JP4717202B2 - Chemical vapor deposition of copper thin films. - Google Patents

Chemical vapor deposition of copper thin films. Download PDF

Info

Publication number
JP4717202B2
JP4717202B2 JP2000390346A JP2000390346A JP4717202B2 JP 4717202 B2 JP4717202 B2 JP 4717202B2 JP 2000390346 A JP2000390346 A JP 2000390346A JP 2000390346 A JP2000390346 A JP 2000390346A JP 4717202 B2 JP4717202 B2 JP 4717202B2
Authority
JP
Japan
Prior art keywords
copper
gas
thin film
copper thin
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000390346A
Other languages
Japanese (ja)
Other versions
JP2002194545A (en
Inventor
淑郎 楠本
真朗 村田
素子 市橋
修司 大園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2000390346A priority Critical patent/JP4717202B2/en
Publication of JP2002194545A publication Critical patent/JP2002194545A/en
Application granted granted Critical
Publication of JP4717202B2 publication Critical patent/JP4717202B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、銅薄膜の化学的気相成長法(以下、「CVD」と略記)、特にULSI等の集積回路を製造する際の銅配線形成に関するものである。
【0002】
【従来の技術】
Ta、TaN、Ti、TiN、W等の異種金属上に形成された、ヘキサフルオロアセチルアセトナト銅(I)トリメチルビニルシラン(以下、「Cu(hfac)TMVS」と略記)を原料とするCVD銅薄膜は密着性が悪く容易に剥離し、ドライ又はウェットの表面処理、基板への電解印加等の手段によってもその性質は改善され得ない。唯一、CVD銅薄膜の密着性を向上させ得るのは、スパッタ、蒸着等の物理的蒸着法(Physical Vapor Deposition、以下、「PVD」と略記)により、数10nm程度の膜厚を有する銅の極薄膜をグルー層として予め基板に形成した場合である(Riedel, S. et al., Proc. Advanced Metallization Conf. in 1999, p.195(Mater. Res. Soc. Warrendale, PA 2000))。しかし、このPVD銅膜上にCVD銅薄膜を形成するプロセスは再現性に乏しく、また、CVD初期核サイズが巨大化するため、表面モフォロジーが劣化する。特にその傾向は層間配線孔(以下、「ヴィア」と略記)の側壁部で著しく、PVD銅膜上に形成されたCVD銅薄膜をメッキシードとして使用した場合、PVD銅膜単独のシードに較べ、むしろメッキの埋め込み性能が劣化することが報告されている(第59回応用物理学会学術講演会予稿集(1998秋期)16p-ZL-5)。異種金属上では、CVD銅薄膜形成用原料に1,1,1,5,5,5−ヘキサフルオロ−2,4−ペンタンジオン(以下、「Hhfac」と略記)を添加することにより、CVD核発生密度を向上させ、モフォロジー平滑化と再現性の向上を実現できると経験的には言われている(Norman J. et al., Thin Solid Films, 262, p.46(1995))。
【0003】
【発明が解決しようとする課題】
しかし、本発明者らの研究によると、PVD銅膜上においては、Hhfacの添加はむしろCVD核形成の遅延を招来し、無添加の場合に較べても再現性、膜厚均一性、成長速度を著しく劣化させることがわかった。
【0004】
本発明の課題は、以上の問題点を解決することにあり、PVD銅膜又は異種金属膜上に平滑な、均一なCVD銅薄膜を再現性良く、高い成長速度で形成する方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明の銅薄膜の化学的気相成長法は、化学的気相成長法により基板上に銅薄膜を成長させる方法において、前記銅薄膜の形成用原料ガスが、ビス(ヘキサフルオロアセチルアセトナト)銅(II)、ヘキサフルオロアセチルアセトナト銅(I)トリメチルビニルシラン、ヘキサフルオロアセチルアセトナト銅(I)ビストリメチルシリルアセチレン、ヘキサフルオロアセチルアセトナト銅(I)1,5−シクロオクタジエン、ヘキサフルオロアセチルアセトナト銅(I)2−ブチン、ヘキサフルオロアセチルアセトナト銅(I)トリエチルフォスフィン、シクロペンタジエニル銅(I)トリエチルフォスフィン、Cu(I)t−ブトキシド、Cu(I)t−ブトキシドカルボニルから選ばれた前駆物質を含むガスであって、該基板上に、β−ジケトン基を有し、異種原子として酸素原子のみを含む脂肪族ケトン化合物のガスを供給することからなる。脂肪族ケトン化合物ガスの供給は、銅薄膜を成長させる前、成長させる時、又は一部を成長させた後に行えばよい。
【0006】
CVD銅薄膜を形成する下地層は、物理的蒸着法により形成されたPVD銅膜であっても、又はTa、W、Ti、Mo、Cr、Zr、V、Nb、Hfから選ばれた少なくとも1種の金属若しくはその窒化物の膜であってもよい。
【0007】
CVD銅薄膜を形成するための原料ガスは、前記の通り、既知の銅含有前駆物質を含むガス、具体的には、ビス(ヘキサフルオロアセチルアセトナト)銅(II)、ヘキサフルオロアセチルアセトナト銅(I)トリメチルビニルシラン、ヘキサフルオロアセチルアセトナト銅(I)ビストリメチルシリルアセチレン、ヘキサフルオロアセチルアセトナト銅(I)1,5−シクロオクタジエン、ヘキサフルオロアセチルアセトナト銅(I)2−ブチン、ヘキサフルオロアセチルアセトナト銅(I)トリエチルフォスフィン、シクロペンタジエニル銅(I)トリエチルフォスフィン、Cu(I)t−ブトキシド、Cu(I)t−ブトキシドカルボニルから選ばれた前駆物質を含むガスである。
【0008】
【発明の実施の形態】
本発明によれば、上記したように、CVD銅薄膜形成用原料ガスと、β−ジケトン基を有し、異種原子として酸素原子のみを含む脂肪族ケトン化合物であって、好ましくは常温で液体である化合物のガスとを、それぞれ、所定の時点で、基板上に供給することにより、所期の目的が達成される。
【0009】
脂肪族ケトン化合物としては、例えば、2,4−ペンタンジオン(慣用名:アセチルアセトン、CH3COCH2COCH3(以下、「Acac」と略記))、C25COCH2COC25、(CH3)3CCOCH2COCH3、(CH3)3CCOCH2COC(CH3)3、CH(CH3)2COCH2COCH3、CH3OCOCH2COCH3、C25OCOCH2COCH3、C25OCOCH2COC(CH3)3等を用いることができる。これらの化合物のうち、Acacが好ましい。脂肪族ケトン化合物ガスの供給量は、銅薄膜形成用原料ガスに対して、体積比で同量以下であることが好ましく、この上限を超えると、成膜速度が低下するという問題がある。ガス供給量の下限は特に制限はなく、例えば原料ガスの1/20のような少量であっても供給されれば充分所期の目的を達成できる。
【0010】
上記脂肪族ケトン化合物のガス供給時期は、目的とするCVD銅の成膜終了前であれば良く、例えば、銅薄膜形成用原料ガスの供給と同時であっても、また、該原料ガスの供給前、すなわち、銅薄膜の形成前に該化合物ガスを基板表面に吸着させ、その後、該原料ガスのみを又は該原料ガスと化合物ガスとの混合ガスを流して成膜を行っても良い。また、CVD銅薄膜の成膜プロセスの前半のみに該化合物ガスを供給しても、又は該プロセスの後半のみに該化合物ガスを供給しても良い。すなわち、CVD銅薄膜の一部が形成された後の成膜プロセス中の所定の期間のみに該化合物ガスを供給しても同様の効果が得られる。
【0011】
また、本発明によりCVD銅薄膜を形成する下地層は、特に制限されるわけではなく、例えば、上記したような従来不可能であった下地層であっても、同様に再現性良く、高い成長速度でCVD銅薄膜を形成することができる。
【0012】
本発明によるCVD銅薄膜の成長方法は、通常のCVD装置を用いて行うことができる。例えば、図1に示すCVD装置を用いて、本発明の方法を実施し、CVD銅薄膜を得ることができる。
【0013】
すなわち、このCVD装置は、排気可能な反応チャンバー1内に設置された基板2上に、ガス供給ノズル3、4から、シャワープレート5を介して、銅薄膜形成用原料ガス及び脂肪族ケトン化合物ガスを供給するように構成されている。反応チャンバー1内は、加熱手段6により50〜80℃に制御され、また、基板2は、加熱ステージ7の上に載置され、例えば150〜200℃程度の所定の成膜温度に制御されている。銅薄膜形成用原料ガスは、キャリアガス(アルゴン、窒素、水素等)の加圧ガス源8により、容器9内から液体マスフロー(MFC)10を経て、ベーパライザ11へ搬送され、ここでガス化されると共に、このベーパライザ11内で、キャリアガス源12から気体マスフロー13、加熱器14を経て導入されたキャリアガス(アルゴン、窒素、水素等)と混合され、加熱手段15により50〜80℃に保温された管路16を経て容器1内へと導入される。一方、脂肪族ケトン化合物ガスは、キャリアガス(アルゴン、窒素、水素等)の加圧ガス源17により、容器18内から液体マスフロー(MFC)19を経て、ベーパライザ20へ搬送され、ここでガス化されると共に、このベーパライザ20内で、キャリアガス源21から気体マスフロー22、加熱器23を経て導入されたキャリアガス(アルゴン、窒素、水素等)と混合され、加熱手段24により50〜80℃に保温された管路25を経て容器1内へと導入される。
【0014】
このCVD装置を用いてCVD銅薄膜を形成する際の成膜条件は、例えば、以下の通りである。
【0015】
基板温度:150〜200℃
成膜圧力:13.3〜1330Pa
銅薄膜形成用原料ガス流量:0.1〜1.0g/min
脂肪族ケトン化合物ガス使用量:CVD銅薄膜形成用原料ガスに対して、体積基準で同量以下
銅薄膜形成原料用キャリアガス流量:400〜1000cc/min
(Ar、N2又はH2
Acac用キャリアガス流量:50〜200cc/min
(Ar、N2又はH2
反応チャンバ及び各管路温度:50℃〜80℃に制御
使用基板:ウェハ上にスパッタでTaNなどを成膜し、次いでスパッタで銅膜を形成したもの。
【0016】
【実施例】
(実施例1)
図1に示すCVD装置を用い、以下のようにして銅薄膜を得た。
【0017】
基板2としてSiウェハ上にスパッタでTaNを70nm成膜し、次いでスパッタで銅(Cu)を20nm成膜(PVD膜)した150mm径のシリコン基板を用いた。反応チャンバー1内の加熱ステージ7上にこの基板2を載置し、反応チャンバー1内を排気し、成膜時に133Paになるようにした。反応チャンバー1内を60℃に制御し、基板温度を170℃に設定した。基板2上に、ガス供給ノズル3、4から、シャワープレート5を介して、銅薄膜形成用原料ガスとしてCu(hfac)TMVSガスを0.30g/min及び脂肪族ケトン化合物ガスとしてAcacガスを0.03g/min供給し、CVD銅薄膜を成長せしめた。
【0018】
Cu(hfac)TMVSは、加圧ガス源8により、容器9内から液体マスフロー(MFC)10を経て、ベーパライザ11へ搬送し、ここでガス化すると共に、このベーパライザ11内で、キャリアガス源12から気体マスフロー13、加熱器14を経て導入した600cc/minのキャリアガスと混合し、その後、加熱手段15により60℃に保温された管路16を経て容器1内へ導入し、成膜を行った。一方、Acacは、加圧ガス源17により、容器18内から液体マスフロー(MFC)19を経て、ベーパライザ20へ搬送し、ここでガス化すると共に、このベーパライザ20内で、キャリアガス源21から気体マスフロー22、加熱器23を経て導入した100cc/minのキャリアガスと混合し、その後、加熱手段24により60℃に保温された管路25を経て容器1内へ導入した。
【0019】
上記成膜では、Acacガスを添加した場合の成膜プロセスについて代表的に説明したが、対照として、Cu(hfac)TMVSガス供給のみでAcacガス無添加のプロセス、Cu(hfac)TMVSガスにHhfacガスを添加したプロセスについても同様に行った。すなわち、本実施例では、Cu(hfac)TMVSガス供給のみでAcacガス無添加のプロセス、Cu(hfac)TMVSガスにHhfacガスを添加したプロセス、及びCu(hfac)TMVSガスにAcacガスを添加したプロセスの3種の成膜プロセスを1サイクルとして、この成膜プロセスを35サイクル行った。各サイクルの3種の成膜プロセスのそれぞれにおいて、膜厚、シート抵抗を測定し、平均膜厚を成膜前後の基板重量変化より、平均シート抵抗を面内49点測定データより求めた。図2に、Cu(hfac)TMVSガス供給のみでAcacガス無添加の場合(無添加)、Cu(hfac)TMVSガスにHhfacガスを添加した場合(Hhfac添加)、及びCu(hfac)TMVSガスにAcacガスを添加した場合(Acac添加)について、それぞれ、平均膜厚に平均シート抵抗を乗じた積(μΩ・cm)をサイクル数に対してプロットしたグラフを示す。図2から、Acac添加の場合は、無添加及びHhfac添加の場合に比べて、再現性、膜厚均一性共に向上していることが分かる。なお、シュワルツの不等式によれば、完全に平坦な分布が得られた時にのみ平均膜厚と平均シート抵抗との積は薄膜の比抵抗と一致し、理想的な値を取り、それ以外では比抵抗を上回るとされている。本実施例の薄膜の比抵抗はρSP=2.10μΩ・cmであり、図2から明らかなように、Acac添加の場合は、極めてその比抵抗に近く、ほぼ理想的な膜が得られていると言えよう。
【0020】
上記したようなAcac添加がCVD銅成膜に及ぼす作用機序は明らかではないが、AcacとHhfacとがPVD銅上で特異的に性質が異なる理由は、それぞれの銅キレートCu(acac)2、Cu(hfac)2間の蒸気圧の差によるものと考えられる。すなわち、Cu(hfac)2はCu(acac)2に較べ蒸気圧が高いため容易に昇華し、Hhfac添加プロセスでは銅薄膜形成用原料による成膜と同時に逆反応であるPVD銅・CVD銅のエッチングも同時に進行する(以下に示す図3におけるHhfac添加プロセスの時間に対する非線形性も逆反応の存在を示唆している)。これに対し、Acacでは、Hhfacが異種金属上で有する核形成促進効果は維持されるが、エッチング反応速度は遅いので、ほぼ理想的な薄膜が得られたものと考えられる。
(実施例2)
基板、銅薄膜形成用原料ガス、脂肪族ケトン及び各ガス流量を全て実施例1と同様にして、無添加の場合、Hhfac添加の場合、及びAcac添加の場合について、それぞれ、2サイクル行い、CVD銅薄膜を形成し、各プロセスにおける膜厚の成膜時間依存性を求めた。図3に、それぞれ、添加1回目(第1サイクル)、添加2回目(第2サイクル)として成膜時間と膜厚との関係をプロットしたグラフを示す。
【0021】
図3から明らかなように、Acac添加により成膜速度が増大する(無添加時の1.5〜5倍、Hhfac添加時のおよそ3倍)と共に、再現性・時間に対する直線性も改善されていることが分かる。
【0022】
上記実施例と同様の手順によりPVD銅膜上にCVD銅薄膜を堆積した場合のヴィア側壁の電子顕微鏡観察によれば、無添加の場合のCVD銅核サイズが数100nmであるのに較べ、Acac添加の場合には数10nmの微小な核の発生が認められた。すなわち、メッキシードの問題点である側壁部のモフォロジー劣化が抑制されることが分かる。また、Acac添加はPVD銅表面でCVD銅の核サイズを微細化するのみならず、Ta、TaN、Ti、TiN、W等の異種金属上でも同等の効果を奏する。
【0023】
上記実施例では、成膜時にCVD銅薄膜形成用原料ガスとAcacガスとを同時に供給しているが、成膜前にAcacを基板表面に吸着させ、その後、原料ガスのみ又はAcacガスと原料ガスとの混合ガスを流して成膜を行っても、また、成膜プロセスの前半又は後半のみに脂肪族ケトン化合物ガスを供給して成膜を行っても、同様の効果が得られている。
(実施例3)
異種金属膜上でのAcac添加効果を検証するため、PVD−TaNを70nm成膜したシリコン基板を用いて、CVD−Cu成膜を行った。成膜条件は基板温度170℃、成膜時間30秒、Cu(hfac)TMVS流量0.45g/minとし、Acac添加量を0、0.02、0.2g/minの3種類として成膜を行った。その後、基板表面を60000倍の倍率で電子顕微鏡観察し、CVD核発生数をカウントした。その結果を以下の表1に示す。
(表1)

Figure 0004717202
【0024】
表1から明らかなように、Acacを添加すると、無添加の場合に較べ、核発生密度が約2倍に増大し、核サイズのばらつきを約1/3〜1/6程度に抑制することが分かる。また、添加効果は添加量にほとんど依存しないことも分かる。
【0025】
【発明の効果】
本発明によれば、β−ジケトン基を有するAcacのような有機化合物であって、異種原子として酸素原子のみを含む脂肪族ケトンであり、好ましくは常温で液体である化合物のガスを基板上に供給することにより、PVD銅膜等の上に平滑なCVD銅薄膜を再現性良く、高い成長速度で形成することができる。
【図面の簡単な説明】
【図1】 本発明の方法を実施するためのCVD装置の一構成例を示す配置図。
【図2】 本発明の方法で得られたCVD銅薄膜について、従来技術と比較して、平均膜厚と平均シート抵抗との積をサイクル数に対してプロットしたグラフ。
【図3】 本発明の方法で得られたCVD銅薄膜について、従来技術と比較して、膜厚と成膜時間との関係を示すグラフ。
【符号の説明】
1 反応チャンバー 2 基板
3、4 ガス供給ノズル 5 シャワープレート
6 加熱手段 7 加熱ステージ
8、17 加圧ガス源 9、18 容器
10、19 液体マスフロー(MFC) 11、20 ベーパライザ
12、21 キャリアガス源 13、22 気体マスフロー(MFC)
14、23 加熱器 15、24 加熱手段
16、25 管路[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a chemical vapor deposition method (hereinafter abbreviated as “CVD”) of a copper thin film, and more particularly to copper wiring formation when manufacturing an integrated circuit such as ULSI.
[0002]
[Prior art]
CVD copper thin film made of hexafluoroacetylacetonato copper (I) trimethylvinylsilane (hereinafter abbreviated as “Cu (hfac) TMVS”) formed on different metals such as Ta, TaN, Ti, TiN, W, etc. Has poor adhesion and easily peels off, and its properties cannot be improved even by means such as dry or wet surface treatment or application of electrolysis to the substrate. The only thing that can improve the adhesion of the CVD copper thin film is a copper electrode having a film thickness of about several tens of nanometers by physical vapor deposition (hereinafter abbreviated as “PVD”) such as sputtering and vapor deposition. This is a case where a thin film is previously formed on a substrate as a glue layer (Riedel, S. et al., Proc. Advanced Metallization Conf. In 1999, p.195 (Mater. Res. Soc. Warrendale, PA 2000)). However, the process of forming a CVD copper thin film on this PVD copper film has poor reproducibility, and the CVD initial nucleus size becomes enormous, resulting in a deterioration in surface morphology. In particular, the tendency is remarkable at the side wall portion of the interlayer wiring hole (hereinafter abbreviated as “via”). When a CVD copper thin film formed on the PVD copper film is used as a plating seed, compared to the seed of the PVD copper film alone, Rather, it has been reported that the embedding performance of the plating deteriorates (Proceedings of the 59th Japan Society of Applied Physics (August 1998) 16p-ZL-5). On dissimilar metals, CVD nuclei can be obtained by adding 1,1,1,5,5,5-hexafluoro-2,4-pentanedione (hereinafter abbreviated as “Hhfac”) to the raw material for CVD copper thin film formation. It has been empirically said that the generation density can be improved, and morphological smoothing and reproducibility can be improved (Norman J. et al., Thin Solid Films, 262, p. 46 (1995)).
[0003]
[Problems to be solved by the invention]
However, according to the study by the present inventors, on the PVD copper film, the addition of Hhfac rather led to a delay in CVD nucleation, and reproducibility, film thickness uniformity, and growth rate compared to the case of no addition. It has been found that it significantly deteriorates.
[0004]
An object of the present invention is to solve the above problems, and to provide a method for forming a smooth, uniform CVD copper thin film on a PVD copper film or a dissimilar metal film with high reproducibility and high growth rate. It is in.
[0005]
[Means for Solving the Problems]
The chemical vapor deposition method for copper thin film according to the present invention is a method for growing a copper thin film on a substrate by chemical vapor deposition, wherein the raw material gas for forming the copper thin film is bis (hexafluoroacetylacetonate). Copper (II), hexafluoroacetylacetonato copper (I) trimethylvinylsilane, hexafluoroacetylacetonato copper (I) bistrimethylsilylacetylene, hexafluoroacetylacetonato copper (I) 1,5-cyclooctadiene, hexafluoroacetyl Acetonato copper (I) 2-butyne, hexafluoroacetylacetonato copper (I) triethylphosphine, cyclopentadienyl copper (I) triethylphosphine, Cu (I) t-butoxide, Cu (I) t-butoxide a gas containing a precursor selected from carbonyl, on a substrate, beta-diketo It has a group consists of supplying a gas of an aliphatic ketone compound containing only oxygen atom as the heteroatom. The supply of the aliphatic ketone compound gas may be performed before the copper thin film is grown, when it is grown, or after a part is grown.
[0006]
The underlayer for forming the CVD copper thin film may be a PVD copper film formed by physical vapor deposition, or at least one selected from Ta, W, Ti, Mo, Cr, Zr, V, Nb, and Hf It may be a film of a seed metal or a nitride thereof.
[0007]
As described above, the source gas for forming the CVD copper thin film is a gas containing a known copper-containing precursor, specifically, bis (hexafluoroacetylacetonato) copper (II), hexafluoroacetylacetonatocopper. (I) trimethylvinylsilane, hexafluoroacetylacetonato copper (I) bistrimethylsilylacetylene, hexafluoroacetylacetonato copper (I) 1,5-cyclooctadiene, hexafluoroacetylacetonato copper (I) 2-butyne, hexa A gas containing a precursor selected from fluoroacetylacetonato copper (I) triethylphosphine, cyclopentadienyl copper (I) triethylphosphine, Cu (I) t-butoxide, Cu (I) t-butoxide carbonyl is there.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
According to the present invention, as described above, a raw material gas for CVD copper thin film formation and an aliphatic ketone compound having a β-diketone group and containing only oxygen atoms as hetero atoms, preferably liquid at room temperature. The desired purpose is achieved by supplying a gas of a certain compound onto the substrate at a predetermined point in time.
[0009]
Examples of the aliphatic ketone compound include 2,4-pentanedione (common name: acetylacetone, CH 3 COCH 2 COCH 3 (hereinafter abbreviated as “Acac”)), C 2 H 5 COCH 2 COC 2 H 5 , ( CH 3) 3 CCOCH 2 COCH 3 , (CH 3) 3 CCOCH 2 COC (CH 3) 3, CH (CH 3) 2 COCH 2 COCH 3, CH 3 OCOCH 2 COCH 3, C 2 H 5 OCOCH 2 COCH 3, C 2 H 5 OCOCH 2 COC (CH 3 ) 3 or the like can be used. Of these compounds, Acac is preferred. The supply amount of the aliphatic ketone compound gas is preferably equal to or less than the volume ratio of the raw material gas for forming a copper thin film. If this upper limit is exceeded, there is a problem that the film formation rate decreases. The lower limit of the gas supply amount is not particularly limited. For example, even if it is supplied in a small amount such as 1/20 of the source gas, the intended purpose can be achieved sufficiently.
[0010]
The gas supply timing of the aliphatic ketone compound may be before the film formation of the target CVD copper, for example, even at the same time as the supply of the raw material gas for forming a copper thin film, The compound gas may be adsorbed on the substrate surface before forming the copper thin film, and then the film may be formed by flowing only the source gas or a mixed gas of the source gas and the compound gas. Further, the compound gas may be supplied only to the first half of the CVD copper thin film forming process, or the compound gas may be supplied only to the second half of the process. That is, the same effect can be obtained by supplying the compound gas only during a predetermined period in the film forming process after a part of the CVD copper thin film is formed.
[0011]
In addition, the underlayer for forming the CVD copper thin film according to the present invention is not particularly limited. For example, even the underlayer that has been impossible in the past as described above has high reproducibility and high growth. A CVD copper thin film can be formed at a speed.
[0012]
The method for growing a CVD copper thin film according to the present invention can be performed using a normal CVD apparatus. For example, using the CVD apparatus shown in FIG. 1, the method of the present invention can be carried out to obtain a CVD copper thin film.
[0013]
That is, this CVD apparatus has a copper thin film forming raw material gas and an aliphatic ketone compound gas from a gas supply nozzle 3, 4 through a shower plate 5 on a substrate 2 installed in a reaction chamber 1 that can be evacuated. Is configured to supply. The inside of the reaction chamber 1 is controlled to 50 to 80 ° C. by the heating means 6, and the substrate 2 is placed on the heating stage 7 and controlled to a predetermined film forming temperature of about 150 to 200 ° C., for example. Yes. The raw material gas for forming the copper thin film is conveyed from the container 9 to the vaporizer 11 through the liquid mass flow (MFC) 10 by the pressurized gas source 8 of the carrier gas (argon, nitrogen, hydrogen, etc.), and is gasified here. At the same time, the vaporizer 11 is mixed with the carrier gas (argon, nitrogen, hydrogen, etc.) introduced from the carrier gas source 12 through the gas mass flow 13 and the heater 14 and kept at 50-80 ° C. by the heating means 15. Then, it is introduced into the container 1 through the pipeline 16. On the other hand, the aliphatic ketone compound gas is conveyed from the container 18 to the vaporizer 20 through the liquid mass flow (MFC) 19 by the pressurized gas source 17 of the carrier gas (argon, nitrogen, hydrogen, etc.), and is gasified here. At the same time, the vaporizer 20 is mixed with the carrier gas (argon, nitrogen, hydrogen, etc.) introduced from the carrier gas source 21 via the gas mass flow 22 and the heater 23, and is heated to 50-80 ° C. by the heating means 24. It is introduced into the container 1 through the insulated pipe 25.
[0014]
The film formation conditions for forming a CVD copper thin film using this CVD apparatus are, for example, as follows.
[0015]
Substrate temperature: 150-200 ° C
Deposition pressure: 13.3 to 1330 Pa
Raw material gas flow rate for copper thin film formation: 0.1 to 1.0 g / min
Use amount of aliphatic ketone compound gas: The same amount or less on a volume basis with respect to the raw material gas for CVD copper thin film formation Carrier gas flow rate for copper thin film formation raw material: 400 to 1000 cc / min
(Ar, N 2 or H 2 )
Acac carrier gas flow rate: 50 to 200 cc / min
(Ar, N 2 or H 2 )
Reaction chamber and each pipe line temperature: Controlled to 50 ° C. to 80 ° C. Substrate used: TaN or the like is formed on the wafer by sputtering, and then a copper film is formed by sputtering.
[0016]
【Example】
Example 1
Using the CVD apparatus shown in FIG. 1, a copper thin film was obtained as follows.
[0017]
A 150 mm diameter silicon substrate in which a TaN film of 70 nm was formed on a Si wafer by sputtering and then a copper (Cu) film of 20 nm (PVD film) was formed by sputtering was used as the substrate 2. The substrate 2 was placed on the heating stage 7 in the reaction chamber 1 and the reaction chamber 1 was evacuated to 133 Pa during film formation. The inside of the reaction chamber 1 was controlled at 60 ° C., and the substrate temperature was set at 170 ° C. Cu (hfac) TMVS gas is 0.30 g / min as a raw material gas for forming a copper thin film, and Acac gas is 0 as an aliphatic ketone compound gas from the gas supply nozzles 3 and 4 through the shower plate 5 on the substrate 2. 0.03 g / min was supplied to grow a CVD copper thin film.
[0018]
Cu (hfac) TMVS is transported from the container 9 through the liquid mass flow (MFC) 10 to the vaporizer 11 by the pressurized gas source 8 and is gasified here, and in the vaporizer 11, the carrier gas source 12 is supplied. Is mixed with a carrier gas of 600 cc / min introduced through the gas mass flow 13 and the heater 14, and then introduced into the container 1 through the pipe line 16 kept at 60 ° C. by the heating means 15 to form a film. It was. On the other hand, Acac is conveyed from the inside of the container 18 through the liquid mass flow (MFC) 19 to the vaporizer 20 by the pressurized gas source 17 and is gasified therein, and is also gasified from the carrier gas source 21 in the vaporizer 20. The mixture was mixed with a carrier gas of 100 cc / min introduced through the mass flow 22 and the heater 23, and then introduced into the container 1 through the conduit 25 kept at 60 ° C. by the heating means 24.
[0019]
In the above film formation, the film formation process in the case where Acac gas is added has been described representatively. However, as a control, only Cu (hfac) TMVS gas supply is performed and no Acac gas is added, and Cu (hfac) TMVS gas is added to Hhfac. The same process was performed for the gas-added process. That is, in this embodiment, the process of adding no Acac gas by supplying only Cu (hfac) TMVS gas, the process of adding Hhfac gas to Cu (hfac) TMVS gas, and the addition of Acac gas to Cu (hfac) TMVS gas. The three types of film forming processes were defined as one cycle, and this film forming process was performed for 35 cycles. In each of the three types of film formation processes in each cycle, the film thickness and sheet resistance were measured, and the average film thickness was determined from the in-plane 49-point measurement data from the change in the substrate weight before and after film formation. FIG. 2 shows the case where only Cu (hfac) TMVS gas is supplied and no Acac gas is added (no addition), when Hhfac gas is added to Cu (hfac) TMVS gas (Hhfac addition), and to Cu (hfac) TMVS gas. The graph which plotted the product (microohm * cm) which each multiplied the average sheet resistance and average sheet resistance with respect to the number of cycles about the case where Acac gas was added (Acac addition) is shown. From FIG. 2, it can be seen that in the case of addition of Acac, both reproducibility and film thickness uniformity are improved as compared with the case of no addition and addition of Hhfac. According to Schwartz's inequality, the product of the average film thickness and the average sheet resistance is equal to the specific resistance of the thin film only when a completely flat distribution is obtained. It is said that the resistance will be exceeded. The specific resistance of the thin film of this example is ρ SP = 2.10 μΩ · cm. As is apparent from FIG. 2, when Acac is added, the specific resistance is very close to that of an ideal film. It can be said that there is.
[0020]
The mechanism of action of the addition of Acac as described above on CVD copper film formation is not clear, but the reason that Acac and Hhfac differ specifically on PVD copper is that the respective copper chelates Cu (acac) 2 , This is thought to be due to the difference in vapor pressure between Cu (hfac) 2 . In other words, Cu (hfac) 2 has a higher vapor pressure than Cu (acac) 2 , so it easily sublimates, and the Hhfac addition process etches PVD copper / CVD copper, which is a reverse reaction at the same time as film formation with the copper thin film forming raw material (Non-linearity with respect to time of the Hhfac addition process in FIG. 3 shown below also suggests the presence of an inverse reaction). On the other hand, in Acac, the nucleation promoting effect of Hhfac on the dissimilar metal is maintained, but the etching reaction rate is slow, so it is considered that an almost ideal thin film was obtained.
(Example 2)
The substrate, the copper thin film forming raw material gas, the aliphatic ketone, and each gas flow rate are all the same as in Example 1, and two cycles are performed for each of the case of no addition, the case of adding Hhfac, and the case of adding Acac. A copper thin film was formed, and the film formation time dependency of the film thickness in each process was determined. FIG. 3 is a graph in which the relationship between the film formation time and the film thickness is plotted as the first addition (first cycle) and the second addition (second cycle), respectively.
[0021]
As is apparent from FIG. 3, the addition of Acac increases the film formation rate (1.5 to 5 times when no additive is added, approximately 3 times when Hhfac is added), and also improves the reproducibility and linearity with respect to time. I understand that.
[0022]
According to the electron microscopic observation of the via sidewall when the CVD copper thin film is deposited on the PVD copper film by the same procedure as in the above example, the Acac-free CVD copper nucleus size is several hundred nm compared to the Acac. In the case of addition, generation of minute nuclei of several tens of nm was observed. That is, it can be seen that the deterioration of the morphology of the side wall, which is a problem of the plating seed, is suppressed. In addition, the addition of Acac not only reduces the nucleus size of CVD copper on the PVD copper surface, but also has the same effect on dissimilar metals such as Ta, TaN, Ti, TiN, and W.
[0023]
In the above embodiment, the CVD copper thin film forming raw material gas and the Acac gas are simultaneously supplied at the time of film formation, but the Acac is adsorbed on the substrate surface before the film formation, and then only the raw material gas or the Acac gas and the raw material gas. The same effect can be obtained even when film formation is performed by flowing a mixed gas with the above, or when an aliphatic ketone compound gas is supplied only during the first half or the second half of the film formation process.
(Example 3)
In order to verify the effect of adding Acac on the dissimilar metal film, CVD-Cu film formation was performed using a silicon substrate on which PVD-TaN was formed to a thickness of 70 nm. The film formation conditions are as follows: the substrate temperature is 170 ° C., the film formation time is 30 seconds, the Cu (hfac) TMVS flow rate is 0.45 g / min, and the amount of Acac is 0, 0.02, and 0.2 g / min. went. Thereafter, the surface of the substrate was observed with an electron microscope at a magnification of 60000 times, and the number of CVD nuclei generated was counted. The results are shown in Table 1 below.
(Table 1)
Figure 0004717202
[0024]
As can be seen from Table 1, when Acac is added, the nucleus generation density is increased by a factor of about 2 compared to the case where no Acac is added, and the variation in nucleus size is suppressed to about 1/3 to 1/6. I understand. It can also be seen that the effect of addition hardly depends on the amount added.
[0025]
【The invention's effect】
According to the present invention, an organic compound such as Acac having a β-diketone group, which is an aliphatic ketone containing only an oxygen atom as a heteroatom, preferably a gas of a compound that is liquid at room temperature, is applied onto a substrate. By supplying, a smooth CVD copper thin film can be formed on the PVD copper film or the like with high reproducibility and at a high growth rate.
[Brief description of the drawings]
FIG. 1 is a layout view showing an example of the configuration of a CVD apparatus for carrying out the method of the present invention.
FIG. 2 is a graph plotting the product of average film thickness and average sheet resistance against the number of cycles for a CVD copper thin film obtained by the method of the present invention, as compared with the prior art.
FIG. 3 is a graph showing the relationship between film thickness and film formation time for a CVD copper thin film obtained by the method of the present invention, as compared with the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reaction chamber 2 Substrate 3, 4 Gas supply nozzle 5 Shower plate 6 Heating means 7 Heating stage 8, 17 Pressurized gas source 9, 18 Container 10, 19 Liquid mass flow (MFC) 11, 20 Vaporizer 12, 21 Carrier gas source 13 , 22 Gas mass flow (MFC)
14, 23 Heater 15, 24 Heating means 16, 25 Pipe line

Claims (4)

化学的気相成長法により基板上に銅薄膜を成長させる方法において、前記銅薄膜の形成用原料ガスが、ビス(ヘキサフルオロアセチルアセトナト)銅(II)、ヘキサフルオロアセチルアセトナト銅(I)トリメチルビニルシラン、ヘキサフルオロアセチルアセトナト銅(I)ビストリメチルシリルアセチレン、ヘキサフルオロアセチルアセトナト銅(I)1,5−シクロオクタジエン、ヘキサフルオロアセチルアセトナト銅(I)2−ブチン、ヘキサフルオロアセチルアセトナト銅(I)トリエチルフォスフィン、シクロペンタジエニル銅(I)トリエチルフォスフィン、Cu(I)t−ブトキシド、Cu(I)t−ブトキシドカルボニルから選ばれた前駆物質を含むガスであって、該基板上に、β−ジケトン基を有し、異種原子として酸素原子のみを含む脂肪族ケトン化合物のガスを供給することを特徴とする銅薄膜の化学的気相成長法。In the method of growing a copper thin film on a substrate by chemical vapor deposition , the raw material gas for forming the copper thin film is bis (hexafluoroacetylacetonato) copper (II), hexafluoroacetylacetonatocopper (I) Trimethylvinylsilane, hexafluoroacetylacetonato copper (I) bistrimethylsilylacetylene, hexafluoroacetylacetonato copper (I) 1,5-cyclooctadiene, hexafluoroacetylacetonato copper (I) 2-butyne, hexafluoroacetylacetate A gas containing a precursor selected from natocopper (I) triethylphosphine, cyclopentadienyl copper (I) triethylphosphine, Cu (I) t-butoxide, Cu (I) t-butoxidecarbonyl, The substrate has a β-diketone group and oxygen atoms as hetero atoms. Chemical vapor deposition of copper thin film, which comprises supplying a gas of an aliphatic ketone compound containing. 前記脂肪族ケトン化合物のガスの供給を、銅薄膜を成長させる前、成長させる時、又は一部を成長させた後に行うことを特徴とする請求項1記載の化学的気相成長法。  2. The chemical vapor deposition method according to claim 1, wherein the gas of the aliphatic ketone compound is supplied before growing the copper thin film, when growing the copper thin film, or after partially growing the copper thin film. 前記銅薄膜を形成する下地層が、物理的蒸着法により形成された銅膜であることを特徴とする請求項1又は2記載の化学的気相成長法。  3. The chemical vapor deposition method according to claim 1, wherein the underlayer for forming the copper thin film is a copper film formed by physical vapor deposition. 前記銅薄膜を形成する下地層が、Ta、W、Ti、Mo、Cr、Zr、V、Nb、Hfから選ばれた少なくとも1種の金属又はその窒化物の膜であることを特徴とする請求項1〜3のいずれかに記載の化学的気相成長法。  The underlayer for forming the copper thin film is a film of at least one metal selected from Ta, W, Ti, Mo, Cr, Zr, V, Nb, and Hf or a nitride thereof. Item 4. A chemical vapor deposition method according to any one of Items 1 to 3.
JP2000390346A 2000-12-22 2000-12-22 Chemical vapor deposition of copper thin films. Expired - Lifetime JP4717202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000390346A JP4717202B2 (en) 2000-12-22 2000-12-22 Chemical vapor deposition of copper thin films.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000390346A JP4717202B2 (en) 2000-12-22 2000-12-22 Chemical vapor deposition of copper thin films.

Publications (2)

Publication Number Publication Date
JP2002194545A JP2002194545A (en) 2002-07-10
JP4717202B2 true JP4717202B2 (en) 2011-07-06

Family

ID=18856733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000390346A Expired - Lifetime JP4717202B2 (en) 2000-12-22 2000-12-22 Chemical vapor deposition of copper thin films.

Country Status (1)

Country Link
JP (1) JP4717202B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006101130A1 (en) * 2005-03-23 2006-09-28 Tokyo Electron Limited Film-forming apparatus and film-forming method
JP5658452B2 (en) * 2008-12-16 2015-01-28 富士フイルム株式会社 Manufacturing method of laminate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321039A (en) * 1994-05-23 1995-12-08 Tori Chem Kenkyusho:Kk Chemical vapor deposition method, and solvent therefor
JPH08139030A (en) * 1994-11-09 1996-05-31 Nippon Telegr & Teleph Corp <Ntt> Forming method of thin copper film for wiring, and manufacture of semiconductor device using the same
JP2000195863A (en) * 1998-12-25 2000-07-14 Ulvac Japan Ltd Formation of copper thin film by chemical deposition method
JP2000297371A (en) * 1999-04-13 2000-10-24 Mitsubishi Materials Corp Solution raw material for forming copper thin film for organometallic chemical vapor deposition and copper thin film made from the same
JP2000332020A (en) * 1999-05-17 2000-11-30 Anelva Corp METHOD OF FORMING Cu INTERCONNECTION FILM

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321039A (en) * 1994-05-23 1995-12-08 Tori Chem Kenkyusho:Kk Chemical vapor deposition method, and solvent therefor
JPH08139030A (en) * 1994-11-09 1996-05-31 Nippon Telegr & Teleph Corp <Ntt> Forming method of thin copper film for wiring, and manufacture of semiconductor device using the same
JP2000195863A (en) * 1998-12-25 2000-07-14 Ulvac Japan Ltd Formation of copper thin film by chemical deposition method
JP2000297371A (en) * 1999-04-13 2000-10-24 Mitsubishi Materials Corp Solution raw material for forming copper thin film for organometallic chemical vapor deposition and copper thin film made from the same
JP2000332020A (en) * 1999-05-17 2000-11-30 Anelva Corp METHOD OF FORMING Cu INTERCONNECTION FILM

Also Published As

Publication number Publication date
JP2002194545A (en) 2002-07-10

Similar Documents

Publication Publication Date Title
US7074719B2 (en) ALD deposition of ruthenium
US7407876B2 (en) Method of plasma enhanced atomic layer deposition of TaC and TaCN films having good adhesion to copper
KR960002119B1 (en) Process for selectively depositing copper aluminium alloy onto a
US7794788B2 (en) Method for pre-conditioning a precursor vaporization system for a vapor deposition process
Sun et al. Comparison of chemical vapor deposition of TiN using tetrakis-diethylamino-titanium and tetrakis-dimethylamino-titanium
US6165555A (en) Method for forming copper film using chemical vapor deposition
US5672385A (en) Titanium nitride film-MOCVD method incorporating use of tetrakisdialkylaminotitanium as a source gas
Kim et al. Comparison study for TiN films deposited from different method: chemical vapor deposition and atomic layer deposition
Wu et al. Hydrogen plasma-enhanced atomic layer deposition of copper thin films
WO2010067778A1 (en) Tantalum nitride film formation method and film formation device therefore
KR0179797B1 (en) Method of forming cu thin film with bias voltage supplied
Son et al. Growth rate and microstructure of copper thin films deposited with metal-organic chemical vapor deposition from hexafluoroacetylacetonate copper (I) allyltrimethylsilane
Kim et al. Deposition mechanism of MOCVD copper films in the presence of water vapor
JP4717202B2 (en) Chemical vapor deposition of copper thin films.
Panda et al. Low temperature chemical vapor deposition of titanium nitride films from tetrakis (ethylmethylamido) titanium and ammonia
Kang et al. (hfac) Cu (I)(MP)(hfac= hexafluoroacetylacetonate, MP= 4-methyl-1-pentene) and (hfac) Cu (I)(DMB)(DMB= 3, 3-dimethyl-1-butene) for the chemical vapor deposition of copper film
CN110804731A (en) Mn grown by atomic layer deposition technologyxN film method
Cho et al. Preparation of copper films by metal organic chemical vapor deposition on various substrates
JP3194256B2 (en) Film growth method and film growth apparatus
JP6925976B2 (en) The process of filling a high aspect ratio trench by flowing a ligand in parallel during thermal CVD
Mei et al. Characterization of TiN film grown by low-pressure-chemical-vapor-deposition
Rossnagel et al. From PVD to CVD to ALD for interconnects and related applications
JP4338246B2 (en) Raw material for Cu-CVD process and Cu-CVD apparatus
Park et al. Influence of the deposition temperature on the properties of copper thin films prepared by alternating injection of Cu (ethylketoiminate) 2 and H2 on a ruthenium substrate
JP3490317B2 (en) Copper thin film formation by chemical vapor deposition

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110330

R150 Certificate of patent or registration of utility model

Ref document number: 4717202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term