JP3490317B2 - Copper thin film formation by chemical vapor deposition - Google Patents

Copper thin film formation by chemical vapor deposition

Info

Publication number
JP3490317B2
JP3490317B2 JP37060398A JP37060398A JP3490317B2 JP 3490317 B2 JP3490317 B2 JP 3490317B2 JP 37060398 A JP37060398 A JP 37060398A JP 37060398 A JP37060398 A JP 37060398A JP 3490317 B2 JP3490317 B2 JP 3490317B2
Authority
JP
Japan
Prior art keywords
thin film
film
cvd
barrier metal
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP37060398A
Other languages
Japanese (ja)
Other versions
JP2000195863A (en
Inventor
淑郎 楠本
真朗 村田
素子 市橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP37060398A priority Critical patent/JP3490317B2/en
Publication of JP2000195863A publication Critical patent/JP2000195863A/en
Application granted granted Critical
Publication of JP3490317B2 publication Critical patent/JP3490317B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、LSI等のIC製
造の際の銅薄膜形成法に関し、特に化学蒸着法で形成さ
れるCu薄膜(CVD−Cu薄膜)による配線埋め込み
工程のCVD−Cu薄膜の形成法、およびCu電解メッ
キのためのシード層としてのCVD−Cu薄膜の形成法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a copper thin film in the manufacture of ICs such as LSIs, and more particularly to a CVD-Cu thin film in a wiring embedding process using a Cu thin film (CVD-Cu thin film) formed by chemical vapor deposition. And a method of forming a CVD-Cu thin film as a seed layer for Cu electrolytic plating.

【0002】[0002]

【従来の技術】従来、CVD法にてCu薄膜を形成し、
Cu配線を形成する場合、直接バリアメタル膜上にCu
薄膜を形成するか、またはバリアメタル膜上に厚さ20
nm程度のCu膜をスパッタ法にて形成した後、このス
パッタ−Cu膜上にCu薄膜を形成していた。下地層と
してスパッタ−Cu膜を用いるCVD−Cu薄膜形成法
は、例えば特開平4−242937号公報に記載されて
いる。従来のCu配線形成では、基板上に設けられた
シリコン酸化物(SiO2)絶縁膜中に配線溝を形成
し、次いで絶縁膜中へのCuの拡散を防止するためにバ
リアメタル(TiN、TaN、WN等)膜をスパッタま
たはCVD法にて形成し、その後、CVD−Cu薄膜を
形成するか、またはCVD−Cu薄膜の形成前にこのC
u薄膜との密着性を増強するためにバリアメタル膜上に
スパッタ−Cu膜を形成し、次いでその上にCVD−C
u薄膜を形成するかした後、CMP研磨することにより
配線を形成する方法が採用されていた。上記配線形成で
は、例えばCVD法で成膜した窒化チタン(CVD−T
iN)や窒化タンタル(CVD−TaN)薄膜をバリア
メタル膜として用いる場合には、成膜時に混入した炭素
やその他の有機残基を除去することが必要であるため、
バリアメタル膜形成後、熱アニールやプラズマアニール
を行い、次いでCVD−Cu薄膜の形成を行うのが通常
であった。このような後処理を行うことにより組成が安
定し、スパッタ膜と近い抵抗値まで低抵抗化することが
可能であった。
2. Description of the Related Art Conventionally, a Cu thin film is formed by a CVD method,
When forming Cu wiring, Cu is directly formed on the barrier metal film.
Form a thin film or a thickness of 20 on the barrier metal film.
After forming a Cu film having a thickness of about nm by a sputtering method, a Cu thin film was formed on this sputter-Cu film. A CVD-Cu thin film forming method using a sputter-Cu film as an underlayer is described in, for example, Japanese Patent Application Laid-Open No. 4-242937. In the conventional Cu wiring formation, it was provided on the substrate.
A wiring groove is formed in a silicon oxide (SiO 2 ) insulating film, and then a barrier metal (TiN, TaN, WN, etc.) film is formed by sputtering or a CVD method in order to prevent diffusion of Cu into the insulating film. Then, a CVD-Cu thin film is formed, or this C is formed before the CVD-Cu thin film is formed.
A sputter-Cu film is formed on the barrier metal film to enhance the adhesion with the u thin film, and then CVD-C is formed on the sputter-Cu film.
A method of forming a wiring by forming a u thin film and then performing CMP polishing has been adopted. In the above wiring formation, for example, titanium nitride (CVD-T
When using iN) or tantalum nitride (CVD-TaN) thin film as a barrier metal film, it is necessary to remove carbon and other organic residues mixed during film formation.
After forming the barrier metal film, it is usual to perform thermal annealing or plasma annealing, and then to form a CVD-Cu thin film. By performing such a post-treatment, the composition was stable and it was possible to reduce the resistance to a resistance value close to that of the sputtered film.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来法で形成されたバリアメタル膜上に直接CVD−Cu
薄膜を形成する場合、CVD−Cu薄膜とバリアメタル
膜との間の密着性は一般に劣悪であり、テープ剥離テス
トを行うと容易に剥離してしまうことが多い。特に、C
uと合金を形成しないTa系のバリアメタルに対しては
成膜後に熱処理を行っても密着性の改善効果は全く見ら
れない。さらに、かかるバリアメタル膜上ではCuの初
期核生成密度が小さく、まばらな核が成長して合体し、
成膜されるため、滑らかな平面形状を得ることは困難で
ある。
The object of the invention is to be Solved However, the above-mentioned slave
Direct CVD-Cu on the barrier metal film formed by the conventional method
When forming a thin film, the adhesion between the CVD-Cu thin film and the barrier metal film is generally poor, and the tape peeling test often results in easy peeling. In particular, C
With respect to the Ta-based barrier metal that does not form an alloy with u, no effect of improving the adhesion can be seen even if the heat treatment is performed after the film formation. Further, on the barrier metal film, the initial nucleation density of Cu is small, and sparse nuclei grow and coalesce,
Since a film is formed, it is difficult to obtain a smooth planar shape.

【0004】また、CVD法でバリアメタル膜を形成し
た後に上記のような熱アニール等の後処理をした場合、
スパッタ法により成膜したバリアメタル膜の場合と同
様、CVD−Cu薄膜との密着性が悪化し、後のCMP
工程に耐えられなくなるという問題がある。この密着性
の問題を改善するために、前記したように、CVD−C
u薄膜の形成前にバリアメタル膜上に薄いスパッタ−C
u膜を形成することが提案されているが、この方法では
密着性改善には有効ではない。なぜならば、スパッタ法
では被成膜面の幾何形状によりその膜厚が異なり、配線
溝幅が小さくなると、深い穴、溝の側面部および底面部
への成膜が不完全となり、十分な膜厚を得ることができ
ないからである。このように側面部および底面部で密着
性改善に役立つ膜厚が得られないことのみならず、フィ
ールド部(穴、溝の上部平面)ではCu膜が厚いため、
その後のCVD−Cu薄膜の形成工程においてフィール
ド部で選択的にCVD−Cuの核形成が行われてしま
い、側面部および底面部の被覆性が悪い要因ともなる。
また、側面部のスパッタ−Cu膜は入射角が浅いために
粒状に凝集するので、その上に成膜されるCVD−Cu
薄膜も荒れた平面形状を持つ膜となる。本発明は、上記
のような従来プロセスの問題点を解決するもので、優れ
た密着性と平滑な平面形状とを併せ持つCVD−Cu薄
膜の形成法を提供することを課題とする。
When the barrier metal film is formed by the CVD method and the post-treatment such as the above-mentioned thermal annealing is performed,
Similar to the case of the barrier metal film formed by the sputtering method, the adhesion with the CVD-Cu thin film deteriorates, and CMP
There is a problem that the process cannot be endured. In order to improve this adhesion problem, as described above, CVD-C
u Thin sputter-C on barrier metal film before thin film formation
It has been proposed to form a u film, but this method is not effective in improving adhesion. This is because in the sputtering method, the film thickness varies depending on the geometric shape of the film formation surface, and if the wiring groove width becomes smaller, the film formation on the deep hole, the side surface portion and the bottom surface portion of the groove becomes incomplete, and the film thickness is sufficient. Because you can't get. As described above, not only is it impossible to obtain a film thickness that is useful for improving adhesion at the side surface portion and the bottom surface portion, but since the Cu film is thick at the field portion (the upper flat surface of the hole or groove),
In the subsequent CVD-Cu thin film forming step, the CVD-Cu nuclei are selectively formed in the field portion, which may be a cause of poor coverage of the side surface portion and the bottom surface portion.
Further, since the incident angle of the sputter-Cu film on the side surface portion is shallow, the sputter-Cu film is agglomerated in a granular form.
The thin film also has a rough planar shape. The present invention solves the problems of the conventional process as described above, and an object thereof is to provide a method for forming a CVD-Cu thin film having both excellent adhesion and a smooth planar shape.

【0005】[0005]

【課題を解決するための手段】本発明のCVD−Cu薄
膜形成法は、絶縁膜中へのCuの拡散を防止するバリア
メタル膜がスパッタ法により形成された基板上に、有機
金属原料を用いて所定の厚さのTiN薄膜(CVD−T
iN薄膜)またはTaN薄膜(CVD−TaN薄膜)を
密着増強層としてCVD法により薄く形成した後、引き
続きその上にCu薄膜を化学蒸着法により形成させる方
法である。この密着増強層は薄く形成されるので、Ti
N、TaNに対して低抵抗化処理を行う必要はない。上
記TiN薄膜のCVD用原料である有機チタン材料とし
ては、例えば Ti[N-(CH3)2]4(TDMAT)、T
i[N-(C25)2]4(TDEAT)、Ti[N-(CH3)(i
-C37)]4(TiPMAT)または これらの組合せが
挙げられ、これらを単独で用いて成膜しても、NH3
スを 添加したものを用いて成膜してもよい。また、T
aN薄膜のCVD用原料である有機タンタル材料として
は、例えばTa[N-(CH3)2]5、Ta[[N-(t-C49)
2]2[N-(C25)2]3] またはこれらの組合せが挙げられ
る。また、Cu薄膜のCVD用原料としては、例えばヘ
キサフルオロアセチルアセトナト銅ビニルトリメチルシ
ラン[CuI(HFAC)VTMS]またはビスヘキサフル
オロアセチルアセトナト銅[CuII(HFAC)2]が挙げ
られる。
CVD-Cu thin film forming method of the present invention SUMMARY OF THE INVENTION may, Cu diffusion barrier metal film is more formed board on the sputtering preventing of the insulating film, an organic metal source Using a TiN thin film (CVD-T
In this method, an iN thin film) or a TaN thin film (CVD-TaN thin film) is thinly formed as an adhesion enhancing layer by a CVD method, and then a Cu thin film is formed thereon by a chemical vapor deposition method . Since this adhesion enhancing layer is thinly formed,
It is not necessary to reduce the resistance of N and TaN. Examples of the organic titanium material that is a raw material for CVD of the TiN thin film include Ti [N- (CH 3 ) 2 ] 4 (TDMAT), T
i [N- (C 2 H 5 ) 2 ] 4 (TDEAT), Ti [N- (CH 3 ) (i
-C 3 H 7 )] 4 (TiPMAT) or a combination thereof, and these may be used alone to form a film, or may be formed using a material to which NH 3 gas is added. Also, T
Examples of the organic tantalum material which is a raw material for CVD of the aN thin film include Ta [N- (CH 3 ) 2 ] 5 and Ta [[N- (t-C 4 H 9 ).
2 ] 2 [N- (C 2 H 5 ) 2 ] 3 ] or a combination thereof. In addition, examples of the raw material for CVD of the Cu thin film include hexafluoroacetylacetonato copper vinyltrimethylsilane [Cu I (HFAC) VTMS] or bishexafluoroacetylacetonato copper [Cu II (HFAC) 2 ].

【0006】CVD−TiN薄膜、CVD−TaN薄膜
の厚さは50nm以下であることが望ましい。厚さが5
0nmを超えると抵抗値増加の問題が生じるからであ
る。CVD−TiN、CVD−TaN薄膜は高アスペク
ト比の穴、溝に対しても段差被覆性に優れているので、
スパッタ−Cu膜を密着増強層として用いた場合のよう
に、フィールド部と側・底面部との間に著しい膜厚差を
生じない。従って、反応律速領域のCu薄膜用原料ガス
にとっては、全ての成膜面が均等でCVD−Cuのコン
フォーマリティーが阻害されることはない。また、本発
明者らは、CVD−TiN薄膜またはCVD−TaN薄
の窒化物薄膜の表面にはCuの核形成を促進する効果
があることを見いだした。その作用機構は明らかでない
が、膜表面に析出したTi、Ta、または有機残基から
取り込まれる炭素が触媒作用を行っているものと思われ
る。いずれにせよ、本発明によれば、CVD−TiN
膜またはCVD−TaN薄膜表面でCuの核密度が増大
することから、平滑な、鏡面様の薄い連続膜を得ること
ができる。
The thickness of the CVD-TiN thin film and the CVD-TaN thin film is preferably 50 nm or less. Thickness is 5
This is because if it exceeds 0 nm, a problem of increase in resistance value occurs. Since the CVD-TiN and CVD-TaN thin films have excellent step coverage even for holes and grooves with a high aspect ratio,
Unlike the case where the sputter-Cu film is used as the adhesion enhancing layer, there is no significant film thickness difference between the field portion and the side / bottom surface portion. Therefore, for the Cu thin film source gas in the reaction rate-determining region, all film-forming surfaces are uniform and the conformality of CVD-Cu is not hindered. Further, the present inventors have found that the CVD-TiN film or the surface of the nitride compound film of CVD-TaN thin film was found to be effective in promoting the nucleation of Cu. Although its mechanism of action is not clear, it is considered that Ti, Ta deposited on the surface of the film, or carbon incorporated from an organic residue performs a catalytic action. In any case, according to the present invention, the CVD-TiN thin film
Since the nucleus density of Cu is increased on the surface of the film or the CVD-TaN thin film, a smooth, mirror-like thin continuous film can be obtained.

【0007】 本発明によれば、CVD−Cu薄膜の密
着性も同時に改善される。これは、核密度の増大により
膜が微結晶化し、内部応力が減少すること、また、初期
核形成部分の密着性が高いためと考えられるが、膜の密
着性そのものに対する物理的解明が進んでいないので、
真の原因は不明である。本発明において用いる基板上に
形成されているバリアメタル膜としては、スパッタ法を
用いて成膜されたタンタル、窒化タンタル、タングステ
ン、窒化タングステン、チタンもしくは窒化チタン等の
金属膜、窒化金属膜、またはこれらの膜の複層膜が挙げ
られる。また、Cu薄膜を電解メッキのシード層として
使用する際、微細な配線孔に対応するにはCu薄膜の膜
厚の薄いことが、また、メッキ液の濡れ性を保持するに
はCu薄膜表面の平滑性が重要な因子となることから、
本発明により得られるCVD−Cu薄膜はシード層とし
ても優れている。
According to the present invention, the adhesion of the CVD-Cu thin film is simultaneously improved. It is considered that this is because the film is microcrystallized due to the increase of the nucleus density, the internal stress is reduced, and the adhesiveness of the initial nucleation part is high, but the physical elucidation of the adhesiveness of the film itself is progressing. Because there is no
The true cause is unknown. As the barrier metal film formed on the substrate used in the present invention, a metal film such as tantalum, tantalum nitride, tungsten, tungsten nitride, titanium or titanium nitride formed by a sputtering method , a nitride film A metal film or a multilayer film of these films can be used. Further, when the Cu thin film is used as a seed layer for electrolytic plating, the Cu thin film should be thin in order to cope with fine wiring holes, and the Cu thin film surface should be kept wet to keep the plating solution wet. Since smoothness is an important factor,
The CVD-Cu thin film obtained by the present invention is also excellent as a seed layer.

【0008】[0008]

【実施例】以下、本発明の実施例および比較例を図面を
参照して説明する。図1に示した真空成膜装置を使用し
て、本発明のCu薄膜形成法を実施した。この装置は、
バリアメタル膜の形成された基板を格納するカセット室
1、CVD−TiN薄膜を形成するための反応室2、お
よびCVD−Cu薄膜を形成するための反応室3が、そ
れぞれ、仕切バルブ5、6、および7を介して、真空ロ
ボットを搭載した搬送室4と連結するように構成されて
いる。また、図1には示していないが、反応室2および
3は、基板を加熱するための適当な加熱手段と、N2
2、Ar、He等のキャリアガス導入手段と、反応室
内を真空に排気するため の真空ポンプ等を具備し、反
応室2は、さらに、プラズマを発生する手段としての高
周波電源を具備している。
EXAMPLES Examples and comparative examples of the present invention will be described below with reference to the drawings. The Cu thin film forming method of the present invention was carried out using the vacuum film forming apparatus shown in FIG. This device
A cassette chamber 1 for storing a substrate on which a barrier metal film is formed, a reaction chamber 2 for forming a CVD-TiN thin film, and a reaction chamber 3 for forming a CVD-Cu thin film are provided with partition valves 5 and 6, respectively. , And 7 are connected to the transfer chamber 4 in which the vacuum robot is mounted. Although not shown in FIG. 1, the reaction chambers 2 and 3 are provided with a suitable heating means for heating the substrate, N 2 ,
A carrier gas introducing means such as H 2 , Ar, and He and a vacuum pump for evacuating the reaction chamber to a vacuum are provided, and the reaction chamber 2 is further provided with a high frequency power source as a means for generating plasma. There is.

【0009】配線溝の形成された絶縁膜(SiO2
等)を有する基板で、スパッタ−TaNバリアメタル膜
の形成された基板を、カセット室1から仕切バルブ5、
6を経て、先ず反応室2へ真空ロボットにより搬送し、
そこで該基板を400℃に加熱して、67Paの圧力
下、TDMATを3秒間流し、基板上に7〜8nmのC
VD−TiN薄膜を形成した。次いで、この基板を仕切
バルブ6、7を経て反応室3へ真空ロボットにより搬送
し、そこで基板温度を170℃に保持して、400Pa
の圧力下、CuI(HFAC)VTMSを流し、CVD−
Cu薄膜を形成した。このCVD−Cu薄膜の成長の様
子を図2(A)、(B)および(C)に模式的に示す。比較の
ために、反応室2でのCVD−TiN薄膜の形成を行わ
ずに、スパッタ−TaNバリアメタル膜の形成された基
板の上に直接CVD−Cu薄膜を上記と同じ条件下で成
長させた場合、およびこのバリアメタル膜の上にスパッ
タ−Cu膜を形成し、次いでその上にCVD−Cu薄膜
を上記と同じ条件下で成長させた場合についても行っ
た。得られたCVD−Cu薄膜の成長の様子を、それぞ
れ、図3ならびに図4(A)、(B)および(C)に模式的に
示す。
An insulating film (SiO 2 film) in which wiring grooves are formed
A substrate having a sputter-TaN barrier metal film formed thereon is separated from the cassette chamber 1 by a partition valve 5,
Via 6, firstly transported to the reaction chamber 2 by a vacuum robot,
Therefore, the substrate is heated to 400 ° C., TDMAT is caused to flow for 3 seconds under a pressure of 67 Pa, and C of 7 to 8 nm is applied onto the substrate.
A VD-TiN thin film was formed. Next, this substrate is transferred to the reaction chamber 3 through the partition valves 6 and 7 by a vacuum robot, and the substrate temperature is maintained at 170 ° C. at 400 Pa.
Under pressure of Cu I (HFAC) VTMS, CVD-
A Cu thin film was formed. The growth of the CVD-Cu thin film is schematically shown in FIGS. 2 (A), (B) and (C). For comparison, the CVD-Cu thin film was directly grown on the substrate on which the sputter-TaN barrier metal film was formed without forming the CVD-TiN thin film in the reaction chamber 2 under the same conditions as above. In this case, a sputter-Cu film was formed on the barrier metal film, and a CVD-Cu thin film was grown on the sputter-Cu film under the same conditions as above. The growth state of the obtained CVD-Cu thin film is schematically shown in FIGS. 3 and 4 (A), (B) and (C), respectively.

【0010】図2から明らかなように、本発明の場合、
配線溝11の形成された SiO2絶縁膜12を有する基
板において(図2(A))、スパッタで成膜されたバリア
メタル膜13をCVD−TiN薄膜14で被覆すること
で(図2(B))、次の工程において被成膜面全体での均
等なCuの初期核の形成が促進され、平滑な平面形状を
持つCu連続薄膜15を得ることができた(図2
(C))。かくして得られた微結晶薄膜はテープ剥離テス
ト(JIS H 8661−8)による密着性試験の結
果、優れた密着性を有していることが分かった。これに
対し、図3から明らかなように、バリアメタル膜13の
上に直接CVD−Cu薄膜16を成長させた場合、Cu
の初期核の分布は疎であるため、隣接した核同士の成長
合体によってCu連続膜16となる際、膜表面は必然的
に粗面となった(図3)。また、図4から明らかなよう
に、バリアメタル膜13をスパッタ−Cu膜17で被覆
した場合(図4(A)および(B))も、CVD−Cu薄膜
18の表面は、図3の場合と同様に疎面であった(図4
(C))。
As is apparent from FIG. 2, in the case of the present invention,
By covering the barrier metal film 13 formed by sputtering with the CVD-TiN thin film 14 on the substrate having the SiO 2 insulating film 12 in which the wiring groove 11 is formed (see FIG. 2 (B)). )), In the next step, formation of uniform initial nuclei of Cu on the entire film formation surface was promoted, and a Cu continuous thin film 15 having a smooth planar shape could be obtained (FIG. 2).
(C)). The microcrystalline thin film thus obtained was found to have excellent adhesiveness as a result of an adhesiveness test by a tape peeling test (JIS H 8661-8). On the other hand, as is clear from FIG. 3, when the CVD-Cu thin film 16 is directly grown on the barrier metal film 13, Cu
Since the distribution of the initial nuclei was sparse, the film surface inevitably became rough when the Cu continuous film 16 was formed by the growth coalescence of adjacent nuclei (FIG. 3). Further, as is clear from FIG. 4, even when the barrier metal film 13 is covered with the sputter-Cu film 17 (FIGS. 4A and 4B), the surface of the CVD-Cu thin film 18 is the case of FIG. It was a sparse surface similar to (Fig. 4
(C)).

【0011】スパッタバリアメタル膜に直接CVD−C
u薄膜を形成した場合およびCVD−Cu薄膜の形成前
にバリアメタル膜上にスパッタ−Cu膜を形成した場
合、初期核は、1μm2当たり 50〜200個程度であ
ったのと較べ、バリアメタル膜上にCVD−TiN薄膜
を形成した場合にはその10倍以上の核が観測された。
本発明の場合、CuI(HFAC)VTMSを流し始めて
8秒後には 既に連続膜が形成され、その時の膜厚は約
20nmであり、得られたCu薄膜は、従来技術により
直接CVD−Cu薄膜を形成した場合およびスパッタC
u膜を形成した場合と較べて、密着性が増すと共に膜面
は平滑化(鏡面化)していた。
Direct CVD-C on sputter barrier metal film
When the u thin film was formed and when the sputter-Cu film was formed on the barrier metal film before forming the CVD-Cu thin film, the initial nuclei were about 50 to 200 per 1 μm 2 When the CVD-TiN thin film was formed on the film, 10 times or more nuclei were observed.
In the case of the present invention, a continuous film is already formed 8 seconds after starting the flow of Cu I (HFAC) VTMS, and the film thickness at that time is about 20 nm. The obtained Cu thin film is a direct CVD-Cu thin film by the conventional technique. And sputter C
As compared with the case where the u film was formed, the adhesion was increased and the film surface was smoothed (mirrored).

【0012】次に、初期核密度nと膜粗さSとの関係を
説明するために、その関係を表す簡単な数学的モデルの
説明図を図5に示す。数密度n[個/μm2] の核間平均
距離d(μm)は、d〜1/n1/2 である(図5
(A))。それぞれの核が接触角θを一定に保つように等
方的に成長すると仮定すると(図5(B))、隣接した核
が合体する条件は核球の半径をaとした時、2a・si
nθ≧ dで与えられる。この時、粗さSは、S〜(1
/2n1/2)・tan(θ/2)(図5(C))となる。θと
して70゜、nとしてスパッタバリアメタル膜上の代表
値100個/μm2 、CVD−TiN薄膜上の代表値2
000個/μm2 を代入すると、S(スパッタバリアメ
タル)〜35nm、S(CVD−TiN)〜8nmを得
る。CVD−TiN薄膜を設けることにより、CVD−
Cu薄膜の表面荒れが小さくなることが分かる。
Next, in order to explain the relationship between the initial nucleus density n and the film roughness S, an explanatory view of a simple mathematical model showing the relationship is shown in FIG. The average internuclear distance d (μm) of the number density n [number / μm 2 ] is d to 1 / n 1/2 (FIG. 5).
(A)). Assuming that each nucleus grows isotropically so as to keep the contact angle θ constant (FIG. 5 (B)), the condition that the adjacent nuclei coalesce is 2a · si when the radius of the nuclear sphere is a.
It is given by nθ ≧ d. At this time, the roughness S is S to (1
/ 2n 1/2 ) · tan (θ / 2) (FIG. 5C). θ is 70 °, n is a typical value of 100 on the sputter barrier metal film / μm 2 , and typical value is 2 on the CVD-TiN thin film.
Substituting 000 / μm 2 , S (sputter barrier metal) to 35 nm and S (CVD-TiN) to 8 nm are obtained. By providing a CVD-TiN thin film, CVD-
It can be seen that the surface roughness of the Cu thin film is reduced.

【0013】膜の表面荒れは、CVD−Cu薄膜で溝
(または穴)部を埋め込む際に、溝(または穴)部の開
口部を閉塞させ、Cu配線部にボイドを生じせしめる原
因となる。また、CVD−Cu薄膜をシード層としてC
uメッキを行う際も、メッキ液の濡れ性を阻害し、やは
り配線溝(穴)内部にボイドを生じせしめた。上記実施
例では、CVD−TiN薄膜形成のための有機チタン
料としてTDMATを用いた場合を示したが、TDEA
T、TiPMAT、またはこれらの組合せを用いても、
また、CVD−TaN薄膜形成のための有機タンタル
料としてTa[N-(CH3)2]5、Ta[[N-(t-C49)2]
2[N-(C25)2]3] またはこれらの組合せを用いても同
様の効果が得られたことは言うまでもない。また、Cu
薄膜の形成のための原料としてCuI(HFAC)VTM
Sの代わりにCuII(HFAC)2を用いた場合も同様な
結果が得られた。
The surface roughness of the film causes the opening of the groove (or hole) to be closed when the groove (or hole) is filled with the CVD-Cu thin film, which causes a void in the Cu wiring part. Further, the CVD-Cu thin film is used as a seed layer for C.
Even when u-plating was performed, the wettability of the plating solution was hindered, and voids were also formed inside the wiring grooves (holes). Although TDMAT is used as the organic titanium material for forming the CVD-TiN thin film in the above embodiment, TDEA is used.
With T, TiPMAT, or a combination of these,
Further, Ta as the organic tantalum material <br/> cost for CVD-TaN thin film formation [N- (CH 3) 2] 5, Ta [[N- (t-C 4 H 9) 2]
Needless to say, the same effect was obtained by using 2 [N- (C 2 H 5 ) 2 ] 3 ] or a combination thereof. Also, Cu
Cu I (HFAC) VTM as a raw material for thin film formation
Similar results were obtained when Cu II (HFAC) 2 was used instead of S.

【0014】 CVD−Cu薄膜を形成する際、上述の
熱CVD法の他、キャリアガスとしてN2、H2またはそ
の混合ガスを用い、ガスノズルに高周波電圧を印加して
プラズマを励起したPECVD法、さらに熱CVD法で
堆積した膜を上記ガス種のプラズマに暴露する方法など
種々の変形を試みた。いずれの場合にも、上記実施例の
場合と同様に密着性の改善と核形成密度の増大が確認さ
れた。また、上記実施例では、バリアメタル膜としてス
パッタ−TaN薄膜が形成された基板を用いた場合を示
したが、その他のバリアメタル膜、例えばスパッタ法を
用いて成膜されたTa、W、WN、TiもしくはTiN
等の膜、またはそれらの膜の複層膜が形成された基板を
用いても同様の結果が得られることは言うまでもない。
[0014] When forming the CVD-Cu film, other thermal CVD method described above, using N 2, H 2 or a mixed gas as a carrier gas, PECVD method using exciting plasma by applying a high frequency voltage to the gas nozzle, Further, various modifications such as a method of exposing the film deposited by the thermal CVD method to the plasma of the above gas species were tried. In each case, it was confirmed that the adhesion was improved and the nucleation density was increased as in the case of the above-mentioned examples. Further, in the above embodiment, the case where the substrate on which the sputter-TaN thin film is formed is used as the barrier metal film, but other barrier metal films, for example , Ta formed by using the sputtering method are shown. , W, WN, Ti or TiN
It is needless to say that the same result can be obtained by using a substrate on which the above films or a multi-layer film of these films are formed.

【0015】[0015]

【発明の効果】本発明のCu薄膜形成法によれば、スパ
ッタ法によりバリアメタル膜形成されている基板にお
いて、CVD−Cu薄膜形成の前に、有機金属材料を用
いて行うCVD法により、密着増強層としての金属窒化
物薄膜を形成してあるので、優れた密着性と平滑性を併
せ持つCVD−Cu薄膜を得ることができる。
According to the Cu thin film forming method of the present invention, the spa
In the substrate on which the barrier metal film is formed by the sputtering method, the metal nitride thin film as the adhesion enhancing layer is formed by the CVD method using the organometallic material before the CVD-Cu thin film formation. A CVD-Cu thin film having both excellent adhesion and smoothness can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するための真空成膜装置の構成の
一例を示す模式的構成図。
FIG. 1 is a schematic configuration diagram showing an example of the configuration of a vacuum film forming apparatus for carrying out the present invention.

【図2】(A)(C)本発明によるCVD−Cu薄膜
の成長プロセスを説明するための模式的断面図。
2A to 2C are schematic cross-sectional views for explaining a growth process of a CVD-Cu thin film according to the present invention.

【図3】従来技術によるCVD−Cu薄膜の成長の様子
を示す模式的断面図。
FIG. 3 is a schematic cross-sectional view showing a state of growth of a CVD-Cu thin film according to a conventional technique.

【図4】(A)(C)従来技術によるCVD−Cu薄
膜の成長プロセスを説明するための模式的断面図。
[4] (A) ~ (C) schematic cross-sectional view for explaining a growth process of a prior art CVD-Cu film.

【図5】(A)(C)初期核密度nと膜粗さSとの相
関をモデル化した説明図。
[5] (A) ~ (C) illustrates a model of the correlation between the initial nuclei density n and Makuara of S.

【符号の説明】[Explanation of symbols]

1 カセット室 2 反応室 3 反応室 4 搬送室 5、6、7 仕切バルブ 11 配線溝 12 絶縁膜 13 バリアメ
タル膜 14 CVD−TiN薄膜 15、16、1
8 CVD−Cu薄膜 17 スパッタ−Cu膜 a 核球の半
径 d 核間平均距離 S 膜粗さ θ 接触角
DESCRIPTION OF SYMBOLS 1 cassette chamber 2 reaction chamber 3 reaction chamber 4 transfer chambers 5, 6, 7 partitioning valve 11 wiring groove 12 insulating film 13 barrier metal film 14 CVD-TiN thin film 15, 16, 1
8 CVD-Cu thin film 17 Sputter-Cu film a Radius of nuclear sphere d Average distance between nuclei S Film roughness θ Contact angle

フロントページの続き (51)Int.Cl.7 識別記号 FI H01L 21/285 301 H01L 21/88 R (56)参考文献 特開 平10−150039(JP,A) 特開 平9−22907(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/3205 C23C 16/18 C23C 16/34 H01L 21/28 301 H01L 21/285 Continuation of the front page (51) Int.Cl. 7 identification code FI H01L 21/285 301 H01L 21/88 R (56) References JP 10-150039 (JP, A) JP 9-22907 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 21/3205 C23C 16/18 C23C 16/34 H01L 21/28 301 H01L 21/285

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 スパッタ法によりバリアメタル膜が形成
された基板上に銅薄膜を化学蒸着法で形成する方法にお
いて、バリアメタル膜上に、有機チタン材料または有機
タンタル材料を用いて化学蒸着法により窒化チタン薄膜
または窒化タンタル薄膜を形成した後、引き続きその上
に銅薄膜を化学蒸着法により形成することを特徴とする
銅薄膜形成法。
1. A method of forming a copper thin film on a substrate on which a barrier metal film is formed by a sputtering method by a chemical vapor deposition method, which comprises using an organic titanium material or an organic tantalum material on the barrier metal film by a chemical vapor deposition method. After forming a titanium nitride thin film or a tantalum nitride thin film, a copper thin film is subsequently formed thereon by a chemical vapor deposition method.
【請求項2】 前記有機チタン材料がTi[N-(C
3)2]4、Ti[N-(C25)2]4、Ti[N-(CH3)(i-C
37)]4またはこれらの組合せであり、前記有機タンタ
ル材料がTa[N-(CH3)2]5、Ta[[N-(t-C49)2]
2[N-(C25)2]3] またはこれらの組合せであることを
特徴とする請求項1記載の銅薄膜形成法。
2. The organic titanium material is Ti [N- (C
H 3) 2] 4, Ti [N- (C 2 H 5) 2] 4, Ti [N- (CH 3) (i-C
3 H 7 )] 4 or a combination thereof, wherein the organic tantalum material is Ta [N- (CH 3 ) 2 ] 5 , Ta [[N- (t-C 4 H 9 ) 2 ].
2 [N- (C 2 H 5 ) 2] 3] or a copper thin film forming method according to claim 1 Symbol mounting characterized in that it is a combination thereof.
【請求項3】 前記窒化チタン薄膜または窒化タンタル
薄膜が厚さ50nm以下の極薄膜であることを特徴とす
る請求項1または2記載の銅薄膜形成法。
3. A copper thin film forming method according to claim 1 or 2, wherein said titanium film or a tantalum nitride thin nitride is less very thin film thickness of 50nm.
JP37060398A 1998-12-25 1998-12-25 Copper thin film formation by chemical vapor deposition Expired - Fee Related JP3490317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37060398A JP3490317B2 (en) 1998-12-25 1998-12-25 Copper thin film formation by chemical vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37060398A JP3490317B2 (en) 1998-12-25 1998-12-25 Copper thin film formation by chemical vapor deposition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003306183A Division JP2004040128A (en) 2003-08-29 2003-08-29 Method for forming copper thin film by chemical vapor deposition method

Publications (2)

Publication Number Publication Date
JP2000195863A JP2000195863A (en) 2000-07-14
JP3490317B2 true JP3490317B2 (en) 2004-01-26

Family

ID=18497292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37060398A Expired - Fee Related JP3490317B2 (en) 1998-12-25 1998-12-25 Copper thin film formation by chemical vapor deposition

Country Status (1)

Country Link
JP (1) JP3490317B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057126A (en) * 2000-08-10 2002-02-22 Fujitsu Ltd Semiconductor device and method of manufacturing the same
JP4717202B2 (en) * 2000-12-22 2011-07-06 株式会社アルバック Chemical vapor deposition of copper thin films.
SG179310A1 (en) 2001-02-28 2012-04-27 Semiconductor Energy Lab Semiconductor device and manufacturing method thereof
JP2008028058A (en) * 2006-07-20 2008-02-07 Tokyo Electron Ltd Method of manufacturing semiconductor device, apparatus for manufacturing semiconductor device, semiconductor device and storage medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3911643B2 (en) * 1995-07-05 2007-05-09 富士通株式会社 Method for forming buried conductive layer
JP4311771B2 (en) * 1996-11-19 2009-08-12 Okiセミコンダクタ株式会社 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP2000195863A (en) 2000-07-14

Similar Documents

Publication Publication Date Title
US9209074B2 (en) Cobalt deposition on barrier surfaces
US5391517A (en) Process for forming copper interconnect structure
US7799674B2 (en) Ruthenium alloy film for copper interconnects
US9048294B2 (en) Methods for depositing manganese and manganese nitrides
US20040004288A1 (en) Semiconductor device and manufacturing method of the same
US6136690A (en) In situ plasma pre-deposition wafer treatment in chemical vapor deposition technology for semiconductor integrated circuit applications
JP2000133715A (en) Tungsten film manufacturing method of semiconductor element
JPH0390572A (en) Cvd vapor deposition method for forming tungsten layer on semiconductor wafer
US6645860B2 (en) Adhesion promotion method for CVD copper metallization in IC applications
JP3381774B2 (en) Method of forming CVD-Ti film
WO1998028783A1 (en) Method of nucleation used in semiconductor devices
JPH09186102A (en) Manufacture of semiconductor device
JP4127359B2 (en) Method for manufacturing integrated circuit device
JP3490317B2 (en) Copper thin film formation by chemical vapor deposition
US20020031912A1 (en) Method of manufacturing a copper wiring in a semiconductor device
JPH0922907A (en) Forming method for buried conductive layer
KR100289515B1 (en) Barrier emtal layer and method of forming the same
JP2002329682A (en) Cu THIN FILM MANUFACTURING METHOD
JP4733804B2 (en) Wiring formation method
JP2004040128A (en) Method for forming copper thin film by chemical vapor deposition method
JPH10256252A (en) Method of growing copper film
JPH03110838A (en) Deposition of film
JPH05226282A (en) Method for tungsten film formation
US6509268B1 (en) Thermal densification in the early stages of copper MOCVD for depositing high quality Cu films with good adhesion and trench filling characteristics
JP2670151B2 (en) Deposition film formation method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030930

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees