JP4717870B2 - Battery charger - Google Patents

Battery charger Download PDF

Info

Publication number
JP4717870B2
JP4717870B2 JP2007286936A JP2007286936A JP4717870B2 JP 4717870 B2 JP4717870 B2 JP 4717870B2 JP 2007286936 A JP2007286936 A JP 2007286936A JP 2007286936 A JP2007286936 A JP 2007286936A JP 4717870 B2 JP4717870 B2 JP 4717870B2
Authority
JP
Japan
Prior art keywords
voltage
battery
temperature
charging
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007286936A
Other languages
Japanese (ja)
Other versions
JP2009118591A (en
Inventor
祐喜 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Telecom Networks Ltd
Original Assignee
Fujitsu Telecom Networks Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Telecom Networks Ltd filed Critical Fujitsu Telecom Networks Ltd
Priority to JP2007286936A priority Critical patent/JP4717870B2/en
Publication of JP2009118591A publication Critical patent/JP2009118591A/en
Application granted granted Critical
Publication of JP4717870B2 publication Critical patent/JP4717870B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、比較的簡単な構成により、バッテリーの温度特性に対応したトリクル(Trickle)充電を可能とするバッテリー充電装置に関する。   The present invention relates to a battery charging device that enables trickle charging corresponding to temperature characteristics of a battery with a relatively simple configuration.

各種の電気機器に動作電力を供給する場合のバックアップ電源装置として、バッテリーを利用する場合が一般的であり、その場合のバッテリーは、常に満充電状態として、バックアップ給電が所定時間継続可能の状態とする必要がある。このバッテリーは温度に対応して端子電圧が変化するものであるから、バッテリーの充電装置は、バッテリーの温度を検出して充電制御を行う構成が適用されている。例えば、図5は従来例のバッテリー充電装置の要部を示すもので、BATはバッテリー、THはバッテリーの温度を検出する為のサーミスタ、Dは負荷(図示を省略)にバッテリーBATから給電すると共に逆流防止用のダイオード、Tはトランス、SWは電界効果トランジスタ等のスイッチング素子、RECは整流平滑回路、RCはダイオード、R1,R2は抵抗、CONT1はスイッチング素子のオン、オフを制御するスイッチング制御部、CONT2はサーミスタTHにより検出した温度とバッテリーBATの温度特性との関係を、ソフトウェア処理によって求めて、バッテリーBATの充電電流を示す制御情報を作成し、その制御情報をスイッチング制御部CONT1に入力するマイクロプロセッサである。   In general, a battery is used as a backup power supply for supplying operating power to various electrical devices. In such a case, the battery is always fully charged, and backup power supply can be continued for a predetermined time. There is a need to. Since the terminal voltage of this battery changes according to the temperature, the battery charging device has a configuration in which charging control is performed by detecting the temperature of the battery. For example, FIG. 5 shows a main part of a conventional battery charger, wherein BAT is a battery, TH is a thermistor for detecting the temperature of the battery, D is a power supply from the battery BAT to a load (not shown). Diode for backflow prevention, T is a transformer, SW is a switching element such as a field effect transistor, REC is a rectifying and smoothing circuit, RC is a diode, R1 and R2 are resistors, CONT1 is a switching control unit for controlling on / off of the switching element CONT2 obtains the relationship between the temperature detected by the thermistor TH and the temperature characteristic of the battery BAT by software processing, creates control information indicating the charging current of the battery BAT, and inputs the control information to the switching control unit CONT1. It is a microprocessor.

スイッチング素子SWをスイッチング制御部CONT1により制御して、トランスTの一次巻線に供給する電流をオン、オフ制御し、トランスTの二次巻線に誘起した電圧を整流平滑回路RECにより整流して平滑化し、ダイオードRCを介してバッテリーBATを充電する。又整流出力電圧を抵抗R1,R2による分圧電圧としてスイッチング制御部CONT1に入力する。又マイクロプロセッサCONT2は、バッテリーBATの温度をサーミスタTHにより検出して入力した温度情報と、バッテリーBATの温度特性とを基に、現在の温度に於ける充電完了としての電圧を求めて、スイッチング制御部CONT1を制御する。それによって、バッテリーBATの温度に対応した充電処理を実行するものである。又充電完了後のトリクル充電制御に於いても、バッテリーBATの温度に対応してトリクル充電を行うことになる。   The switching element SW is controlled by the switching control unit CONT1, the current supplied to the primary winding of the transformer T is turned on and off, and the voltage induced in the secondary winding of the transformer T is rectified by the rectifying and smoothing circuit REC. Smoothing and charging the battery BAT through the diode RC. Further, the rectified output voltage is input to the switching control unit CONT1 as a divided voltage by the resistors R1 and R2. Further, the microprocessor CONT2 obtains a voltage as a charge completion at the current temperature based on the temperature information inputted by detecting the temperature of the battery BAT by the thermistor TH and the temperature characteristics of the battery BAT, and performs switching control. The unit CONT1 is controlled. Thereby, a charging process corresponding to the temperature of the battery BAT is executed. In trickle charge control after completion of charge, trickle charge is performed in accordance with the temperature of the battery BAT.

又各種の電子機器等を負荷とし、商用交流電源から所望の電圧に変換して動作電力を供給し、商用交流電源の障害発生時には、バッテリーを予備電源として負荷に電力を供給する構成に於いて、商用交流電源が健全な時に、バッテリーの周囲温度を検出し、検出した温度に対応して、バッテリーのトリクル充電を行う手段が知られている(例えば、特許文献1参照)。又バッテリーの温度をサーミスタにより検出し、充電完了に近付いた時点で、AD変換部のレンジ切替えを行って、満充電状態に制御する手段も提案されている(例えば、特許文献2参照)。   Also, in a configuration in which various electronic devices are used as loads, operating power is supplied by converting to a desired voltage from a commercial AC power supply, and power is supplied to the load using a battery as a backup power supply when a failure occurs in the commercial AC power supply. A means for detecting the ambient temperature of the battery when the commercial AC power source is healthy and performing trickle charging of the battery corresponding to the detected temperature is known (for example, refer to Patent Document 1). There has also been proposed a means for detecting the temperature of the battery with a thermistor and switching the range of the AD conversion unit at the time when the charging is near completion to control the battery to a fully charged state (see, for example, Patent Document 2).

又バッテリーに充電する充電装置に制御部としてマイクロプロセッサを設け、バッテリーの温度を検出するサーミスタに流れる電流と、バッテリーの充電電流とが一部の経路で重畳されて流れる分を、充電装置のマイクロプロセッサにより補正演算して、サーミスタによるバッテリーの温度検出電圧を求め、バッテリーの急速充電及びトリクル充電を行う手段が提案されている(例えば、特許文献3参照)。又バッテリーの温度をサーミスタにより検出し、マイクロプロセッサにより充電回路を制御して、バッテリーを急速充電とトリクル充電との切替制御を行う手段が提案されている(例えば、特許文献4参照)。
特開昭60−106336号公報 特開平5−95635号公報 特開平6−209531号公報 特開平11−289681号公報
In addition, a microprocessor is provided as a control unit in the charging device that charges the battery, and the amount of current that flows through the thermistor that detects the temperature of the battery and the charging current of the battery is superimposed on a part of the path. Means has been proposed for performing a correction calculation by a processor to obtain a temperature detection voltage of the battery by a thermistor and performing quick charge and trickle charge of the battery (see, for example, Patent Document 3). In addition, a means has been proposed in which the temperature of a battery is detected by a thermistor and a charging circuit is controlled by a microprocessor to control switching between rapid charging and trickle charging of the battery (see, for example, Patent Document 4).
JP 60-106336 A JP-A-5-95635 JP-A-6-209531 JP-A-11-289681

バッテリーは、温度により充放電特性が変化するものであり、従って、温度を検出して充電特性を制御する構成が一般的となっている。充電特性を制御する手段としては、例えば、前述の特許文献2,3、4等に示されているように、マイクロプロセッサを用いて、サーミスタ等により検出した温度と、バッテリーの電圧とを基に、バッテリーの温度特性に基づいた充電電圧を求めて、バッテリーの充電を行う手段が一般的である。しかし、マイクロプロセッサは、抵抗やコンデンサ等の電子部品に比較した高価であり、生産数量が比較的少ない場合は、部品コストが占める割合が多くなって、コスト的な問題が生じる。又バッテリーの温度検出用のサーミスタは、バッテリーに接近して取り付けることになるが、サーミスタの接続配線の断線が発生すると、バッテリを温度特性に従って充電することが不可能となり、バッテリーを満充電状態として、バックアップ電源の役目を果たすように制御することが不可能となる問題もある。   A battery has a charge / discharge characteristic that changes depending on the temperature. Therefore, a configuration is generally used in which the charge characteristic is controlled by detecting the temperature. As a means for controlling the charging characteristics, for example, as shown in the above-mentioned Patent Documents 2, 3, 4, etc., using a microprocessor, based on the temperature detected by a thermistor or the like and the voltage of the battery. Generally, a means for charging a battery by obtaining a charging voltage based on the temperature characteristics of the battery is generally used. However, the microprocessor is more expensive than electronic components such as resistors and capacitors, and when the production quantity is relatively small, the proportion of the component cost increases, resulting in a cost problem. The thermistor for battery temperature detection is installed close to the battery, but if the thermistor connection wiring breaks, it becomes impossible to charge the battery according to the temperature characteristics, and the battery is fully charged. There is also a problem that it becomes impossible to perform control so as to serve as a backup power source.

本発明は、前述の従来の問題点を解決するものであり、比較的簡単な構成で、且つ廉価な部品を用いてコストダウンを図り、且つ信頼性を向上できるバッテリー充電装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and provides a battery charger that has a relatively simple configuration, uses low-cost parts, reduces costs, and improves reliability. Objective.

本発明のバッテリー充電装置は、トランスの二次側の誘起電圧を整流してバッテリーの充電電圧とし、この充電電圧を検出して前記トランスの一次側に接続したスイッチング素子のオン、オフ制御を行うスイッチング制御部を備えたバッテリー充電装置であって、バッテリーの温度を検出する感温抵抗素子のサーミスタと、バッテリーの充電電圧を印加するように直列接続した複数の抵抗からなる分圧抵抗とを含み、この分圧抵抗の中の少なくとも1個の抵抗と並列に前記サーミスタを接続し、分圧抵抗による分圧電圧を前記スイッチング制御部に入力するように接続した構成を有するものである。   The battery charging device of the present invention rectifies the induced voltage on the secondary side of the transformer to obtain the charging voltage of the battery, detects this charging voltage, and performs on / off control of the switching element connected to the primary side of the transformer. A battery charger having a switching control unit, comprising: a thermistor of a temperature-sensitive resistor element that detects the temperature of the battery; and a voltage dividing resistor composed of a plurality of resistors connected in series so as to apply a battery charging voltage. The thermistor is connected in parallel with at least one of the voltage dividing resistors, and the divided voltage by the voltage dividing resistor is connected to the switching control unit.

又バッテリーの充電電圧を印加するように直列接続した複数の抵抗からなる分圧抵抗と、この分圧抵抗による分圧電圧をスイッチング制御部に入力すると共に、分圧抵抗の中の少なくとも1個の抵抗と並列に接続したバッテリーの温度検出用のサーミスタとダイオードとの直列回路と、サーミスタとダイオードとの接続点の電圧を印加する第4の抵抗と、この第4の抵抗の両端の電圧が正常範囲内であるか否かを基準電圧とを比較し、正常範囲内でない時に、バッテリーの充電電圧を低下させる方向の電圧を、スイッチング制御部に入力する比較回路とを備えている。   In addition, a voltage dividing resistor composed of a plurality of resistors connected in series so as to apply a charging voltage of the battery and a voltage divided by the voltage dividing resistor are input to the switching control unit, and at least one of the voltage dividing resistors A series circuit of a thermistor and a diode for detecting the temperature of a battery connected in parallel with the resistor, a fourth resistor for applying a voltage at a connection point between the thermistor and the diode, and a voltage at both ends of the fourth resistor are normal. A comparison circuit is provided for comparing the reference voltage with respect to whether or not the voltage is within the range, and for inputting a voltage in a direction to decrease the charging voltage of the battery to the switching control unit when the voltage is not within the normal range.

又バッテリーの温度に従って抵抗値が上昇する感温抵抗素子と、バッテリーの充電電圧を印加するように複数の抵抗を直列接続して分圧した電圧をスイッチング制御部に入力する分圧抵抗とを含み、この分圧抵抗の中の少なくとも1個の抵抗と並列に、感温抵抗素子を接続した構成を有するものである。   In addition, it includes a temperature-sensitive resistance element whose resistance value increases according to the temperature of the battery, and a voltage dividing resistor that inputs a voltage divided by connecting a plurality of resistors in series so as to apply a charging voltage of the battery to the switching control unit. The temperature-sensitive resistance element is connected in parallel with at least one of the voltage dividing resistors.

従来例のバッテリー充電装置に於けるマイクロプロセッサ等を使用することなく、分圧抵抗の中の少なくとも1個の抵抗と並列感温抵抗素子を接続し、バッテリーの温度に対応した充電電圧を出力するように、スイッチング制御部に入力する温度検出情報と充電電圧との関連を基にした制御構成により、バッテリーの温度に従った充電電圧を出力することが可能であり、又個別部品により構成することが可能であるから、経済的な構成とすることができる。   Without using a microprocessor or the like in the battery charger of the conventional example, at least one resistor in the voltage dividing resistor is connected to the parallel temperature sensitive resistor element, and a charging voltage corresponding to the temperature of the battery is output. Thus, it is possible to output the charging voltage according to the temperature of the battery by the control configuration based on the relationship between the temperature detection information input to the switching control unit and the charging voltage, and to be configured by individual components Therefore, an economical configuration can be obtained.

本発明のバッテリー充電装置は、図1を参照すると、トランスTの二次側の誘起電圧を整流してバッテリーBATの充電電圧とし、この充電電圧を検出して、トランスTの一次側に接続したスイッチング素子SWのオン、オフ制御を行うスイッチング制御部CONTを備えたバッテリー充電装置であって、バッテリーBATの温度を検出する感温抵抗素子のサーミスタTHと、バッテリーBATの充電電圧を分圧して前記スイッチング制御部CONTに入力する複数の抵抗R1,R2,R3からなる分圧抵抗とを備え、その分圧抵抗の中の例えば1個の抵抗R3と並列にサーミスタTHを接続した構成を備えている。   Referring to FIG. 1, the battery charging device of the present invention rectifies the induced voltage on the secondary side of the transformer T to obtain the charging voltage of the battery BAT, detects this charging voltage, and connects it to the primary side of the transformer T. A battery charging device including a switching control unit CONT for performing on / off control of the switching element SW, wherein the thermistor TH, which is a temperature sensitive resistance element for detecting the temperature of the battery BAT, and the charging voltage of the battery BAT are divided. A voltage dividing resistor including a plurality of resistors R1, R2, and R3 that are input to the switching control unit CONT, and a thermistor TH is connected in parallel with, for example, one resistor R3 among the voltage dividing resistors. .

図1は、本発明の実施例1の説明図であり、BATはバッテリー、THは温度により抵抗値が低下する特性の感温抵抗素子としてのサーミスタ、Dは負荷(図示を省略)にバッテリーBATから給電すると共に逆流防止用のダイオード、Tはトランス、SWは電界効果トランジスタ等のスイッチング素子、RECは整流用のダイオードと平滑用のコンデンサとチョークコイルとを含む整流平滑回路、R1,R2,R3,R4は分圧抵抗としての第1〜第4の抵抗、CONTはスイッチング素子のオン、オフを制御するスイッチング制御部を示す。なお、1個のみ示すスイッチング素子SWは、ブリッジ型等の既に知られた複数のスイッチング素子を設けた構成とすることができる。   FIG. 1 is an explanatory diagram of Embodiment 1 of the present invention, where BAT is a battery, TH is a thermistor as a temperature-sensitive resistance element whose resistance value decreases with temperature, and D is a battery BAT for a load (not shown). , T is a transformer, SW is a switching element such as a field effect transistor, REC is a rectifying / smoothing circuit including a rectifying diode, a smoothing capacitor, and a choke coil, R1, R2, R3 , R4 are first to fourth resistors as voltage dividing resistors, and CONT is a switching control unit for controlling on / off of the switching element. In addition, the switching element SW which shows only one can be set as the structure which provided several switching elements already known, such as a bridge type.

スイッチング制御部CONTは、例えば、スイッチング素子SWのスイッチング周期の三角波信号を発生し、抵抗R1,R2の接続点の分圧電圧とレベル比較を行って、抵抗R1,R2の接続点の分圧電圧が高くなると、スイッチング素子SWのオン期間を短くするように制御し、反対に分圧電圧が低くなると、スイッチング素子SWのオン期間を長くするように制御する構成を有するものである。又分圧抵抗の第1〜第3の抵抗R1,R2,R3を直列に接続して、整流平滑回路RECからの充電出力電圧を印加し、第3の抵抗R3と並列にサーミスタTHを接続し、直列接続の第1,第2の抵抗R1,R2に第4の抵抗R4を並列に接続した場合を示す。なお、この第4の抵抗R4は省略することも可能であり、又サーミスタTHを第1の抵抗R1に並列に接続して、第3の抵抗R3を省略することも可能であり、又第3、第1の直列接続の抵抗R3,R1と並列にサーミスタTHを接続した構成とすることも可能である。又サーミスタTHは、バッテリーBATの温度検出用であるから、例えば、バッテリーBATの表面等に配置する。   For example, the switching control unit CONT generates a triangular wave signal having a switching cycle of the switching element SW, compares the level with the divided voltage of the connection point of the resistors R1 and R2, and compares the divided voltage of the connection point of the resistors R1 and R2. When the voltage becomes higher, the ON period of the switching element SW is controlled to be shortened, and conversely, when the divided voltage becomes lower, the ON period of the switching element SW is controlled to be longer. Further, the first to third resistors R1, R2, and R3 of the voltage dividing resistor are connected in series, the charging output voltage from the rectifying / smoothing circuit REC is applied, and the thermistor TH is connected in parallel with the third resistor R3. The case where a fourth resistor R4 is connected in parallel to the first and second resistors R1 and R2 connected in series is shown. The fourth resistor R4 can be omitted, the thermistor TH can be connected in parallel to the first resistor R1, and the third resistor R3 can be omitted. The thermistor TH may be connected in parallel with the first series-connected resistors R3 and R1. Further, since the thermistor TH is for detecting the temperature of the battery BAT, it is disposed on the surface of the battery BAT, for example.

バッテリーBATの電圧は、分圧抵抗の抵抗R1,R2,R3に印加され、抵抗R1,R2の接続点の分圧電圧をスイッチング制御部CONTに入力する。バッテリーBATの温度が上昇した場合、抵抗R3に並列接続したサーミスタTHの抵抗値が低下し、それによって、抵抗R1,R2の接続点の分圧電圧は上昇する。それにより、スイッチング制御部CONTは、スイッチング素子SWのオン期間を短くなるように制御し、整流平滑回路RECの出力電圧、即ち、充電出力電圧を低下するように制御する。又バッテリーBATの温度が低下した場合は、サーミスタTHの抵抗値が上昇し、抵抗R1,R2の接続点の分圧電圧が低下するから、スイッチング制御部CONTは、スイッチング素子SWのオン期間を長くするように制御し、整流平滑回路RECの充電出力電圧を上昇させる。それにより、バッテリーBATのトリクル充電過程を含む充電制御が可能となる。   The voltage of the battery BAT is applied to the resistors R1, R2, and R3 of the voltage dividing resistor, and the divided voltage at the connection point of the resistors R1 and R2 is input to the switching control unit CONT. When the temperature of the battery BAT rises, the resistance value of the thermistor TH connected in parallel to the resistor R3 decreases, and thereby the divided voltage at the connection point of the resistors R1 and R2 increases. Thereby, the switching control unit CONT controls the switching element SW so as to shorten the ON period, and controls the output voltage of the rectifying and smoothing circuit REC, that is, the charging output voltage to be lowered. Further, when the temperature of the battery BAT decreases, the resistance value of the thermistor TH increases, and the divided voltage at the connection point of the resistors R1 and R2 decreases. Therefore, the switching control unit CONT extends the ON period of the switching element SW. And the charging output voltage of the rectifying / smoothing circuit REC is increased. Thereby, charge control including a trickle charge process of the battery BAT becomes possible.

図2は、バッテリーの温度と電圧との特性曲線図であり、横軸は温度、縦軸は電圧を示し、実線曲線はバッテリーの電圧、2点鎖線曲線は充電出力電圧の計算値、点線曲線は充電出力電圧の実測値を示す。この2点鎖線曲線及び点線曲線は、前述の実施例1の構成によるものであり、バッテリーBATが満充電後のトリクル充電状態に於ける計算値と実測値とを示す。この特性曲線図からも明らかなように、温度が高い状態に於いては、比較的低い電圧で充電可能となるが、温度が低い状態に於いては、比較的高い電圧で充電する必要がある。本発明の実施例1は、従来例のマイクロプロセッサ等を用いることなく、分圧抵抗の中の例えば抵抗R3とサーミスタTHとを並列接続した構成によりバッテリーBATの温度に対応した充電制御が可能となる。なお、抵抗R3は、抵抗R4と共に、点線曲線で示すような充電出力電圧を得られるように調整可能の構成とすることもできる。   FIG. 2 is a characteristic curve diagram of battery temperature and voltage. The horizontal axis indicates temperature, the vertical axis indicates voltage, the solid line curve indicates the battery voltage, the two-dot chain line indicates the calculated value of the charging output voltage, and the dotted line curve. Indicates the measured value of the charging output voltage. The two-dot chain line curve and the dotted line curve are based on the configuration of the above-described first embodiment, and show the calculated value and the actual measurement value in the trickle charge state after the battery BAT is fully charged. As is apparent from this characteristic curve, charging is possible at a relatively low voltage when the temperature is high, but charging is required at a relatively high voltage when the temperature is low. . In the first embodiment of the present invention, it is possible to perform charge control corresponding to the temperature of the battery BAT by using, for example, a resistor R3 and a thermistor TH in a voltage dividing resistor connected in parallel without using a conventional microprocessor or the like. Become. The resistor R3 and the resistor R4 can be configured to be adjustable so as to obtain a charging output voltage as shown by a dotted curve.

図3は、本発明の実施例2の説明図であり、図1と同一符号は同一名称部分を示し、COMPは比較回路、Vrは基準電圧である。この比較回路COMPは、感温抵抗素子のサーミスタTHと直列に接続された第4の抵抗R4に印加される電圧と、基準電圧Vrとを比較し、正常状態では基準電圧Vrを超える電圧が入力されるように、各部の抵抗値を選定することにより、出力端子をオープン状態として、分圧抵抗の第1、第2の抵抗R1,R2の接続点の電圧には影響しないようにする。又サーミスタTHが未接続の状態の場合、抵抗R4に印加される電圧は零又はそれに近い値となり、基準電圧Vr以下となるから、出力端子は、バッテリーBATが満充電状態を超えた時の抵抗R1,R2の接続点の電圧以上となる電圧を出力する構成とする。   FIG. 3 is an explanatory diagram of the second embodiment of the present invention. The same reference numerals as those in FIG. 1 denote the same names, COMP is a comparison circuit, and Vr is a reference voltage. This comparison circuit COMP compares the voltage applied to the fourth resistor R4 connected in series with the thermistor TH of the temperature-sensitive resistance element with the reference voltage Vr, and a voltage exceeding the reference voltage Vr is input in a normal state. As described above, by selecting the resistance value of each part, the output terminal is opened, so that the voltage at the connection point of the first and second resistors R1 and R2 of the voltage dividing resistor is not affected. When the thermistor TH is not connected, the voltage applied to the resistor R4 is zero or close to the reference voltage Vr. Therefore, the output terminal is a resistance when the battery BAT exceeds the fully charged state. A voltage that is equal to or higher than the voltage at the connection point of R1 and R2 is output.

従って、サーミスタTHが正常に接続されている状態では、基準電圧Vrに対して正常範囲内の抵抗R4の両端の電圧となり、従って、比較回路COMPの出力端子はオープン状態で、スイッチング制御部CONT1による充電出力電圧制御には影響を与えないものとなる。それにより、バッテリーBATは、サーミスタTHによるバッテリーBATの温度特性に対応した充電制御が行われる。又サーミスタTHのリード線の外れ、断線等の未接続状態の場合、分圧抵抗の抵抗R1,R2の接続点の電圧が、バッテリーBATの満充電を超えている場合のように、正常範囲内ではない電圧となるから、比較回路COMPの出力電圧により、バッテリーBATの充電中止又はそれに近い状態に制御することになり、バッテリーBATの過充電となる危険性を回避することができる。   Therefore, in a state where the thermistor TH is normally connected, the voltage across the resistor R4 is within the normal range with respect to the reference voltage Vr. Therefore, the output terminal of the comparison circuit COMP is in an open state, and is controlled by the switching control unit CONT1. The charging output voltage control is not affected. Thereby, the battery BAT is subjected to charge control corresponding to the temperature characteristics of the battery BAT by the thermistor TH. Also, when the thermistor TH leads are disconnected or disconnected, the voltage at the connection point of the resistors R1 and R2 of the voltage dividing resistor is within the normal range, such as when the battery BAT is fully charged. Therefore, the battery BAT is stopped from charging or close to the state depending on the output voltage of the comparison circuit COMP, and the risk of overcharging the battery BAT can be avoided.

図4は、本発明の実施例3の説明図であり、図1と同一符号は同一名称部分を示し、PTHは温度上昇により抵抗値が増大する感温抵抗素子で、通常ポジスタ(登録商標)と称されるものである。又R11〜R14は抵抗であり、第1〜第4の抵抗に相当し、抵抗R11,R12,R13は分圧抵抗を構成している。この実施例3に於ける感温抵抗素子PTHは、サーミスタと反対に温度上昇により抵抗値が急速に増大する特性を有するから、バッテリーBATの温度が上昇すると、感温抵抗素子PTHの抵抗値が増大し、分圧抵抗による分圧比が変化する。例えば、バッテリーBATの温度が上昇すると、感温抵抗素子PTHの抵抗値が増加し、分圧抵抗によるスイッチング制御部CONTに入力する分圧電圧が上昇し、バッテリーBATに対する充電電圧が上昇した場合と等価となり、スイッチング制御部CONTは、充電電圧を低下させる方向の制御を行うことになり、反対に、バッテリーBATの温度が低下すると、感温抵抗素子PTHの抵抗値が低下し、分圧抵抗によるスイッチング制御部CONTに入力する分圧電圧が低下し、バッテリーBATに対する充電電圧を上昇させる方向の制御を行うことになる。なお、抵抗R13,R14を省略し、感温抵抗素子PTHを分圧抵抗の第2の抵抗R12と並列に接続した構成とすることも可能である。   FIG. 4 is an explanatory diagram of a third embodiment of the present invention. The same reference numerals as those in FIG. 1 denote the same names, and PTH is a temperature-sensitive resistance element whose resistance value increases as the temperature rises. It is called. R11 to R14 are resistors, which correspond to the first to fourth resistors, and the resistors R11, R12, and R13 constitute a voltage dividing resistor. The temperature-sensitive resistance element PTH in the third embodiment has a characteristic that the resistance value rapidly increases as the temperature rises contrary to the thermistor. Therefore, when the temperature of the battery BAT rises, the resistance value of the temperature-sensitive resistance element PTH increases. The voltage dividing ratio due to the voltage dividing resistance is increased. For example, when the temperature of the battery BAT rises, the resistance value of the temperature sensitive resistance element PTH increases, the divided voltage input to the switching control unit CONT by the voltage dividing resistor rises, and the charging voltage for the battery BAT rises. The switching control unit CONT performs control in a direction to decrease the charging voltage, and conversely, when the temperature of the battery BAT decreases, the resistance value of the temperature-sensitive resistance element PTH decreases and depends on the voltage dividing resistance. The divided voltage input to the switching control unit CONT is reduced, and the control in the direction of increasing the charging voltage for the battery BAT is performed. It is also possible to omit the resistors R13 and R14 and connect the temperature-sensitive resistor element PTH in parallel with the second resistor R12 which is a voltage dividing resistor.

本発明の実施例1の説明図である。It is explanatory drawing of Example 1 of this invention. バッテリーの温度と電圧との特性曲線図である。It is a characteristic curve figure of the temperature and voltage of a battery. 本発明の実施例2の説明図である。It is explanatory drawing of Example 2 of this invention. 本発明の実施例3の説明図である。It is explanatory drawing of Example 3 of this invention. 従来例の説明図である。It is explanatory drawing of a prior art example.

符号の説明Explanation of symbols

BAT バッテリー
TH サーミスタ
SW スイッチング素子
T トランス
REC 整流平滑回路
CONT1 スイッチング制御部
D ダイオード
R1〜R4 抵抗
BAT Battery TH Thermistor SW Switching element T Transformer REC Rectification smoothing circuit CONT1 Switching control unit D Diode R1-R4 Resistance

Claims (1)

トランスの二次側の誘起電圧を整流してバッテリーの充電電圧とし、該充電電圧を検出して前記トランスの一次側に接続したスイッチング素子のオン、オフ制御を行うスイッチング制御部を備えたバッテリー充電装置に於いて、
前記バッテリーの充電電圧を印加するように直列接続した複数の抵抗からなる分圧抵抗と
該分圧抵抗による分圧電圧を前記スイッチング制御部に入力すると共に、該分圧抵抗の中の少なくとも1個の抵抗と並列に接続した前記バッテリーの温度に従って抵抗値が低下する温度検出用のサーミスタとダイオードとの直列回路と、
前記サーミスタと前記ダイオードとの接続点の電圧を印加する第4の抵抗と、
該第4の抵抗の両端の電圧が正常範囲内であるか否かを基準電圧と比較し、正常範囲内でない時に、前記バッテリーの充電電圧を低下させる方向の電圧を前記スイッチング制御部に入力する比較回路と
を備えたことを特徴とするバッテリー充電装置。
Battery charging provided with a switching control unit that rectifies the induced voltage on the secondary side of the transformer to obtain a charging voltage for the battery, detects the charging voltage, and controls on / off of the switching element connected to the primary side of the transformer In the device,
A voltage dividing resistor composed of a plurality of resistors connected in series so as to apply a charging voltage of the battery ;
A thermistor for temperature detection in which a divided voltage by the voltage dividing resistor is input to the switching control unit, and a resistance value decreases according to the temperature of the battery connected in parallel with at least one of the voltage dividing resistors. And a series circuit of a diode,
A fourth resistor for applying a voltage at a connection point between the thermistor and the diode;
Whether the voltage across the fourth resistor is within a normal range is compared with a reference voltage, and when the voltage is not within the normal range, a voltage in a direction to decrease the charging voltage of the battery is input to the switching control unit. Comparison circuit and
Battery charging apparatus comprising the.
JP2007286936A 2007-11-05 2007-11-05 Battery charger Active JP4717870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007286936A JP4717870B2 (en) 2007-11-05 2007-11-05 Battery charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007286936A JP4717870B2 (en) 2007-11-05 2007-11-05 Battery charger

Publications (2)

Publication Number Publication Date
JP2009118591A JP2009118591A (en) 2009-05-28
JP4717870B2 true JP4717870B2 (en) 2011-07-06

Family

ID=40785099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007286936A Active JP4717870B2 (en) 2007-11-05 2007-11-05 Battery charger

Country Status (1)

Country Link
JP (1) JP4717870B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102073190B1 (en) 2012-08-21 2020-02-04 삼성에스디아이 주식회사 Battery pack and controlling method of the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0275950U (en) * 1988-11-25 1990-06-11
JPH04131748U (en) * 1991-05-28 1992-12-04 富士通テン株式会社 Air bag abnormality detection circuit
JPH08280140A (en) * 1995-04-06 1996-10-22 Shindengen Electric Mfg Co Ltd Control circuit for charging voltage of storage battery
JPH08308133A (en) * 1995-04-28 1996-11-22 Origin Electric Co Ltd Feeding device for transmitter
JPH09266640A (en) * 1996-03-27 1997-10-07 Makita Corp Charger
JP2004064977A (en) * 2002-07-31 2004-02-26 Densei Lambda Kk Uninterruptive power unit
JP2006318682A (en) * 2005-05-10 2006-11-24 Makita Corp Charger

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0275950A (en) * 1988-09-12 1990-03-15 Nippon Telegr & Teleph Corp <Ntt> Mass spectrometry

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0275950U (en) * 1988-11-25 1990-06-11
JPH04131748U (en) * 1991-05-28 1992-12-04 富士通テン株式会社 Air bag abnormality detection circuit
JPH08280140A (en) * 1995-04-06 1996-10-22 Shindengen Electric Mfg Co Ltd Control circuit for charging voltage of storage battery
JPH08308133A (en) * 1995-04-28 1996-11-22 Origin Electric Co Ltd Feeding device for transmitter
JPH09266640A (en) * 1996-03-27 1997-10-07 Makita Corp Charger
JP2004064977A (en) * 2002-07-31 2004-02-26 Densei Lambda Kk Uninterruptive power unit
JP2006318682A (en) * 2005-05-10 2006-11-24 Makita Corp Charger

Also Published As

Publication number Publication date
JP2009118591A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
JP5104892B2 (en) Switching power supply
US20080007227A1 (en) Charging circuit, method of controlling operation of charging circuit, and power supply unit
JP6381953B2 (en) Switching power supply control circuit, power supply circuit using the same, electronic device and base station
US20060055386A1 (en) Power factor improving circuit and control circuit for power factor improving circuit
US8797700B2 (en) Apparatus for detecting temperature of switching elements
US9337721B2 (en) Correction circuit limiting inrush current
TW202037051A (en) Power converter with over temperature protection compensation
JP5176551B2 (en) AC detection circuit and DC power supply device
JP2018207763A (en) Power conversion device and abnormality detection method for reactor included in power conversion device
JP4717870B2 (en) Battery charger
US8022672B2 (en) Charger control circuit and charger control method
US10424917B2 (en) Overcurrent protective system and overcurrent protective method
JP2007060787A (en) Power supply transformer protection system
JP7042413B2 (en) Internal resistance detector and power supply
JP2009060722A (en) Rush-current preventing circuit and power supply device
JP2008005667A (en) Electronic equipment having charging circuit
JP2006010501A (en) Battery status administration system
JP5031491B2 (en) Abnormality detection circuit for switching power supply circuit
JP6725992B2 (en) Wireless power transmission device and its control IC, abnormality detection method, charger
JP2010178544A (en) Charger
US11349325B2 (en) Temperature dependent current and pulse controlled charging method for a battery charger
JP7129552B2 (en) Power conversion device control method and power conversion device
JP5882500B2 (en) Capacitor input type smoothing circuit
KR101776953B1 (en) Apparatus for limiting inrush current of power supply unit and method therefor
JP7167843B2 (en) car charger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110330

R150 Certificate of patent or registration of utility model

Ref document number: 4717870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250