JP4711479B2 - Honeycomb structure current collector for electrode of lithium ion secondary battery, electrode for lithium ion secondary battery, and method for producing honeycomb structure current collector for electrode of lithium ion secondary battery - Google Patents

Honeycomb structure current collector for electrode of lithium ion secondary battery, electrode for lithium ion secondary battery, and method for producing honeycomb structure current collector for electrode of lithium ion secondary battery Download PDF

Info

Publication number
JP4711479B2
JP4711479B2 JP30566699A JP30566699A JP4711479B2 JP 4711479 B2 JP4711479 B2 JP 4711479B2 JP 30566699 A JP30566699 A JP 30566699A JP 30566699 A JP30566699 A JP 30566699A JP 4711479 B2 JP4711479 B2 JP 4711479B2
Authority
JP
Japan
Prior art keywords
honeycomb structure
electrode
lithium ion
secondary battery
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30566699A
Other languages
Japanese (ja)
Other versions
JP2001126736A (en
Inventor
和靖 中根
幸三 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Japan Science and Technology Agency
Inoac Technical Center Co Ltd
National Institute of Japan Science and Technology Agency
Original Assignee
Inoac Corp
Japan Science and Technology Agency
Inoac Technical Center Co Ltd
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoac Corp, Japan Science and Technology Agency, Inoac Technical Center Co Ltd, National Institute of Japan Science and Technology Agency filed Critical Inoac Corp
Priority to JP30566699A priority Critical patent/JP4711479B2/en
Publication of JP2001126736A publication Critical patent/JP2001126736A/en
Application granted granted Critical
Publication of JP4711479B2 publication Critical patent/JP4711479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
この発明はリチウムイオン二次電池の電極用ハニカム構造集電体、リチウムイオン二次電池の電極及びリチウムイオン二次電池の電極用ハニカム構造集電体の製造方法に関する。
【0002】
【従来の技術】
近年、ノートパソコン、携帯電話、携帯ビデオカメラ等の電子機器における高機能化や小型化に伴い、小型で高容量の二次電池が要求されるようになり、それに応えるものとして、リチウムイオン二次電池が多用されている。
【0003】
このリチウムイオン二次電池は、図9に示すように、二酸化コバルト(CoO)やコバルト酸リチウム(LiCoO)の粉末または高価なコバルトを一部他の金属で置き換えた粉末からなる正極用活物質51を、アルミニウム箔等の金属箔やメッシュ等からなる集電体52に導電性塗料(バインダー)とともに塗布した構成のシート状正極53と、黒鉛化炭素、非晶質炭素などの粉末あるいは黒鉛化炭素繊維からなる負極用活物質61を、銅箔等からなる集電体62に導電性塗料(バインダー)とともに塗布した構成のシート状負極63とを、多孔質膜等からなるセパレータSを介して積層し、その積層体を電解液とともに電池ケース内に収納したものが一般的である。なお、円筒型リチウムイオン二次電池にあっては、前記正極、セパレータ及び負極からなる積層体が渦状に巻かれて、電解液とともに外装缶に収納されている。電解液はセパレータに含浸したものとされることもある。
【0004】
【発明が解決しようとする課題】
ところで、前記ノートパソコン、携帯電話、携帯ビデオカメラ等は、さらなる高機能化及び長時間連続使用が求められており、それに応じてリチウムイオン二次電池も一層高容量のものが必要になっている。
【0005】
前記リチウムイオン二次電池を高容量化するには、有効な活物質の量を増大させる必要がある。しかし、前記構造にあっては活物質層の厚み(塗布厚)を増そうとしても、塗布によってはそれほど厚く活物質を金属箔(集電体)表面に付着できず、たとえ金属箔表面に厚く付着できたとしても、活物質の厚みが大になるほど金属箔から活物質が剥離し易くなるので、活物質の厚み、すなわち有効な活物質の量に制限があり、高容量化が難しかった。
【0006】
この発明は前記の点に鑑みなされたものであって、軽量性を損なうことなく、しかも大容量化が可能なリチウムイオン二次電池の電極用ハニカム構造集電体、リチウムイオン二次電池の電極及びリチウムイオン二次電池の電極用ハニカム構造集電体の製造方法を提供するものである。
【0007】
【課題を解決するための手段】
請求項1に係る発明は、炭素質ハニカム構造体の外表面を含むセルの隔壁表面に窒化チタン膜を被着し、炭素質ハニカム構造体のセル径dが500〜700μmであることを特徴とするリチウムイオン二次電池の電極用ハニカム構造集電体に係る。
【0008】
この請求項1の発明によれば、集電体は、ハニカム構造からなるため、軽量で強度が高い。また、ハニカム構造集電体の断面におけるセルの積層数(段数)を増やしても充分な集電体の強度を維持できる。しかも、ハニカム構造のセル内に正極用または負極用活物質を充填するようにすれば、セルの積層数を増加させることによって活物質の総充填量を増大させることができ、個々のセルサイズを大きくする必要がないため、集電体の強度低下を生じることなく活物質の充填量を増大させ、リチウムイオン二次電池の高容量化を図ることができる。さらに、セルの積層数の増加によって活物質の総充填量を増大させても、活物質は各セル内に保持されるため、活物質を金属箔状集電体に厚く塗布する場合に生じる活物質の剥離や脱落等を防ぐことができる。
【0009】
請求項2に係る発明は、請求項1のハニカム構造集電体のセル内に正極用又は負極用活物質を充填し、ハニカム構造体のセル径dが500〜700μmであることを特徴とするリチウムイオン二次電池の電極に係る。
【0010】
この請求項2の発明によれば、軽量で強度の高いハニカム構造集電体のセル内に正極用又は負極用活物質を充填するため、軽量な電極が得られる。しかも、セル内に活物質が充填されるため、セルの積層数を増やして活物質の総充填量の増大を図っても、活物質の剥離や脱落の恐れがなく、リチウムイオン二次電池の高容量化を実現することができる。
【0011】
請求項3に係る発明は、正極用又は負極用活物質がハニカム構造のセル内に充填されるリチウムイオン二次電池の電極用集電体の製造に際し、熱分解によって炭化する有機質シート材料から形成したハニカム状成形体を非酸化性雰囲気中で燻焼炭化してセル径dが500〜700μmである炭素質ハニカム構造体を形成し、前記炭素質ハニカム構造体を気相反応装置内に置き、化学反応により窒化チタンを生成する原料ガスを750〜1100℃で前記気相反応装置内に数千回以上のパルスとして供給・排気を繰り返すことにより、当該炭素質ハニカム構造体の外表面を含むセルの隔壁表面に窒化チタン膜を被着させることを特徴とするリチウムイオン二次電池の電極用ハニカム構造集電体の製造方法に係る。
【0012】
この請求項3の発明によれば、有機質シート材料は軟質で糊付けもできるので、波型状の成形、平板状シートとの重ね合わせ、渦巻き成形などが容易であり、各種の市販段ボールを渦巻き状に巻いて用いることもでき、ハニカム構造からなる所望の集電体を容易に得ることができる。しかも、有機質シート材料から形成したハニカム状成形体を非酸化性雰囲気中で燻焼炭化した炭素質ハニカム構造体は、軽量なため、それによってリチウムイオン二次電池の電極も軽量にすることができる。
【0013】
【発明の実施の形態】
以下この発明を詳細に説明する。図1はこの発明に係るリチウムイオン二次電池の電極用ハニカム構造集電体の一実施例における概略斜視図、図2は図1の部分拡大断面図、図3は図1の集電体を用いたリチウムイオン二次電池用電極の一実施例の概略斜視図、図4は図3の部分拡大断面図、図5はこの発明の集電体の製造に用いる装置の一実施例の配置説明図、図6は実施例によって得られた炭素質ハニカム構造体のSEM観察による平均的な微構造の概略図、図7は充放電特性曲線、図8は放電量曲線である。
【0014】
図1及びその部分拡大図である図2に示すリチウムイオン二次電池の電極用ハニカム構造集電体10は、炭素質ハニカム構造体11の外表面を含むセル12の隔壁13表面に窒化チタン膜15を被着した構造からなる。
【0015】
炭素質ハニカム構造体11は、集電体10の骨格(基材)をなすもので、セル(孔)12が多数形成されたハニカム構造からなる。この炭素質ハニカム構造体11は、有機質シート材料からなるシート状のハニカム状成形体を、非酸化性雰囲気中で燻焼炭化したもので、原形状のハニカム形状をいくらか収縮して継承した形状からなる。有機質シート材料としては、熱分解により原型状を維持して炭化するものが用いられ、セルローズ系薄紙、熱硬化性樹脂系の繊維紙又はフィルムなどを挙げることができる。また、有機質シート材料からなるハニカム状成形体としては、前記有機質シート材料を糊などを用いて所望の段数、形状、大きさからなるハニカム状に成形したものであり、簡単には市販の段ボールを用いることもできる。なお、炭素質ハニカム構造体11の外形は平板状等、適宜の形状とされる。セル12の形状は、三角形、円形、四角形等、あるいはそれらの崩れた形状からなるものであってもよい。さらに、セル12のサイズやセルの隔壁13厚みは適宜とされるが、例としてセル12の開口径(円径の場合は直径、三角形の場合はその最長辺)が1mm以下、隔壁13厚みが20μm以下を挙げる。
【0016】
窒化チタン膜15は、集電体としての充分な表面導電性を確保するためのものであって、前記炭素質ハニカム構造体11の外表面11aを含むセル12の隔壁13表面、すなわち炭素質ハニカム構造体11の全表面に積層されている。その窒化チタン膜15の形成は、前記炭素質ハニカム構造体11を気相反応装置内に置き、化学反応により窒化チタンを生成する原料ガスを750〜1100℃で前記気相反応装置内に間欠的に、具体的には数千回以上のパルスとして供給・排気を繰り返すことによりなされる。
【0017】
前記窒化チタンを生成する原料ガスとしては、四塩化チタン(TiCl)、窒素及び水素の混合ガスを使用し、ガスの組成は例えば四塩化チタン1〜15%(モル%。以下同じ。)、窒素5〜50%、水素35〜94%が使用可能であり、特に四塩化チタン4〜8%、窒素10〜40%、水素52〜86%の混合ガスが実際上望ましい。なお、原料ガスとして窒素の代わりにアンモニア(NH)も使用することができる。
【0018】
反応温度は、炭素質ハニカム構造体11におけるセル12のサイズや隔壁13の厚み等を考慮して選択されるが、一般に高温になるほど窒化チタンの蒸着速度が増大し、窒化チタンが隔壁13表面に析出し易くなって、微細な部分へのガスの供給が妨げられるようになり、また低温では蒸着速度が低下して長時間の処理が必要になる。それらの観点から、反応温度は750〜1100℃が好ましく、特には780〜950℃の範囲が窒化チタンの性質及び効率の点から望ましい。
【0019】
前記原料ガスの間欠的供給(パルスとしての供給)は、真空吸引された反応容器(反応装置)内に瞬間的に行われる。それにより、炭素質ハニカム構造体11のセル12内が新鮮な原料ガスによって瞬間的に常圧まで満たされるから、一度に多数の炭素質ハニカム構造体11を反応容器内に収容しても、全ての炭素質ハニカム構造体に対して窒化チタンの析出が均一になされる。実際には、反応容器への原料ガスの瞬間的導入工程、所要時間原料ガスを保持して蒸着を行う工程、及び反応容器内から残留未反応原料ガスと反応生成する塩化水素ガスの真空吸引工程の3工程を1サイクルとする、極めて短時間のパルスを繰り返す必要がある。1サイクル内の工程の切り替えは、反応容器に通じる経路に設けた電磁弁を、予め設定したプログラムにしたがって開閉制御することにより行われる。
【0020】
前記反応容器内への原料ガスの常圧までの瞬間的導入は0.1秒以内に完了するが、反応析出のための保持時間は反応温度により調節する必要があり、温度が高いときは0.3秒程度の短時間で充分であるのに対し、温度が低いときは2秒程度まで長くするのが望ましい。次の排気に要する時間は、5Torr以下の圧力状態までガスを除去することを目安とし、吸熱反応により炭素質ハニカム構造体11の温度が一時的に低下するので、反応容器中に一度に多数の炭素質ハニカム構造体11が収容されているときは、炭素質ハニカム構造体11が、基準とする温度まで回復するためにも時間が必要となる。これらを考慮し、真空吸引の時間は一般に0.3〜2秒の範囲で設定される。これにより、1パルス当たりの所要時間は1.4〜4.0秒となる。
【0021】
なお、前記1回のパルスで炭素質ハニカム構造体11に被着する窒化チタンの量は極めて僅かなため、電気的導通を保証するには数千回以上、好ましくは8000〜15000回のパルスが必要である。
【0022】
また、図3及びその部分拡大断面図である図4に示すリチウムイオン二次電池用電極20は、前記集電体10のセル12内に活物質21を充填したものであって、活物質21が正極用活物質であれば正極となり、それに対して活物質21が負極活物質であれば負極となる。活物質21がセル12内に充填されるため、剥離や落下を生じず、またセル12の数を増やすことにより容易に活物質21の量を増やすことができる。それにより、高容量のリチウムイオン二次電池を得ることができるようになる。
【0023】
正極用活物質としては、二酸化コバルト(CoO)やコバルト酸リチウム(LiCoO)の粉末またはコバルトを一部他の金属で置き換えた粉末などからなる公知のものが用いられ、また負極用活物質としては、黒鉛化炭素、非晶質炭素などの粉末あるいは黒鉛化炭素繊維からなる公知のものが用いられる。それらの活物質21は、溶媒及びバインダーと混合されて前記セル12内に充填され、真空で乾燥される。真空乾燥は、減圧ポンプが連動した公知の真空乾燥炉を用いて200〜220℃の温度で行われる。
【0024】
【実施例】
以下実験室的な具体的な実施例について説明する。実際の製造では、装置等の規模を数百倍に拡大したものを使用できる。また、図5の装置では高温炉2の炉内雰囲気制御のため、炉中に石英ガラス製反応器1を挿入する方法を採ったが、大型の真空雰囲気炉を直接使用することも可能である。符号4は真空ポンプ、5は電磁弁ある。
【0025】
まず、市販の片段段ボール(コルゲートの山の高さ1mmのもの)を平面寸法25×25mmにし、接着剤(ゴム糊)を介して15段積層し、接着乾燥させた。その段ボール積層品をアルゴン雰囲気中で1000℃、4時間炭化処理し、20×10×20mmの炭素質ハニカム構造体を得た。この炭素質ハニカム構造体に対し、SEM観察を行った。図6は、その平均的な微細構造を示すものであり、セル12の径dが500〜700μm、隔壁13の厚みが約10μm、全体の空隙率が約90%であった。
【0026】
このようにして得られた炭素質ハニカム構造体11を気相反応容器(装置)1内に固定し、電気炉2を850℃に昇温し、水素15モル%を四塩化チタン飽和器7を通過させ、四塩化チタン濃度1.5%、水素63.5%、窒素35%の原料ガスにしてリザーバータンク6に蓄え、これから反応容器1内に圧力パルスとして供給し、10000パルスまでこれを行ない、集電体10を得た。このようにして得られた集電体10の電気抵抗率は、窒化チタン膜被着前の炭素質ハニカム構造体11の電気抵抗率が約0.10Ωcmであったのに対し、約50μΩcmであった。
【0027】
前記集電体10に対し、負極のみの評価を行った。その作製方法は、黒鉛粉末(MCMB;大阪ガスケミカル社製)55重量部と、溶媒(N−メチル−2−ピロリドン;キシダ化学社製)22.5重量部と、バインダー(KFポリマーL#1120;呉羽化学工業社製)22.5重量部とを混合して得た負極用ペーストを、それぞれ指圧により集電体10のセル内に充填した。次いで真空管走路内に収容し、200℃で72時間真空乾燥し、リチウムイオン電池負極を得た。
【0028】
前記リチウムイオン二次電池の負極に対し、それぞれ3極セルで充放電を行った。その結果を図7の充放電特性曲線、図8の放電量曲線で表す。3極セルにおける参照極と対象極にはリチウム箔、電解液には、1:1のEC(エチレンカーボネート)とDEC(ジエチレンカーボネート)からなる電解溶媒(三菱化学社製)に電解質としてLiClを溶解した1mol/lのLiCl/(EC+DEC)を用いた。
【0029】
【発明の効果】
以上図示し説明したように、請求項1の発明によれば、集電体は、ハニカム構造からなるため、軽量で強度が高いものとなる。しかも、セル内を正極用または負極用活物質の充填場所とできるため、活物質を集電体から剥離等なく保持することができるようになる。また、ハニカム構造集電体の断面におけるセルの積層数(段数)を増やしても充分な集電体の強度を維持できるため、セルの積層数を増加させることによって活物質の総充填量を増大させることができ、個々のセルサイズを大きくする必要がないため、集電体の強度低下を生じることなく活物質の充填量を増大させ、リチウムイオン二次電池の高容量化を図ることができる。さらに、セルの積層数の増加によって活物質の総充填量を増大させても、活物質は各セル内に保持されるため、活物質を金属箔状集電体に厚く塗布する場合に生じる活物質の剥離や脱落等を防ぐことができる。
【0030】
また、請求項2の発明によれば、軽量で強度の高いハニカム構造集電体のセル内に正極用又は負極用活物質を充填するため、軽量な電極が得られる。しかも、セル内に活物質が充填されるため、セルの積層数を増やして活物質の総充填量の増大を図っても、活物質の剥離や脱落の恐れがなく、リチウムイオン二次電池の高容量化を実現することができる。
【0031】
さらに請求項3の発明によれば、ハニカム状成形体を構成する有機質シート材料は軟質で糊付けも可能なため、波型状の成形、平板状シートとの重ね合わせ、渦巻き成形などが容易であり、各種の、市販の段ボールを渦巻き状に巻いて用いることもでき、ハニカム構造からなる所望の集電体を容易に得ることができる。しかも、有機質シート材料から形成したハニカム状成形体を非酸化性雰囲気中で燻焼炭化した炭素質ハニカム構造体は、軽量なため、それによってリチウムイオン二次電池の電極も軽量にすることができる。
【図面の簡単な説明】
【図1】この発明に係るリチウムイオン二次電池の電極用ハニカム構造集電体の一実施例における概略斜視図である。
【図2】図1の部分拡大断面図である。
【図3】図1の集電体を用いたリチウムイオン二次電池用電極の一実施例の概略斜視図である。
【図4】図3の部分拡大断面図である。
【図5】この発明の集電体の製造に用いる装置の一実施例の配置説明図である。
【図6】実施例によって得られた炭素質ハニカム構造体のSEM観察による平均的な微構造の概略図である。
【図7】充放電特性曲線である。
【図8】放電量曲線である。
【図9】従来のリチウムイオン二次電池の構造を示す概略図である。
【符号の説明】
10 集電体
11 炭素質ハニカム構造体
12 セル
13 隔壁
15 窒化チタン膜
20 電極
21 活物質
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a honeycomb structure current collector for an electrode of a lithium ion secondary battery, an electrode of a lithium ion secondary battery, and a method for manufacturing a honeycomb structure current collector for an electrode of a lithium ion secondary battery.
[0002]
[Prior art]
In recent years, as electronic devices such as notebook computers, mobile phones, and portable video cameras have become more sophisticated and smaller, there has been a demand for small, high-capacity secondary batteries. Batteries are frequently used.
[0003]
As shown in FIG. 9, this lithium ion secondary battery is a positive electrode comprising a powder of cobalt dioxide (CoO 2 ) or lithium cobaltate (Li x CoO 2 ) or a powder in which expensive cobalt is partially replaced with another metal. Sheet-like positive electrode 53 having a configuration in which active material 51 is applied to a current collector 52 made of a metal foil such as aluminum foil or a mesh together with a conductive paint (binder), and powders such as graphitized carbon and amorphous carbon Alternatively, a sheet-like negative electrode 63 having a structure in which a negative electrode active material 61 made of graphitized carbon fiber is applied to a current collector 62 made of copper foil or the like together with a conductive paint (binder), and a separator S made of a porous film or the like. In general, the laminated body is housed in a battery case together with an electrolytic solution. In the cylindrical lithium ion secondary battery, the laminate composed of the positive electrode, the separator, and the negative electrode is wound in a spiral shape and stored in an outer can together with the electrolytic solution. The electrolyte may be impregnated in the separator.
[0004]
[Problems to be solved by the invention]
By the way, the above-mentioned notebook personal computers, mobile phones, mobile video cameras, etc. are required to have higher functionality and continuous use for a long time, and accordingly, lithium ion secondary batteries are required to have higher capacities. .
[0005]
In order to increase the capacity of the lithium ion secondary battery, it is necessary to increase the amount of effective active material. However, in the above structure, even if the thickness of the active material layer (coating thickness) is increased, the active material cannot be deposited so thickly on the surface of the metal foil (current collector) depending on the coating, even if it is thick on the surface of the metal foil. Even if it can be adhered, the active material is more easily peeled off from the metal foil as the thickness of the active material is increased. Therefore, the thickness of the active material, that is, the amount of effective active material is limited, and it is difficult to increase the capacity.
[0006]
The present invention has been made in view of the above-described points, and has a honeycomb structure current collector for an electrode of a lithium ion secondary battery capable of increasing the capacity without impairing lightness, and an electrode of the lithium ion secondary battery And the manufacturing method of the honeycomb structure electrical power collector for electrodes of a lithium ion secondary battery is provided.
[0007]
[Means for Solving the Problems]
The invention according to claim 1 is characterized in that a titanium nitride film is deposited on the partition wall surface of the cell including the outer surface of the carbonaceous honeycomb structure, and the cell diameter d of the carbonaceous honeycomb structure is 500 to 700 μm. The present invention relates to a honeycomb structure current collector for an electrode of a lithium ion secondary battery.
[0008]
According to the first aspect of the present invention, since the current collector has a honeycomb structure, it is lightweight and has high strength. Moreover, even if the number of stacked cells (number of steps) in the cross section of the honeycomb structure current collector is increased, sufficient strength of the current collector can be maintained. In addition, if the positive electrode or negative electrode active material is filled in the cells of the honeycomb structure, the total filling amount of the active material can be increased by increasing the number of stacked cells, and the individual cell size can be increased. Since it is not necessary to increase the capacity, the filling amount of the active material can be increased without reducing the strength of the current collector, and the capacity of the lithium ion secondary battery can be increased. Furthermore, even if the total filling amount of the active material is increased by increasing the number of stacked cells, the active material is retained in each cell. Therefore, the active material generated when the active material is applied thickly to the metal foil current collector. It is possible to prevent the material from peeling off or falling off.
[0009]
The invention according to claim 2 is characterized in that the cells of the honeycomb structure current collector of claim 1 are filled with an active material for a positive electrode or a negative electrode, and the cell diameter d of the honeycomb structure is 500 to 700 μm. The present invention relates to an electrode of a lithium ion secondary battery.
[0010]
According to the second aspect of the present invention, since the active material for positive electrode or negative electrode is filled in the cells of the honeycomb structure current collector having light weight and high strength, a light electrode can be obtained. Moreover, since the active material is filled in the cell, there is no risk of the active material peeling or dropping even if the number of stacked cells is increased to increase the total amount of the active material. High capacity can be realized.
[0011]
The invention according to claim 3 is formed from an organic sheet material that is carbonized by thermal decomposition in the production of a current collector for an electrode of a lithium ion secondary battery in which a positive electrode or negative electrode active material is filled in a honeycomb structure cell. The carbonaceous honeycomb structure having a cell diameter d of 500 to 700 μm is formed by calcination carbonization in a non-oxidizing atmosphere, and the carbonaceous honeycomb structure is placed in a gas phase reactor. A cell containing the outer surface of the carbonaceous honeycomb structure is obtained by repeatedly supplying and exhausting a source gas for generating titanium nitride by chemical reaction as a pulse of several thousand times or more at 750 to 1100 ° C. The present invention relates to a method for manufacturing a honeycomb structure current collector for an electrode of a lithium ion secondary battery, wherein a titanium nitride film is deposited on the surface of the partition wall.
[0012]
According to the invention of claim 3, since the organic sheet material is soft and can be glued, corrugated molding, superposition with a flat sheet, spiral molding and the like are easy, and various commercially available corrugated cardboards are spirally shaped. The desired current collector having a honeycomb structure can be easily obtained. Moreover, since the carbonaceous honeycomb structure obtained by calcination and carbonization of a honeycomb-shaped formed body made of an organic sheet material in a non-oxidizing atmosphere is lightweight, the electrode of the lithium ion secondary battery can also be lightened. .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below. 1 is a schematic perspective view of an embodiment of a honeycomb structure current collector for an electrode of a lithium ion secondary battery according to the present invention, FIG. 2 is a partially enlarged cross-sectional view of FIG. 1, and FIG. 3 is a view of the current collector of FIG. FIG. 4 is a partially enlarged cross-sectional view of FIG. 3, and FIG. 5 is a layout explanation of an embodiment of an apparatus used for manufacturing the current collector of the present invention. FIG. 6, FIG. 6 is a schematic diagram of an average microstructure by SEM observation of the carbonaceous honeycomb structure obtained by the example, FIG. 7 is a charge / discharge characteristic curve, and FIG. 8 is a discharge amount curve.
[0014]
A honeycomb structure current collector 10 for an electrode of a lithium ion secondary battery shown in FIG. 1 and FIG. 2 which is a partially enlarged view thereof has a titanium nitride film on the surface of the partition wall 13 of the cell 12 including the outer surface of the carbonaceous honeycomb structure 11. 15 is applied.
[0015]
The carbonaceous honeycomb structure 11 forms a skeleton (base material) of the current collector 10 and has a honeycomb structure in which a large number of cells (holes) 12 are formed. This carbon honeycomb structure 11 is obtained by calcining and carbonizing a sheet-like honeycomb formed body made of an organic sheet material in a non-oxidizing atmosphere. Become. As the organic sheet material, a material that is carbonized while maintaining its original shape by pyrolysis is used, and examples thereof include cellulose thin paper, thermosetting resin fiber paper, or a film. In addition, as a honeycomb-shaped formed body made of an organic sheet material, the organic sheet material is formed into a honeycomb shape having a desired number of steps, shape, and size using glue or the like. It can also be used. The outer shape of the carbonaceous honeycomb structure 11 is an appropriate shape such as a flat plate. The shape of the cell 12 may be a triangle, a circle, a quadrangle, or the like, or a broken shape thereof. Further, the size of the cell 12 and the thickness of the partition wall 13 of the cell are appropriately determined. For example, the opening diameter of the cell 12 (diameter in the case of a circle diameter, the longest side in the case of a triangle) is 1 mm or less, and the partition wall 13 thickness is List 20 μm or less.
[0016]
The titanium nitride film 15 is for ensuring sufficient surface conductivity as a current collector, and the surface of the partition wall 13 of the cell 12 including the outer surface 11a of the carbonaceous honeycomb structure 11, that is, the carbonaceous honeycomb. It is laminated on the entire surface of the structure 11. The titanium nitride film 15 is formed by placing the carbonaceous honeycomb structure 11 in a gas phase reactor and intermittently supplying a raw material gas for generating titanium nitride by a chemical reaction at 750 to 1100 ° C. in the gas phase reactor. Specifically, it is done by repeating supply and exhaust as pulses of several thousand times or more.
[0017]
As the raw material gas for producing the titanium nitride, a mixed gas of titanium tetrachloride (TiCl 4 ), nitrogen and hydrogen is used, and the composition of the gas is, for example, 1 to 15% (mol%; the same applies hereinafter) of titanium tetrachloride. Nitrogen 5-50% and hydrogen 35-94% can be used. In particular, a mixed gas of titanium tetrachloride 4-8%, nitrogen 10-40% and hydrogen 52-86% is practically desirable. In addition, ammonia (NH 3 ) can also be used as a raw material gas instead of nitrogen.
[0018]
The reaction temperature is selected in consideration of the size of the cells 12 in the carbonaceous honeycomb structure 11 and the thickness of the partition walls 13. In general, the higher the temperature, the higher the deposition rate of titanium nitride, and the titanium nitride is deposited on the surfaces of the partition walls 13. It becomes easy to precipitate, and the supply of the gas to the fine part is hindered. Further, at a low temperature, the deposition rate is lowered and a long time treatment is required. From these viewpoints, the reaction temperature is preferably 750 to 1100 ° C., and particularly in the range of 780 to 950 ° C. is desirable from the viewpoint of the properties and efficiency of titanium nitride.
[0019]
The supply of the source gas intermittently (supply as a pulse) is instantaneously performed in a vacuum-evacuated reaction vessel (reaction apparatus). Thereby, since the inside of the cells 12 of the carbonaceous honeycomb structure 11 is instantaneously filled with fresh raw material gas to normal pressure, even if a large number of carbonaceous honeycomb structures 11 are accommodated in the reaction vessel at once, Titanium nitride is uniformly deposited on the carbonaceous honeycomb structure. Actually, the step of instantaneously introducing the source gas into the reaction vessel, the step of performing deposition while holding the source gas for the required time, and the step of vacuum suction of hydrogen chloride gas generated by reaction with the residual unreacted source gas from the reaction vessel It is necessary to repeat an extremely short time pulse, with these three steps as one cycle. Switching between processes within one cycle is performed by opening and closing a solenoid valve provided in a path leading to the reaction vessel according to a preset program.
[0020]
The instantaneous introduction of the source gas into the reaction vessel up to the normal pressure is completed within 0.1 seconds, but the holding time for the reaction precipitation needs to be adjusted by the reaction temperature, and is 0 when the temperature is high. A short time of about 3 seconds is sufficient, but when the temperature is low, it is desirable to increase the time to about 2 seconds. The time required for the next exhaust is to remove the gas to a pressure state of 5 Torr or less, and the temperature of the carbonaceous honeycomb structure 11 is temporarily lowered by the endothermic reaction. When the carbonaceous honeycomb structure 11 is accommodated, time is required for the carbonaceous honeycomb structure 11 to recover to the reference temperature. Considering these, the vacuum suction time is generally set in the range of 0.3 to 2 seconds. As a result, the required time per pulse is 1.4 to 4.0 seconds.
[0021]
The amount of titanium nitride deposited on the carbonaceous honeycomb structure 11 in one pulse is very small, so that several thousand times or more, preferably 8000 to 15000 pulses are required to ensure electrical continuity. is necessary.
[0022]
3 and FIG. 4 which is a partially enlarged cross-sectional view thereof, the lithium ion secondary battery electrode 20 is obtained by filling the active material 21 in the cell 12 of the current collector 10. If it is an active material for positive electrodes, it will become a positive electrode, and if the active material 21 is a negative electrode active material, it will become a negative electrode. Since the active material 21 is filled in the cell 12, peeling or dropping does not occur, and the amount of the active material 21 can be easily increased by increasing the number of the cells 12. As a result, a high-capacity lithium ion secondary battery can be obtained.
[0023]
As the positive electrode active material, a known material made of a powder of cobalt dioxide (CoO 2 ) or lithium cobaltate (Li x CoO 2 ) or a powder in which cobalt is partially replaced with another metal is used. As the active material, a known material made of powder of graphitized carbon or amorphous carbon or graphitized carbon fiber is used. These active materials 21 are mixed with a solvent and a binder, filled in the cell 12, and dried in a vacuum. The vacuum drying is performed at a temperature of 200 to 220 ° C. using a known vacuum drying furnace in which a vacuum pump is linked.
[0024]
【Example】
A specific laboratory example will be described below. In actual manufacturing, an apparatus or the like whose scale is increased several hundred times can be used. Further, in the apparatus of FIG. 5, a method of inserting the quartz glass reactor 1 into the furnace is adopted for controlling the atmosphere inside the high temperature furnace 2, but a large vacuum atmosphere furnace can also be directly used. . Reference numeral 4 is a vacuum pump, and 5 is a solenoid valve.
[0025]
First, a commercially available single-stage cardboard (one with a corrugated ridge height of 1 mm) was made to have a planar size of 25 × 25 mm, laminated in 15 stages via an adhesive (rubber glue), and dried. The corrugated board laminate was carbonized in an argon atmosphere at 1000 ° C. for 4 hours to obtain a carbon honeycomb structure having a size of 20 × 10 × 20 mm. SEM observation was performed on this carbonaceous honeycomb structure. FIG. 6 shows the average microstructure. The diameter d of the cell 12 is 500 to 700 μm, the thickness of the partition wall 13 is about 10 μm, and the overall porosity is about 90%.
[0026]
The carbonaceous honeycomb structure 11 thus obtained is fixed in a gas phase reaction vessel (apparatus) 1, the electric furnace 2 is heated to 850 ° C., and 15 mol% of hydrogen is supplied to a titanium tetrachloride saturator 7. Passed through and stored in the reservoir tank 6 as a raw material gas having a titanium tetrachloride concentration of 1.5%, hydrogen of 63.5%, and nitrogen of 35%, and then supplied as a pressure pulse into the reaction vessel 1 and up to 10,000 pulses. The current collector 10 was obtained. The electrical resistivity of the current collector 10 thus obtained was about 50 μΩcm, compared to about 0.10 Ωcm for the carbonaceous honeycomb structure 11 before deposition of the titanium nitride film. It was.
[0027]
For the current collector 10, only the negative electrode was evaluated. The production method is as follows: graphite powder (MCMB; manufactured by Osaka Gas Chemical Co., Ltd.) 55 parts by weight, solvent (N-methyl-2-pyrrolidone; manufactured by Kishida Chemical Co., Ltd.) 22.5 parts by weight, and binder (KF polymer L # 1120). A paste for negative electrode obtained by mixing 22.5 parts by weight of Kureha Chemical Industry Co., Ltd., was filled into the cells of the current collector 10 by finger pressure. Subsequently, it accommodated in a vacuum tube runway, and vacuum-dried at 200 degreeC for 72 hours, and the lithium ion battery negative electrode was obtained.
[0028]
The negative electrode of the lithium ion secondary battery was charged and discharged with a tripolar cell. The result is represented by the charge / discharge characteristic curve of FIG. 7 and the discharge amount curve of FIG. Lithium foil is used for the reference electrode and the target electrode in the three-electrode cell, and LiCl 4 is used as an electrolyte in an electrolytic solvent (manufactured by Mitsubishi Chemical Corporation) made of 1: 1 EC (ethylene carbonate) and DEC (diethylene carbonate). Dissolved 1 mol / l LiCl 4 / (EC + DEC) was used.
[0029]
【The invention's effect】
As illustrated and described above, according to the first aspect of the present invention, the current collector has a honeycomb structure, so it is lightweight and has high strength. In addition, since the inside of the cell can be filled with a positive electrode or negative electrode active material, the active material can be held from the current collector without peeling. In addition, even if the number of stacked cells (stages) in the cross section of the honeycomb structure current collector is increased, sufficient current collector strength can be maintained, so increasing the number of stacked cells increases the total active material filling amount. Since there is no need to increase the size of each cell, the filling amount of the active material can be increased without reducing the strength of the current collector, and the capacity of the lithium ion secondary battery can be increased. . Furthermore, even if the total filling amount of the active material is increased by increasing the number of stacked cells, the active material is retained in each cell. Therefore, the active material generated when the active material is applied thickly to the metal foil current collector. It is possible to prevent the material from peeling off or falling off.
[0030]
In addition, according to the invention of claim 2, since the positive electrode or negative electrode active material is filled in the cells of the lightweight and high strength honeycomb structure current collector, a light electrode can be obtained. Moreover, since the active material is filled in the cell, there is no risk of the active material peeling or dropping even if the number of stacked cells is increased to increase the total amount of the active material. High capacity can be realized.
[0031]
Furthermore, according to the invention of claim 3, since the organic sheet material constituting the honeycomb-shaped formed body is soft and can be glued, it is easy to form a corrugated shape, overlap with a flat sheet, or form a spiral. Various commercially available cardboards can also be used in a spiral shape, and a desired current collector having a honeycomb structure can be easily obtained. Moreover, since the carbonaceous honeycomb structure obtained by calcination and carbonization of a honeycomb-shaped formed body made of an organic sheet material in a non-oxidizing atmosphere is lightweight, the electrode of the lithium ion secondary battery can also be lightened. .
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of an embodiment of a honeycomb structured current collector for an electrode of a lithium ion secondary battery according to the present invention.
FIG. 2 is a partially enlarged cross-sectional view of FIG.
3 is a schematic perspective view of an embodiment of an electrode for a lithium ion secondary battery using the current collector of FIG. 1. FIG.
4 is a partially enlarged sectional view of FIG. 3;
FIG. 5 is an explanatory view of an arrangement of an embodiment of an apparatus used for manufacturing a current collector according to the present invention.
FIG. 6 is a schematic diagram of an average microstructure of a carbonaceous honeycomb structure obtained in an example by SEM observation.
FIG. 7 is a charge / discharge characteristic curve.
FIG. 8 is a discharge amount curve.
FIG. 9 is a schematic view showing the structure of a conventional lithium ion secondary battery.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Current collector 11 Carbon honeycomb structure 12 Cell 13 Partition 15 Titanium nitride film 20 Electrode 21 Active material

Claims (3)

炭素質ハニカム構造体の外表面を含むセルの隔壁表面に窒化チタン膜を被着し、炭素質ハニカム構造体のセル径dが500〜700μmであることを特徴とするリチウムイオン二次電池の電極用ハニカム構造集電体。An electrode of a lithium ion secondary battery, wherein a titanium nitride film is deposited on the partition wall surface of the cell including the outer surface of the carbonaceous honeycomb structure, and the cell diameter d of the carbonaceous honeycomb structure is 500 to 700 μm Honeycomb structure current collector. 請求項1のハニカム構造集電体のセル内に正極用又は負極用活物質を充填し、ハニカム構造体のセル径dが500〜700μmであることを特徴とするリチウムイオン二次電池の電極。An electrode for a lithium ion secondary battery, wherein the cells of the honeycomb structure current collector of claim 1 are filled with an active material for a positive electrode or a negative electrode, and the cell diameter d of the honeycomb structure is 500 to 700 µm . 正極用又は負極用活物質がハニカム構造のセル内に充填されるリチウムイオン二次電池の電極用集電体の製造に際し、
熱分解によって炭化する有機質シート材料から形成したハニカム状成形体を非酸化性雰囲気中で燻焼炭化してセル径dが500〜700μmである炭素質ハニカム構造体を形成し、
前記炭素質ハニカム構造体を気相反応装置内に置き、化学反応により窒化チタンを生成する原料ガスを750〜1100℃で前記気相反応装置内に数千回以上のパルスとして供給・排気を繰り返すことにより、当該炭素質ハニカム構造体の外表面を含むセルの隔壁表面に窒化チタン膜を被着させることを特徴とするリチウムイオン二次電池の電極用ハニカム構造集電体の製造方法。
When manufacturing a current collector for an electrode of a lithium ion secondary battery in which a positive electrode or negative electrode active material is filled in a honeycomb structure cell,
A honeycomb formed body formed from an organic sheet material carbonized by thermal decomposition is calcined and carbonized in a non-oxidizing atmosphere to form a carbon honeycomb structure having a cell diameter d of 500 to 700 μm .
The carbonaceous honeycomb structure is placed in a gas phase reactor, and a source gas for generating titanium nitride by a chemical reaction is repeatedly supplied and exhausted as a pulse of several thousand times or more at 750 to 1100 ° C. in the gas phase reactor. Thus, a titanium nitride film is deposited on the partition wall surface of the cell including the outer surface of the carbonaceous honeycomb structure, and the method for producing a honeycomb structure current collector for an electrode of a lithium ion secondary battery is provided.
JP30566699A 1999-10-27 1999-10-27 Honeycomb structure current collector for electrode of lithium ion secondary battery, electrode for lithium ion secondary battery, and method for producing honeycomb structure current collector for electrode of lithium ion secondary battery Expired - Fee Related JP4711479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30566699A JP4711479B2 (en) 1999-10-27 1999-10-27 Honeycomb structure current collector for electrode of lithium ion secondary battery, electrode for lithium ion secondary battery, and method for producing honeycomb structure current collector for electrode of lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30566699A JP4711479B2 (en) 1999-10-27 1999-10-27 Honeycomb structure current collector for electrode of lithium ion secondary battery, electrode for lithium ion secondary battery, and method for producing honeycomb structure current collector for electrode of lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2001126736A JP2001126736A (en) 2001-05-11
JP4711479B2 true JP4711479B2 (en) 2011-06-29

Family

ID=17947898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30566699A Expired - Fee Related JP4711479B2 (en) 1999-10-27 1999-10-27 Honeycomb structure current collector for electrode of lithium ion secondary battery, electrode for lithium ion secondary battery, and method for producing honeycomb structure current collector for electrode of lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4711479B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100149A (en) * 2004-09-30 2006-04-13 Sharp Corp Lithium ion secondary battery
JP4854377B2 (en) * 2006-04-28 2012-01-18 シャープ株式会社 Lithium secondary battery
JP2008103260A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd Solid electrolyte sheet, electrode sheet, and all-solid secondary battery using it
FR2944031B1 (en) * 2009-04-06 2013-06-14 Commissariat Energie Atomique ELECTROCHEMICAL CELL WITH ELECTROLYTE FLOW COMPRISING THROUGH ELECTRODES AND METHOD OF MANUFACTURE
US11171389B2 (en) 2017-03-13 2021-11-09 Kabushiki Kaisha Toyota Chuo Kenkyusho Secondary battery and method for producing the same
JP7211119B2 (en) 2019-01-30 2023-01-24 トヨタ自動車株式会社 SECONDARY BATTERY AND METHOD FOR MANUFACTURING SECONDARY BATTERY
JP7327302B2 (en) 2020-07-06 2023-08-16 トヨタ自動車株式会社 BATTERY AND MANUFACTURING METHOD THEREOF
JP7318599B2 (en) 2020-07-06 2023-08-01 トヨタ自動車株式会社 battery
JP2022090903A (en) 2020-12-08 2022-06-20 トヨタ自動車株式会社 Honey-comb type lithium ion battery and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294260A (en) * 1988-09-29 1990-04-05 Aisin Seiki Co Ltd Lattice for lead-acid battery
JPH08213026A (en) * 1994-11-28 1996-08-20 Katayama Tokushu Kogyo Kk Metallic porous body for battery electrode substrate, battery plate, and manufacture thereof
JPH1032006A (en) * 1996-05-17 1998-02-03 Katayama Tokushu Kogyo Kk Metal sheet for battery electrode plate and electrode for battery using the metal sheet
JPH10312794A (en) * 1997-05-13 1998-11-24 Etsuro Kato Negative electrode of lithium ion secondary battery and manufacture thereof
JPH10312793A (en) * 1997-05-13 1998-11-24 Etsuro Kato Lithium ion secondary battery positive electrode and its manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294260A (en) * 1988-09-29 1990-04-05 Aisin Seiki Co Ltd Lattice for lead-acid battery
JPH08213026A (en) * 1994-11-28 1996-08-20 Katayama Tokushu Kogyo Kk Metallic porous body for battery electrode substrate, battery plate, and manufacture thereof
JPH1032006A (en) * 1996-05-17 1998-02-03 Katayama Tokushu Kogyo Kk Metal sheet for battery electrode plate and electrode for battery using the metal sheet
JPH10312794A (en) * 1997-05-13 1998-11-24 Etsuro Kato Negative electrode of lithium ion secondary battery and manufacture thereof
JPH10312793A (en) * 1997-05-13 1998-11-24 Etsuro Kato Lithium ion secondary battery positive electrode and its manufacture

Also Published As

Publication number Publication date
JP2001126736A (en) 2001-05-11

Similar Documents

Publication Publication Date Title
TWI616017B (en) Multi-layer battery electrode design for enabling thicker electrode fabrication
EP2387805B1 (en) A process for producing carbon nanostructure on a flexible substrate, and energy storage devices comprising flexible carbon nanostructure electrodes
JP5806097B2 (en) Power storage device
JP4182060B2 (en) Lithium secondary battery
US20100216023A1 (en) Process for producing carbon nanostructure on a flexible substrate, and energy storage devices comprising flexible carbon nanostructure electrodes
JP2017522725A5 (en)
US10593945B2 (en) Printed planar lithium-ion batteries
CN105304860B (en) A kind of method for preparing graphene-based hearth electrode and battery and ultracapacitor
JP4711479B2 (en) Honeycomb structure current collector for electrode of lithium ion secondary battery, electrode for lithium ion secondary battery, and method for producing honeycomb structure current collector for electrode of lithium ion secondary battery
CN107331528A (en) Multi-layer composite electrode and the lithium ion battery electric capacity using the electrode
JP3427435B2 (en) Electrode for lithium secondary battery and lithium secondary battery
CN111095618B (en) Electrode for electricity storage device and method for manufacturing same
CN114284507A (en) Negative electrode sandwich structure, preparation method and application thereof
KR20220023966A (en) Improvements in Atomic Layer Deposition for High Aspect Ratio Electrode Structures
JP2013134865A (en) Electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2008198408A (en) Nonaqueous electrolyte secondary battery
JP2001143687A (en) Positive electrode for non-aqueous secondary cell
CN108666533A (en) A kind of preparation method and application of lithium-sulfur cell sulfur electrode
CN115332541A (en) Sandwich-structured flexible negative current collector and preparation method and application thereof
JP3167767B2 (en) Negative electrode for lithium secondary battery and method for producing the same
JP3361069B2 (en) Method for producing negative electrode for secondary battery
JP2000195523A (en) Nonaqueous secondary battery
JP4393075B2 (en) Negative electrode material, negative electrode using the same, and lithium ion battery and lithium polymer battery using the negative electrode
TWI771142B (en) Preparation method and preparation device of lithium battery electrode
JP2002324547A (en) Negative electrode structure of lithium ion battery and its manufacturing method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110322

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350