member
JP6870911B2 (en) * 2015-12-24 2021-05-12 住友ゴム工業株式会社 Golf club head and its manufacturing method
JP6279154B2 (en) 2015-12-25 2018-02-14 帝人株式会社 Press-molding material containing discontinuous reinforcing fibers and thermoplastic resin as matrix, molded body thereof, and production method thereof
JP6719495B2 (en) * 2018-03-06 2020-07-08 株式会社Subaru Preform shaping method, composite material molding method and composite material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560817U (en) * 1992-01-30 1993-08-10 西川化成株式会社 Resin molding equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560817U (en) * 1992-01-30 1993-08-10 西川化成株式会社 Resin molding equipment

Also Published As

Publication number Publication date
JP2002240068A (en) 2002-08-28

Similar Documents

Publication Publication Date Title
TWI520844B (en) Method for fabricating preform and fiber-reinforced resin molded article
JP5757338B2 (en) Manufacturing method of fiber reinforced composite material molded article
JP4022222B2 (en) Manufacturing method of fiber reinforced composite material molded article
JP2011168009A (en) Process of producing preform
JP4718694B2 (en) Manufacturing method of fiber reinforced composite material molded article
CN111886119A (en) Method for producing fiber-reinforced resin
JP5909062B2 (en) Forming method
WO2017068812A1 (en) Method for manufacturing fiber-reinforced resin structure, system for manufacturing fiber-reinforced resin structure, and fiber-reinforced resin structure
JP2004322442A (en) Method and apparatus for producing frp preform
KR20170061563A (en) A method for producing an insole by compression molding or vacuum molding using a stretchable fiber fabric, a foam sheet having a predetermined thickness, a non-stretchable fiber fabric, or a lattice-like cut-away groove.
JP5340239B2 (en) Molding method of fiber reinforced plastic molding
US11400674B2 (en) Sheet molding production method
JP7128074B2 (en) Shoe molding manufacturing method
KR20150095597A (en) A method of manufacturing an insole by pressure molding or vacuum molding using a hard film or foamed fabric of a thermoplastic resin
JP5814481B1 (en) Manufacturing apparatus and manufacturing method for resin molded product
CN114872342B (en) Novel fabric preforming method for inner buckling part and preparation mold thereof
CN220555196U (en) Multipurpose mould
JPH10278185A (en) Manufacture of sandwich structure
WO2024143468A1 (en) Method for forming composite material component
KR101784169B1 (en) A method of manufacturing an eyeglass frame using a uni-direction carbon material
KR20130097104A (en) Method of manufacturing insole using a thermoplastic hard film
KR20190062087A (en) A method of manufacturing a slipper by pressure molding or vacuum molding using a stretchable fiber fabric, a foamed sheet having a certain thickness, a non-stretchable fiber fabric, or a lattice-like cut-away groove
JP4271828B2 (en) Mold for fiber assembly molding
KR20140102621A (en) A method for manufacturing an insole by pressure molding or vacuum molding using a thermoplastic resin hard film.
JPH0655703A (en) Production of speaker net

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110401

R151 Written notification of patent or utility model registration

Ref document number: 4718694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term