JP4715082B2 - Dehumidifying element, method for manufacturing the same, dehumidifying device and method for operating the device - Google Patents

Dehumidifying element, method for manufacturing the same, dehumidifying device and method for operating the device Download PDF

Info

Publication number
JP4715082B2
JP4715082B2 JP2003325831A JP2003325831A JP4715082B2 JP 4715082 B2 JP4715082 B2 JP 4715082B2 JP 2003325831 A JP2003325831 A JP 2003325831A JP 2003325831 A JP2003325831 A JP 2003325831A JP 4715082 B2 JP4715082 B2 JP 4715082B2
Authority
JP
Japan
Prior art keywords
dehumidifying element
dehumidifying
regeneration
paper
element according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003325831A
Other languages
Japanese (ja)
Other versions
JP2005087906A (en
Inventor
雅大 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003325831A priority Critical patent/JP4715082B2/en
Publication of JP2005087906A publication Critical patent/JP2005087906A/en
Application granted granted Critical
Publication of JP4715082B2 publication Critical patent/JP4715082B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1004Bearings or driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • F24F2203/1036Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1048Geometric details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Description

本発明は、空気中の水分を吸着方式によって吸着させて除湿することができる除湿素子とその製造方法およびそれを用いた除湿装置と装置運転方法に関するものである。   The present invention relates to a dehumidifying element that can adsorb moisture in the air by an adsorption method and dehumidify the dehumidifying element, a manufacturing method thereof, a dehumidifying device using the dehumidifying device, and an apparatus operating method.

従来の除湿素子は、無機繊維や有機繊維等で抄紙したものをコルゲート加工し、無機バインダ等を含浸添着させて焼成によって有機分を飛ばしたものに水分吸着剤と無機バインダーを混合したスラリーに含浸添着させて乾燥固化して使用していたり(例えば、特許文献1参照)、無機繊維や有機繊維等で抄紙したものをコルゲート加工し、無機バインダ等を含浸添着させて焼成によって有機分を飛ばしたものに水ガラス等を含浸添着させ、酸処理することによってシリカゲルを合成させて使用していたりした(例えば、特許文献2参照)。
特開平8―71352号公報 特許第2937437号公報
Conventional dehumidification elements are impregnated with a mixture of water adsorbent and inorganic binder in a corrugated paper made of inorganic fiber or organic fiber, impregnated with an inorganic binder, etc. It is used after being dried and solidified (for example, refer to Patent Document 1), or corrugated from paper made with inorganic fiber or organic fiber, impregnated with inorganic binder, etc. Silica gel was synthesized and used by impregnating and impregnating water glass or the like with an acid treatment (for example, see Patent Document 2).
JP-A-8-71352 Japanese Patent No. 2937437

従来の除湿素子の製法は有機分を焼き飛ばしているため耐熱性が得られ再生温度を高くすることができるという長所があるが、非常に工程数が多いことや、水分吸着剤をバインダと共に含浸添着させなければならないので吸着剤性能が下がってしまうことや、水ガラスを酸処理してシリカゲルを合成させなければならないため合成するための設備が必要かつ様々な空気条件や除湿装置の運転条件に最適な除湿素子を設計する際に水分吸着剤自身の合成条件から検討しなければならないという課題があった。   The conventional dehumidifying element manufacturing method has the advantage that heat resistance is obtained and the regeneration temperature can be increased because organic components are burned off, but it has a very large number of processes and impregnates moisture adsorbent with a binder. Adsorbent performance will be reduced because it must be attached, and water glass must be acid-treated to synthesize silica gel, so synthesis equipment is required and various air conditions and operating conditions of the dehumidifier When designing an optimal dehumidifying element, there was a problem that it was necessary to study from the synthesis conditions of the moisture adsorbent itself.

本発明は、このような従来の課題を解決するものであり、水分吸着剤を内添させた抄紙から除湿素子を成形させるので市販の様々な水分吸着剤を用いたり、市販品に後処理を加えて性質を変えた水分吸着剤を用いたり、自社で合成した水分吸着剤を用いることができ、安価でかつ様々な除湿性能を有する除湿素子を提供することを目的とする。   The present invention solves such a conventional problem, and since a dehumidifying element is formed from a papermaking machine internally containing a moisture adsorbent, various commercially available moisture adsorbents can be used, or a commercial product can be post-treated. In addition, it is an object of the present invention to provide a dehumidifying element that can use a moisture adsorbent with different properties or a moisture adsorbent synthesized in-house and has various dehumidifying performances.

上記の目的を達成するために本発明は、抄紙の比表面積を高くするように、シリカゲルを70%、フィブリル化した有機パルプを20%、セラミックファイバーを10%混合して坪量を150g/m で抄紙し、その抄紙を除湿素子に必要な厚みに予めスリットしておき、このスリットした抄紙をコルゲート加工して端面を揃えながら積層または巻いていき除湿素子にしたものである。 In order to achieve the above object, the present invention mixes 70% of silica gel, 20% of fibrillated organic pulp and 10% of ceramic fibers to increase the specific surface area of papermaking, and the basis weight is 150 g / m. The paper was made in No. 2 , and the paper was slit in advance to a thickness necessary for the dehumidifying element, and the slit paper was corrugated and laminated or rolled while aligning the end faces to obtain a dehumidifying element.

本発明によれば、抄紙の比表面積を高くするように、シリカゲルを70%、フィブリル化した有機パルプを20%、セラミックファイバーを10%混合して坪量を150g/m で抄紙し、その抄紙からなることを特徴とする除湿素子としたことにより、抄紙の比表面積が高くなり、除湿量が向上し、再生する熱源が比較的低温である場合の除湿装置として有効になり、また、水分吸着剤を内添した抄紙を様々な任意の形状に加工して使用可能となり、またバインダを用いなくても加工することができる。さらに使用環境の空気条件や除湿装置の運転条件に合わせて様々な市販品の吸着剤の中から選んで除湿素子とすることができるため、シリカゲルの合成条件を検討しなくても除湿素子を製造することができる。 According to the present invention, so as to increase the specific surface area of the paper, 70% silica gel, 20% fibrillated organic pulp, the basis weight paper making with 150 g / m 2 by ceramic fibers were mixed with 10%, the By making a dehumidifying element characterized by comprising papermaking, the specific surface area of the papermaking is increased, the amount of dehumidification is improved, and it is effective as a dehumidifying device when the heat source to be regenerated is at a relatively low temperature. Paper made with an adsorbent can be used after being processed into various arbitrary shapes, and can be processed without using a binder. Furthermore, it is possible to select from a variety of commercially available adsorbents according to the air conditions of the usage environment and the operating conditions of the dehumidifying device, so that the dehumidifying device can be manufactured without considering the synthesis conditions of silica gel. can do.

本発明の実施の形態は、抄紙の比表面積を高くするように、シリカゲルを70%、フィブリル化した有機パルプを20%、セラミックファイバーを10%混合して坪量を150g/m 紙したものをコルゲート加工し除湿素子としたものである。 Embodiments of the present invention is to increase the specific surface area of the paper, 70% silica gel, 20% fibrillated organic pulp, papermaking at 150 g / m 2 basis weight by ceramic fibers were mixed with 10% This was corrugated to obtain a dehumidifying element.

水分吸着剤はシリカゲル、活性白土、活性アルミナ、合成ゼオライト、天然ゼオライト、活性炭、活性炭繊維、モレキュラーシーブカーボン、メソポーラスシリカ、高分子吸着剤、イオン交換樹脂などが挙げられる。   Examples of the moisture adsorbent include silica gel, activated clay, activated alumina, synthetic zeolite, natural zeolite, activated carbon, activated carbon fiber, molecular sieve carbon, mesoporous silica, polymer adsorbent, ion exchange resin and the like.

抄紙の比表面積を高くするように、シリカゲルを70%、フィブリル化した有機パルプを20%、セラミックファイバーを10%混合して坪量を150g/m で抄紙し、その抄紙は除湿素子に必要な厚みに予め抄紙の段階でスリットしておくようにする。 In order to increase the specific surface area of paper, 70% silica gel, 20% fibrillated organic pulp and 10% ceramic fiber were mixed to make a paper with a basis weight of 150g / m 2. A slit is made in advance at the paper making stage to a proper thickness.

スリットした抄紙は2つのギアを通してコルゲート加工することで波型抄紙を形成し、ギアを通さない平型抄紙と端面を合わせながら接着するようにする。   The slit paper is corrugated through two gears to form a corrugated paper, and the flat paper that does not pass through the gear is bonded to the flat paper while aligning the end faces.

さらに、波型抄紙と平型抄紙を張り合わせた抄紙の端面を揃えながら巻いていき最終的な除湿素子の形状とする。もしくは波型抄紙と平型抄紙を張り合わせた抄紙の端面を揃えながら積層して最終的な除湿素子の形状とする。   In addition, the final dehumidifying element shape is obtained by winding the paper making of corrugated paper and flat paper making while aligning the end faces. Alternatively, the final dehumidifying element shape is obtained by laminating the paper sheets obtained by laminating corrugated paper and flat paper, while aligning the end faces of the paper.

また、上記の除湿素子の中心にボスを設け、外周には外周枠体を設けた形状で除湿装置に組み込まれる。除湿装置はこの形状の除湿素子を外周押え部材で外周枠体を押えながらギアモータで除湿素子を回転させる構造で、再生する方法は分散化電源の廃熱や自然エネルギーや電気ヒータ・ガスヒータ・温水ヒータのいずれかを用い、再生温度は100℃以下で除湿・再生を繰り返すものである。   Further, a boss is provided at the center of the dehumidifying element and an outer peripheral frame is provided on the outer periphery, and the dehumidifying element is incorporated into the dehumidifying device. The dehumidifying device has a structure in which the dehumidifying element of this shape is rotated by the gear motor while holding the outer peripheral frame with the outer periphery pressing member, and the regeneration method is waste heat of the distributed power source, natural energy, electric heater / gas heater / hot water heater Any one of the above is used, and the regeneration temperature is 100 ° C. or less and the dehumidification / regeneration is repeated.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

参考例1)
平均粒子径が約5μmのRD型シリカゲルをフィブリル化した有機パルプに対して30%(No.1)、50%(No.2)、70%(No.3)、90%(No.4)混合して坪量を150g/mで抄紙したものを用意した。用意した抄紙約0.2gを150℃
で5時間真空脱気しながら前処理し、BELSORP18(日本ベル株式会社製)吸着装置を用いて27℃における水吸着等温線を測定した。図1はその結果を示しており横軸は吸着剤と接する空気の相対湿度(ここでは相対圧)を表し、縦軸は各相対湿度における乾燥抄紙1g当りの水分吸着量を表している。シリカゲルの内添量が増えると共に水分吸着量は増える傾向となった。しかし、シリカゲルの内添量が90%付近を越えると抄紙自体の強度の低下や、粉(シリカゲル)落ちの増大につながり、さらに抄紙の柔軟性が無くなるためコルゲート加工すると割れが発生する結果となった。従ってシリカゲルを内添してコルゲート加工した除湿素子を製造するためには内添量70〜80%が適当となる。通常、家庭用除湿機の除湿性能を評価する際には27℃60%RHで行っていることからこの温湿度を吸着時の空気状態とした。また再生は比較的低温である70℃程度を想定しているため、27℃60%RHの空気を再生熱源で70℃まで昇温した場合、相対湿度は7%RHとなるため再生時の空気状態を70℃7%RHとした。つまり27℃60%RHにおける水分吸着量が多くなるだけでなくこの吸着時と再生時の空気における吸脱着量差が重要になるため、図2に示すように測定した水吸着等温線から27℃60%RHと70℃7%RHにおける吸着量の差を有効吸着量として計算した。この有効吸着量という指標からもシリカゲルの内添量は70%以上必要であることが分かった。
( Reference Example 1)
30% (No. 1), 50% (No. 2), 70% (No. 3), 90% (No. 4) with respect to organic pulp obtained by fibrillating RD type silica gel having an average particle size of about 5 μm. A paper was prepared by mixing and making a paper with a basis weight of 150 g / m 2 . About 0.2g of prepared paper is 150 ° C
Then, pretreatment was performed while vacuum degassing for 5 hours, and a water adsorption isotherm at 27 ° C. was measured using a BELSORP18 (manufactured by Nippon Bell Co., Ltd.) adsorption device. FIG. 1 shows the results. The horizontal axis represents the relative humidity of air in contact with the adsorbent (here, relative pressure), and the vertical axis represents the amount of moisture adsorbed per gram of dry paper at each relative humidity. The amount of moisture adsorption tended to increase as the amount of silica gel added increased. However, if the amount of silica gel added exceeds 90%, the strength of the papermaking itself will decrease and the powder (silica gel) will fall off, and the papermaking will lose its flexibility. It was. Therefore, an internal addition amount of 70 to 80% is appropriate for manufacturing a dehumidifying element in which silica gel is internally added and corrugated. Usually, when evaluating the dehumidifying performance of a household dehumidifier, it is performed at 27 ° C. and 60% RH, so that this temperature and humidity is taken as the air state during adsorption. In addition, since regeneration is assumed to be at a relatively low temperature of about 70 ° C., when the temperature of 27 ° C. and 60% RH is raised to 70 ° C. with a regeneration heat source, the relative humidity becomes 7% RH, so the air during regeneration The state was 70 ° C. and 7% RH. That is, not only the moisture adsorption amount at 27 ° C. and 60% RH is increased, but also the difference in the adsorption and desorption amount in the air during adsorption and regeneration becomes important. Therefore, from the water adsorption isotherm measured as shown in FIG. The difference in adsorption amount between 60% RH and 70% 7% RH was calculated as the effective adsorption amount. From this index of effective adsorption amount, it was found that the amount of internal addition of silica gel needs to be 70% or more.

参考例2)
平均粒子径が約5μmのRD型シリカゲルを70%でフィブリル化した有機パルプを30%混合して坪量を50g/m(No.3−1)よび150g/m(No.3−2)抄紙したものを、図3に示すようなピッチ3.4mm、高さ1.9mmにコルゲート加工したものを積層し、92mm×92mmで厚み50mmの除湿素子を用意した。この除湿素子を70℃7%RHで乾燥し、図4に示すような固定式吸着量測定装置に設置し、27℃60%RHに調整した空気を風量0.5m/minで除湿素子に送りその時の吸着量の測定を行った。吸着量の測定は吸着量測定装置全体の重量増加を電子天秤で測定し、水分吸着量の経時変化として求めた。図5は水分吸着量の経時変化の結果を示しており、横軸は経過時間を表し、縦軸は乾燥除湿素子1g当りの水分吸着量を表している。その結果、従来の方法で製造された市販の除湿素子に対して坪量50g/mの除湿素子(No.3−2)では水分吸着量が不足しており、坪量が150g/mの除湿素子(No.3−1)でほぼ同等であることが分かった。しかし、従来の方法で製造された市販の除湿素子に比べて坪量50g/mの除湿素子(No.3−2)は単位経過時間に対する吸着量増加が低く、吸着速度が劣っていることが分かった。
( Reference Example 2)
30% organic pulp fibrillated with 70% RD type silica gel having an average particle size of about 5 μm was mixed to give a basis weight of 50 g / m 2 (No. 3-1) and 150 g / m 2 (No. 3-2). 3) A paper sheet was corrugated to a pitch of 3.4 mm and a height of 1.9 mm as shown in FIG. 3, and a dehumidifying element having a thickness of 92 mm × 92 mm and a thickness of 50 mm was prepared. The dehumidifier dried at 70 ° C. 7% RH, installed in stationary adsorption measuring apparatus as shown in FIG. 4, the dehumidifier air is adjusted to 27 ° C. 60% RH in air volume 0.5 m 3 / min The amount of adsorption at the time of feeding was measured. The amount of adsorption was measured by measuring the increase in the weight of the entire adsorption amount measuring apparatus with an electronic balance and determining the amount of moisture adsorption over time. FIG. 5 shows the results of changes in moisture adsorption over time, the horizontal axis represents elapsed time, and the vertical axis represents moisture adsorption per gram of dry dehumidifying element. As a result, the dehumidifying element (No. 3-2) having a basis weight of 50 g / m 2 has a shortage of moisture adsorption amount and the basis weight is 150 g / m 2 with respect to a commercially available dehumidifying element manufactured by a conventional method. It was found that the dehumidifying element (No. 3-1) was almost equivalent. However, the dehumidifying element (No. 3-2) having a basis weight of 50 g / m 2 has a low increase in adsorption amount per unit elapsed time and the adsorption rate is inferior to a commercially available dehumidifying element manufactured by a conventional method. I understood that.

(実施例
坪量を150g/m、平均粒子径が約5μmのRD型シリカゲルを70%、フィブリル化した有機パルプを20%混合し、残り10%をセラミックファイバーとした抄紙(No.5)とポリエステルファイバーとした抄紙(No.6)を用意した。用意した抄紙の27℃における水吸着等温線を測定すると共に、−196℃におけるN吸着等温線も測定し、BET比表面積を算出した。図6には水吸着等温線の結果を示し、図7にはN吸着等温線から算出した比表面積を示している。その結果、27℃60%RHにおける水分吸着量はセラミックファイバーを10%混合した場合(No.5)の有効吸着量は0.19g/gと高いが、ポリエステルファイバーを10%混合した場合(No.6)は0.13g/gと低いことが分かった。またポリエステルファイバーを混合した抄紙の比表面積は320m/gと低い値となり有効吸着量が低いことと一致している。さらにフィブリル化した有機パルプ20%でセラミックファイバー10%の場合(No.5)とフィブリル化した有機パルプ30%の場合(No.3)と比較すると前者の方が高い比表面積となりフィブリル化したパルプがシリカゲル表面を覆う可能性を示唆している。しかし、フィブリル化したパルプを減らしてセラミックファイバーを10%以上増やすと抄紙自体の柔軟性が無くなりコルゲート加工ができなくなるためフィブリル化した有機パルプは20%付近が適当である。
(Example 1 )
Papermaking (No. 5) and polyester fiber with a basis weight of 150 g / m 2 , 70% RD type silica gel with an average particle size of about 5 μm, 20% fibrillated organic pulp, and the remaining 10% ceramic fiber Papermaking (No. 6) was prepared. While measuring the water adsorption isotherm at 27 ° C. of the prepared paper, the N 2 adsorption isotherm at −196 ° C. was also measured to calculate the BET specific surface area. FIG. 6 shows the result of the water adsorption isotherm, and FIG. 7 shows the specific surface area calculated from the N 2 adsorption isotherm. As a result, the amount of moisture adsorbed at 27 ° C. and 60% RH is as high as 0.19 g / g when 10% ceramic fiber is mixed (No. 5), but when 10% polyester fiber is mixed (No. 5). .6) was found to be as low as 0.13 g / g. Moreover, the specific surface area of the papermaking mixed with the polyester fiber is as low as 320 m 2 / g, which is consistent with the low effective adsorption amount. Furthermore, compared to the case of 20% fibrillated organic pulp and 10% ceramic fiber (No. 5) and the case of 30% fibrillated organic pulp (No. 3), the former has a higher specific surface area and fibrillated pulp. Suggests the possibility of covering the silica gel surface. However, if the fibrillated pulp is reduced and the ceramic fibers are increased by 10% or more, the papermaking itself loses its flexibility and corrugation cannot be performed. Therefore, the fibrillated organic pulp is preferably around 20%.

参考
平均粒子径が約5μmのRD型シリカゲルを70%でフィブリル化した有機パルプを20%、セラミックファイバーを10%混合して坪量を150g/mで抄紙したものを、図3に示すようなピッチ3.4mm、高さ1.9mmにコルゲート加工したものを積層し、92mm×92mmで厚み50mmの除湿素子(No.5−1)を用意した。この除湿素子を70℃7%RHで乾燥し、図4に示すような固定式吸着量測定装置に設置し、27℃60%RHに調整した空気を風量0.5m/minで除湿素子に送りその時の吸着量の測定を行った。吸着量の測定は吸着量測定装置全体の重量増加を電子天秤で測定し、吸着量の経時変化として求めた。図8は水分吸着量の経時変化の結果を示しており、横軸は経過時間を表し、縦軸は乾燥除湿素子1g当りの水分吸着量を表している。その結果、従来の方法で製造された市販の除湿素子に比べて参考の除湿素子(No.5−1)は経過時間に対する吸着量増加がほぼ同等となることが分かった。
( Reference Example 3 )
As shown in FIG. 3, 20% of organic pulp fibrillated with 70% of RD type silica gel having an average particle size of about 5 μm and 10% of ceramic fiber are mixed and paper-made at a basis weight of 150 g / m 2 . A corrugated material having a pitch of 3.4 mm and a height of 1.9 mm was laminated to prepare a dehumidifying element (No. 5-1) of 92 mm × 92 mm and a thickness of 50 mm. The dehumidifier dried at 70 ° C. 7% RH, installed in stationary adsorption measuring apparatus as shown in FIG. 4, the dehumidifier air is adjusted to 27 ° C. 60% RH in air volume 0.5 m 3 / min The amount of adsorption at the time of feeding was measured. The amount of adsorption was measured by measuring the increase in the weight of the entire adsorption amount measuring apparatus with an electronic balance and determining the amount of adsorption as a function of time. FIG. 8 shows the results of changes in moisture adsorption over time, the horizontal axis represents elapsed time, and the vertical axis represents moisture adsorption per 1 g of the dry dehumidifying element. As a result, it was found that the dehumidifying element (No. 5-1) of Reference Example 3 had almost the same amount of adsorption with respect to elapsed time as compared with a commercially available dehumidifying element manufactured by a conventional method.

(実施例
平均粒子径が約5μmのRD型シリカゲルを70%、フィブリル化した有機パルプを20%、セラミックファイバーを10%混合して坪量を150g/mで抄紙し、図9に示
すように幅を100mmにスリットした後にピッチ3.4mm、高さ1.8mmのコルゲート加工をして平板と端面を合わせながら貼り合せて片段を作製しさらに端面を合わせて直径が300mmになるまで巻いていった除湿素子を用意した。これを図10のような回転式除湿素子評価装置に組み込み除湿量の測定を行った。除湿素子10aの中心にボス10cを備え、外周には外周枠体10bを設けている。この除湿素子の外周枠体を外周押え部材10dで規制しながらギアモータ10eとベルト10fで除湿素子を回転させる。除湿素子は軸心10gによって固定されており仕切り板10hと上部筒10iおよび下部筒10jによって風路を仕切っている。処理と再生の風は処理ファン10kと再生ファン10lで送られ、再生熱源10mは電気ヒータ・ガスヒータ・温水ヒータなどもしくは分散化電源の廃熱(マイクロガスタービン・燃料電池・ディーゼル発電機)や工場の廃熱および自然熱エネルギー(太陽光・地熱)が挙げられる。除湿装置の運転条件は、処理風量2.9m/min、再生風量2.9m/minで処理面積:再生面積=1:1に設定し、除湿素子回転数20〜40rphの範囲で、再生温度を60℃に固定して除湿量の測定を行った。除湿量の測定は除湿素子の入口・出口の絶対湿度を露点計で測定しその差から一日当りの除湿量(L/日)として算出した。図11には除湿素子回転数を変えた場合の除湿性能を表している。従来の方法で製造された市販の除湿素子の除湿量は最大13.6L/日となったのに対し、実施例で製作した除湿素子は最大15.9L/日となり約17%向上する結果となった。
(Example 2 )
Paper is made with a basis weight of 150 g / m 2 by mixing 70% of RD type silica gel with an average particle size of about 5 μm, 20% of fibrillated organic pulp, and 10% of ceramic fibers. Dehumidification after slitting to 100 mm, corrugating with a pitch of 3.4 mm and a height of 1.8 mm, laminating the flat plate and the end face together to produce a single step and then winding the end face to a diameter of 300 mm An element was prepared. This was incorporated into a rotary dehumidifying element evaluation apparatus as shown in FIG. 10, and the amount of dehumidification was measured. A boss 10c is provided at the center of the dehumidifying element 10a, and an outer peripheral frame body 10b is provided on the outer periphery. The dehumidifying element is rotated by the gear motor 10e and the belt 10f while the outer peripheral frame body of the dehumidifying element is regulated by the outer peripheral pressing member 10d. The dehumidifying element is fixed by the shaft center 10g, and the air path is partitioned by the partition plate 10h, the upper tube 10i, and the lower tube 10j. The processing and regeneration winds are sent by the processing fan 10k and the regeneration fan 10l, and the regeneration heat source 10m is an electric heater, gas heater, hot water heater, etc., or waste heat of a distributed power source (micro gas turbine, fuel cell, diesel generator) or factory Waste heat and natural heat energy (solar and geothermal). The operating conditions of the dehumidifying device are as follows: the processing air volume is 2.9 m 3 / min, the regenerating air volume is 2.9 m 3 / min, the processing area: regeneration area = 1: 1, and the dehumidifying element rotation speed is 20 to 40 rph. The temperature was fixed at 60 ° C. and the dehumidification amount was measured. The dehumidifying amount was measured by measuring the absolute humidity at the inlet and outlet of the dehumidifying element with a dew point meter and calculating the dehumidifying amount per day (L / day) from the difference. FIG. 11 shows the dehumidifying performance when the dehumidifying element rotational speed is changed. The dehumidification amount of the commercially available dehumidifying element manufactured by the conventional method is 13.6 L / day at the maximum, whereas the dehumidifying element manufactured in Example 2 is 15.9 L / day at the maximum, which is an improvement of about 17%. It became.

なお、従来の除湿素子は焼結によって強度が向上するためコルゲート加工後に必要な製品サイズにカットすることができるが本発明の除湿素子の製造工程には焼結工程が無いため抄紙および除湿素子自体は柔軟である。従ってコルゲート加工後にカットすることができないため予め必要な製品サイズに抄紙段階でスリットしておき、コルゲート加工した波型抄紙と平型抄紙の端面を揃えながら貼り合せた。貼り合せた抄紙をさらに端面を揃えながら積層または巻いていき必要なサイズの除湿素子を製作した。また、本発明の柔軟な除湿素子を回転式除湿装置に備えるために、除湿素子の中心にボスを、外周には外周枠体を設けて、さらにギアモータとベルトで回転する際にボスと軸心がずれないように外周押え部材により外周枠体を規制しながら運転する構造とした。   Since the conventional dehumidifying element is improved in strength by sintering, it can be cut to the required product size after corrugating. However, since there is no sintering process in the manufacturing process of the dehumidifying element of the present invention, the papermaking and dehumidifying element itself Is flexible. Therefore, since it cannot be cut after corrugating, it was slit in advance to the required product size at the paper making stage, and the corrugated corrugated paper and flat paper were bonded together while aligning the end faces. The laminated paper was laminated or rolled while aligning the end faces to produce a dehumidifying element of the required size. Further, in order to provide the rotary dehumidifying device with the flexible dehumidifying element of the present invention, a boss is provided at the center of the dehumidifying element, and an outer peripheral frame is provided on the outer periphery. So that the outer peripheral frame body is regulated by the outer peripheral pressing member so as not to slip.

上記した参考例1によればシリカゲルが70%未満だと吸着性能が悪く、逆に90%以上だと製造した抄紙の柔軟性が無くなりコルゲート加工できないことが分かった。また参考例2によれば、シリカゲルを70%内添した抄紙の坪量は150g/mでないと目的の有効吸着量が出ないことが分かり、実施例ではシリカゲルを70%、フィブリル化した有機パルプを20%、セラミックファイバーを10%混合した抄紙の比表面積が最大になることが分かった。さらに参考では実施例で比表面積が最大となった抄紙から製作した除湿素子の吸着速度は速いことが分かり、さらに実施例では60℃の再生温度において従来の除湿素子より17%向上する除湿性能が得られることが分かった。これらの結果から再生する熱源が比較的低温である場合の除湿装置として有効になる特徴を奏するものである。 According to Reference Example 1 described above, it was found that the adsorption performance was poor when the silica gel content was less than 70%, and conversely, when the silica gel content was 90% or more, the produced paper was not flexible and could not be corrugated. In addition, according to Reference Example 2, it was found that the target effective adsorption amount would not be obtained unless the basis weight of the papermaking containing 70% silica gel was 150 g / m 2. In Example 1 , 70% silica gel was fibrillated. It turned out that the specific surface area of the papermaking which mixed 20% of organic pulp and 10% of ceramic fiber becomes the maximum. Further, in Reference Example 3 , it can be seen that the desorption element manufactured from the paper having the maximum specific surface area in Example 1 has a faster adsorption rate, and in Example 2 , it is improved by 17% over the conventional dehumidification element at a regeneration temperature of 60 ° C. It was found that dehumidifying performance can be obtained. From these results, there is a feature that is effective as a dehumidifier when the heat source to be regenerated is at a relatively low temperature.

参考例1のシリカゲルの内添量を変えた時の水吸着等温線図Water adsorption isotherm when the amount of silica gel added in Reference Example 1 is changed シリカゲルの内添量を変えた抄紙の有効吸着量を表す図Figure showing the effective adsorption amount of papermaking with the same amount of silica gel added internally 参考例2のコルゲートした抄紙を積層して成る除湿素子構造図Structure diagram of dehumidifying element formed by laminating corrugated papers of Reference Example 2 固定式除湿量測定装置の概略図Schematic of the fixed dehumidification measuring device 坪量を変えた抄紙から製作した除湿素子と市販除湿素子の水分吸着量の経時変化図Graph showing the change in moisture adsorption amount of the dehumidifier and commercial dehumidifier fabricated from paper of varying the basis weight 本発明の実施例1の有機・無機繊維を変えた抄紙の水吸着等温線図Water adsorption isotherm of papermaking with organic and inorganic fibers changed in Example 1 of the present invention 有機・無機繊維を変えた抄紙の比表面積と有効吸着量を表す図Diagram showing specific surface area and effective adsorption amount of paper made with the same organic and inorganic fibers 参考例3の有機・無機繊維を変えた抄紙から製作した除湿素子と市販除湿素子の水分吸着量の経時変化図Change over time of moisture adsorption amount of dehumidifying element manufactured from paper made by changing organic and inorganic fibers in Reference Example 3 and commercial dehumidifying element 本発明の実施例2のコルゲートした抄紙を巻いて成る除湿素子構造図Structure diagram of dehumidifying element formed by winding corrugated paper of Example 2 of the present invention 回転式除湿量測定装置の概略図Schematic of the same rotary dehumidification measuring device 本発明の実施例2の除湿素子と市販除湿素子の除湿性能を表す図 The figure showing the dehumidification performance of the dehumidification element of Example 2 of this invention and a commercial dehumidification element

符号の説明Explanation of symbols

4a 除湿素子
4b ファン
10a 除湿素子
10b 外周枠体
10c ボス
10d 外周押え部材
10e モータ
10f ベルト
10g 軸心
10h 仕切り板
10i 上部筒
10j 下部筒
10k 処理ファン
10l 再生ファン
10m 再生熱源
4a Dehumidifying element 4b Fan 10a Dehumidifying element 10b Outer frame 10c Boss 10d Outer holding member 10e Motor 10f Belt 10g Axis 10h Partition plate 10i Upper cylinder 10j Lower cylinder 10k Processing fan 10l Regenerative fan 10m Regenerative heat source

Claims (9)

抄紙の比表面積を高くするように、シリカゲルを70%、フィブリル化した有機パルプを20%、セラミックファイバーを10%混合して坪量を150g/m2で抄紙し、その抄紙からなることを特徴とする除湿素子。 To increase the specific surface area of paper, 70% silica gel, 20% fibrillated organic pulp and 10% ceramic fiber are mixed to make a paper with a basis weight of 150g / m2, Dehumidifying element. コルゲート加工した抄紙の端面を揃えて積層して成る請求項1記載の除湿素子を製造する方法。 The method for producing a dehumidifying element according to claim 1, wherein the end faces of corrugated paper are aligned and laminated. コルゲート加工した抄紙の端面を揃えて巻いて成る請求項1記載の除湿素子を製造する方法。 2. A method for producing a dehumidifying element according to claim 1, wherein the corrugated paper is rolled by aligning the end faces. 請求項1記載の除湿素子を備えることを特徴とする除湿装置。 A dehumidifying device comprising the dehumidifying element according to claim 1. 請求項1記載の除湿素子を備え、60℃の再生温度で除湿と再生を繰り返すようにした除湿装置。 A dehumidifying device comprising the dehumidifying element according to claim 1, wherein dehumidification and regeneration are repeated at a regeneration temperature of 60 ° C. 請求項1記載の除湿素子の中心にボスを設け、除湿素子外周に外周枠体を設けて外周枠体を外周押え部材で押えながらギアモータで除湿素子を回転して除湿・再生を繰り返す除湿装置。 A dehumidifying device that repeats dehumidification and regeneration by providing a boss at the center of the dehumidifying element according to claim 1, providing an outer peripheral frame on the outer periphery of the dehumidifying element, and rotating the dehumidifying element with a gear motor while pressing the outer peripheral frame with an outer pressing member. 請求項1記載の除湿素子の中心にボスを設け、除湿素子外周に外周枠体を設けて外周枠体を外周押え部材で押えながらギアモータで除湿素子を回転すると共に100℃以下の再生温度で除湿・再生を繰り返す運転方法。 A boss is provided at the center of the dehumidifying element according to claim 1, an outer peripheral frame is provided on the outer periphery of the dehumidifying element, the dehumidifying element is rotated by a gear motor while holding the outer peripheral frame with an outer pressing member, and dehumidified at a regeneration temperature of 100 ° C. or lower.・ Operation method that repeats regeneration. 再生の熱源が分散化電源としてマイクロガスタービン、燃料電池およびディーゼル発電機の廃熱、工場廃熱、自然熱エネルギーとして太陽光および地熱から少なくとも1つ選ばれる請求項7記載の運転方法。 The operating method according to claim 7, wherein the heat source for regeneration is selected from at least one of a micro gas turbine, a waste heat of a fuel cell and a diesel generator as a distributed power source, a factory waste heat, and sunlight and geothermal heat as natural heat energy. 再生の熱源が電気ヒータ、ガスヒータ、温水ヒータから少なくとも1つ選ばれる請求項7記載の運転方法。 The operation method according to claim 7, wherein the heat source for regeneration is selected from at least one of an electric heater, a gas heater, and a hot water heater.
JP2003325831A 2003-09-18 2003-09-18 Dehumidifying element, method for manufacturing the same, dehumidifying device and method for operating the device Expired - Fee Related JP4715082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003325831A JP4715082B2 (en) 2003-09-18 2003-09-18 Dehumidifying element, method for manufacturing the same, dehumidifying device and method for operating the device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003325831A JP4715082B2 (en) 2003-09-18 2003-09-18 Dehumidifying element, method for manufacturing the same, dehumidifying device and method for operating the device

Publications (2)

Publication Number Publication Date
JP2005087906A JP2005087906A (en) 2005-04-07
JP4715082B2 true JP4715082B2 (en) 2011-07-06

Family

ID=34456171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003325831A Expired - Fee Related JP4715082B2 (en) 2003-09-18 2003-09-18 Dehumidifying element, method for manufacturing the same, dehumidifying device and method for operating the device

Country Status (1)

Country Link
JP (1) JP4715082B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108325335A (en) * 2018-03-05 2018-07-27 安徽传质信息科技有限公司 Gasoline taste adsorptive purifier

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009022931A (en) * 2007-07-23 2009-02-05 Fuji Electric Holdings Co Ltd Dehumidifier
JP5224873B2 (en) * 2008-03-31 2013-07-03 三菱製紙株式会社 Sheet material for dehumidification and filter material for dehumidification
CN102677739B (en) * 2012-05-14 2014-07-09 上海交通大学 Device capable of obtaining water from air
CN104990163A (en) * 2015-07-02 2015-10-21 沪东重机有限公司 Dehumidification and rust-prevention device for marine diesel engine
JP6714451B2 (en) * 2016-06-23 2020-06-24 パナソニックホームズ株式会社 Humidity control system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687417A (en) * 1979-12-14 1981-07-16 H Ii I:Kk Exchanger for heat and/or humidity
JP2002239329A (en) * 2001-02-21 2002-08-27 Daikin Ind Ltd Adsorption element and manufacturing method therefor
JP2003214655A (en) * 2002-01-22 2003-07-30 Seibu Giken Co Ltd Desiccant air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687417A (en) * 1979-12-14 1981-07-16 H Ii I:Kk Exchanger for heat and/or humidity
JP2002239329A (en) * 2001-02-21 2002-08-27 Daikin Ind Ltd Adsorption element and manufacturing method therefor
JP2003214655A (en) * 2002-01-22 2003-07-30 Seibu Giken Co Ltd Desiccant air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108325335A (en) * 2018-03-05 2018-07-27 安徽传质信息科技有限公司 Gasoline taste adsorptive purifier
CN108325335B (en) * 2018-03-05 2019-12-03 瑞安市雏鹰文学艺术培训学校 Gasoline taste adsorptive purifier

Also Published As

Publication number Publication date
JP2005087906A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
USRE37779E1 (en) Adsorber for humidity and odorous gas exchange
US5650221A (en) High strength, low pressure drop sensible and latent heat exchange wheel
US5685897A (en) High strength, low pressure drop adsorbent wheel
US5580369A (en) Adsorption air conditioning system
JPH0628173Y2 (en) Moisture exchange element
WO1996023575A9 (en) Adsorption air conditioning system
GB2084045A (en) Method of dehumidification and air conditioning
US20020070002A1 (en) Heating regeneration type organic rotor member and method for producing the same
KR20150003716A (en) Desiccant based honeycomb chemical filter and method of manufacture thereof
JP4715082B2 (en) Dehumidifying element, method for manufacturing the same, dehumidifying device and method for operating the device
CN115087499A (en) Adsorption sheet, adsorption element, and adsorption treatment device using same
JPH0523529A (en) Adsorbable honeycomb ceramic laminate and preparation thereof
JP2017051901A (en) Dehumidifying material, dehumidifying rotor, and desiccant air conditioner
JP2780798B2 (en) Adsorbent sheet that can be corrugated
JP2002239329A (en) Adsorption element and manufacturing method therefor
JP3874187B2 (en) Dehumidifying element and dehumidifying device
US4162934A (en) Method of producing sorption bodies
JPH06165934A (en) Gas adsorption element, production and use therefor
JP2007268441A (en) Adsorption sheet, adsorption element, and method for preparing the same
JP2001259417A (en) Adsorption material for air conditioner, moisture absorbing element and dehumidifying method
JPH0223208B2 (en)
JP5649024B2 (en) Dehumidifying filter and desiccant air conditioner using the same
JPH0225107B2 (en)
JP2009022931A (en) Dehumidifier
JP3345596B2 (en) Adsorbent for moisture exchange

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060713

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110314

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees