JP4711035B2 - Centering device and coaxiality measuring method using the centering device - Google Patents

Centering device and coaxiality measuring method using the centering device Download PDF

Info

Publication number
JP4711035B2
JP4711035B2 JP2001231574A JP2001231574A JP4711035B2 JP 4711035 B2 JP4711035 B2 JP 4711035B2 JP 2001231574 A JP2001231574 A JP 2001231574A JP 2001231574 A JP2001231574 A JP 2001231574A JP 4711035 B2 JP4711035 B2 JP 4711035B2
Authority
JP
Japan
Prior art keywords
hole
shaft
base
axis
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001231574A
Other languages
Japanese (ja)
Other versions
JP2003042755A (en
Inventor
健史 児島
武志 南谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001231574A priority Critical patent/JP4711035B2/en
Publication of JP2003042755A publication Critical patent/JP2003042755A/en
Application granted granted Critical
Publication of JP4711035B2 publication Critical patent/JP4711035B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、芯出し装置及び該芯出し装置を用いた同軸度測定方法の改良に関する。
【0002】
【従来の技術】
従来から、主軸をワークの孔又は軸と同軸上に位置決めして当該孔又は軸の芯出しをする芯出し装置が知られている。図7に示すのは、このような芯出し装置53の一例で、上記主軸3は略円柱状に形成した基台2に当該基台2と同軸上に立設されている。また、基台2には、主軸3の軸心A1の回りに等配した複数のスライド部材4が、当該基台2(主軸3)の軸心A1と直交する方向にスライド移動可能に設けられており、図7に示すように、これら各スライド部材4には、基台2(主軸3)の軸心A1側の端部を傾斜させて形成した被押圧部32とワーク8の孔9の内筒面9aに当接させる爪部54とが設けられている。
【0003】
また、上記芯出し装置53は、図7に示すように、基台2の支柱33の内筒面33aに嵌着させたブッシュ34で当該基台2(主軸3)の軸心A1方向にスライド移動可能に支持した駆動軸7を具備しており、該駆動軸7の下端部には、上記各スライド部材4の被押圧部32の傾斜に整合させて傾斜した傾斜面を駆動軸7の軸心の回りに配し、当該駆動軸7を下方にスライド移動させることで被押圧部32の傾斜面を押圧する押圧部31が設けられている。また、各スライド部材4は、各々が圧縮コイルばね39で基台2(主軸3)の軸心A1に向けて付勢されており、これにより、芯出し装置53は被押圧部32を駆動軸7の押圧部31に当接させている。
【0004】
そして、上記芯出し装置53を用いてワーク8の孔9の芯出しをする場合、まず、各スライド部材4の爪部54とワーク8の孔9の内筒面9aと対向させるようにして当該芯出し装置53をワーク8にセットし、この状態で駆動軸7を下方に向けてスライド移動させる。これにより、各スライド部材4の被押圧部32が駆動軸7の押圧部31で押圧され、各スライド部材4が、被押圧部32を上記押圧部31に摺動させながらワーク8の孔9の内筒面9aに向けて同期してスライド移動する。そして、各スライド部材4に配した爪部54がワーク8の孔9の内筒面9aに所要に当接することで、芯出し装置53の基台2(主軸3)の軸心A1がワーク8の孔9の軸心A2に位置決めされて当該ワーク8の孔9の芯出しが完了する。
【0005】
ところで、上記芯出し装置53を用いて、例えば、図6に示すように、有底円筒状に形成され、底部55に孔9と同軸上に形成した軸(被測定部)10を立設したワーク8の、孔9を基準とした軸(被測定部)10の同軸度を測定する場合、芯出し装置53の基台2にダイヤルゲージ(同軸度測定手段、図1参照)を設置し、上記芯出し装置53の各スライド部材4に配した爪部54をワーク8の孔9の内筒面9aに所要に当接させて当該孔9の芯出しをし、この状態で上記ダイヤルゲージの測定子をワーク8の軸(被測定部)10の外筒面10aに所要に接触させた際のダイヤルゲージの目盛を0に設定し、当該芯出し装置53を、基台2(主軸3)の軸心A1(孔9の軸心A2)の回りに所定角度づつ回転させて順次位置決めさせ、各位置決め位置におけるダイヤルゲージの針の振れを読むことにより、当該ワーク8の孔9を基準とした軸(被測定部)10の同軸度を測定することが従来から行われていた。
【0006】
しかしながら、従来の同軸度測定方法では、駆動軸7を下方に駆動させることで各スライド部材4を基台2(主軸3)の軸心A1方向にスライド移動させ、これにより、各スライド部材4に配した爪部54をワーク8の孔9の内筒面9aに当接させて当該孔9の芯出しをし、この時のダイヤルゲージ(同軸度測定手段)の針の振れを読み取る、といった一連の操作を、芯出し装置53を各測定位置に位置決めさせた毎に行う必要があり、特に、高い精度が要求されるワーク8においては、全てのロットに対して上記孔9を基準とした軸(被測定部)10の同軸度を測定する必要があるので、測定作業は多大な時間と手間とを要する極めて効率の悪いものであった。さらに、上記ワーク8の孔9を基準とした軸(被測定部)10の同軸度をより高い精度で測定するには、より多くの測定位置で同軸度を測定することが必要となり、さらなる時間と手間とを要することとなり、同軸度測定方法の改善が求められていた。
【0007】
【発明が解決しようとする課題】
そこで本発明は、上記事情に鑑みてなされたもので、ワークの孔又は軸を基準とした被測定部の同軸度を、容易に、且つ高い精度で測定することができる芯出し装置及び該芯出し装置を用いた同軸度測定方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明のうち請求項1に記載の発明は、孔と該孔と同軸上に形成した軸を有するワークの前記孔を基準とした前記軸の同軸度を測定する芯出し装置において、略円柱状に形成され、前記ワークの前記孔または前記軸と同軸上に位置決めさせる主軸を配した基台と、前記主軸の軸心の回りに等配され、前記基台に各々が前記主軸の軸心と直交する方向にスライド可能に支持された複数のスライド部材と、前記主軸の軸心を中心とする円に内接するように前記各スライド部材に設けられ爪部と、前記各スライド部材を同期させてスライド移動させて前記各爪部を前記ワークの前記孔の内筒面又は軸の外筒面に当接させる駆動手段と、前記基台に設けられ、前記ワークの前記孔の内筒面または前記軸の外筒面に係合可能な測定子を有する同軸度測定手段と、を具備し、前記基台を回転させることにより、前記爪部を前記ワークの前記孔の内筒面または前記軸の外筒面に沿って回転させ、かつ、前記測定子を前記ワークの前記軸の外筒面または前記孔の内筒面に沿って回転させる、ことを特徴とする。
【0009】
また、上記目的を達成するために、本発明のうち請求項に記載の発明は、主軸をワークの孔又は軸と同軸上に位置決めして当該孔又は軸の芯出しをする芯出し装置を用いて当該孔又は軸を基準とした被測定部の同軸度を測定する同軸度測定方法であって、略円柱状の基台に設けられ、前記主軸の軸心の回りに等配した複数のスライド部材を、当該主軸の軸心と直交する方向に同期させてスライド移動させることにより、前記主軸の軸心と平行な軸線の回りに回転可能であって、且つ当該主軸の軸心を中心とする円に内接するように前記各スライド部材に配した爪部を前記ワークの孔の内筒面又は軸の外筒面に当接させ、前記主軸をワークの孔又は軸と同軸上に位置決めさせて当該孔又は軸の芯出しをしておいて、前記基台に配した同軸度測定手段の測定子を前記ワークの被測定部に係合させ、前記爪部を前記ワークの孔の内筒面又は前記軸の外筒面に沿って回転させるようにして前記基台を前記主軸の軸心の回りに回転させることにより前記ワークの孔又は軸を基準とした前記被測定部の同軸度を測定することを特徴とする。
【0010】
【発明の実施の形態】
本発明の一実施の形態の芯出し装置及び該芯出し装置を用いた同軸度測定方法を図1乃至図6に基づいて説明する。まず、本実施の形態の芯出し装置及び該芯出し装置を用いた同軸度測定方法の概略を説明する。本芯出し装置1は、図1乃至図3に示すように、基台2に当該基台2と同軸上に主軸3を立設しておいて、基台2(主軸3)の軸心A1(図3参照)の回りに複数(本実施例では3個)のスライド部材4を配し、また、各スライド部材4に、上記基台2(主軸3)の軸心A1と平行な軸5に回動可能に軸支され、且つ該基台2(主軸3)の軸心A1を中心とする円C1(図2参照)に内接するように配したベアリング(爪部)6を設けた。そして、駆動手段としての駆動軸7の駆動により各スライド部材4を基台2の半径方向に同期させてスライド移動させ、各ベアリング(爪部)6の外輪をワーク8(図6参照)の孔9の内筒面9aに当接させることにより、基台2(主軸3)の軸心A1をワーク8の孔9の軸心A2(図3参照)と同軸上に位置決めさせて当該孔9の芯出しをする構造になっている。
【0011】
また、図1に示すように、本芯出し装置1には、ワーク8の孔9と同軸上に形成した軸(被測定部)10の外筒面10aに係合可能な測定子11を備えたダイヤルゲージ12(同軸度測定手段)が上記基台2に配設されており、上記各スライド部材4に配したベアリング(爪部)6をワーク8の孔9の内筒面9aに当接させて当該孔9の芯出しをした状態で、上記測定子11を軸(被測定部)10の外筒面10aに接触させ、ベアリング(爪部)6を回転させるようにして基台2を当該基台2(主軸3)の軸心A1の回りに回転させることにより、本芯出し装置1を用いて、ワーク8の孔9を基準とした軸(被測定部)10の同軸度を測定することができる構造になっている。
【0012】
次に、本芯出し装置1の詳細を説明する。図1に示すように、上記基台2は、略円柱状に形成された外径がD1の基台上部13と、上縁部にフランジ14を有した外径がD2の基台下部15とに分割されており、これら基台上部13と基台下部15とを図示しない複数のボルトで締結させることにより一体に形成させている。また、基台下部15には、図1乃至図3に示すように、後述するスライド部材4の基部16を当該基台2の軸心A1と直交する方向にスライド移動可能に案内する複数(本実施例では3本)の第1の案内溝17が当該基台下部15の上面に所定深さで形成されており、各第1の案内溝17の底面には、当該第1の案内溝17の底面から下方に延出し、後述するスライド部材4の爪保持部18をスライド移動可能に案内すると共に当該スライド部材4のスライド移動を前進端位置及び後退端位置で規制する第2の案内溝19が形成されている。
【0013】
また、基台下部15には上記ダイヤルゲージ(同軸度測定手段)12と測定子11とを連係させる各機構部品を配するための空間20が設けられており、図1に示すように、該空間20には、略L字状に形成した測定子11の屈曲部を回動可能に軸支したブロック21が配設されている。さらに、基台下部15の底面には、基台2(主軸3)と同軸上に形成され、後述するワーク8(図6参照)の軸(被測定部)10を収納可能な軸収納孔22が設けられており、該軸収納孔22は、上記測定子11が当該軸収納孔22を臨むようにして上記空間20と連通されている。また、基台上部13の上面には上記ダイヤルゲージ12を保持するための略円筒状のダイヤルゲージ保持部23が設けられており、図1に示すように、該ダイヤルゲージ保持部23で保持されたダイヤルゲージ12のスピンドル24が、基台上部13に嵌着したブッシュ25でスピンドル摺動方向にストローク可能に支持したロッド26を介することで、略L字状の測定子11のアームの一側面に形成した曲面部27に当接されている。これにより、上記ロッド26を介してダイヤルゲージ12のスピンドル24と測定子11とが連係され、測定子11の回動動作に連動してダイヤルゲージ12のスピンドル24がストロークされる構造になっている。なお、測定子11のアームの他側面には、ワーク8の軸(被測定部)10の外筒面10aに当接させる曲面28が形成されている。
【0014】
また、上記各スライド部材4は、上記基台下部15の第1の案内溝17で基台2の軸心A1と直交する方向にスライド移動可能に支持される基部16と、上記ベアリング(爪部)6を配した爪保持部18と、を略T字状に配して形成されており、図1に示すように、該基部16には、一側の切欠部を当該基部の上面に突出させたピン29が嵌着されている。また、爪保持部18には、外側(基台2の軸心A1と反対側)の側面の下部に爪収納溝30が形成されており、該爪収納溝30には、上記ピン29と同軸上に設置した軸5で回動可能に軸支されたベアリング(爪部)6が収納されている。そして、スライド部材4の基部16の基台2の軸心A1側の端部には、後述する駆動軸(駆動手段)7の下端に設けた押圧部31の傾斜面に摺動可能に当接させる被押圧部32が形成されている。
【0015】
また、上記基台上部13の上面には、当該基台2の軸心A1と同軸上に立設した略円筒状の支柱33が形成されており、図1に示すように、上記駆動軸7は該支柱33の内筒面33aに嵌着したブッシュ34により基台2(主軸3)の軸心A1方向にスライド移動可能に支持されている。また、上記支柱33の外筒面には、主軸3の当該主軸3の軸心A1と同軸上に設けた孔35が所要の嵌め合いで嵌合されており、これにより、主軸3が、基台2の上面に当該基台2の軸心A1と同軸上に位置決めされる構造になっている。なお、上記主軸3には、上記孔35と同軸上に設けられ、駆動軸7の上側の部分を摺動可能に案内する孔36が形成されている。
【0016】
また、上記駆動軸(駆動手段)7は、前述したように、下端部に、各スライド部材4の被押圧部32の傾斜面に整合させて傾斜させた傾斜面を当該駆動軸7の軸心の回りに配した押圧部31を備え、図1に示すように、段差を境界にして上側の部分の外径が、上記ブッシュ34で支持された当該段差の下側の部分の外径よりも小さく形成されている。そして、本芯出し装置1は、上記段差で駆動軸7の上側の部分に挿通したリング状のワッシャ37を係止し、駆動軸7を、該ワッシャ37と孔35の端面との間に介在させた第1の圧縮コイルばね38により下方に付勢させている。
【0017】
さらに、本芯出し装置1は、図1及び図3に示すように、各スライド部材4の基部16の上面に突出させたピン29の切欠部と、該切欠部を基台2(主軸3)の軸心A1に向けて付勢する第2の圧縮コイルばね39と、が収納された凹部40を基台上部13の下面に配しており、各スライド部材4を基台2(主軸3)の軸心A1に向けて付勢し、各スライド部材4の被押圧部32を上記駆動軸7の押圧部31に所要に当接させている。これにより、本芯出し装置1は、各スライド部材4に配したベアリング(爪部)6の外輪が、基台2(主軸3)の軸心A1を中心とする円C1(図2参照)に内接した状態を維持することができる構造になっている。
【0018】
また、図1に示すように、上記主軸3及び駆動軸7には、各々を主軸の軸心A1と直交する方向に貫通した断面が略四角形状の孔41,42が形成されており、これら孔41,42には、略L字状に形成され、一側端が軸43で回動可能に軸支されたレバー44が挿通されている。また、上記レバー44には、駆動軸7側の孔42の内側上面に係合可能な突起45が形成されており、本芯出し装置1は、該レバー44を軸43の回りに図1における時計回り方向に回動させることにより、当該突起45が駆動軸7の孔42の内側上面を押し上げて第1の圧縮コイルばね38を圧縮しながら駆動軸7を上方にスライド移動させる構造になっている。これにより、本芯出し装置1は、駆動軸7の押圧部31が上方に移動し、各スライド部材4が、当該押圧部31の上方への移動に連動するようにして基台2(主軸3)の軸心A1に向けてスライド移動される。
【0019】
また、本芯出し装置1は、上記レバー44を傾倒(回動)させた状態から当該レバー44を開放させると、駆動軸7を第1の圧縮コイルばね38のばね力で基台2(主軸3)の軸心A1上を下方にスライド移動させ、当該駆動軸7の押圧部31により、各スライド部材4の被押圧部32を互いの傾斜面を摺動させるようにして押圧する。これにより、各スライド部材4は、当該各スライド部材4に配したベアリング(爪部)6が基台2(主軸3)の軸心A1を中心とする円に内接した状態を維持し、上記第2の圧縮コイルばね39を圧縮させながら基台2(主軸3)の軸心A1と直交する方向(軸心A1から離反する方向)に同期してスライド移動する構造になっている。
【0020】
なお、図1に示すように、主軸3の孔41の開口部の一側には、傾倒させた状態のレバー44を当該主軸3内に収納するためのレバー収納溝46が形成されている。また、図1に示す符号47は駆動軸7の押圧部31の端面に当接させて当該駆動軸7の下降端位置に位置決めさせるためのボルトであり、また、符号48は測定子11の図1における時計回り方向への回動動作を所要位置で規制するためのストッパーボルトである。また、本実施例では同軸度測定手段としてダイヤルゲージ12を用いたが、同軸度測定手段はこれに限定されるものではなく、基台2(主軸3)を当該基台2(主軸3)の軸心A1の回りに回転させることにより、ワーク8の孔9を基準とした軸(被測定部)10の同軸度を測定可能であれば他の手段(装置)を用いてもよい。
【0021】
さらに、本実施例では、基台下部15の外径D2を基台上部13の外径D1よりも小さく形成し、また、各スライド部材4を、基台2(主軸3)の軸心A1と直交する方向に延出させた基部16と、ベアリング(爪部)6を保持する爪保持部18と、を略T字状に一体形成させたが、図4に示すように、基台上部13と基台下部15とを同一の外径で形成しておいて、各スライド部材4を基部16のみの状態、即ち略長方体に形成すると共に、各スライド部材4の被押圧部32が形成された側と反対側の端面に、基台2(主軸3)の軸心A1と平行な軸5で回動可能に軸支され、且つ当該基台2(主軸3)の軸心A1を中心とする円に内接するようにベアリング(爪部)6を配して芯出し装置51を構成してもよい。
【0022】
また、本実施例では、各スライド部材4に配したベアリング(爪部)6をワーク8の孔9の内筒面9aに当接させることで当該ワーク8の孔9の芯出しをしたが、図5に示すように、駆動軸7を基台2(主軸3)の軸心A1上を所要方向に駆動させることで、各スライド部材4が基台2の軸心A1に向けて同期してスライド移動されるように芯出し装置52を構成しておいて、各スライド部材4に配したベアリング(爪部)6をワーク8(図6参照)の軸10の外筒面10aに当接させることで当該軸10の芯出しをするように構成してもよい。この場合、当該芯出し装置52に同軸度測定手段(図示せず)を設けておいて、該同軸度測定手段の測定子(図示せず)をワーク8(図6参照)の孔9の内筒面9aに当接させた状態で、基台2を当該基台2の軸心A1の回りに回転させることにより、当該ワーク8の軸10を基準とした孔9の同軸度を測定することが可能となる。
【0023】
このような構成において、本実施の形態の芯出し装置1を用いた同軸度測定方法の作用を説明する。ここでは、図6に示すように、内径D3の孔9と当該孔9と同軸上に形成した外径D4(D3>D4)の軸(被測定部)10とを有したワーク8の、孔9を基準とした軸10の同軸度を、本芯出し装置1を用いて測定する際の作用を説明する。
【0024】
まず、本芯出し装置1を上記ワーク8にセットするに際し、レバー44を軸43の回りに図1における時計回り方向に回動させ、駆動軸7を、該レバー44の回動動作に連動させて第1の圧縮コイルばね38を圧縮させながら基台2(主軸3)の軸心A1上を上方にスライド移動させ、上記押圧部31を上方に移動させる。これにより、押圧部31と被押圧部32とが相互に摺動しながら各スライド部材4が基台2(主軸3)の軸心A1に向けてスライド移動し、当該各スライド部材4の爪保持部18に配したベアリング(爪部)6が内接する円C1(図2参照)の直径が当該ワーク8の孔9の内径D3(図6参照)よりも小さくなり、基台下部15をワーク8の孔9の内側に挿入させることが可能な状態となる。
【0025】
次に、芯出し装置1の基台下部15をワーク8の孔9に挿入させると共に当該基台下部15の底面に設けた軸収納孔22にワーク8の軸(被測定部)10の上側部分を収納し、この状態でレバー44を開放し、第1の圧縮コイルばね38のばね力により当該レバー44を軸43の回りに図1における反時計回り方向に回動させる。これにより、駆動軸7が基台2(主軸3)の軸心A1上を下方にスライド移動し、各スライド部材4の被押圧部32の傾斜面が記駆動軸7の押圧部31の傾斜面で押圧されて、各スライド部材4が、駆動軸7のスライド移動に連動し、且つ各々が同期して基台2(主軸3)の軸心A1と直交する方向にスライド移動する。そして、各スライド部材4に配したベアリング(爪部)6がワーク8の孔9の内筒面9aに当接し、当該孔9の直径D3(図6参照)と、基台2(主軸3)の軸心A1を中心とする円C1(図2参照)の直径とが等しくなる。これにより、基台2(主軸3)の軸心A1がワーク8の孔9の軸心A2上に位置決めされ、当該孔9が芯出しされる。
【0026】
一方、本芯出し装置1により上記ワーク8の孔9の芯出しがなされた状態では、基台下部15の軸収納孔22に収納された軸(被測定部)10の外筒面10aに、ダイヤルゲージ(同軸度測定手段)12のスピンドル24に連係した測定子11が所要に係合されており、この状態で当該ダイヤルゲージ12の目盛をリセット(針を0に設定)する。そして、本芯出し装置1を用いた同軸度測定方法では、基台2(主軸3)を当該基台2の軸心A1の回りに回転させた際のダイヤルゲージ12の振れを読み取ることにより、当該ワーク8の孔9を基準とした軸(被測定部)10の同軸度を測定することができる。
【0027】
したがって、本実施の形態の芯出し装置1は、各スライド部材4に配したベアリング(爪部)6をワーク8の孔9の内筒面9aに当接させて当該孔9の芯出しをすることにより、当該芯出し装置1の基台2(主軸3)の軸心A1と芯出ししたワーク8の孔9の軸心A2とを同軸上に位置決めした状態を維持して、基台2(主軸3)を当該基台2の軸心A1の回りに回転させることが可能となり、このような芯出し装置1を用いて上記ワーク8の孔9を基準とした軸(被測定部)10の同軸度を測定する場合には、当該芯出し装置1に設置したダイヤルゲージ(同軸度測定手段)の測定子11を軸(被測定部)10の外筒面10aに当接させた状態で、基台2(主軸3)を当該基台2の軸心A1の回りに回転させた際のダイヤルゲージ12の振れを読み取ることにより、容易に、且つ高い精度で測定することが可能となる。
【0028】
【発明の効果】
本発明のうち請求項1に記載の発明によれば、略円柱状に形成され、ワークの孔または軸と同軸上に位置決めさせる主軸を配した基台と、主軸の軸心の回りに等配され、基台に各々が主軸の軸心と直交する方向にスライド可能に支持された複数のスライド部材と、主軸の軸心を中心とする円に内接するように各スライド部材に設けられ爪部と、各スライド部材を同期させてスライド移動させて各爪部をワークの孔の内筒面又は軸の外筒面に当接させる駆動手段と、基台に設けられ、ワークの孔の内筒面または軸の外筒面に係合可能な測定子を有する同軸度測定手段と、を具備し、基台を回転させることにより、爪部をワークの孔の内筒面または軸の外筒面に沿って回転させ、かつ、測定子をワークの軸の外筒面または孔の内筒面に沿って回転させるので、駆動手段でスライド部材を駆動して各スライド部材の爪部をワークの孔の内筒面又は軸の外筒面に当接させることにより、基台(主軸)が孔又は軸と同軸上に位置決めされて当該孔又は軸の芯出しをすることができ、また、爪部を回転させることにより、基台(主軸)が孔又は軸と同軸上に位置決めされた状態を維持して当該基台(主軸)を当基台(主軸)の軸心の回りに回転させることが可能となる。また、爪部を、外輪と内輪とを具備したベアリングとしたので、基台(主軸)が孔又は軸と同軸上に位置決めされた状態を維持して、基台(主軸)を当該基台(主軸)の軸心の回りに回転させることができる。さらに、ワークには爪部を当接させた孔又は軸を基準とした同軸度が測定される被測定部が設けられており、基台に、被測定部に係合可能な測定子を有した同軸度測定手段を設けたので、基台(主軸)をワークの孔又は軸と同軸上に位置決めさせた状態(孔又は軸が芯出しされた状態)で同軸度測定手段の測定子を被測定部に係合させ、基台(主軸)を当該基台(主軸)の軸心の回りに回転させることにより、当該ワークの孔又は軸を基準とした被測定部の同軸度を容易に、且つ高い精度で測定することが可能となり、測定工程の効率化を図ることができる。
【0029】
また、本発明のうち請求項に記載の発明によれば、略円柱状の基台に設けられ、主軸の軸心の回りに等配した複数のスライド部材を、当該主軸の軸心と直交する方向に同期させてスライド移動させることにより、主軸の軸心と平行な軸線の回りに回転可能であって、且つ当該主軸の軸心を中心とする円に内接するように各スライド部材に配した爪部をワークの孔の内筒面又は軸の外筒面に当接させ、主軸をワークの孔又は軸と同軸上に位置決めさせて当該孔又は軸の芯出しをしておいて、基台に配した同軸度測定手段の測定子をワークの被測定部に係合させ、爪部をワークの孔の内筒面又は軸の外筒面に沿って回転させるようにして基台を主軸の軸心の回りに回転させることによりワークの孔又は軸を基準とした被測定部の同軸度を測定するので、固定式(回転しない)の爪部を備えた従来の芯出し装置を用いてワークの孔又は軸を基準とした被測定部の同軸度を測定した場合と比較して、測定位置(芯出し装置のワークに対する軸心の回りの位相角度位置)を変更する毎に、爪部をワークの孔の内筒面又は軸の外筒面から離反させ、基台(主軸)を次の測定位置まで移動(回転)させて再び爪部を当該ワークの孔の内筒面又は軸の外筒面に当接させるような煩雑な操作をなくすことができ、ワークの孔又は軸を基準とした被測定部の同軸度を容易に、且つ高い精度で測定することが可能となり、測定工程の効率化を図ることが可能となる。
【図面の簡単な説明】
【図1】 本実施の形態の芯出し装置の説明図で、特に、同軸度測定手段を具備した芯出し装置の一部を断面で示した正面図である。
【図2】 本実施の形態の芯出し装置の底面図である。
【図3】 本実施の形態の芯出し装置の説明図で、特に、図2におけるB−B矢視図である。
【図4】 本芯出し装置の他の実施例の説明図である。
【図5】 本芯出し装置のさらに他の実施例の説明図である。
【図6】 ワークの一例を示す図である。
【図7】 従来の芯出し装置の説明図である。
【符号の説明】
1 芯出し装置2 基台3 主軸4 スライド部材6 ベアリング(爪部)7 駆動軸(駆動手段)8 ワーク9 孔(ワーク)10 軸(ワーク)11 測定子12 ダイヤルゲージ(同軸度測定手段)31 押圧部32 被押圧部
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to an improvement of a centering device and a coaxiality measuring method using the centering device.
[0002]
[Prior art]
  2. Description of the Related Art Conventionally, a centering device that positions a main shaft coaxially with a hole or shaft of a workpiece and centers the hole or shaft is known. FIG. 7 shows an example of such a centering device 53. The main shaft 3 is erected on the base 2 formed in a substantially cylindrical shape so as to be coaxial with the base 2. The base 2 is provided with a plurality of slide members 4 equally arranged around the axis A1 of the main shaft 3 so as to be slidable in a direction perpendicular to the axis A1 of the base 2 (main shaft 3). As shown in FIG. 7, each slide member 4 has a pressed portion 32 formed by inclining an end portion on the axis A1 side of the base 2 (main shaft 3) and a hole 9 of the workpiece 8. A claw portion 54 that is brought into contact with the inner cylindrical surface 9a is provided.
[0003]
  Further, as shown in FIG. 7, the centering device 53 is slid in the direction of the axis A1 of the base 2 (main shaft 3) by a bush 34 fitted to the inner cylindrical surface 33a of the column 33 of the base 2. A drive shaft 7 that is movably supported is provided, and an inclined surface that is inclined in alignment with the inclination of the pressed portion 32 of each slide member 4 is provided at the lower end portion of the drive shaft 7. A pressing portion 31 is provided that presses the inclined surface of the pressed portion 32 by being arranged around the center and sliding the drive shaft 7 downward. Further, each slide member 4 is urged toward the axis A1 of the base 2 (main shaft 3) by a compression coil spring 39, whereby the centering device 53 causes the pressed portion 32 to move to the drive shaft. 7 is in contact with the pressing portion 31.
[0004]
  When centering the hole 9 of the workpiece 8 using the centering device 53, first, the claw portion 54 of each slide member 4 and the inner cylindrical surface 9a of the hole 9 of the workpiece 8 are opposed to each other. The centering device 53 is set on the work 8, and in this state, the drive shaft 7 is slid downward. Thereby, the pressed portion 32 of each slide member 4 is pressed by the pressing portion 31 of the drive shaft 7, and each slide member 4 slides the pressed portion 32 on the pressed portion 31 while the hole 9 of the workpiece 8 is pressed. Synchronously slides toward the inner cylindrical surface 9a. And the nail | claw part 54 distribute | arranged to each slide member 4 contact | abuts to the inner cylinder surface 9a of the hole 9 of the workpiece | work 8 required, The axial center A1 of the base 2 (main shaft 3) of the centering apparatus 53 becomes the workpiece | work 8. Centering of the hole 9 of the workpiece 8 is completed.
[0005]
  By the way, using the centering device 53, for example, as shown in FIG. 6, a shaft (measured portion) 10 formed in a bottomed cylindrical shape and coaxially formed with the hole 9 is erected on the bottom portion 55. When measuring the coaxiality of the shaft (measured part) 10 with respect to the hole 9 of the workpiece 8, a dial gauge (coaxiality measuring means, see FIG. 1) is installed on the base 2 of the centering device 53. The nail | claw part 54 distribute | arranged to each slide member 4 of the said centering apparatus 53 is made to contact | abut to the inner cylinder surface 9a of the hole 9 of the workpiece | work 8 as needed, and the said hole 9 is centered, In this state, the said dial gauge The scale of the dial gauge when the probe is brought into contact with the outer cylindrical surface 10a of the shaft (measurement target) 10 of the workpiece 8 is set to 0, and the centering device 53 is set to the base 2 (main shaft 3). Each axis is rotated by a predetermined angle around the axis A1 (axis A2 of the hole 9) and sequentially positioned. By reading the deflection of the needle dial gauge at the decided position, measuring the axial (target subject) relative to the hole 9 of the work 8 10 coaxiality has been conventionally performed.
[0006]
  However, in the conventional coaxiality measurement method, each slide member 4 is slid in the direction of the axis A1 of the base 2 (main shaft 3) by driving the drive shaft 7 downward. A series of operations such as centering the hole 9 by bringing the arranged claw portion 54 into contact with the inner cylindrical surface 9a of the hole 9 of the workpiece 8 and reading the deflection of the needle of the dial gauge (coaxiality measuring means) at this time. Must be performed every time the centering device 53 is positioned at each measurement position. In particular, in the work 8 that requires high accuracy, the axis based on the hole 9 is used for all lots. Since it is necessary to measure the concentricity of the (measured part) 10, the measurement work is extremely inefficient, requiring a lot of time and labor. Furthermore, in order to measure the coaxiality of the shaft (measured portion) 10 with the hole 9 of the workpiece 8 as a reference with higher accuracy, it is necessary to measure the coaxiality at more measurement positions, and further time is required. Therefore, improvement of the coaxiality measuring method has been demanded.
[0007]
[Problems to be solved by the invention]
  Therefore, the present invention has been made in view of the above circumstances, and a centering device capable of easily and highly accurately measuring the coaxiality of a measured portion with respect to a hole or axis of a workpiece and the core. An object of the present invention is to provide a coaxiality measuring method using a feeding device.
[0008]
[Means for Solving the Problems]
  In order to achieve the above object, the invention described in claim 1 of the present invention is:The coaxiality of the shaft with respect to the hole of the workpiece having a hole and a shaft formed coaxially with the hole is measured.In the centering device, it is formed in a substantially cylindrical shape,The hole or shaft of the workpiece;On the same axisTo positionA base with a spindle,SaidEvenly distributed around the axis of the main shaft,SaidEach is on the baseSaidA plurality of slide members supported so as to be slidable in a direction perpendicular to the axis of the main shaft;SaidInscribed in a circle centered on the spindle axisSaidProvided on each slide memberTheNails,SaidSlide each slide member synchronouslySaidEach nailSaidWorkSaidDriving means for contacting the inner cylindrical surface of the hole or the outer cylindrical surface of the shaft;A coaxiality measuring means provided on the base and having a probe that can be engaged with an inner cylindrical surface of the hole of the workpiece or an outer cylindrical surface of the shaft;ComprisingBy rotating the base, the claw portion is rotated along the inner cylindrical surface of the hole of the workpiece or the outer cylindrical surface of the shaft, and the measuring element is outer cylindrical surface of the shaft of the workpiece. Or rotate along the inner cylindrical surface of the hole,It is characterized by that.
[0009]
  In order to achieve the above object, the present invention claims2In the invention described in the above, the degree of coaxiality of the measured portion with respect to the hole or shaft is determined by using a centering device that positions the main shaft coaxially with the hole or shaft of the workpiece and centers the hole or shaft. A coaxiality measuring method for measuring, provided on a substantially cylindrical base,SaidBy sliding a plurality of slide members equally distributed around the axis of the main shaft in synchronization with the direction orthogonal to the axis of the main shaft,SaidIt can rotate around an axis parallel to the axis of the main shaft, and is inscribed in a circle centered on the axis of the main shaftSaidThe claw part arranged on each slide memberSaidAbut against the inner cylindrical surface of the workpiece hole or the outer cylindrical surface of the shaft,SaidThe main shaft is positioned coaxially with the hole or shaft of the workpiece and the hole or shaft is centered,SaidA probe of the coaxiality measuring means placed on the baseSaidEngage with the measured part of the workpiece,SaidNailSaidThe inner cylindrical surface of the hole in the workpiece orSaidRotate along the outer cylindrical surface of the shaftSaidBaseSaidBy rotating around the spindle axisSaidBased on workpiece hole or shaftSaidMeasure the coaxiality of the part to be measured.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
  A centering apparatus according to an embodiment of the present invention and a coaxiality measuring method using the centering apparatus will be described with reference to FIGS. First, an outline of a centering device of the present embodiment and a coaxiality measuring method using the centering device will be described. As shown in FIGS. 1 to 3, the centering device 1 has a main shaft 3 erected on the base 2 coaxially with the base 2, and an axis A <b> 1 of the base 2 (main shaft 3). A plurality of (three in this embodiment) slide members 4 are arranged around (see FIG. 3), and each slide member 4 has an axis 5 parallel to the axis A1 of the base 2 (main shaft 3). And a bearing (claw part) 6 provided so as to be inscribed in a circle C1 (see FIG. 2) centered on the axis A1 of the base 2 (main shaft 3). Then, each slide member 4 is slid in synchronization with the radial direction of the base 2 by driving the drive shaft 7 as drive means, and the outer ring of each bearing (claw part) 6 is inserted into the hole of the workpiece 8 (see FIG. 6). 9, the axial center A1 of the base 2 (main shaft 3) is positioned coaxially with the axial center A2 (see FIG. 3) of the hole 9 of the workpiece 8 so that the hole 9 is in contact with the inner cylindrical surface 9a. The structure is centered.
[0011]
  As shown in FIG. 1, the centering device 1 includes a measuring element 11 that can be engaged with an outer cylindrical surface 10 a of a shaft (measurement target) 10 that is formed coaxially with the hole 9 of the workpiece 8. A dial gauge 12 (coaxiality measuring means) is disposed on the base 2, and a bearing (claw portion) 6 disposed on each slide member 4 is brought into contact with the inner cylindrical surface 9a of the hole 9 of the workpiece 8. Then, with the hole 9 being centered, the measuring element 11 is brought into contact with the outer cylindrical surface 10a of the shaft (measured part) 10 and the bearing (claw part) 6 is rotated so that the base 2 is rotated. By rotating the base 2 (main shaft 3) about the axis A1, the centering device 1 is used to measure the coaxiality of the shaft (measured portion) 10 with respect to the hole 9 of the workpiece 8. It has a structure that can be done.
[0012]
  Next, details of the centering device 1 will be described. As shown in FIG. 1, the base 2 includes a base upper portion 13 having an outer diameter D1 formed in a substantially cylindrical shape, and a base lower portion 15 having an outer diameter D2 having a flange 14 at an upper edge portion. The base upper part 13 and the base lower part 15 are integrally formed by fastening with a plurality of bolts (not shown). Further, as shown in FIGS. 1 to 3, the base lower portion 15 is provided with a plurality of (books) for guiding a base portion 16 of a slide member 4 described later so as to be slidable in a direction perpendicular to the axis A <b> 1 of the base 2. In the embodiment, three first guide grooves 17 are formed at a predetermined depth on the upper surface of the base lower portion 15, and the first guide grooves 17 are formed on the bottom surfaces of the first guide grooves 17. A second guide groove 19 that extends downward from the bottom surface of the slide member 4 and guides a claw holding portion 18 of the slide member 4 described later so as to be slidable, and restricts the slide movement of the slide member 4 at the forward end position and the backward end position. Is formed.
[0013]
  In addition, a space 20 is provided in the base lower part 15 for arranging the mechanical parts for linking the dial gauge (coaxiality measuring means) 12 and the measuring element 11, as shown in FIG. The space 20 is provided with a block 21 that pivotally supports a bent portion of the measuring element 11 formed in a substantially L shape. Furthermore, a shaft storage hole 22 is formed on the bottom surface of the base lower portion 15 so as to be coaxial with the base 2 (main shaft 3) and can store a shaft (measured portion) 10 of a workpiece 8 (see FIG. 6) described later. The shaft housing hole 22 communicates with the space 20 so that the measuring element 11 faces the shaft housing hole 22. Further, a substantially cylindrical dial gauge holding portion 23 for holding the dial gauge 12 is provided on the upper surface of the base upper portion 13 and is held by the dial gauge holding portion 23 as shown in FIG. The spindle 24 of the dial gauge 12 is supported by a bush 26 fitted to the base upper part 13 via a rod 26 supported so as to be able to stroke in the spindle sliding direction. It is in contact with the curved surface portion 27 formed in the above. As a result, the spindle 24 of the dial gauge 12 and the measuring element 11 are linked via the rod 26, and the spindle 24 of the dial gauge 12 is stroked in conjunction with the turning operation of the measuring element 11. . A curved surface 28 is formed on the other side surface of the arm of the measuring element 11 so as to be in contact with the outer cylindrical surface 10a of the shaft (measured portion) 10 of the workpiece 8.
[0014]
  Each slide member 4 includes a base 16 supported by a first guide groove 17 in the base lower portion 15 so as to be slidable in a direction orthogonal to the axis A1 of the base 2, and the bearing (claw portion). ) And a claw holding portion 18 with 6 arranged in a substantially T shape. As shown in FIG. 1, the base portion 16 has a notch portion on one side protruding from the upper surface of the base portion. The pin 29 is fitted. Further, the claw holding portion 18 has a claw storage groove 30 formed in the lower part of the side surface on the outer side (opposite the axis A1 of the base 2). The claw storage groove 30 is coaxial with the pin 29. The bearing (claw part) 6 pivotally supported by the shaft 5 installed on the top is accommodated. The end portion of the base 16 of the slide member 4 on the axis A1 side of the base 2 is slidably brought into contact with the inclined surface of the pressing portion 31 provided at the lower end of the drive shaft (drive means) 7 described later. A pressed portion 32 to be pressed is formed.
[0015]
  Further, on the upper surface of the base upper portion 13, a substantially cylindrical column 33 standing on the same axis as the axis A <b> 1 of the base 2 is formed. As shown in FIG. 1, as shown in FIG. Is supported by a bush 34 fitted to the inner cylindrical surface 33a of the column 33 so as to be slidable in the direction of the axis A1 of the base 2 (main shaft 3). Further, a hole 35 provided coaxially with the axis A1 of the main shaft 3 of the main shaft 3 is fitted to the outer cylindrical surface of the support column 33 with a required fit. The structure is such that the upper surface of the base 2 is positioned coaxially with the axis A1 of the base 2. The main shaft 3 is provided with a hole 36 provided coaxially with the hole 35 and slidably guiding the upper portion of the drive shaft 7.
[0016]
  Further, as described above, the drive shaft (drive means) 7 has an inclined surface that is inclined at the lower end portion so as to be aligned with the inclined surface of the pressed portion 32 of each slide member 4. As shown in FIG. 1, the outer diameter of the upper portion with the step as a boundary is larger than the outer diameter of the lower portion of the step supported by the bush 34. It is formed small. Then, the centering device 1 locks the ring-shaped washer 37 inserted into the upper portion of the drive shaft 7 at the above step, and the drive shaft 7 is interposed between the washer 37 and the end face of the hole 35. The first compression coil spring 38 is biased downward.
[0017]
  Further, as shown in FIGS. 1 and 3, the centering device 1 has a notch portion of a pin 29 protruding from the upper surface of the base portion 16 of each slide member 4, and the notch portion as a base 2 (main shaft 3). A recess 40 in which a second compression coil spring 39 urged toward the shaft center A1 is housed is arranged on the lower surface of the base upper portion 13, and each slide member 4 is mounted on the base 2 (main shaft 3). The pressed portion 32 of each slide member 4 is brought into contact with the pressing portion 31 of the drive shaft 7 as required. Thereby, in the centering device 1, the outer ring of the bearing (claw part) 6 arranged on each slide member 4 is formed in a circle C1 (see FIG. 2) centering on the axis A1 of the base 2 (main shaft 3). It has a structure that can maintain the inscribed state.
[0018]
  Further, as shown in FIG. 1, the main shaft 3 and the drive shaft 7 are formed with holes 41 and 42 each having a substantially rectangular cross section penetrating in a direction perpendicular to the axis A1 of the main shaft. The holes 41 and 42 are inserted into a lever 44 that is formed in an approximately L shape and whose one end is pivotally supported by a shaft 43. Further, the lever 44 is formed with a protrusion 45 that can be engaged with the inner upper surface of the hole 42 on the drive shaft 7 side. The centering device 1 moves the lever 44 around the shaft 43 in FIG. By rotating clockwise, the projection 45 pushes up the inner upper surface of the hole 42 of the drive shaft 7 and compresses the first compression coil spring 38 to slide the drive shaft 7 upward. Yes. As a result, the centering device 1 is configured such that the pressing portion 31 of the drive shaft 7 moves upward, and each slide member 4 is interlocked with the upward movement of the pressing portion 31 so that the base 2 (the main shaft 3 ) Is slid toward the axis A1.
[0019]
  Further, when the lever 44 is released from the state where the lever 44 is tilted (turned), the centering device 1 moves the drive shaft 7 to the base 2 (main shaft) by the spring force of the first compression coil spring 38. 3) The shaft center A1 is slid downward and the pressed portion 31 of the drive shaft 7 presses the pressed portion 32 of each slide member 4 so that the inclined surfaces slide on each other. Thereby, each slide member 4 maintains the state in which the bearing (claw part) 6 distribute | arranged to each said slide member 4 was inscribed in the circle centering on axial center A1 of the base 2 (main axis | shaft 3), The second compression coil spring 39 is configured to slide in synchronization with a direction orthogonal to the axis A1 of the base 2 (main shaft 3) (a direction away from the axis A1) while compressing the second compression coil spring 39.
[0020]
  As shown in FIG. 1, a lever housing groove 46 for housing the tilted lever 44 in the main shaft 3 is formed on one side of the opening of the hole 41 of the main shaft 3. Further, reference numeral 47 shown in FIG. 1 is a bolt for contacting the end surface of the pressing portion 31 of the drive shaft 7 and positioning it at the lower end position of the drive shaft 7, and reference numeral 48 is a diagram of the measuring element 11. 1 is a stopper bolt for restricting a clockwise rotation operation at 1 at a required position. In this embodiment, the dial gauge 12 is used as the coaxiality measuring means. However, the coaxiality measuring means is not limited to this, and the base 2 (main shaft 3) is connected to the base 2 (main shaft 3). Other means (apparatus) may be used as long as the coaxiality of the shaft (measured portion) 10 with respect to the hole 9 of the workpiece 8 can be measured by rotating around the axis A1.
[0021]
  Furthermore, in this embodiment, the outer diameter D2 of the base lower part 15 is formed smaller than the outer diameter D1 of the base upper part 13, and each slide member 4 is connected to the axis A1 of the base 2 (main shaft 3). Although the base 16 extended in the orthogonal direction and the claw holding part 18 for holding the bearing (claw part) 6 are integrally formed in a substantially T shape, as shown in FIG. And the base lower part 15 are formed with the same outer diameter, and each slide member 4 is formed in a state of only the base portion 16, that is, in a substantially rectangular shape, and a pressed portion 32 of each slide member 4 is formed. Is pivotally supported by an axis 5 parallel to the axis A1 of the base 2 (main shaft 3) on the end surface opposite to the formed side, and is centered on the axis A1 of the base 2 (main shaft 3) The centering device 51 may be configured by arranging a bearing (claw portion) 6 so as to be inscribed in a circle.
[0022]
  Further, in this embodiment, the bearing (claw part) 6 arranged on each slide member 4 is brought into contact with the inner cylindrical surface 9a of the hole 9 of the work 8 to center the hole 9 of the work 8, As shown in FIG. 5, by driving the drive shaft 7 on the axis A <b> 1 of the base 2 (main shaft 3) in a required direction, each slide member 4 is synchronized toward the axis A <b> 1 of the base 2. The centering device 52 is configured to be slid and the bearing (claw portion) 6 disposed on each slide member 4 is brought into contact with the outer cylindrical surface 10a of the shaft 10 of the workpiece 8 (see FIG. 6). Thus, the shaft 10 may be centered. In this case, a coaxiality measuring means (not shown) is provided in the centering device 52, and a measuring element (not shown) of the coaxiality measuring means is placed in the hole 9 of the workpiece 8 (see FIG. 6). Measuring the concentricity of the hole 9 with respect to the axis 10 of the workpiece 8 by rotating the base 2 around the axis A1 of the base 2 while being in contact with the cylindrical surface 9a. Is possible.
[0023]
  In such a configuration, the operation of the coaxiality measuring method using the centering device 1 of the present embodiment will be described. Here, as shown in FIG. 6, a hole of a workpiece 8 having a hole 9 having an inner diameter D3 and an axis (measured part) 10 having an outer diameter D4 (D3> D4) formed coaxially with the hole 9. The operation when the coaxiality of the shaft 10 with reference to 9 is measured using the centering device 1 will be described.
[0024]
  First, when the centering device 1 is set on the workpiece 8, the lever 44 is rotated in the clockwise direction in FIG. 1 around the shaft 43, and the drive shaft 7 is interlocked with the rotating operation of the lever 44. Then, while compressing the first compression coil spring 38, it slides upward on the axis A1 of the base 2 (main shaft 3) to move the pressing portion 31 upward. As a result, each slide member 4 slides toward the axis A <b> 1 of the base 2 (main shaft 3) while the pressing portion 31 and the pressed portion 32 slide relative to each other, and the claw holding of each slide member 4 is performed. The diameter of a circle C1 (see FIG. 2) in which a bearing (claw portion) 6 disposed on the portion 18 is inscribed is smaller than the inner diameter D3 (see FIG. 6) of the hole 9 of the workpiece 8, and the base lower portion 15 is moved to the workpiece 8. It will be in the state which can be made to insert inside the hole 9 of this.
[0025]
  Next, the base lower part 15 of the centering device 1 is inserted into the hole 9 of the work 8 and the upper part of the shaft (measured part) 10 of the work 8 is inserted into the shaft housing hole 22 provided in the bottom surface of the base lower part 15. In this state, the lever 44 is opened, and the lever 44 is rotated about the shaft 43 in the counterclockwise direction in FIG. 1 by the spring force of the first compression coil spring 38. Thereby, the drive shaft 7 slides downward on the axis A <b> 1 of the base 2 (main shaft 3), and the inclined surface of the pressed portion 32 of each slide member 4 is the inclined surface of the pressing portion 31 of the drive shaft 7. The slide members 4 are slid in the direction orthogonal to the axis A1 of the base 2 (main shaft 3) in synchronization with the slide movement of the drive shaft 7 and in synchronization with each other. A bearing (claw portion) 6 disposed on each slide member 4 abuts on the inner cylindrical surface 9a of the hole 9 of the work 8, and the diameter D3 (see FIG. 6) of the hole 9 and the base 2 (main shaft 3). The diameter of a circle C1 (see FIG. 2) centered on the axis A1 is equal. As a result, the axis A1 of the base 2 (main shaft 3) is positioned on the axis A2 of the hole 9 of the workpiece 8, and the hole 9 is centered.
[0026]
  On the other hand, in the state in which the hole 9 of the workpiece 8 is centered by the centering device 1, the outer cylinder surface 10 a of the shaft (measured portion) 10 housed in the shaft housing hole 22 of the base lower part 15 is The probe 11 linked to the spindle 24 of the dial gauge (coaxiality measuring means) 12 is properly engaged. In this state, the scale of the dial gauge 12 is reset (the needle is set to 0). And in the coaxiality measuring method using this centering device 1, by reading the deflection of the dial gauge 12 when the base 2 (main shaft 3) is rotated around the axis A1 of the base 2, It is possible to measure the coaxiality of the axis (measured part) 10 with respect to the hole 9 of the workpiece 8.
[0027]
  Therefore, the centering device 1 of the present embodiment centers the hole 9 by bringing the bearing (claw portion) 6 disposed on each slide member 4 into contact with the inner cylindrical surface 9 a of the hole 9 of the workpiece 8. Thus, the base 2 (main shaft 3) of the centering device 1 and the center A2 of the hole 9 of the centered workpiece 8 are coaxially positioned while maintaining the state where the base 2 (main shaft 3) is coaxially positioned. It becomes possible to rotate the main shaft 3) around the axis A1 of the base 2, and using such a centering device 1, the shaft (measured portion) 10 is based on the hole 9 of the workpiece 8. When measuring the coaxiality, in a state where the probe 11 of the dial gauge (coaxiality measuring means) installed in the centering device 1 is in contact with the outer cylindrical surface 10a of the shaft (measured part) 10, The vibration of the dial gauge 12 when the base 2 (main shaft 3) is rotated around the axis A1 of the base 2 By reading easily, it is possible to measure in and high accuracy.
[0028]
【The invention's effect】
  According to the invention described in claim 1 of the present invention, it is formed in a substantially cylindrical shape,With the hole or shaft of the workpieceOn the same axisTo positionA base having a main shaft, a plurality of slide members that are equally distributed around the axis of the main shaft, each supported by the base so as to be slidable in a direction perpendicular to the axis of the main shaft, and the axis of the main shaft Each slide member is inscribed in the center circleTheA claw portion, and a driving means for causing each slide member to slide in synchronization with each other so that each claw portion comes into contact with the inner cylindrical surface of the hole of the workpiece or the outer cylindrical surface of the shaft,A coaxiality measuring means provided on the base and having a probe that can be engaged with the inner cylindrical surface of the hole of the workpiece or the outer cylindrical surface of the shaft;ComprisingBy rotating the base, the claw is rotated along the inner cylindrical surface of the workpiece hole or the outer cylindrical surface of the shaft, and the probe is moved along the outer cylindrical surface of the workpiece shaft or the inner cylindrical surface of the hole. RotateTherefore, the base (main shaft) is coaxial with the hole or shaft by driving the slide member with the driving means and bringing the claw portion of each slide member into contact with the inner cylindrical surface of the workpiece hole or the outer cylindrical surface of the shaft. And the center of the hole or shaft can be centered, and by rotating the claw portion, the base (main shaft) is positioned coaxially with the hole or shaft to maintain the base. It becomes possible to rotate the base (main shaft) around the axis of the base (main shaft).Further, since the claw portion is a bearing having an outer ring and an inner ring, the base (main shaft) is maintained coaxially with the hole or the shaft, and the base (main shaft) is connected to the base (main shaft). It can be rotated around the axis of the main shaft. In addition, the workpiece is provided with a part to be measured for measuring the degree of coaxiality with respect to the hole or axis with which the claw part is in contact, and the base has a measuring element that can be engaged with the part to be measured. Since the coaxiality measuring means is provided, the measuring element of the coaxiality measuring means is covered with the base (main shaft) positioned coaxially with the hole or shaft of the workpiece (the hole or shaft is centered). Engage with the measurement unit and rotate the base (main shaft) around the axis of the base (main shaft) to easily adjust the concentricity of the measured part with reference to the hole or axis of the workpiece. And it becomes possible to measure with high precision, and efficiency of the measurement process can be achieved.
[0029]
  Further, the present invention claims2According to the invention described in the above, the plurality of slide members provided on the substantially columnar base and arranged equally around the axis of the main shaft are slid in synchronization with the direction orthogonal to the axis of the main shaft. Thus, the claw portion arranged on each slide member so as to be inscribed in a circle centered on the axis of the main shaft can be rotated around an axis parallel to the axis of the main shaft. A coaxial surface measuring means disposed on the base, contacting the cylindrical surface or the outer cylindrical surface of the shaft, positioning the main shaft coaxially with the hole or shaft of the workpiece and centering the hole or shaft. Rotate the base around the axis of the main shaft so that the measuring element is engaged with the part to be measured of the workpiece and the claw is rotated along the inner cylindrical surface of the hole of the workpiece or the outer cylindrical surface of the shaft. Measures the concentricity of the part to be measured with respect to the hole or axis of the workpiece, so that it is fixed (does not rotate) Compared to the case where the concentricity of the measured part with respect to the hole or axis of the workpiece is measured using a conventional centering device having a claw portion, the measurement position (the center of the centering device relative to the workpiece is measured). Each time the rotation phase angle position is changed, the claw is moved away from the inner cylindrical surface of the workpiece hole or the outer cylindrical surface of the shaft, and the base (main shaft) is moved (rotated) to the next measurement position and again. It is possible to eliminate complicated operations such as bringing the claw part into contact with the inner cylindrical surface of the hole of the workpiece or the outer cylindrical surface of the shaft, and the coaxiality of the measured portion with respect to the hole or shaft of the workpiece can be easily achieved. In addition, it is possible to measure with high accuracy, and it is possible to improve the efficiency of the measurement process.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a centering device according to the present embodiment, and in particular, is a front view showing a part of the centering device having a coaxiality measuring means in cross section.
FIG. 2 is a bottom view of the centering device of the present embodiment.
FIG. 3 is an explanatory view of the centering device of the present embodiment, and is particularly a view taken along the line BB in FIG.
FIG. 4 is an explanatory diagram of another embodiment of the centering device.
FIG. 5 is an explanatory diagram of still another embodiment of the centering device.
FIG. 6 is a diagram illustrating an example of a workpiece.
FIG. 7 is an explanatory diagram of a conventional centering device.
[Explanation of symbols]
1 Centering device,2 base,3 Spindle,4 Slide members,6 Bearing (claw part),7 Drive shaft (drive means),8 Work,9 hole (work),10 axes (workpiece),11 Measuring element,12 Dial gauge (coaxiality measuring means),31 Pressing part,32 Pressed part

Claims (2)

孔と該孔と同軸上に形成した軸を有するワークの前記孔を基準とした前記軸の同軸度を測定する芯出し装置において、
略円柱状に形成され、前記ワークの前記孔または前記軸と同軸上に位置決めさせる主軸を配した基台と、
前記主軸の軸心の回りに等配され、前記基台に各々が前記主軸の軸心と直交する方向にスライド可能に支持された複数のスライド部材と、
前記主軸の軸心を中心とする円に内接するように前記各スライド部材に設けられ爪部と、
前記各スライド部材を同期させてスライド移動させて前記各爪部を前記ワークの前記孔の内筒面又は軸の外筒面に当接させる駆動手段と、
前記基台に設けられ、前記ワークの前記孔の内筒面または前記軸の外筒面に係合可能な測定子を有する同軸度測定手段と、を具備し、
前記基台を回転させることにより、前記爪部を前記ワークの前記孔の内筒面または前記軸の外筒面に沿って回転させ、かつ、前記測定子を前記ワークの前記軸の外筒面または前記孔の内筒面に沿って回転させる、ことを特徴とする芯出し装置。
In a centering device that measures the coaxiality of the shaft with respect to the hole of the workpiece having a hole and a shaft formed coaxially with the hole ,
A base that is formed in a substantially cylindrical shape and has a main shaft that is positioned coaxially with the hole or the shaft of the workpiece ;
Are equidistantly about the axis of the main shaft, a plurality of sliding members, each slidably supported in a direction orthogonal to the axis of the main shaft to the base,
A claw portion to which the provided in each slide member to be inscribed in a circle around the axis of the spindle,
Driving means for abutting said outside cylindrical surface of the inner cylindrical surface or the axis of the hole of the workpiece each of said claw section in synchronization slide moving each slide member,
A coaxiality measuring means provided on the base and having a measuring element that can be engaged with an inner cylindrical surface of the hole of the workpiece or an outer cylindrical surface of the shaft;
By rotating the base, the claw portion is rotated along the inner cylindrical surface of the hole of the workpiece or the outer cylindrical surface of the shaft, and the measuring element is outer cylindrical surface of the shaft of the workpiece. Alternatively, the centering device is rotated along the inner cylindrical surface of the hole .
主軸をワークの孔又は軸と同軸上に位置決めして当該孔又は軸の芯出しをする芯出し装置を用いて当該孔又は軸を基準とした被測定部の同軸度を測定する同軸度測定方法であって、
略円柱状の基台に設けられ、前記主軸の軸心の回りに等配した複数のスライド部材を、当該主軸の軸心と直交する方向に同期させてスライド移動させることにより、前記主軸の軸心と平行な軸線の回りに回転可能であって、且つ当該主軸の軸心を中心とする円に内接するように前記各スライド部材に配した爪部を前記ワークの孔の内筒面又は軸の外筒面に当接させ、前記主軸をワークの孔又は軸と同軸上に位置決めさせて当該孔又は軸の芯出しをしておいて、
前記基台に配した同軸度測定手段の測定子を前記ワークの被測定部に係合させ、前記爪部を前記ワークの孔の内筒面又は前記軸の外筒面に沿って回転させるようにして前記基台を前記主軸の軸心の回りに回転させることにより前記ワークの孔又は軸を基準とした前記被測定部の同軸度を測定することを特徴とする芯出し装置を用いた同軸度測定方法。
A coaxiality measuring method for measuring the coaxiality of a part to be measured with reference to the hole or shaft using a centering device that positions the main shaft coaxially with the hole or shaft of the workpiece and centers the hole or shaft. Because
A plurality of slide members provided on a substantially columnar base and arranged equally around the axis of the main shaft are slid in a direction perpendicular to the axis of the main shaft, thereby moving the axis of the main shaft. A claw portion that is rotatable around an axis parallel to the center and is inscribed in a circle centered on the axis of the main shaft is provided with an inner cylindrical surface or shaft of the hole of the workpiece. The main shaft is positioned coaxially with the hole or shaft of the work, and the hole or shaft is centered,
The measuring element of the coaxiality measuring means arranged on the base is engaged with the measured portion of the workpiece, and the claw portion is rotated along the inner cylindrical surface of the hole of the workpiece or the outer cylindrical surface of the shaft. The coaxial using the centering device is characterized in that the coaxiality of the part to be measured is measured with reference to the hole or axis of the workpiece by rotating the base around the axis of the main shaft. Degree measurement method.
JP2001231574A 2001-07-31 2001-07-31 Centering device and coaxiality measuring method using the centering device Expired - Fee Related JP4711035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001231574A JP4711035B2 (en) 2001-07-31 2001-07-31 Centering device and coaxiality measuring method using the centering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001231574A JP4711035B2 (en) 2001-07-31 2001-07-31 Centering device and coaxiality measuring method using the centering device

Publications (2)

Publication Number Publication Date
JP2003042755A JP2003042755A (en) 2003-02-13
JP4711035B2 true JP4711035B2 (en) 2011-06-29

Family

ID=19063607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001231574A Expired - Fee Related JP4711035B2 (en) 2001-07-31 2001-07-31 Centering device and coaxiality measuring method using the centering device

Country Status (1)

Country Link
JP (1) JP4711035B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4492198B2 (en) * 2004-04-20 2010-06-30 日産自動車株式会社 Stepped hole seat runout measurement device
CN105043224A (en) * 2015-06-09 2015-11-11 常熟赛驰机械有限公司 Wheel hub coaxiality rapid measuring instrument and measuring method thereof
CN105509694A (en) * 2015-12-18 2016-04-20 天津天海同步科技有限公司 Coaxiality checking tool
CN110953972B (en) * 2019-11-05 2021-09-10 新乡航空工业(集团)有限公司 Inner hole coaxiality measuring device
CN111521102A (en) * 2020-04-02 2020-08-11 武汉船用机械有限责任公司 Device and method for detecting straightness of deep hole
TWI739693B (en) * 2020-12-14 2021-09-11 財團法人工業技術研究院 Measurement equipment
CN113916160B (en) * 2021-11-18 2023-11-28 内蒙古第一机械集团股份有限公司 System and method for measuring multi-hole coaxiality of tracked vehicle chassis
CN115289947B (en) * 2022-09-28 2023-01-31 山东豪迈机械科技股份有限公司 Coaxiality detection device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786709A (en) * 1980-11-20 1982-05-29 Tokico Ltd Apparatus for measuring configuration
JPS5863516U (en) * 1981-10-23 1983-04-28 三菱重工業株式会社 Aligning probe for piping
JPS59185605U (en) * 1983-05-26 1984-12-10 株式会社東芝 measuring device
JPS6056203U (en) * 1982-12-21 1985-04-19 住友精密工業株式会社 Hole center position measurement jig
JPH0276676A (en) * 1988-09-08 1990-03-16 Hitachi Seiki Co Ltd Method and device for measuring processing of swinging of grinder element
JPH08184428A (en) * 1994-12-28 1996-07-16 Ando Electric Co Ltd General purpose inside diameter measuring instrument and measuring apparatus including it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786709A (en) * 1980-11-20 1982-05-29 Tokico Ltd Apparatus for measuring configuration
JPS5863516U (en) * 1981-10-23 1983-04-28 三菱重工業株式会社 Aligning probe for piping
JPS6056203U (en) * 1982-12-21 1985-04-19 住友精密工業株式会社 Hole center position measurement jig
JPS59185605U (en) * 1983-05-26 1984-12-10 株式会社東芝 measuring device
JPH0276676A (en) * 1988-09-08 1990-03-16 Hitachi Seiki Co Ltd Method and device for measuring processing of swinging of grinder element
JPH08184428A (en) * 1994-12-28 1996-07-16 Ando Electric Co Ltd General purpose inside diameter measuring instrument and measuring apparatus including it

Also Published As

Publication number Publication date
JP2003042755A (en) 2003-02-13

Similar Documents

Publication Publication Date Title
US20060201010A1 (en) Method for measuring a program-controlled machine tool
JP4711035B2 (en) Centering device and coaxiality measuring method using the centering device
CN112119279B (en) Eccentricity measuring device
US20010024044A1 (en) Work chucking/inserting apparatus and assembling unit
EP2149772A1 (en) Digital displacement measuring instrument
US8359727B2 (en) Method and device for centering and clamping a workpiece in a balancing machine
US20140109419A1 (en) Profile measuring instrument, adjusting method for profile measuring instrument, and profile measuring method
US9399259B2 (en) Boring device
JP2014132264A (en) Contour shape measurement method
JPH0622509A (en) Press fitting method for press fit work and press fitting equipment with length measuring device
US7967126B2 (en) Self-centering loading, indexing, and flipping mechanism for coinage and coin analysis
JP2017067512A (en) Outer diameter measuring instrument and grinding device using the same
CN215893443U (en) Turret type gear radial run-out gauge
US11274913B2 (en) Aligning components in relation to a coordinate measuring machine
JP2022087491A (en) Surface reference detection mechanism and hardness tester
KR101115483B1 (en) Head for the linear dimension checking of mechanical pieces
CN220322304U (en) Hinge beam earhole detection device of hexahedral top press
JP3102345B2 (en) Flywheel housing accuracy measuring device
CN116659336A (en) Hinge beam earhole detection system of hexahedral top press
CN217654402U (en) Vertical measuring tool for cylindrical runout
JP5463091B2 (en) Automatic workpiece centering device
CN218698101U (en) Rotary type fixture
JPS6130338A (en) Centering and assembling device
JPS63238501A (en) Measuring instrument for key groove and knock hole position
JPS6038168Y2 (en) Hole position measuring device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071031

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees