JP4715984B2 - Cooling system with cool storage function - Google Patents

Cooling system with cool storage function Download PDF

Info

Publication number
JP4715984B2
JP4715984B2 JP2001108239A JP2001108239A JP4715984B2 JP 4715984 B2 JP4715984 B2 JP 4715984B2 JP 2001108239 A JP2001108239 A JP 2001108239A JP 2001108239 A JP2001108239 A JP 2001108239A JP 4715984 B2 JP4715984 B2 JP 4715984B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer fluid
cooling
flow path
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001108239A
Other languages
Japanese (ja)
Other versions
JP2002310551A (en
Inventor
壽 三谷
英文 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2001108239A priority Critical patent/JP4715984B2/en
Publication of JP2002310551A publication Critical patent/JP2002310551A/en
Application granted granted Critical
Publication of JP4715984B2 publication Critical patent/JP4715984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
航空機におけるレーダやレーザ等の指向性を有する電磁波の発信部位や、超高速演算回路部位といった高出力回路部位を、大電力投入時に安定して作動させるために冷却するシステムに関する。
【0002】
【従来の技術】
例えば遭難者、難破船、不審船等の探索を行うために航空機に搭載されるレーダのような電磁波発信装置における電磁波発信部位は、旧来の発信管から多数の半導体素子で構成されるものに置き換わりつつあり、これにより電磁波の向き変更は、発信管の向きを変更する方式から、各素子それぞれで発する電磁波の位相を制御することで可動部なしに変更する方式に変更される。このような方式では、各半導体素子それぞれに対応して電力制御回路が具備されるため、電磁波の発信を安定的に行えるように性能を安定させるには、多数存在する電力制御回路付きの半導体素子により構成される電磁波発信部位を全体的に冷却して一定の設定温度範囲内に維持する必要がある。そこで、水などを主成分に添加剤を加えたブラインと呼ばれる不凍液等を熱移送流体として、これにより電磁波発信部位を直接冷却する方式が採用されている。その熱移送流体は、航空機におけるエンジン抽気を用いたエアサイクル方式冷却システムや、冷媒を用いたベーパサイクル方式冷却システム等の機内冷却システムにより、その温度上昇に応じて冷却されている。また、この熱移送流体は電磁波発信部位以外の高出力回路部位、例えば超高速演算回路や、各種電子機器への電力供給を制御するインバータ回路を動作時に冷却するのにも利用される。
【0003】
【発明が解決しようとする課題】
航空機においては近年の高性能化の要請に伴ない、様々な高速演算処理を伴う信号処理装置等も付随される場合が多い。さらに、機能向上のために大出力の電磁波の発信にも対応することが要求されている。このため、電磁波の発信や高速演算処理を行う際には付随の回路部なども含めた高出力回路部位から大幅な発生熱量が見込まれ、発生した熱を吸収した熱移送流体を冷却するための機内冷却システムの能力を大きくしなければならなかった。
【0004】
しかし、機内冷却システムの能力を大きくするには、機内冷却システムとしエアサイクル方式を採用した場合はエンジン抽気量を増大させる必要があり、ベーパサイクル方式を採用した場合は冷媒圧縮能力を増加させるために電力消費を増大させる必要がある。いずれの場合も高出力回路部位における電力消費が増大すると、飛行中のエンジンにとっては大幅な負荷増加になり好ましくない。特に、地上や海上を対象にレーダ波等の指向性電磁波を発信する航空機では、飛行高度を下げた状態での作動となるため、汲出した熱を放出する先の機外空気の温度が高くなる場合が多く、冷却システムの能力も大きなものが必要になり、エンジン負荷の増大のみならず、冷却システムとしても大きく重いものとならざるを得なかった。
【0005】
【課題を解決するための手段】
本発明の蓄冷機能付き冷却システムは、航空機における高出力回路部位を、冷却手段により冷却される熱移送流体により冷却する冷却システムにおいて、その熱移送流体は循環流路において流動するものとされ、前記循環流路は、前記高出力回路部位から前記冷却手段に到る部分を、前記冷却手段から前記高出力回路部位に到る部分に接続する配管により構成される流路を有し、冷熱を蓄積可能な蓄冷物質が、その配管の両端間の熱移送流体の流路に熱移送流体と熱交換可能に配置され、その熱移送流体が蓄冷物質よりも低温である時は、その熱移送流体により蓄冷物質が冷却され、その熱移送流体が蓄冷物質よりも高温である時は、その蓄冷物質により熱移送流体が冷却されるように、前記配管における熱移送流体の流れ方向が、その熱移送流体が蓄冷物質よりも低温である時と高温である時とで逆とされることを特徴とする。なお、航空機としてはヘリコプターのような回転翼機を含む。
本発明の構成によれば、高出力回路部位が作動していないために電力に余裕がある場合、航空機が高々度や寒冷領域を飛行している場合、飛行前の地上での待機中に機体外部の動力源を使用可能な場合等においては、航空機のエンジンに過大な負荷をかけることなく、航空機におけるエンジン抽気や電力消費量の増大なしに、冷却手段を駆動して熱移送流体を冷却し、その熱移送流体により蓄冷物質を冷却して冷熱を蓄積できる。これにより、その熱移送流体が高出力回路部位の作動により蓄冷物質よりも高温になった場合は、その蓄積した冷熱により熱移送流体を冷却することで、航空機のエンジンに過大な負荷をかけることなく電磁波発信部位等の高出力回路部位を冷却することができる。また、高出力回路部位として電磁波発信部位を冷却する際に、電磁波の発信対象から電磁波への対抗措置が取られる可能性がある場合、強力な電磁波は発信対象に接近するまではほとんど発信することがなく、また、連続して電磁波を発信するのではなく間欠的に発信するのが一般的である。このような場合、本発明によれば、飛行効率を上げるために十分な高度で移動のための飛行を行っている間に蓄冷物質に冷熱を蓄積し、電磁波の発信時には蓄えられた冷熱を使って発信部位の冷却を行える。
【0006】
前記冷却手段は前記熱移送流体を前記蓄冷物質の融点未満に冷却可能であるのが好ましい。
これにより、その蓄冷物質を融点以下まで冷却して凝固させ、その蓄冷物質が融解する時に融解熱を吸収することで熱移送流体を冷却でき、蓄冷物質が液相状態である時よりも大きな凝固熱、例えば蓄冷物質が水であれば比熱の約80倍の凝固熱を冷熱として保持できることになり、少量でも熱容量の大きな蓄冷物質により電磁波発信部位等の高出力回路部位での発生熱の全てあるいは一部を吸収でき、軽量化が要求される航空機にとって好ましいものである。
【0007】
その熱移送流体により航空機の機体内循環空気を冷却する冷却手段が設けられ、その循環流路の一部として、その高出力回路部位に熱移送流体を供給する第1流路と、航空機の機体内循環空気の冷却手段に熱移送流体を供給する第2流路とが設けられ、その第1流路の熱移送流体の流量の第2流路の熱移送流体の流量に対する比率を、その熱移送流体の温度変化に相関する変量に応じて変更する手段が設けられているのが好ましい。
これにより、高出力回路部位が作動していない間に冷却される熱移送流体を、機体内循環空気の冷却に有効利用できる。
【0008】
その蓄冷物質は多数の伸縮可能な容器に封入され、それら容器が前記熱移送流体の流路に配置されているのが好ましい。
これにより、蓄冷物質と熱移送流体との接触面積を大きくして熱交換を効率良く行い、また、蓄冷物質の体積変動を容器の伸縮により吸収することができる。
【0009】
その航空機の機体外から導入されるRAM空気と熱移送流体の冷却手段の冷媒との間で熱交換可能とされているのが好ましい。
これにより航空機が高々度を飛行している際に効率良く蓄冷物質に冷熱を蓄積でき実運用に適する。
【0010】
【発明の実施の形態】
図1、図2は、航空機の機体1に搭載されるフェーズドアレイレーダ2における高出力回路部位を冷却するための蓄冷機能付き冷却システムAを示す。そのレーダ2としては、フルパワーで電磁波を発信した場合に例えば10kWを超えて発熱するものが用いられる。そのレーダ2における高出力回路部位は、多数の電力制御回路付きの半導体素子からなる電磁波発信部位により構成され、その電磁波発信部を熱移送流体により冷却するための冷却ジャケット20を有する。例えば、その電磁波発信部位を構成する各素子それぞれにヒートシンクが取り付けられ、各ヒートシンクそれぞれが冷却ジャケット20により覆われる。その冷却システムAから供給される熱移送流体が、その冷却ジャケット20に供給ポート21を介して導入され、リターンポート22を介して排出されることで、その電磁波発信部位は熱移送流体により冷却される。本実施形態では、その熱移送流体として一般的な高濃度のエチレングリコール溶液などが用いられる。
【0011】
その冷却システムAは、冷却装置3と蓄冷装置4とを備え、その冷却装置3により、その蓄冷装置4における循環流路40を流動する熱移送流体が冷却される。その冷却装置3は、機体内循環空気を冷却する機体1の内部空間の空調装置を兼用し、航空機のエンジン5からの抽気で機能するエアサイクル式冷却装置31と、このエアサイクル31の冷却能力を補うベーパサイクル式冷却装置32とを有する。
【0012】
そのエアサイクル式冷却装置31は、エンジン抽気を第一熱交換器311で機体外から導入されるRAM空気との熱交換により冷却し、遠心コンプレッサ312で圧縮し、第二熱交換器313でRAM空気との熱交換により再度冷却し、さらに再生熱交換器314で冷却し、これにより凝結したエンジン抽気の含有水分を水分除去器315で取り去り、しかる後に、そのエンジン抽気を膨張タービン316で膨張させることで冷気を得る。この得られた冷気の一部は、再生熱交換器314を通ることでエンジン抽気を冷却し、しかる後に航空機のキャビン6等にダクト317を介して機体内循環空気として供給される。その得られた冷気の残部は上記蓄冷装置4の冷却器42を通ることで熱移送流体を冷却し、しかる後にキャビン6等に機内空気として供給される。なお、第一熱交換器311、第二熱交換器313は図示では単一とされるが、実際には機体1に複数設けるようにする。
【0013】
そのベーパサイクル式冷却装置32は、電動モータ321により駆動されるコンプレッサ322により圧縮されることで高温、高圧となった冷媒をRAM空気との熱交換によりコンデンサ323で放熱して冷却液化し、膨張弁324で減圧し、エバポレータ325で蒸発させ、再度コンプレッサ322に戻してサイクルを完結させる。その冷媒としてはオゾン破壊効果のないHFC134a等が適している。そのエバポレータ325において、冷媒が蒸発に際して周囲の熱を奪うことで奏する冷却能力により、上記蓄冷装置4の循環流路40を流動する熱移送流体を冷却する。その冷却能力により機体内循環空気を直接に冷却することで、機内で発生する熱を除去するようにしてもよい。なお、そのコンデンサ323は図示では単一とされるが、機体1に複数設けるようにしてもよい。
【0014】
その蓄冷装置4は、熱移送流体をメインポンプ41により圧送する。これにより、その熱移送流体は上記のようにエバポレータ325と冷却器42において冷却される。その冷却された熱移送流体は循環流路40に設けられたメイン分配バルブ43により、機体1内に配置された機内冷却器44とレーダ2の冷却ジャケット20とに配管a、bを介して導入されるように振り分けられる。その機内冷却器44に導入された熱移送流体は機体内循環空気を冷却した後にメインポンプ41の吸引側に戻される。また、その冷却ジャケット20に導入された熱移送流体はレーダ2の電磁波発信部位を冷却した後にメインポンプ41の吸引側に戻される。その機内冷却器44は複数でもよい。
【0015】
冷熱を蓄積可能な蓄冷物質が、その循環流路40において流動する熱移送流体と熱交換可能に配置されている。本実施形態では、上記メインポンプ41とエバポレータ325との間に、熱移送流体を充填した蓄冷リザーバタンク7が配管接続され、その蓄冷リザーバタンク7はリザーバポンプ451に配管接続され、そのリザーバポンプ451は切替えバルブ452を介して上記メイン分配バルブ43とサブ分配バルブ453とに配管接続され、そのサブ分配バルブ453は上記機内冷却器44と冷却ジャケット20の供給ポート21とに配管c、dを介して接続されている。これにより、熱移送流体が蓄冷物質よりも低温である時は熱移送流体により蓄冷物質が冷却され、熱移送流体が蓄冷物質よりも高温である時は蓄冷物質により熱移送流体が冷却される。
【0016】
図3に示すように、その蓄冷リザーバタンク7の本体71に、蓄冷物質として純水を封入した球形のカプセル状容器72が、カプセルポート71aから多数充填されている。その蓄冷物質としては水に限定されず、冷熱を蓄積可能なものであれば良いが、水以外にはギ酸、酢酸、p−キシレン、グリセリン、その他−5℃〜+25℃の間に融点があり、安定した分子構造を持つ物質を主成分とした物質を採用するのが好ましい。そのカプセル状容器72は水分子が透過せず、且つ、純水が氷結して体積が変化しても伸縮することで破れることのない高分子材製とされ、例えばポリテトラフルオロエチレン(PTFE)製とされる。それらカプセル状容器72を保持するように、一対の網目板73が本体71内に取り付けられている。なお、容器72は図示では一部省略しているが、両網目板73の間を略満たすように充填されている。その本体71の中心に案内筒74が設けられ、その案内筒74内に、循環流路40との接続用配管75、76が導入され、その案内筒74の内部は仕切り板74aにより一端側と他端側とに仕切られ、一方の接続用配管75の導入端は仕切り板74aよりも一端側に配置され、他方の接続用配管76の導入端は仕切り板74aよりも他端側に配置される。その本体71内の熱移送流体の攪拌羽根77がモータ78により回転駆動される。その蓄冷物質の体積変動を吸収するエアバッグ79が本体71に配置され、そのエアバッグ79内はパイプ79aを介して本体71外と通じるものとされ、蓄冷物質の凝固による体積の変化や熱移送流体の温度変化による体積の変化を吸収できるようになっている。これにより、カプセル状容器72は熱移送流体の流路に配置され、図中矢印AあるいはBで示す方向に流動する熱移送流体と蓄冷物質との間で熱交換が行われる。この際、多数のカプセル状容器72に蓄冷物質が封入されることで、蓄冷物質と熱移送流体との接触面積を大きくして熱交換を効率良く行い、また、蓄冷物質の体積変動をカプセル状容器72の伸縮により吸収することができる。なお、その蓄冷物質を封入する容器として、球形のカプセル状容器72以外のもの、例えば管状や板状の容器を用いてもよい。
【0017】
図4に示すように、上記モータ321、メインポンプ41、リザーバポンプ451、切替えバルブ452、メイン分配バルブ43、およびサブ分配バルブ453は、機体1に搭載された制御装置50に接続される。また、その制御装置50に、熱移送流体の温度変化に相関する変量として機体内循環空気の温度を検出する温度センサ51が接続されている。その温度センサ51の検出温度に応じて制御装置50から出力される信号に応じてモータ321、メインポンプ41、リザーバポンプ451、切替えバルブ452、メイン分配バルブ43、およびサブ分配バルブ453は作動する。その作動により、コンプレッサ322の圧縮能力が変更可能とされ、メインポンプ41の吐出量が変更可能とされ、リザーバポンプ451の吐出方向が変更可能とされ、切替えバルブ452はリザーバポンプ451を循環流路40に接続する状態とサブ分配バルブ453に接続する状態とに択一的に切り換え可能とされ、メイン分配バルブ43、サブ分配バルブ453による熱移送流体の分配比が変更可能とされている。
【0018】
上記構成を備えた航空機が高々度や寒冷領域を飛行しているような場合、第一熱交換器311、第二熱交換器313、コンデンサ323に機体外から導入されるRAM空気の温度は低い上に、エンジンで外気を圧縮した抽気に含まれる水蒸気が少なく、冷却時に水蒸気の凝縮による発熱がないため、エアサイクル式冷却装置31における冷媒であるエンジン抽気は膨張前に温度が十分低くなり、また、ベーパサイクル式冷却装置32における冷媒も殆ど圧縮されなくても膨張前に温度が十分低くなる。これにより、冷却装置3は熱移送流体を蓄冷物質の融点未満に冷却可能であり、冷却器42を出た熱移送流体の温度は蓄冷物質である純水の融点以下になり、例えば−10℃以下にすることも可能である。この場合、その熱移送流体の温度に応じて機体内循環空気の温度も低くなる。温度センサ51により検出される機体内循環空気の温度が予め定めた設定温度以下である時、制御装置50は熱移送流体が循環流路40において切替えバルブ452、リザーバポンプ451を介して蓄冷リザーバタンク7に至るように、リザーバポンプ451と切替えバルブ452とを作動させる。この結果、蓄冷リザーバタンク7内では蓄冷物質である水が凝固し、冷熱が貯えられる。また、機体内循環空気の温度が上昇してきた場合には、制御装置50は温度センサ51による検出温度に応じてメインポンプ41の吐出量を変更したり、分配バルブ43による熱移送流体の分配比を変更することで、蓄冷リザーバタンク7を通過する熱移送流体流量と機内冷却器44を通過する熱移送流体流量との比を変更し、機体内循環空気の温度を適性値に保持する。すなわち、循環流路40の一部として、メイン分配バルブ43から冷却ジャケット20に熱移送流体を供給する配管bおよびサブ分配バルブ453から冷却ジャケット20に熱移送流体を供給する配管dから構成される第1流路と、メイン分配バルブ43から機内冷却器44に熱移送流体を供給する配管aおよびサブ分配バルブ453から機内冷却器44に熱移送流体を供給する配管cから構成される第2流路とが、並列に設けられ、制御装置50は、熱移送流体の温度変化に相関する変量である機体内循環空気の検出温度が上昇すると、その第1流路の熱移送流体の流量の第2流路の熱移送流体の流量に対する比率を減少させ、機体内循環空気の検出温度が低下すると、その比率を増大させる。
なお、その第1流路の熱移送流体の流量の第2流路の熱移送流体の流量に対する比率を、機体内循環空気の温度以外の、熱移送流体の温度変化に相関する変量に応じて変更してもよい。例えば、その熱移送流体の温度変化に相関する変量を高出力回路部位への電力投入量とし、高出力回路部位への電力投入のオン、オフに応じてメインポンプ41の吐出量を変更したり、分配バルブ43による熱移送流体の分配比を変更することで、第1流路の熱移送流体の流量の第2流路の熱移送流体の流量に対する比率を変更する。すなわち、高出力回路部位への電力投入がオンの時は、第1流路の熱移送流体の流量の第2流路の熱移送流体の流量に対する比率を減少させ、その電力投入がオフの時は、その比率を増大させる。
【0019】
上記構成を備えた航空機が低高度でレーダ2から電磁波を発信している場合、その電磁波発信部位における温度が上昇するため、エアサイクル式冷却装置31とベーパサイクル式冷却装置32とが機能しても、冷却器42を出た熱移送流体の温度は蓄冷物質である純水の融点よりも高くなる。この場合、その熱移送流体の温度に応じて機体内循環空気の温度も高くなる。その温度センサ51により検出される機体内循環空気の温度が設定温度を超える時、制御装置50は熱移送流体が循環流路40において蓄冷リザーバタンク7、リザーバポンプ451を介して切替えバルブ452に至った後にサブ分配バルブ453に至るように、リザーバポンプ451と切替えバルブ452とを作動させる。この結果、蓄冷リザーバタンク7内で蓄冷物質に蓄積された冷熱により熱移送流体が冷却される。また、制御装置50は温度センサ51による検出温度に応じて分配バルブ、43、453による熱移送流体の分配比を変更することで、蓄冷リザーバタンク7を通過する熱移送流体流量と機内冷却器44を通過する熱移送流体流量との比を変更し、機体内循環空気の温度を適性値に保持する。すなわち制御装置50は、機体内循環空気の検出温度が上昇すると、その第1流路の熱移送流体の流量の第2流路の熱移送流体の流量に対する比率を減少させ、機体内循環空気の検出温度が低下すると、その比率を増大させる。
なお、温度センサ51の検出温度が上記設定温度を超えるがレーダ2からの電磁波の発信が停止している間は、その電磁波発信部位での発熱がなくなって電力消費に余裕ができる。この場合、制御装置50はリザーバポンプ451を停止して蓄冷リザーバタンク7を通過する熱移送流体の流れを止めると共に、モータ321により駆動されるコンプレッサ322の圧縮能力を増大してベーパサイクル式冷却装置32の冷却能力を上げ、機内冷却器44での機体内循環空気の冷却能力を増大してもよい。
【0020】
上記構成によれば、航空機のエンジン5に過大な負荷をかけることなく、冷却装置3を駆動して熱移送流体を冷却し、その熱移送流体により蓄冷物質を冷却して冷熱を蓄積できる。これにより、その熱移送流体が電磁波の発信により蓄冷物質よりも高温になった場合は、その蓄積した冷熱により熱移送流体を冷却することで、航空機のエンジン5に過大な負荷をかけることなく電磁波発信部位を冷却することができる。また、その蓄冷物質を融点以下まで冷却して凝固させ、その蓄冷物質が融解する時に融解熱を吸収することで熱移送流体を冷却できるので、少量でも熱容量の大きな蓄冷物質により電磁波発信部位での発生熱の全てあるいは一部を吸収でき、軽量化が要求される航空機にとって好ましいものである。また、電磁発信部位が電磁波を発信していない間に冷却される熱移送流体を機体内循環空気の冷却に有効利用できる。さらに、機体1外から導入されるRAM空気と冷却装置3の冷媒との間で熱交換可能であるので、航空機が高々度を飛行している際に効率良く蓄冷物質に冷熱を蓄積できる。
【0021】
上記蓄冷リザーバタンク7に代えて図5の変形例に係る蓄冷リザーバタンク8を用い、蓄冷物質82を封入した本体81の中に、蓄冷物質82とは混合しない構造の熱移送流体が流れる流路を設けてもよい。すなわち、その蓄冷リザーバタンク8においては本体81に純水等の蓄冷物質82が封入され、その蓄冷物質82中に浸漬するように熱移送流体流路83が設けられている。なお、図5は本体81の上部を省略した状態を示し、熱移送流体流路83は本体81により覆われる。その熱移送流体流路83は、複数の渦巻き状配管83aを積層することで構成され、各配管83aの中心位置の一端開口83′は互いに接続されると共に循環流路40に接続され、外周位置の他端開口83″は互いに接続されると共に循環流路40に接続される。これにより、図中矢印CあるいはDで示す方向に流動する熱移送流体と蓄冷物質との間で熱交換が行われる。
【0022】
本発明は上記実施形態や変形例に限定されない。
例えば、上記実施形態では熱移送流体の流路において、エアサイクル式冷却装置31による冷却部である冷却器42とベーパサイクル式冷却装置32による冷却部であるエバポレータ325とを直列に配置したが、その熱移送流体の流路の一部を分岐して一対の並列流路とし、その並列流路の一方に冷却器42を他方にエバポレータ325を配置してもよい。あるいは、エアサイクル式冷却装置31とベーパサイクル式冷却装置32の中の何れか一方のみにより熱移送流体を冷却してもよい。あるいは、上記実施形態では航空機のエンジン5を動力源とすると共に機体外から導入されるRAM空気と冷媒との間で熱交換を行う冷却装置3を用いたが、そのような冷却装置3以外の別の冷却手段により熱移送流体を冷却してもよく、例えば、航空機が地上にある時に外部電源や空気源で冷却システムを作動させることで、飛行前に熱移送流体を冷却して蓄冷物質に冷熱を蓄積してもよい。上記実施形態では機内冷却器44を設けて冷却装置31、32と共に熱移送流体によっても機体内循環空気を冷却することで、冷却装置31、32を小型化しているが、熱移送流体は電磁波の発信部位のみを冷却するようにしてもよい。また、本発明の蓄冷機能付き冷却システムによる冷却対象は、レーダ2における電磁波発信部位に限定されず、例えば妨害電波発信装置における妨害電波発信部位や、レーザ装置におけるレーザ発信部位等の他の指向性の電磁波発信部位や、レーダ信号の解析のための高速演算回路部位や、レーダ電力供給用の電源回路部位等の他の高出力回路部位を熱移送流体により冷却するようにしてもよい。
また、気体を熱移送流体とし、さらに熱移送流体を循環させることなく電磁波発信部の冷却後に機体外に排出してもよい。
上記実施形態では熱移送流体の冷却手段は機体内循環空気の冷却手段を兼用するが、専用の冷却手段により熱移送流体を冷却してもよく、この場合は冷却手段を電磁波発信中は停止させて電磁波を発信しない間に作動させてもよい。
【0023】
【発明の効果】
本発明によれば、高出力回路部位を有する航空機において、エンジン抽気や消費電力の急激な増大なしに、その高出力回路部位を冷却することが実用的に可能になり、エンジン負荷の急激な増加を防ぎ、必要以上に大きな冷却システムが不要になり、さらに高々度の飛行中に効率良く蓄冷できるため、放熱のために消費するエネルギ量も減少させることができ、燃料消費の削減に効果がある蓄冷機能付き冷却システムを提供できる。
【図面の簡単な説明】
【図1】本発明の実施形態の蓄冷機能付き冷却システムの構成説明図
【図2】本発明の実施形態の蓄冷機能付き冷却システムにおける要部の斜視図
【図3】本発明の実施形態の蓄冷機能付き冷却システムにおける蓄冷リザーバタンクの断面図
【図4】本発明の実施形態の蓄冷機能付き冷却システムにおける制御構成を示す図
【図5】本発明の実施形態の変形例の蓄冷機能付き冷却システムにおける蓄冷リザーバタンクの斜視図
【符号の説明】
2 レーダ
3 冷却装置
40 循環流路
40a 第1流路
40b 第2流路
41 メインポンプ
44 機内冷却器
451 リザーバポンプ
452 切替えバルブ
453 サブ分配バルブ
50 制御装置
51 温度センサ
72 容器
82 蓄冷物質
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a system that cools in order to stably operate a high-power circuit part such as a part of an electromagnetic wave having directivity such as a radar or a laser in an aircraft or a part of an ultrahigh-speed arithmetic circuit.
[0002]
[Prior art]
For example, an electromagnetic wave transmission part in an electromagnetic wave transmission device such as a radar mounted on an aircraft to search for a victim, a wrecked ship, a suspicious ship, etc. is replaced with one composed of a number of semiconductor elements from an old transmission pipe. As a result, the direction change of the electromagnetic wave is changed from a method of changing the direction of the transmitter tube to a method of changing without the movable part by controlling the phase of the electromagnetic wave emitted from each element. In such a system, since a power control circuit is provided corresponding to each semiconductor element, a large number of semiconductor elements with a power control circuit exist in order to stabilize performance so that electromagnetic waves can be stably transmitted. It is necessary to cool the whole electromagnetic wave transmission part constituted by and maintain it within a certain set temperature range. In view of this, a method of directly cooling the electromagnetic wave transmission site by using an antifreeze solution called brine, in which water or the like is added as a main component and an additive, as a heat transfer fluid is employed. The heat transfer fluid is cooled in response to the temperature rise by an in-machine cooling system such as an air cycle cooling system using engine bleed air in an aircraft or a vapor cycle cooling system using a refrigerant. The heat transfer fluid is also used to cool a high-power circuit part other than the electromagnetic wave transmitting part, for example, an ultra-high speed arithmetic circuit and an inverter circuit that controls power supply to various electronic devices during operation.
[0003]
[Problems to be solved by the invention]
In recent years, in response to a recent demand for higher performance, an aircraft is often accompanied by a signal processing device with various high-speed arithmetic processing. Furthermore, in order to improve the function, it is required to cope with the transmission of high output electromagnetic waves. For this reason, when performing the transmission of electromagnetic waves and high-speed arithmetic processing, a large amount of heat is expected from the high output circuit part including the accompanying circuit part, etc., to cool the heat transfer fluid that has absorbed the generated heat The capacity of the in-flight cooling system had to be increased.
[0004]
However, in order to increase the capacity of the in-flight cooling system, it is necessary to increase the engine bleed amount when the air cycle method is adopted as the in-flight cooling system, and to increase the refrigerant compression capacity when the vapor cycle method is adopted. In addition, it is necessary to increase power consumption. In either case, an increase in power consumption in the high-power circuit portion is not preferable because it significantly increases the load for the engine in flight. In particular, aircraft that emit directional electromagnetic waves such as radar waves to the ground or the ocean operate with the flight altitude lowered, so the temperature of the outside air that releases the pumped heat increases. In many cases, the capacity of the cooling system is required to be large, and not only the engine load increases, but also the cooling system must be large and heavy.
[0005]
[Means for Solving the Problems]
The cooling system with a cool storage function of the present invention is a cooling system that cools a high-power circuit portion in an aircraft with a heat transfer fluid cooled by a cooling means, and the heat transfer fluid flows in a circulation channel, The circulation flow path has a flow path constituted by a pipe connecting a portion from the high power circuit portion to the cooling means to a portion from the cooling means to the high output circuit portion, and accumulates cold heat. A possible cold storage material is arranged in the heat transfer fluid flow path between both ends of the pipe so as to be able to exchange heat with the heat transfer fluid, and when the heat transfer fluid is at a lower temperature than the cold storage material, the heat transfer fluid When the cool storage material is cooled and the heat transfer fluid is hotter than the cool storage material, the flow direction of the heat transfer fluid in the piping is such that the heat transfer fluid is cooled by the cool storage material. Wherein the fluid is reversed at the time a high temperature when it is cooler than the cold accumulating material. The aircraft includes a rotorcraft such as a helicopter.
According to the configuration of the present invention, when the high-power circuit portion is not activated, there is a margin of power, when the aircraft is flying at a high temperature or in a cold area, the outside of the aircraft during standby on the ground before the flight In the case where the power source can be used, the cooling means is driven to cool the heat transfer fluid without overloading the aircraft engine and without increasing the engine bleed and power consumption in the aircraft, The cold storage material can be cooled by the heat transfer fluid to accumulate cold heat. As a result, if the heat transfer fluid becomes hotter than the cold storage material due to the operation of the high-power circuit part, the heat transfer fluid is cooled by the accumulated cold heat, thereby overloading the aircraft engine. Therefore, it is possible to cool high power circuit parts such as electromagnetic wave transmitting parts. In addition, when cooling an electromagnetic wave transmission part as a high-power circuit part, if there is a possibility that countermeasures against the electromagnetic wave will be taken from the electromagnetic wave transmission target, the strong electromagnetic wave should be transmitted until it approaches the transmission target. In addition, it is common to intermittently transmit electromagnetic waves instead of continuously transmitting electromagnetic waves. In such a case, according to the present invention, cold energy is accumulated in the cold storage material while flying for movement at a sufficient altitude to increase flight efficiency, and the stored cold energy is used when electromagnetic waves are transmitted. To cool the transmitting part.
[0006]
The cooling means is preferably capable of cooling the heat transfer fluid below the melting point of the cold storage material.
As a result, the regenerator material is cooled and solidified below the melting point, and when the regenerator material melts, the heat transfer fluid can be cooled by absorbing the heat of fusion, and solidification is greater than when the regenerator material is in the liquid phase. Heat, for example, if the cold storage material is water, solidification heat of about 80 times the specific heat can be held as cold heat, and even with a small amount, all of the heat generated in the high output circuit part such as the electromagnetic wave transmission part or the like due to the cold storage substance having a large heat capacity This is preferable for an aircraft that can absorb a part and requires weight reduction.
[0007]
A cooling means for cooling the air circulating in the aircraft body with the heat transfer fluid is provided, and as a part of the circulation flow path, a first flow path for supplying the heat transfer fluid to the high-power circuit portion, an aircraft machine A second flow path for supplying the heat transfer fluid to the cooling means for circulating air in the body, and the ratio of the flow rate of the heat transfer fluid in the first flow path to the flow rate of the heat transfer fluid in the second flow path It is preferable that means for changing according to a variable correlated with a temperature change of the transfer fluid is provided.
As a result, the heat transfer fluid that is cooled while the high-power circuit portion is not operating can be used effectively for cooling the air circulating in the aircraft.
[0008]
The cold storage material is preferably enclosed in a number of expandable and contractible containers, which are disposed in the flow path of the heat transfer fluid.
Accordingly, the contact area between the cold storage material and the heat transfer fluid can be increased, heat exchange can be performed efficiently, and the volume fluctuation of the cold storage material can be absorbed by the expansion and contraction of the container.
[0009]
It is preferable that heat exchange is possible between the RAM air introduced from the outside of the aircraft body and the refrigerant of the cooling means for the heat transfer fluid.
As a result, when the aircraft is flying at high altitude, cold energy can be efficiently stored in the cold storage material, which is suitable for actual operation.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2 show a cooling system A with a cold storage function for cooling a high-power circuit portion in a phased array radar 2 mounted on an aircraft body 1. As the radar 2, for example, a radar that generates heat exceeding 10 kW when electromagnetic waves are transmitted at full power is used. The high-power circuit part in the radar 2 is constituted by an electromagnetic wave transmission part made up of a large number of semiconductor elements with power control circuits, and has a cooling jacket 20 for cooling the electromagnetic wave transmission part with a heat transfer fluid. For example, a heat sink is attached to each element constituting the electromagnetic wave transmitting portion, and each heat sink is covered with the cooling jacket 20. The heat transfer fluid supplied from the cooling system A is introduced into the cooling jacket 20 through the supply port 21 and discharged through the return port 22, so that the electromagnetic wave transmission site is cooled by the heat transfer fluid. The In this embodiment, a general high-concentration ethylene glycol solution or the like is used as the heat transfer fluid.
[0011]
The cooling system A includes a cooling device 3 and a cold storage device 4, and the cooling device 3 cools the heat transfer fluid flowing through the circulation flow path 40 in the cold storage device 4. The cooling device 3 also serves as an air conditioner for the internal space of the airframe 1 that cools the air circulating in the airframe, and functions as an air cycle type cooling device 31 that functions by extracting air from the engine 5 of the aircraft, and the cooling capacity of the air cycle 31. And a vapor cycle type cooling device 32 for compensating for the above.
[0012]
The air cycle type cooling device 31 cools the engine bleed air by heat exchange with RAM air introduced from outside the machine body by the first heat exchanger 311, compresses it by the centrifugal compressor 312, and compresses the RAM by the second heat exchanger 313. Cooling is again performed by heat exchange with air, and further cooling is performed by the regenerative heat exchanger 314, whereby moisture contained in the extracted engine bleed air is removed by the moisture remover 315, and then the engine bleed air is expanded by the expansion turbine 316. Get cold. A part of the obtained cold air passes through the regenerative heat exchanger 314 to cool the engine bleed air, and then is supplied to the aircraft cabin 6 and the like as duct air through the duct 317. The remaining portion of the cold air thus obtained passes through the cooler 42 of the regenerator 4 to cool the heat transfer fluid, and then is supplied to the cabin 6 and the like as in-machine air. Although the first heat exchanger 311 and the second heat exchanger 313 are single in the drawing, a plurality of them are actually provided in the machine body 1.
[0013]
The vapor cycle type cooling device 32 is cooled by a capacitor 323 through heat exchange with the RAM air through heat exchange with the RAM air by being compressed by a compressor 322 driven by an electric motor 321, and then expanded. The pressure is reduced by the valve 324, evaporated by the evaporator 325, and returned to the compressor 322 to complete the cycle. As the refrigerant, HFC134a having no ozone depletion effect is suitable. In the evaporator 325, the heat transfer fluid flowing in the circulation flow path 40 of the regenerator 4 is cooled by the cooling ability exhibited by taking away the ambient heat when the refrigerant evaporates. You may make it remove the heat | fever which generate | occur | produces in an apparatus by directly cooling the air circulating in a body with the cooling capability. In addition, although the capacitor | condenser 323 is single in illustration, you may make it provide with two or more in the body 1. FIG.
[0014]
The cold storage device 4 pumps the heat transfer fluid by the main pump 41. As a result, the heat transfer fluid is cooled in the evaporator 325 and the cooler 42 as described above. The cooled heat transfer fluid is introduced into the in-machine cooler 44 disposed in the airframe 1 and the cooling jacket 20 of the radar 2 through the pipes a and b by the main distribution valve 43 provided in the circulation flow path 40. To be distributed. The heat transfer fluid introduced into the in-machine cooler 44 is returned to the suction side of the main pump 41 after cooling the air circulating in the body. The heat transfer fluid introduced into the cooling jacket 20 is returned to the suction side of the main pump 41 after cooling the electromagnetic wave transmission portion of the radar 2. A plurality of in-machine coolers 44 may be provided.
[0015]
A cold storage material capable of accumulating cold heat is disposed so as to be able to exchange heat with a heat transfer fluid flowing in the circulation flow path 40. In this embodiment, a cold storage reservoir tank 7 filled with a heat transfer fluid is connected between the main pump 41 and the evaporator 325 by piping, and the cold storage reservoir tank 7 is connected by piping to a reservoir pump 451. Is connected to the main distribution valve 43 and the sub distribution valve 453 via a switching valve 452, and the sub distribution valve 453 is connected to the internal cooler 44 and the supply port 21 of the cooling jacket 20 via the lines c and d. Connected. Accordingly, when the heat transfer fluid is at a lower temperature than the cold storage material, the cold storage material is cooled by the heat transfer fluid, and when the heat transfer fluid is higher than the cold storage material, the heat transfer fluid is cooled by the cold storage material.
[0016]
As shown in FIG. 3, a main body 71 of the cold storage reservoir tank 7 is filled with a large number of spherical capsule containers 72 filled with pure water as a cold storage material from a capsule port 71a. The cold storage material is not limited to water, but may be any material that can accumulate cold heat. Other than water, formic acid, acetic acid, p-xylene, glycerin, and others have a melting point between -5 ° C and + 25 ° C. It is preferable to employ a substance mainly composed of a substance having a stable molecular structure. The capsule-like container 72 is made of a polymer material that does not allow water molecules to permeate, and does not break due to expansion and contraction even when the volume of the pure water is frozen and changes, for example, polytetrafluoroethylene (PTFE). It is made. A pair of mesh plates 73 are attached in the main body 71 so as to hold the capsule containers 72. In addition, although the container 72 is partially omitted in the drawing, the container 72 is filled so as to substantially fill between the mesh plates 73. A guide cylinder 74 is provided at the center of the main body 71, and pipes 75 and 76 for connection to the circulation flow path 40 are introduced into the guide cylinder 74. The inside of the guide cylinder 74 is connected to one end side by a partition plate 74a. The other end side of the connecting pipe 75 is arranged on one end side with respect to the partition plate 74a, and the other end of the connecting pipe 76 is arranged on the other end side with respect to the partition plate 74a. The The heat transfer fluid stirring blade 77 in the main body 71 is driven to rotate by a motor 78. An air bag 79 that absorbs the volume variation of the cold storage material is disposed in the main body 71, and the inside of the airbag 79 communicates with the outside of the main body 71 through a pipe 79a. A change in volume caused by a change in temperature of the fluid can be absorbed. Thereby, the capsule-like container 72 is arranged in the flow path of the heat transfer fluid, and heat exchange is performed between the heat transfer fluid flowing in the direction indicated by the arrow A or B in the drawing and the cold storage material. At this time, the cold storage material is sealed in a large number of capsule containers 72, so that the contact area between the cold storage material and the heat transfer fluid is increased to efficiently perform heat exchange, and the volume variation of the cold storage material is encapsulated. It can be absorbed by the expansion and contraction of the container 72. Note that a container other than the spherical capsule-like container 72, for example, a tubular or plate-like container may be used as the container for enclosing the cold storage material.
[0017]
As shown in FIG. 4, the motor 321, the main pump 41, the reservoir pump 451, the switching valve 452, the main distribution valve 43, and the sub distribution valve 453 are connected to a control device 50 mounted on the machine body 1. In addition, a temperature sensor 51 that detects the temperature of the circulating air in the body as a variable that correlates with the temperature change of the heat transfer fluid is connected to the control device 50. The motor 321, the main pump 41, the reservoir pump 451, the switching valve 452, the main distribution valve 43, and the sub distribution valve 453 operate according to a signal output from the control device 50 according to the temperature detected by the temperature sensor 51. By the operation, the compression capacity of the compressor 322 can be changed, the discharge amount of the main pump 41 can be changed, the discharge direction of the reservoir pump 451 can be changed, and the switching valve 452 passes the reservoir pump 451 through the circulation flow path. It is possible to selectively switch between the state connected to 40 and the state connected to the sub distribution valve 453, and the distribution ratio of the heat transfer fluid by the main distribution valve 43 and the sub distribution valve 453 can be changed.
[0018]
When an aircraft having the above configuration is flying at high altitude or in a cold region, the temperature of RAM air introduced from the outside of the fuselage to the first heat exchanger 311, the second heat exchanger 313, and the condenser 323 is low. In addition, the amount of water vapor contained in the bleed air compressed by the outside air in the engine is small, and there is no heat generation due to the condensation of the water vapor during cooling, so the temperature of the engine bleed air that is a refrigerant in the air cycle cooling device 31 is sufficiently low before expansion, Even if the refrigerant in the vapor cycle cooling device 32 is hardly compressed, the temperature becomes sufficiently low before expansion. Thereby, the cooling device 3 can cool the heat transfer fluid below the melting point of the cold storage material, and the temperature of the heat transfer fluid that has exited the cooler 42 is equal to or lower than the melting point of pure water that is the cold storage material, for example, −10 ° C. It is also possible to: In this case, the temperature of the air circulating in the machine body is lowered according to the temperature of the heat transfer fluid. When the temperature of the circulating air in the body detected by the temperature sensor 51 is equal to or lower than a preset temperature, the control device 50 causes the heat transfer fluid to flow through the switching valve 452 and the reservoir pump 451 in the circulation flow path 40 to store the cold storage reservoir tank. 7, the reservoir pump 451 and the switching valve 452 are actuated. As a result, in the cold storage reservoir tank 7, water that is a cold storage material is solidified and cold energy is stored. In addition, when the temperature of the circulating air in the body has increased, the control device 50 changes the discharge amount of the main pump 41 according to the temperature detected by the temperature sensor 51 or the distribution ratio of the heat transfer fluid by the distribution valve 43. Is changed, the ratio of the heat transfer fluid flow rate passing through the cold storage reservoir tank 7 and the heat transfer fluid flow rate passing through the in-machine cooler 44 is changed, and the temperature of the circulating air in the machine body is maintained at an appropriate value. That is, as a part of the circulation flow path 40, a pipe b for supplying heat transfer fluid from the main distribution valve 43 to the cooling jacket 20 and a pipe d for supplying heat transfer fluid from the sub distribution valve 453 to the cooling jacket 20 are configured. A second flow comprising a first flow path, a pipe a for supplying heat transfer fluid from the main distribution valve 43 to the in-machine cooler 44, and a pipe c for supplying heat transfer fluid from the sub distribution valve 453 to the in-machine cooler 44. When the detected temperature of the circulating air in the body, which is a variable correlated with the temperature change of the heat transfer fluid, rises, the controller 50 sets the flow rate of the heat transfer fluid in the first flow path. When the ratio to the flow rate of the heat transfer fluid in the two flow paths is decreased and the detected temperature of the circulating air in the aircraft is lowered, the ratio is increased.
The ratio of the flow rate of the heat transfer fluid in the first flow path to the flow rate of the heat transfer fluid in the second flow path depends on a variable correlated with the temperature change of the heat transfer fluid other than the temperature of the circulating air in the body. It may be changed. For example, the variable correlated with the temperature change of the heat transfer fluid is used as the amount of power input to the high output circuit portion, and the discharge amount of the main pump 41 is changed according to whether the power input to the high output circuit portion is on or off. By changing the distribution ratio of the heat transfer fluid by the distribution valve 43, the ratio of the flow rate of the heat transfer fluid in the first flow path to the flow rate of the heat transfer fluid in the second flow path is changed. That is, when the power input to the high-power circuit portion is on, the ratio of the flow rate of the heat transfer fluid in the first flow path to the flow rate of the heat transfer fluid in the second flow path is decreased, and when the power input is off Increases the ratio.
[0019]
When the aircraft having the above configuration transmits electromagnetic waves from the radar 2 at a low altitude, the temperature at the electromagnetic wave transmitting portion rises, so that the air cycle cooling device 31 and the vapor cycle cooling device 32 function. However, the temperature of the heat transfer fluid exiting the cooler 42 is higher than the melting point of pure water, which is a cold storage material. In this case, the temperature of the air circulating in the body also increases according to the temperature of the heat transfer fluid. When the temperature of the circulating air in the body detected by the temperature sensor 51 exceeds the set temperature, the controller 50 causes the heat transfer fluid to reach the switching valve 452 via the cold storage reservoir tank 7 and the reservoir pump 451 in the circulation flow path 40. Thereafter, the reservoir pump 451 and the switching valve 452 are operated so as to reach the sub-distribution valve 453. As a result, the heat transfer fluid is cooled by the cold heat accumulated in the cold storage material in the cold storage reservoir tank 7. Further, the control device 50 changes the distribution ratio of the heat transfer fluid by the distribution valves 43 and 453 in accordance with the temperature detected by the temperature sensor 51, so that the flow rate of the heat transfer fluid passing through the cold storage reservoir tank 7 and the in-machine cooler 44. The ratio of the flow rate of the heat transfer fluid passing through the vehicle is changed, and the temperature of the circulating air in the aircraft is maintained at an appropriate value. That is, when the detected temperature of the circulating air in the body rises, the control device 50 decreases the ratio of the flow rate of the heat transfer fluid in the first channel to the flow rate of the heat transfer fluid in the second channel, When the detection temperature decreases, the ratio is increased.
It should be noted that while the temperature detected by the temperature sensor 51 exceeds the set temperature but the transmission of the electromagnetic wave from the radar 2 is stopped, the heat generation at the electromagnetic wave transmission site is eliminated and the power consumption can be afforded. In this case, the controller 50 stops the reservoir pump 451 to stop the flow of the heat transfer fluid passing through the cold storage reservoir tank 7 and increases the compression capacity of the compressor 322 driven by the motor 321 to increase the vapor cycle type cooling device. The cooling capacity of the in-machine cooler in the in-machine cooler 44 may be increased.
[0020]
According to the above configuration, without applying an excessive load on the engine 5 of the aircraft, the cooling device 3 is driven to cool the heat transfer fluid, and the cold transfer material can be cooled by the heat transfer fluid to accumulate cold heat. As a result, when the heat transfer fluid becomes hotter than the cold storage material due to the transmission of electromagnetic waves, the heat transfer fluid is cooled by the accumulated cold heat, so that the electromagnetic waves are not overloaded on the aircraft engine 5. The transmission part can be cooled. In addition, the cool storage material is cooled to below the melting point and solidified, and the heat transfer fluid can be cooled by absorbing the heat of fusion when the cool storage material melts. It can absorb all or part of the generated heat, and is preferable for aircraft that require weight reduction. Further, the heat transfer fluid that is cooled while the electromagnetic wave transmitting part is not transmitting the electromagnetic wave can be effectively used for cooling the circulating air in the body. Furthermore, since heat exchange is possible between the RAM air introduced from the outside of the airframe 1 and the refrigerant of the cooling device 3, cold energy can be efficiently accumulated in the cold storage material when the aircraft is flying at high altitude.
[0021]
A cold storage reservoir tank 8 according to a modification of FIG. 5 is used in place of the cold storage reservoir tank 7, and a flow path through which a heat transfer fluid having a structure not mixed with the cold storage material 82 flows in a main body 81 enclosing the cold storage material 82. May be provided. That is, in the cold storage reservoir tank 8, a cold storage material 82 such as pure water is sealed in the main body 81, and a heat transfer fluid channel 83 is provided so as to be immersed in the cold storage material 82. 5 shows a state in which the upper portion of the main body 81 is omitted, and the heat transfer fluid channel 83 is covered with the main body 81. The heat transfer fluid flow path 83 is configured by stacking a plurality of spiral pipes 83a, and one end openings 83 'at the center positions of the pipes 83a are connected to each other and connected to the circulation flow path 40, and the outer peripheral position. The other end openings 83 ″ are connected to each other and to the circulation flow path 40. As a result, heat exchange is performed between the heat transfer fluid flowing in the direction indicated by the arrow C or D in the figure and the cold storage material. Is called.
[0022]
The present invention is not limited to the above embodiments and modifications.
For example, in the above embodiment, in the flow path of the heat transfer fluid, the cooler 42 that is the cooling unit by the air cycle type cooling device 31 and the evaporator 325 that is the cooling unit by the vapor cycle type cooling device 32 are arranged in series. A part of the flow path of the heat transfer fluid may be branched to form a pair of parallel flow paths, and the cooler 42 may be disposed in one of the parallel flow paths and the evaporator 325 may be disposed in the other. Alternatively, the heat transfer fluid may be cooled by only one of the air cycle type cooling device 31 and the vapor cycle type cooling device 32. Alternatively, in the above embodiment, the cooling device 3 that uses the aircraft engine 5 as a power source and exchanges heat between the RAM air introduced from the outside of the aircraft and the refrigerant is used. The heat transfer fluid may be cooled by another cooling means, for example, by operating the cooling system with an external power source or air source when the aircraft is on the ground, thereby cooling the heat transfer fluid before the flight to a cold storage material. Cold heat may be accumulated. In the above embodiment, the in-machine cooler 44 is provided to cool the circulating air in the body by the heat transfer fluid together with the cooling devices 31 and 32, so that the cooling devices 31 and 32 are miniaturized. Only the transmitting part may be cooled. Further, the object to be cooled by the cooling system with a cold storage function of the present invention is not limited to the electromagnetic wave transmission part in the radar 2, and other directivities such as the interference wave transmission part in the interference radio wave transmission apparatus and the laser transmission part in the laser apparatus, for example. Other high power circuit parts such as an electromagnetic wave transmission part, a high-speed arithmetic circuit part for analyzing a radar signal, a power supply circuit part for supplying radar power may be cooled by a heat transfer fluid.
Further, the gas may be used as a heat transfer fluid, and further, the heat transfer fluid may be discharged outside the airframe after cooling the electromagnetic wave transmission unit without circulating the heat transfer fluid.
In the above embodiment, the cooling means for the heat transfer fluid also serves as the cooling means for the circulating air in the aircraft. However, the heat transfer fluid may be cooled by a dedicated cooling means. In this case, the cooling means is stopped during electromagnetic wave transmission. It may be operated while not transmitting electromagnetic waves.
[0023]
【The invention's effect】
According to the present invention, in an aircraft having a high-power circuit part, it is practically possible to cool the high-power circuit part without a sudden increase in engine bleed or power consumption, resulting in a rapid increase in engine load. This eliminates the need for a cooling system that is larger than necessary, and can efficiently store cold energy during high-flying flights, thus reducing the amount of energy consumed for heat dissipation and reducing the amount of fuel consumed. A cooling system with functions can be provided.
[Brief description of the drawings]
FIG. 1 is a configuration explanatory diagram of a cooling system with a cold storage function according to an embodiment of the present invention.
FIG. 2 is a perspective view of a main part of a cooling system with a cold storage function according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view of a cold storage reservoir tank in a cooling system with a cold storage function according to an embodiment of the present invention.
FIG. 4 is a diagram showing a control configuration in a cooling system with a cold storage function according to an embodiment of the present invention.
FIG. 5 is a perspective view of a cold storage reservoir tank in a cooling system with a cold storage function according to a modification of the embodiment of the present invention.
[Explanation of symbols]
2 Radar
3 Cooling device
40 Circulation channel
40a 1st flow path
40b Second flow path
41 Main pump
44 In-flight cooler
451 reservoir pump
452 switching valve
453 Sub-distribution valve
50 Control device
51 Temperature sensor
72 containers
82 Cold storage material

Claims (5)

航空機における高出力回路部位を、冷却手段により冷却される熱移送流体により冷却する冷却システムにおいて、
その熱移送流体は循環流路において流動するものとされ、
前記循環流路は、前記高出力回路部位から前記冷却手段に到る部分を、前記冷却手段から前記高出力回路部位に到る部分に接続する配管により構成される流路を有し、
冷熱を蓄積可能な蓄冷物質が、その配管の両端間の熱移送流体の流路に熱移送流体と熱交換可能に配置され、
その熱移送流体が蓄冷物質よりも低温である時は、その熱移送流体により蓄冷物質が冷却され、その熱移送流体が蓄冷物質よりも高温である時は、その蓄冷物質により熱移送流体が冷却されるように、前記配管における熱移送流体の流れ方向が、その熱移送流体が蓄冷物質よりも低温である時と高温である時とで逆とされることを特徴とする蓄冷機能付き冷却システム。
In a cooling system for cooling a high power circuit portion in an aircraft with a heat transfer fluid cooled by a cooling means,
The heat transfer fluid is supposed to flow in the circulation channel,
The circulation flow path has a flow path constituted by a pipe that connects a portion that reaches the cooling means from the high output circuit portion to a portion that reaches the high output circuit portion from the cooling means,
A cold storage material capable of storing cold heat is disposed in the heat transfer fluid flow path between both ends of the pipe so as to be capable of exchanging heat with the heat transfer fluid,
When the heat transfer fluid is cooler than the cool storage material, the cool storage material is cooled by the heat transfer fluid, and when the heat transfer fluid is hotter than the cool storage material, the heat transfer fluid is cooled by the cool storage material. As described above, the flow direction of the heat transfer fluid in the piping is reversed between when the heat transfer fluid is at a lower temperature than the cold storage material and when the heat transfer fluid is at a higher temperature. .
前記冷却手段は前記熱移送流体を前記蓄冷物質の融点未満に冷却可能である請求項1に記載の蓄冷機能付き冷却システム。The cooling system with a cool storage function according to claim 1, wherein the cooling means is capable of cooling the heat transfer fluid below a melting point of the cool storage material. その熱移送流体により航空機の機体内循環空気を冷却する冷却手段が設けられ、
その循環流路の一部として、その高出力回路部位に熱移送流体を供給する第1流路と、航空機の機体内循環空気の冷却手段に熱移送流体を供給する第2流路とが設けられ、
その第1流路の熱移送流体の流量の第2流路の熱移送流体の流量に対する比率を、その熱移送流体の温度変化に相関する変量に応じて変更する手段が設けられている請求項1または2に記載の蓄冷機能付き冷却システム。
Cooling means for cooling the aircraft circulating air by the heat transfer fluid is provided,
As a part of the circulation flow path, a first flow path for supplying a heat transfer fluid to the high-power circuit portion and a second flow path for supplying the heat transfer fluid to a cooling means for circulating air in the aircraft body are provided. And
A means is provided for changing the ratio of the flow rate of the heat transfer fluid in the first flow path to the flow rate of the heat transfer fluid in the second flow path in accordance with a variable correlated with the temperature change of the heat transfer fluid. The cooling system with a cool storage function according to 1 or 2.
その蓄冷物質は多数の伸縮可能な容器に封入され、それら容器が前記熱移送流体の流路に配置されている請求項1〜3の中の何れかに記載の蓄冷機能付き冷却システム。The cooling system with a cold storage function according to any one of claims 1 to 3, wherein the cold storage material is enclosed in a number of extendable containers, and the containers are arranged in a flow path of the heat transfer fluid. その航空機の機体外から導入されるRAM空気と熱移送流体の冷却手段の冷媒との間で熱交換可能とされている請求項1〜4の中の何れかに記載の蓄冷機能付き冷却システム。The cooling system with a cool storage function according to any one of claims 1 to 4, wherein heat exchange is possible between RAM air introduced from outside the aircraft body and a refrigerant of a cooling means for heat transfer fluid.
JP2001108239A 2001-04-06 2001-04-06 Cooling system with cool storage function Expired - Fee Related JP4715984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001108239A JP4715984B2 (en) 2001-04-06 2001-04-06 Cooling system with cool storage function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001108239A JP4715984B2 (en) 2001-04-06 2001-04-06 Cooling system with cool storage function

Publications (2)

Publication Number Publication Date
JP2002310551A JP2002310551A (en) 2002-10-23
JP4715984B2 true JP4715984B2 (en) 2011-07-06

Family

ID=18960415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001108239A Expired - Fee Related JP4715984B2 (en) 2001-04-06 2001-04-06 Cooling system with cool storage function

Country Status (1)

Country Link
JP (1) JP4715984B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109449730A (en) * 2018-10-09 2019-03-08 湖北航天技术研究院总体设计所 Cold storage heat management device applied to high power laser equipment

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10361686B4 (en) * 2003-12-30 2008-04-24 Airbus Deutschland Gmbh Cooling system for cooling heat generating equipment in an aircraft
DE102006040191A1 (en) * 2006-08-28 2008-03-13 Airbus Deutschland Gmbh Cooling system for cooling heat loads on board in aircraft, has coupling system to selectively couple two cold carrier fluid circuits coupled to cold producing device and connected to corresponding heat load
US20170217592A1 (en) * 2016-02-01 2017-08-03 General Electric Company Aircraft Thermal Management System
CN113074473B (en) * 2021-03-17 2022-06-28 中国电子科技集团公司第二十九研究所 Consumable evaporation refrigerating device and using method
US20230303269A1 (en) * 2022-03-28 2023-09-28 Hamilton Sundstrand Space Systems International, Inc. Heat rejection based on dynamic control over a range of altitudes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4550573A (en) * 1983-12-12 1985-11-05 United Technologies Corporation Multiple load, high efficiency air cycle air conditioning system
JPS61256189A (en) * 1985-05-08 1986-11-13 Mayekawa Mfg Co Ltd Regenerator of fluidized bed type

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109449730A (en) * 2018-10-09 2019-03-08 湖北航天技术研究院总体设计所 Cold storage heat management device applied to high power laser equipment

Also Published As

Publication number Publication date
JP2002310551A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
US20170057641A1 (en) Integrated air and vapor cycle cooling system
EP2781380B1 (en) Device for cooling electrical apparatus
KR101043156B1 (en) Chiller for high energy solid state laser device
US20140202178A1 (en) Multiple circuit cooling system
US20120235419A1 (en) Cooling device used for cooling wind turbine generator system as well as wind turbine generator system
CN101940372A (en) Microclimate human body cooling system and refrigerating system thereof
US20050039883A1 (en) High flux heat removal system using liquid ice
CN110061323A (en) A kind of heat management device, heat management system and new-energy automobile
CN109501567A (en) Electric automobile cooling system
CN111994473A (en) Cold chain conveyer of bacterin transportation based on single chip microcomputer control
JP4715984B2 (en) Cooling system with cool storage function
CN201957790U (en) Microclimate human body cooling system and refrigerating system thereof
CN111998590A (en) Cold chain conveyer of bacterin small batch transportation
CN111149251A (en) Method and device for tempering a battery assembly
CN113587527B (en) Double-fluid loop radar array surface cooling system
JP2017047888A (en) Heat management device for vehicle
CN104851855A (en) Semiconductor liquid-cooling radiator
JP3539274B2 (en) Cooling structure of antenna device
WO2017038593A1 (en) Heat management device for vehicle
CN220187129U (en) Hot end heat exchanger and Stirling refrigerator
JP2020128839A (en) Heat transport system
EP2767782B1 (en) Cooling apparatus
CN113747774B (en) Temperature control cooling system and application method thereof
EP3910265B1 (en) Cooling system
CN112212533B (en) Vehicle-mounted forced cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110315

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees