JP4715033B2 - REFLECTIVE MODULATION LAMINATE AND ITS MANUFACTURING METHOD - Google Patents
REFLECTIVE MODULATION LAMINATE AND ITS MANUFACTURING METHOD Download PDFInfo
- Publication number
- JP4715033B2 JP4715033B2 JP2001158352A JP2001158352A JP4715033B2 JP 4715033 B2 JP4715033 B2 JP 4715033B2 JP 2001158352 A JP2001158352 A JP 2001158352A JP 2001158352 A JP2001158352 A JP 2001158352A JP 4715033 B2 JP4715033 B2 JP 4715033B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- reflectance
- refractive index
- resin composition
- photosensitive resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 239000011342 resin composition Substances 0.000 claims description 44
- 238000000034 method Methods 0.000 claims description 30
- 239000010409 thin film Substances 0.000 claims description 18
- 230000031700 light absorption Effects 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims description 4
- 239000012788 optical film Substances 0.000 claims description 4
- 238000001579 optical reflectometry Methods 0.000 claims description 4
- 230000035945 sensitivity Effects 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 76
- 229920005989 resin Polymers 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- 239000000975 dye Substances 0.000 description 10
- 239000010408 film Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 229920005992 thermoplastic resin Polymers 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 239000003999 initiator Substances 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 229920001225 polyester resin Polymers 0.000 description 5
- 239000004645 polyester resin Substances 0.000 description 5
- 239000004925 Acrylic resin Substances 0.000 description 4
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 229920000178 Acrylic resin Polymers 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- GKZPEYIPJQHPNC-UHFFFAOYSA-N 2,2-bis(hydroxymethyl)propane-1,3-diol prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OCC(CO)(CO)CO GKZPEYIPJQHPNC-UHFFFAOYSA-N 0.000 description 2
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 2
- VVBLNCFGVYUYGU-UHFFFAOYSA-N 4,4'-Bis(dimethylamino)benzophenone Chemical compound C1=CC(N(C)C)=CC=C1C(=O)C1=CC=C(N(C)C)C=C1 VVBLNCFGVYUYGU-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 229920006026 co-polymeric resin Polymers 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- -1 dithiol metal complex salt Chemical class 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229930192627 Naphthoquinone Natural products 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 244000028419 Styrax benzoin Species 0.000 description 1
- 235000000126 Styrax benzoin Nutrition 0.000 description 1
- 235000008411 Sumatra benzointree Nutrition 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 229920002433 Vinyl chloride-vinyl acetate copolymer Polymers 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 229920001893 acrylonitrile styrene Polymers 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 239000001000 anthraquinone dye Substances 0.000 description 1
- 150000008365 aromatic ketones Chemical class 0.000 description 1
- 229960002130 benzoin Drugs 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- MHCLJIVVJQQNKQ-UHFFFAOYSA-N ethyl carbamate;2-methylprop-2-enoic acid Chemical compound CCOC(N)=O.CC(=C)C(O)=O MHCLJIVVJQQNKQ-UHFFFAOYSA-N 0.000 description 1
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 235000019382 gum benzoic Nutrition 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical group OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- LKKPNUDVOYAOBB-UHFFFAOYSA-N naphthalocyanine Chemical compound N1C(N=C2C3=CC4=CC=CC=C4C=C3C(N=C3C4=CC5=CC=CC=C5C=C4C(=N4)N3)=N2)=C(C=C2C(C=CC=C2)=C2)C2=C1N=C1C2=CC3=CC=CC=C3C=C2C4=N1 LKKPNUDVOYAOBB-UHFFFAOYSA-N 0.000 description 1
- 150000002791 naphthoquinones Chemical class 0.000 description 1
- 239000011022 opal Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 239000001007 phthalocyanine dye Substances 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 1
- WVIICGIFSIBFOG-UHFFFAOYSA-N pyrylium Chemical compound C1=CC=[O+]C=C1 WVIICGIFSIBFOG-UHFFFAOYSA-N 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229920001909 styrene-acrylic polymer Polymers 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- AAAQKTZKLRYKHR-UHFFFAOYSA-N triphenylmethane Chemical compound C1=CC=CC=C1C(C=1C=CC=CC=1)C1=CC=CC=C1 AAAQKTZKLRYKHR-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Optical Elements Other Than Lenses (AREA)
- Inspection Of Paper Currency And Valuable Securities (AREA)
- Laminated Bodies (AREA)
- Credit Cards Or The Like (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、感光性樹脂組成物の加熱部と非加熱部の熱軟化と溶融性の差を利用した新規な反射率変調画像の形成に関するものであり、例えば有価証券、クレジットカード等の偽造防止に利用することができる反射率変調積層体とその製造方法に関する。
【0002】
【従来の技術】
従来、有価証券類等の印刷物への偽造防止性付与方法としては、例えば「すかし」による絵柄または文字、複雑な彫刻模様等が一般的であるが、このような偽造防止手段は熟練した技能と時間が必要である上に、多くの手間と時間を費やして作られたパターンが使用できる対象となる製品は一つのみに限られるもので、そのため目的や製品が異なる度に同じ工程を繰り返すことになり、手間と時間が多量に必要とされるものであった。
【0003】
また、クレジットカード、抽選券等の大量発行に伴い、種々の偽造防止手段が考案されている。例えば、レリーフホログラム、オパールエンボス柄、赤外線の反射及び吸収、放電破壊記録、磁気記録等の技術がクレジットカードを中心に数多く利用されている。特にレリーフホログラムに代表されるような複雑で微細なパターンを作製するには、高度な撮影技術と設備が必要であり、そのため偽造複製が困難となるものである。
【0004】
【発明が解決しようとする課題】
本発明は、かかる従来の偽造防止技術の問題点を解決するものであり、その課題は、上述のごとく従来の偽造防止技術で必要とされる熟練した技能や多量の時間、高価な設備と高度な撮影技術等に頼らなくとも完全に近い偽造防止方法を実現できる反射率変調積層体とその製造方法を提供することにある。さらに、小ロット製品を生産する場合に於いては、より安価な偽造防止用の製品即ち反射率変調積層体の提供にある。
【0005】
【課題を解決するための手段】
本発明に於いて上記課題を達成するために、まず請求項1の発明では、基材の片面に、光反射能を有する金属薄膜層、赤外光吸収層が順に設けられ、該赤外光吸収層上にパターン状の高反射率領域と低反射率領域とで構成される反射率変調層を有する反射率変調積層体であって、前記パターン状の高反射率領域が屈折率に境界を有しない層でなり、低反射率領域が屈折率に境界を有する層でなることを特徴とする反射率変調積層体としたものである。
【0006】
また、請求項2の発明では、基材の片面に、光反射能を有する金属薄膜層、赤外光吸収層を順に設け、該赤外光吸収層上にパターン状の高反射率領域と低反射率領域とで構成される反射率変調層を設ける反射率変調積層体の製造方法であって、前記反射率変調層は、少なくとも2層以上の屈折率の異なる感光性樹脂組成物層で形成し、該2層以上の屈折率の異なる感光性樹脂組成物層面に一定もしくは異なる強度のレーザー光を照射して前記パターン状の高反射率領域を形成し、さらに前記2層以上の屈折率の異なる感光性樹脂組成物層面全面に露光を施すことを特徴とする反射率変調積層体の製造方法としたものである。
【0007】
また、請求項3の発明では、前記屈折率の異なる感光性樹脂組成物層の屈折率の差は、それぞれ0.02以上であることを特徴とする請求項2記載の反射率変調積層体の製造方法としたものである。
【0008】
さらにまた、請求項4の発明では、前記屈折率の異なる感光性樹脂組成物層の光学膜厚は、検出中心感度波長の1/4もしくは1/4と1/2の組み合わせであることを特徴とする請求項2または3記載の反射率変調積層体の製造方法としたものである。
【0009】
【発明の実施の形態】
以下本発明の実施の形態を図面を用いながら説明する。
本発明の反射率変調積層体は、図1の積層側断面図に示すように、例えば、基材(1)の片面に、光反射能を有する金属薄膜層(2)、赤外光吸収層(3)が順に設けられ、この赤外光吸収層(3)上にパターン状の高反射率領域(22)と低反射率領域(20)とで構成される反射率変調層(30)を有する反射率変調積層体(100)であって、前記パターン状の高反射率領域(22)が屈折率に境界を有しない層でなり、低反射率領域(20)が屈折率に境界(K)を有する層でなる反射率変調積層体(100)である。
【0010】
以下、まず本発明の反射率変調積層体(100)を構成する各層の材料について説明し、次にその製造工程を詳細に説明する。
【0011】
まず図2の積層側断面図に示す反射率変調積層体(100)の基材(1)としては、赤外光吸収層(3)との接着が十分満たされている限り、例えば金属、紙、高分子材料、ガラス又はセラミックス等の無機材料を含めてあらゆる素材のプレート、シート若しくはフィルムが挙げられ、使用目的に応じて適宜選定可能である。
【0012】
また、図2に示す金属薄膜層(2)としては、例えばアルミニウム、金等を真空蒸着法、スパッタ法等の乾式プロセスや金属コロイド分散液を湿式法にてコーティングすることで容易に形成することができる。
【0013】
また、図2に示す赤外光吸収層(3)としては、レーザー光のエネルギーを熱エネルギーに変換するための赤外光吸収層(3)であり、特に装置がコンパクトで利用価値が高い赤色から赤外域の光を発する半導体レーザーの発振波長域に吸収を持つ任意の染料、顔料等の色素をポリアクリレート樹脂、ポリメタクリレート樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリ塩化ビニル樹脂等の熱可塑性樹脂や、架橋構造を形成する熱硬化性樹脂バインダーに溶解もしくは分散することにより作製し、レーザー光を有効に熱エネルギーに変換することが好ましい。近赤外もしくは赤外光吸収材の一般的な例としては、使用するレーザー光波長での吸収係数が大きい色素等が利用できる。例えば半導体レーザーに適合するものとしては、780〜830nm領域の波長で吸収係数が104以上の強い吸収となる分子構造を持つシアニン系やピリリウム系等のポリメチン系色素、銅フタロシアニン等のフタロシアニン系色素、ナフタロシアニン系色素、ジチオール金属錯塩系色素、ナフトキノン系色素、アントラキノン系色素、トリフェニルメタン系色素、アルミニウム系色素、ジインモニウム系色素等が挙げられる。
【0014】
また、図3の積層側断面図に示す反射率変調層(30)としては、2層以上の屈折率の異なる室温では固体状態の感光性樹脂組成物層で、光硬化性樹脂もしくはオリゴマー、モノマー等を少なくとも一成分とし、さらに光重合開始剤を添加した熱可塑性樹脂組成物から成り、例えば上層には相対的に低屈折率の低屈折率感光性樹脂組成物層(4)で、下層には高屈折率の高屈折率感光性樹脂組成物層(5)とするものである。この低屈折率感光性樹脂組成物層(4)と高屈折率感光性樹脂組成物層(5)の上下が逆であっても構わず、反射率を変調する目的を達することができる。
【0015】
上記光硬化性で且つ室温では固体状態の熱可塑性樹脂組成物としては、一般的な熱可塑性樹脂と少なくとも2官能以上で良好な架橋反応を行うアクリレート若しくはメタクリレートとの混合物に光重合開始剤を少量添加したものが使用できる。具体的には、熱可塑性樹脂としてアクリル樹脂、スチレン−アクリル共重合樹脂、ポリエステル樹脂、ポリビニルブチラール、ポリカーボネート樹脂、塩ビ−酢ビ共重合樹脂、スチレン樹脂、塩化ビニル樹脂、アクリロニトリル−スチレン共重合樹脂、熱可塑性ポリウレタン樹脂等が使用できる。また、アクリレート若しくはメタクリレート単独でも室温では固体状態を呈する熱可塑性樹脂であれば使用することができる。例えば、種々のウレタンアクリレート及びメタクリレートオリゴマー、分子内にイソシアヌレート環構造を有する種々のアクリレート及びメタクリレート、分子内にビスフェノールA、ビスフェノールS等の構造を有するエポキシアクリレート及びメタクリレート、ポリブタジエンウレタンメタクリレート、ポリスチリルエチルメタクリレート等が挙げられ、さらに水性UV硬化型樹脂も使用することができる。
【0016】
上記の感光性樹脂組成物に対し、相対的に低屈折率の性能を付与するには、分子構造内にフッ素原子を含有するポリマーやオリゴマー、モノマー類、MgF2 、SiO2 等の低屈折率無機微粒子を配合することが効果的である。また、高屈折率の性能を付与するには、分子構造内にフッ素原子以外のハロゲン原子を含有するポリマーやオリゴマー、モノマー類、TiO2 、ZnO、SnO2 等の高屈折率無機微粒子を屈折率調整用として配合することが好ましい。
【0017】
また光重合開始剤としては使用する光の波長に吸収を有する化合物であれば任意に使用でき、特に限定するものではない。例えば、ベンゾイン、ベンジルケタール、アセトフェノン等の誘導体に代表される自己開裂型の化合物及びベンゾフェノン、芳香族ケトン、ミヒラーズケトン等の分子構造を有する種々の水素引き抜き型の光重合開始剤を配合することが好ましく、さらに必要に応じて種々の増感剤との併用も可能である。
【0018】
次に本発明の反射率変調積層体の製造工程について説明する。
先ず図2に示すように、例えば基材(1)の片面に真空蒸着法等で金属薄膜層(2)を形成し、さらにその上にグラビア法等で赤外光吸収層(3)を形成する。
【0019】
続いて図3に示すように、上記で得られた赤外光吸収層(3)面に高屈折率の感光性樹脂組成物層(5)を、さらにその上に低屈折率の感光性樹脂組成物層(4)をロールコート、バーコート等、公知の塗布方法によって形成して2層の反射率変調層(30)とする。一方、部分的に上記高低屈折率感光性樹脂組成物層(5,4)を形成する場合には、グラビア印刷法等の一般的な印刷技術を応用する方法、あるいは転写技術を利用することもできる。
【0020】
次に図4の積層側断面図に示すように、上記高低屈折率感光性樹脂組成物層(5,4)でなる反射率変調層(30)の表面の任意の部分に一定もしくは異なる強度のレーザー光(6)を位置を変えながら照射することにより、レーザーの熱モードによって部分的に軟化、溶融せしめ、高低屈折率感光性樹脂組成物層(5,4)の境界面を消失させることで光の干渉効果を変化させ、レーザー照射部(22a)とレーザー未照射部(20a)の間に反射率のコントラストに基づくパターンが可視化される。
【0021】
上記で用いるレーザー光(6)としては、ArイオンレーザーやHe−Neレーザー等の気体レーザーや、Nd:YAGレーザー等の固体レーザー、GaAs等で構成される半導体レーザー等からのレーザー光を、各種レンズや空間フィルター等の光学素子によって光ビーム化したものを用いることができる。これらのレーザー光ビームにより画像を形成するためには、画像情報に従ったレーザー光の強度変調が必要であり、上記の気体レーザーと固体レーザーは、電気光学効果や音響光学効果による光強度変調器を外部に必要とするが、半導体レーザーでは、駆動電流の変調だけでレーザー光強度を変調できるので、光強度変調器が不要となり、装置全体が簡便になるという利点がある。レーザー光の走査方法には、走査速度の順に、多角形の回転鏡を用いる方法、共振型のガルバノミラーによる方法、通常のガルバノミラーによる方法、画像形成材が置かれたステージを移動させる方法等があり、これらの方法の中から、画像形成材に必要な露光エネルギー量(熱量)とレーザー光強度で設定される走査速度範囲に適合するものが選択される。
【0022】
続いて図5の積層側断面図に示すように、図4に示す上記レーザー照射部(22a)とレーザー未照射部(20a)全面に、全面露光(8)を加えることによって、感光性樹脂組成物でなる反射率変調層(30)全体を硬化させることによって、可視化せしめた反射率変調のパターンを定着するものである。
【0023】
以上のように、本発明の反射率変調積層体の製造方法においては、光学薄膜として2層構成の感光性樹脂組成物薄膜を代表例とし、例えば図3に示す反射率変調層(30)の構成で高低屈折率感光性樹脂組成物層(5,4)の光学膜厚nd(屈折率n×形状膜厚d)をそれぞれλ/4とすれば、低反射機能を有する膜となる。そこで、図4に示すように、レーザー光(6)で高低屈折率感光性樹脂組成物層(5,4)の境界(K)面を消失させると、レーザー照射部(22a)では1層構成のλ/2膜に変化させることができ、反射強調膜として機能させることができる。従って、レーザー照射部(22a)は反射強調領域、レーザー未照射部(20a)は低反射領域としてパターンを形成することができ、よって図1に示すように、基材(1)の片面に金属薄膜層(2)、赤外光吸収層(3)が形成され、この赤外光吸収層(3)上にパターン状の高反射率領域(22)と低反射率領域(20)とで構成される反射率変調層(30)を有する反射率変調積層体(100)とすることができる。
【0024】
【実施例】
次に実施例により、本発明を具体的に説明する。
〈実施例1〉
以下に実施例および比較例を挙げて本発明について具体的に説明するが、本発明はこれらの実施例に限定されるものではない。尚、部は特に断りのない限り重量基準である。
【0025】
下記の組成から成る赤外光吸収層用組成物を混合して樹脂と色素を溶解させた後、ワイヤーバーによりポリエステルフィルム基材(厚み:100μm)上に塗布し、100℃、5分間乾燥後、膜厚が約2μmとなるように形成した。
〔赤外光吸収層用組成物〕
ポリエステル樹脂(ユニチカ社製 エリーテルUE−3201) 4部
ポリエステル樹脂(東洋紡社製 バイロン#200) 6部
イソシアネート(旭化成社製 デュラネート24A100) 0.1部
近赤外吸収色素(日本化薬社製 CY−9) 0.1部
トルエン 45部
2−ブタノン 45部
【0026】
また下記組成の光硬化性オリゴマーを含有する熱可塑性樹脂組成物を高屈折率感光性樹脂組成物とした。各成分の屈折率の加成性から見積もることができる屈折率を約1.76とした。
〔高屈折率感光性樹脂組成物〕
飽和共重合ポリエステル樹脂
(ユニチカ社製、エリーテルUE−3201) 1部
アクリル樹脂(三菱レイヨン社製、ダイヤナールBR−77) 3部
ペンタエリスリトールヘキサアクリレート 2.5部
酸化チタンゾル(平均粒子径約40nm) 3.5部
光重合開始剤(チバガイギー社製、イルガキュアー651) 1部
【0027】
また下記組成の光硬化性オリゴマーを含有する熱可塑性樹脂組成物を低屈折率感光性樹脂組成物とした。各成分の屈折率の加成性から見積もることができる屈折率を約1.49とした。
〔低屈折率感光性樹脂組成物〕
アクリル樹脂(三菱レイヨン社製、ダイヤナールBR−77) 4部
ペンタエリスリトールヘキサアクリレート 2.5部
コロイダルシリカ(平均粒子径約30nm) 3.5部
光重合開始剤(チバガイギー社製、イルガキュアー651) 1部
【0028】
そこで低反射薄膜層の形成で、上記、高屈折率感光性樹脂組成物を酢酸エチルにて、固形分が4wt%となるように希釈した後、厚み120μmのポリエステルフィルム上にバーコーターによって塗布し、80℃、1minの熱乾燥を施すことで成膜した。さらに、低屈折率感光性樹脂組成物をその下地である高屈折率感光性樹脂組成物の薄膜層を溶解しないように、エタノールを溶媒として使用し、前記、高屈折率感光性樹脂組成物の塗布・乾燥条件と同一条件にて積層、成膜した。光学膜厚(nd=屈折率n×形状膜厚d(nm))が高、低それぞれnd=550/4nmとなるように低反射薄膜層を形成した。波長500nmでの反射率は約0.8%であった。
【0029】
続いて反射率変調パターンの形成で、上記の方法で得られた高・低屈折率感光性樹脂組成物から成る低反射薄膜層の表面に対し、以下の方法によってレーザービームの照射を行った。
レーザー露光装置は半導体レーザー(ソニー社製 SLU304XR)及びレーザードライバー5(ゴローバル電子工業社製、GSB3530)と、レリーフ画像形成材を取り付け、移動させる手段としてXYステージ(中央精機社製 PS120EX・Y、コントローラーCAT−11、ドライバーパックSD−Pを組み合わせたもの)からなり、レーザー照射パターンはパーソナルコンピューター内にメモリされている画像情報に応じてLDドライバからの駆動電流をON/OFFし、これで制御される半導体レーザー光を光ファイバーで伝送後、収束光学系により走査面へ集光させることによってパターン露光を行った。この時の露光条件は出力0.8wで、波長800nmのレーザーを1/e2 直径が100μmとなるように集光したビームを主走査定速度40mm/秒、副走査ピッチ75μmの条件で走査露光を行った。この条件はあくまでも本実施例での適正値であり、使用する部分反射率変調パターン形成材の樹脂特性等で変化するので、各種条件を考慮すると共に、形成される可視画像を確認しながら調整することが必要である。
【0030】
上記、レーザー照射方法によって、レーザー照射部の高・低屈折率感光性樹脂組成物間の境界面を消失させ、面積5×5mmのベタパターンを作製した。その結果、露光部の波長500nmでの反射率は約4.1%であり、レーザー照射部と未照射部のコントラストは鮮明に可視化された。次に、高・低屈折率感光性樹脂組成物薄膜層全体に、高圧水銀ランプ(出力:120W/cm)による紫外線を積算露光量として、500mJ/cm2 照射することによって、可視化した反射率変調パターンを定着した。
【0031】
〈実施例2〉
実施例1で作製した反射率変調積層体に、実施例1で作製したベタ部を塗りつぶす走査露光の代わりに、レーザー光を文字パターン情報に基づき、0N/0FFして画像形成をおこなった。その結果、途切れがほとんど見られず、高コントラストで視認性が高い良好な品質の高反射率でなる文字画像として作製することができた。
【0032】
【発明の効果】
本発明は以上の構成であるから、下記に示す如き効果がある。
即ち、上述の実施例の説明からも明らかなように、本発明によれば、多層光学薄膜層間の界面を保持する部分と消失させる部分をレーザー照射で発生する熱によって形成することで、部分的に反射率が変調されたパターンを形成することを特徴とする反射率変調積層体であり、従ってこの反射率変調パターンの形成が、感光性樹脂へのパターン露光による画像の可視化と、それに続く像の光定着を利用する原理的に単純で簡便な乾式プロセスであるため、熟練した技能や多量の時間、高価な設備と高度な撮影技術等に頼らなくとも高度な偽造防止方法を実現することができる。さらには、小ロット製品を生産する場合、より安価な製造方法となる。また反射率変調パターンを得るための画像は露光プロセスで決定するため、異なる絵柄の多重露光等の方法を用いて、新規な意匠性を有する反射率変調パターンの開発が容易になる。そのため、さらに高度な偽造防止効果を付与する手段として有効である。
【0033】
従って本発明は、例えば有価証券、クレジットカード等の偽造防止に利用することができる反射率変調積層体とその製造方法として、優れた実用上の効果を発揮する。
【図面の簡単な説明】
【図1】本発明の反射率変調積層体の一実施の形態を側断面で表した説明図である。
【図2】本発明の反射率変調積層体の製造工程を示す図であり、基材に金属薄膜層、赤外光吸収層を施した構成の側断面図である。
【図3】本発明の反射率変調積層体の製造工程を示す図であり、屈折率の異なる感光性樹脂組成物層を施した構成の側断面図である。
【図4】本発明の反射率変調積層体の製造工程を示す図であり、屈折率の異なる感光性樹脂組成物層にレーザー露光を施すことで、反射光強度の変調パターンを形成する工程を側断面で表した説明図である。
【図5】本発明の反射率変調積層体の製造工程を示す図であり、可視化された反射光強度の変調パターンを定着する工程を側断面で表した説明図である。
【符号の説明】
1‥‥基材
2‥‥金属薄膜層
3‥‥赤外光吸収層
4‥‥低屈折率感光性樹脂組成物層
5‥‥高屈折率感光性樹脂組成物層
6‥‥レーザー光
7‥‥レーザー光の熱で界面消失後の感光性樹脂組成物層
8‥‥全面露光のための光
20‥‥低反射率領域
20a‥‥レーザー未照射部
22‥‥高反射率領域
22a‥‥レーザー照射部
30‥‥反射率変調層
100‥‥反射率変調積層体
K‥‥境界[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the formation of a novel reflectance-modulated image using the difference between heat softening and meltability of a heated portion and a non-heated portion of a photosensitive resin composition, and for example, forgery prevention of securities, credit cards, etc. The present invention relates to a reflectance-modulated laminate that can be used for manufacturing and a manufacturing method thereof.
[0002]
[Prior art]
Conventionally, as a method for imparting anti-counterfeiting property to printed matter such as securities, for example, “watermark” or characters, complex sculptures, etc. are generally used. In addition to the need for a product that can be used for a pattern that has been created using a lot of time and effort, the same process is repeated each time the purpose and product are different. As a result, a lot of work and time were required.
[0003]
In addition, various forgery prevention means have been devised along with the large-scale issuance of credit cards, lottery tickets, and the like. For example, many technologies such as relief holograms, opal embossed patterns, infrared reflection and absorption, discharge breakdown recording, and magnetic recording are used mainly for credit cards. In particular, in order to produce a complicated and fine pattern typified by a relief hologram, an advanced photographing technique and equipment are required, and therefore, counterfeit replication is difficult.
[0004]
[Problems to be solved by the invention]
The present invention solves the problems of the conventional anti-counterfeiting technology, and the problem is that, as described above, skilled skills, a large amount of time, expensive equipment, and advanced technology required for the conventional anti-counterfeiting technology. It is an object of the present invention to provide a reflectance modulation laminate and a method for manufacturing the same, which can realize a nearly complete anti-counterfeiting method without depending on an appropriate photographing technique. Further, in the case of producing a small lot product, it is to provide a cheaper product for preventing counterfeiting, that is, a reflectance modulation laminate.
[0005]
[Means for Solving the Problems]
In order to achieve the above object in the present invention, first, in the invention of
[0006]
In the invention of
[0007]
Further, in the invention of
[0008]
Furthermore, in the invention of claim 4, the optical film thickness of the photosensitive resin composition layers having different refractive indexes is 1/4 or a combination of 1/4 and 1/2 of the detection center sensitivity wavelength. The method of manufacturing a reflectance-modulated laminate according to
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
As shown in the laminated sectional side view of FIG. 1, the reflectance modulation laminate of the present invention has, for example, a metal thin film layer (2) having light reflectivity on one side of a substrate (1), an infrared light absorbing layer. (3) is provided in order, and a reflectance modulation layer (30) composed of a pattern-like high reflectance region (22) and a low reflectance region (20) is provided on the infrared light absorption layer (3). A reflectance modulation laminate (100) having the pattern-like high reflectance region (22) having no boundary in the refractive index, and the low reflectance region (20) having a boundary in the refractive index (K ) Is a reflectance modulation laminate (100) made of a layer having).
[0010]
Hereinafter, first, materials of the respective layers constituting the reflectance modulation laminate (100) of the present invention will be described, and then the manufacturing process thereof will be described in detail.
[0011]
First, as the base material (1) of the reflectance modulation laminated body (100) shown in the laminated side sectional view of FIG. 2, as long as the adhesion with the infrared light absorbing layer (3) is sufficiently satisfied, for example, metal, paper In addition, a plate, a sheet, or a film made of any material including an inorganic material such as a polymer material, glass, or ceramic can be used, and can be appropriately selected depending on the purpose of use.
[0012]
Also, the metal thin film layer (2) shown in FIG. 2 can be easily formed by coating aluminum, gold or the like by a dry process such as vacuum deposition or sputtering, or by coating a metal colloid dispersion by a wet method. Can do.
[0013]
In addition, the infrared light absorption layer (3) shown in FIG. 2 is an infrared light absorption layer (3) for converting the energy of laser light into thermal energy, and the red is particularly compact and highly useful. From any dye or pigment having absorption in the oscillation wavelength range of a semiconductor laser emitting light in the infrared region to a thermoplastic resin such as polyacrylate resin, polymethacrylate resin, polyamide resin, polyester resin, polyvinyl chloride resin, It is preferable that the laser beam is effectively converted into thermal energy by dissolving or dispersing in a thermosetting resin binder forming a crosslinked structure. As a general example of the near-infrared or infrared light absorbing material, a dye having a large absorption coefficient at the laser light wavelength to be used can be used. For example, those suitable for semiconductor lasers include cyanine-based and pyrylium-based polymethine dyes having a molecular structure with an absorption coefficient of 104 or more at wavelengths of 780 to 830 nm, phthalocyanine dyes such as copper phthalocyanine, Examples thereof include naphthalocyanine dyes, dithiol metal complex salt dyes, naphthoquinone dyes, anthraquinone dyes, triphenylmethane dyes, aluminum dyes, and diimmonium dyes.
[0014]
Further, the reflectance modulation layer (30) shown in the laminated side sectional view of FIG. 3 is a photosensitive resin composition layer in a solid state at room temperature having two or more refractive indexes different from each other, and is a photocurable resin or oligomer or monomer. And the like, and further comprising a photopolymerization initiator and a thermoplastic resin composition. For example, the upper layer is a low refractive index photosensitive resin composition layer (4) having a relatively low refractive index, and the lower layer is a lower layer. Is a high refractive index photosensitive resin composition layer (5) having a high refractive index. The low refractive index photosensitive resin composition layer (4) and the high refractive index photosensitive resin composition layer (5) may be upside down, and the purpose of modulating the reflectance can be achieved.
[0015]
As the above-mentioned thermoplastic resin composition that is photocurable and solid at room temperature, a small amount of a photopolymerization initiator is added to a mixture of a general thermoplastic resin and an acrylate or methacrylate that at least has two or more functional groups and performs a good crosslinking reaction. The added one can be used. Specifically, acrylic resins, styrene-acrylic copolymer resins, polyester resins, polyvinyl butyral, polycarbonate resins, vinyl chloride-vinyl acetate copolymer resins, styrene resins, vinyl chloride resins, acrylonitrile-styrene copolymer resins, A thermoplastic polyurethane resin or the like can be used. Also, acrylate or methacrylate alone can be used as long as it is a thermoplastic resin that exhibits a solid state at room temperature. For example, various urethane acrylate and methacrylate oligomers, various acrylates and methacrylates having an isocyanurate ring structure in the molecule, epoxy acrylates and methacrylates having a structure such as bisphenol A and bisphenol S in the molecule, polybutadiene urethane methacrylate, polystyrylethyl Methacrylate and the like can be mentioned, and an aqueous UV curable resin can also be used.
[0016]
In order to impart relatively low refractive index performance to the above photosensitive resin composition, polymers, oligomers, monomers, MgF 2 , SiO 2 and other low refractive indexes containing fluorine atoms in the molecular structure It is effective to blend inorganic fine particles. In addition, in order to provide high refractive index performance, polymers or oligomers containing monomers other than fluorine atoms in the molecular structure, monomers, high refractive index inorganic fine particles such as TiO 2 , ZnO, SnO 2 are used as refractive indexes. It is preferable to mix for adjustment.
[0017]
The photopolymerization initiator is not particularly limited as long as it is a compound having absorption at the wavelength of light to be used. For example, it is preferable to blend a self-cleavable compound typified by derivatives such as benzoin, benzyl ketal and acetophenone and various hydrogen abstraction type photopolymerization initiators having molecular structures such as benzophenone, aromatic ketone and Michler's ketone. Furthermore, it can be used in combination with various sensitizers as necessary.
[0018]
Next, the manufacturing process of the reflectance modulation laminated body of this invention is demonstrated.
First, as shown in FIG. 2, for example, a metal thin film layer (2) is formed on one side of the substrate (1) by a vacuum deposition method or the like, and further an infrared light absorption layer (3) is formed thereon by a gravure method or the like. To do.
[0019]
Subsequently, as shown in FIG. 3, a photosensitive resin composition layer (5) having a high refractive index is provided on the surface of the infrared light absorbing layer (3) obtained above, and a photosensitive resin having a low refractive index is further formed thereon. The composition layer (4) is formed by a known coating method such as roll coating or bar coating to form a two-layer reflectance modulation layer (30). On the other hand, when partially forming the high and low refractive index photosensitive resin composition layers (5, 4), a method using a general printing technique such as a gravure printing method or a transfer technique may be used. it can.
[0020]
Next, as shown in the cross-sectional side view of FIG. 4, a certain or different strength is applied to any part of the surface of the reflectance modulation layer (30) made of the high and low refractive index photosensitive resin composition layer (5, 4). By irradiating the laser beam (6) while changing the position, it is partially softened and melted by the heat mode of the laser, thereby eliminating the boundary surface of the high and low refractive index photosensitive resin composition layers (5, 4). By changing the light interference effect, a pattern based on the contrast of the reflectance is visualized between the laser irradiation part (22a) and the laser non-irradiation part (20a).
[0021]
As the laser beam (6) used above, various laser beams from a gas laser such as an Ar ion laser and a He—Ne laser, a solid state laser such as an Nd: YAG laser, a semiconductor laser composed of GaAs, etc. A light beam formed by an optical element such as a lens or a spatial filter can be used. In order to form an image with these laser light beams, it is necessary to modulate the intensity of the laser light in accordance with the image information. The gas laser and the solid laser described above are light intensity modulators based on the electro-optic effect and the acousto-optic effect. However, since the semiconductor laser can modulate the laser light intensity only by modulating the drive current, there is an advantage that the light intensity modulator becomes unnecessary and the whole apparatus is simplified. Laser beam scanning methods include, in order of scanning speed, a method using a polygonal rotary mirror, a method using a resonant galvanometer mirror, a method using a normal galvanometer mirror, a method of moving a stage on which an image forming material is placed, etc. Among these methods, a method suitable for the scanning speed range set by the exposure energy amount (heat amount) required for the image forming material and the laser light intensity is selected.
[0022]
Subsequently, as shown in the laminated sectional side view of FIG. 5, the entire surface of the laser irradiated part (22a) and the non-laser irradiated part (20a) shown in FIG. The entire reflectance modulation layer (30) made of a material is cured to fix the visualized reflectance modulation pattern.
[0023]
As described above, in the method of manufacturing a reflectance modulation laminate according to the present invention, a photosensitive resin composition thin film having a two-layer structure is used as a representative example as an optical thin film. For example, the reflectance modulation layer (30) shown in FIG. If the optical film thickness nd (refractive index n × shape film thickness d) of the high and low refractive index photosensitive resin composition layer (5, 4) is λ / 4 in the configuration, the film has a low reflection function. Therefore, as shown in FIG. 4, when the boundary (K) plane of the high and low refractive index photosensitive resin composition layer (5, 4) is eliminated by the laser beam (6), the laser irradiation part (22a) has a single layer structure. The λ / 2 film can be changed to function as a reflection enhancement film. Therefore, the laser irradiation part (22a) can form a pattern as a reflection enhancement area, and the laser non-irradiation part (20a) can form a pattern as a low reflection area. Therefore, as shown in FIG. A thin film layer (2) and an infrared light absorption layer (3) are formed. The infrared light absorption layer (3) includes a pattern-like high reflectance region (22) and a low reflectance region (20). It can be set as the reflectance modulation | alteration laminated body (100) which has the reflectance modulation layer (30) which is made.
[0024]
【Example】
Next, an Example demonstrates this invention concretely.
<Example 1>
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples. The parts are based on weight unless otherwise specified.
[0025]
After mixing the composition for infrared light absorption layers having the following composition to dissolve the resin and the pigment, the composition is applied onto a polyester film substrate (thickness: 100 μm) with a wire bar and dried at 100 ° C. for 5 minutes. The film thickness was about 2 μm.
[Infrared light absorbing layer composition]
Polyester resin (Elitel UE-3201 manufactured by Unitika) 4 parts Polyester resin (Byron # 200 manufactured by Toyobo Co., Ltd.) 6 parts isocyanate (Duranate 24A100 manufactured by Asahi Kasei Co., Ltd.) 0.1 part Near infrared absorbing dye (CY- manufactured by Nippon Kayaku Co., Ltd.) 9) 0.1 part toluene 45 parts 2-butanone 45 parts
Moreover, the thermoplastic resin composition containing the photocurable oligomer of the following composition was made into the high refractive index photosensitive resin composition. The refractive index that can be estimated from the additivity of the refractive index of each component was about 1.76.
[High refractive index photosensitive resin composition]
Saturated copolymer polyester resin (Unitika Ltd., Elitel UE-3201) 1 part acrylic resin (Mitsubishi Rayon, Dianal BR-77) 3 parts pentaerythritol hexaacrylate 2.5 parts titanium oxide sol (average particle size about 40 nm) 3.5 parts photopolymerization initiator (manufactured by Ciba Geigy, Irgacure 651) 1 part
Moreover, the thermoplastic resin composition containing the photocurable oligomer of the following composition was made into the low refractive index photosensitive resin composition. The refractive index that can be estimated from the additivity of the refractive index of each component was about 1.49.
[Low refractive index photosensitive resin composition]
Acrylic resin (Dainar BR-77, manufactured by Mitsubishi Rayon Co., Ltd.) 4 parts pentaerythritol hexaacrylate 2.5 parts colloidal silica (average particle diameter of about 30 nm) 3.5 parts photopolymerization initiator (Ciba Geigy, Irgacure 651) 1 part 【0028】
Therefore, in the formation of a low-reflection thin film layer, the above-described high refractive index photosensitive resin composition was diluted with ethyl acetate so that the solid content was 4 wt%, and then applied onto a polyester film having a thickness of 120 μm with a bar coater. The film was formed by heat drying at 80 ° C. for 1 min. Further, ethanol is used as a solvent so that the low refractive index photosensitive resin composition does not dissolve the thin film layer of the high refractive index photosensitive resin composition that is the base, and the high refractive index photosensitive resin composition Lamination and film formation were performed under the same conditions as the coating and drying conditions. The low reflective thin film layer was formed so that the optical film thickness (nd = refractive index n × shape film thickness d (nm)) was high and low, respectively, nd = 550/4 nm. The reflectance at a wavelength of 500 nm was about 0.8%.
[0029]
Subsequently, in the formation of a reflectance modulation pattern, the surface of the low reflection thin film layer made of the high / low refractive index photosensitive resin composition obtained by the above method was irradiated with a laser beam by the following method.
The laser exposure apparatus includes a semiconductor laser (SLU 304XR manufactured by Sony Corporation) and a laser driver 5 (GSB3530 manufactured by Golobal Electronics Industry Co., Ltd.) and an XY stage (PS120EX • Y manufactured by Chuo Seiki Co., Ltd.) as a means for attaching and moving the relief image forming material. The laser irradiation pattern is controlled by turning on / off the drive current from the LD driver according to the image information stored in the personal computer. After the semiconductor laser light to be transmitted was transmitted through an optical fiber, pattern exposure was performed by condensing the laser beam on a scanning surface by a converging optical system. The exposure conditions at this time are 0.8w output, and scanning exposure is performed with a laser beam with a wavelength of 800 nm condensed so that the 1 / e 2 diameter is 100 μm at a main scanning constant speed of 40 mm / second and a sub-scanning pitch of 75 μm. Went. This condition is only an appropriate value in the present embodiment, and varies depending on the resin characteristics of the partial reflectance modulation pattern forming material to be used. Therefore, various conditions are considered and adjusted while confirming the formed visible image. It is necessary.
[0030]
By the above laser irradiation method, the boundary surface between the high and low refractive index photosensitive resin compositions in the laser irradiation portion was eliminated, and a solid pattern having an area of 5 × 5 mm was produced. As a result, the reflectance of the exposed portion at a wavelength of 500 nm was about 4.1%, and the contrast between the laser irradiated portion and the unirradiated portion was clearly visualized. Next, the reflectance modulation visualized by irradiating the entire thin film layer of the high- and low-refractive-index photosensitive resin composition with 500 mJ / cm 2 using UV light from a high-pressure mercury lamp (output: 120 W / cm) as an integrated exposure amount. The pattern was fixed.
[0031]
<Example 2>
An image was formed by applying 0 N / 0FF of laser light based on the character pattern information instead of the scanning exposure for painting the solid portion produced in Example 1 on the reflectance modulation laminate produced in Example 1. As a result, it was possible to produce a character image having high reflectivity with good quality with high contrast and high visibility with almost no interruption.
[0032]
【The invention's effect】
Since this invention is the above structure, there exist the following effects.
That is, as is clear from the description of the above-described embodiments, according to the present invention, the portion that holds the interface between the multilayer optical thin film layers and the portion that disappears are formed by the heat generated by the laser irradiation. The reflectance modulation layered product is characterized in that a pattern with a modulated reflectance is formed. Therefore, the formation of the reflectance modulation pattern is performed by visualizing an image by pattern exposure to a photosensitive resin, and subsequent images. In principle, it is a simple and simple dry process that uses light fixing, so that it is possible to realize advanced anti-counterfeiting methods without relying on skilled skills, a large amount of time, expensive equipment, and advanced photography technology. it can. Furthermore, when producing a small lot product, it becomes a cheaper manufacturing method. In addition, since an image for obtaining the reflectance modulation pattern is determined by an exposure process, it is easy to develop a reflectance modulation pattern having a novel design by using a method such as multiple exposure of different patterns. Therefore, it is effective as a means for imparting a further advanced anti-counterfeit effect.
[0033]
Therefore, the present invention exhibits excellent practical effects as a reflectance modulation laminate that can be used for preventing counterfeiting of securities, credit cards, and the like, and a method of manufacturing the same.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an embodiment of a reflectance modulation laminate of the present invention in a side cross section.
FIG. 2 is a side sectional view of a structure in which a metal thin film layer and an infrared light absorption layer are applied to a base material, showing a manufacturing process of a reflectance modulation laminate of the present invention.
FIG. 3 is a side sectional view of a structure in which a photosensitive resin composition layer having a different refractive index is applied, showing a manufacturing process of a reflectance modulation laminate of the present invention.
FIG. 4 is a view showing a manufacturing process of the reflectance modulation laminate of the present invention, and a process of forming a modulation pattern of reflected light intensity by performing laser exposure on a photosensitive resin composition layer having a different refractive index. It is explanatory drawing represented with the side cross section.
FIG. 5 is a diagram showing a manufacturing process of the reflectance modulation laminate of the present invention, and is an explanatory view showing a process of fixing a visualized reflected light intensity modulation pattern in a side section.
[Explanation of symbols]
DESCRIPTION OF
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001158352A JP4715033B2 (en) | 2001-05-28 | 2001-05-28 | REFLECTIVE MODULATION LAMINATE AND ITS MANUFACTURING METHOD |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001158352A JP4715033B2 (en) | 2001-05-28 | 2001-05-28 | REFLECTIVE MODULATION LAMINATE AND ITS MANUFACTURING METHOD |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002347154A JP2002347154A (en) | 2002-12-04 |
JP4715033B2 true JP4715033B2 (en) | 2011-07-06 |
Family
ID=19002089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001158352A Expired - Fee Related JP4715033B2 (en) | 2001-05-28 | 2001-05-28 | REFLECTIVE MODULATION LAMINATE AND ITS MANUFACTURING METHOD |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4715033B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106574997B (en) * | 2014-05-26 | 2019-06-28 | 凸版印刷株式会社 | Anti-counterfeit structure body and anti-fake article |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04238098A (en) * | 1991-01-22 | 1992-08-26 | Toppan Printing Co Ltd | Forgery preventive material and true/false determination |
JPH09120252A (en) * | 1995-10-26 | 1997-05-06 | Toppan Printing Co Ltd | Relief image forming material and relief image forming method |
JPH10100573A (en) * | 1996-09-30 | 1998-04-21 | Toppan Printing Co Ltd | Paper and printed matter for preventing forgery |
JP2000111713A (en) * | 1998-10-06 | 2000-04-21 | Fuji Photo Film Co Ltd | Antidazzle hard coat film, its production, antidazzle antireflection film and image display device using these |
-
2001
- 2001-05-28 JP JP2001158352A patent/JP4715033B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04238098A (en) * | 1991-01-22 | 1992-08-26 | Toppan Printing Co Ltd | Forgery preventive material and true/false determination |
JPH09120252A (en) * | 1995-10-26 | 1997-05-06 | Toppan Printing Co Ltd | Relief image forming material and relief image forming method |
JPH10100573A (en) * | 1996-09-30 | 1998-04-21 | Toppan Printing Co Ltd | Paper and printed matter for preventing forgery |
JP2000111713A (en) * | 1998-10-06 | 2000-04-21 | Fuji Photo Film Co Ltd | Antidazzle hard coat film, its production, antidazzle antireflection film and image display device using these |
Also Published As
Publication number | Publication date |
---|---|
JP2002347154A (en) | 2002-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8848266B2 (en) | Security element and method for producing a security element | |
TWI460474B (en) | Anisotropic optical devices and method for making same | |
JP4091423B2 (en) | For example, a plastic object that is in the form of a film, such as a transfer film or a laminate film, or provided with such a film, and a method of forming a multicolor image on such a plastic object | |
JP4371400B2 (en) | Authentication recording medium creation method | |
JP4187196B2 (en) | Anti-counterfeit volume hologram laminate and anti-counterfeit volume hologram seal | |
TW201718283A (en) | Counterfeit-preventing structure | |
EP2147354B1 (en) | Method of manufacturing personal or valuable documents with a personalized hologram and personal or valuable document manufactured thereby | |
DE102005055123A1 (en) | Laser marking hologram and laser marking method directed to a hologram | |
JP2005529004A (en) | Multilayer body with a substrate comprising at least a portion of paper material and method for making laser-induced marks in such a multilayer body | |
JP5169781B2 (en) | Information recording body and information recording method thereof | |
JP5629965B2 (en) | Image forming body manufacturing method and laminate | |
JP2005517207A (en) | Method for forming anisotropic crystal film on receptor plate by transfer from donor plate, donor plate and method for producing donor plate | |
AU2004275005B2 (en) | Method and film system for producing a personalised, optically variable element | |
JPH06247084A (en) | Diffraction pattern recording medium and method of authenticating the same | |
JP4715033B2 (en) | REFLECTIVE MODULATION LAMINATE AND ITS MANUFACTURING METHOD | |
RU2415026C2 (en) | Method of producing multilayer body and multilayer body | |
JPH04296594A (en) | Thermal recording material and image forming method using the same | |
JP5443885B2 (en) | Anti-counterfeit media and anti-counterfeit seal | |
JP2010286768A (en) | Counterfeit-preventing volume hologram laminate | |
JP4635358B2 (en) | Method for manufacturing partial reflectance modulation pattern forming body | |
JP2003058026A (en) | Forgery preventive volume hologram laminate | |
JP2623984B2 (en) | Anti-counterfeiting material and authenticity judgment method | |
WO2004086106A1 (en) | Transparent retroreflection material | |
JP6455076B2 (en) | Hologram laminate and information recording medium | |
JPS637977A (en) | Photosensitive recording material and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080425 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100812 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110301 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110314 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140408 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |