JP4710233B2 - Aromatic cross-linked polymers and adsorbents having metalloid complex forming groups - Google Patents

Aromatic cross-linked polymers and adsorbents having metalloid complex forming groups Download PDF

Info

Publication number
JP4710233B2
JP4710233B2 JP2004054034A JP2004054034A JP4710233B2 JP 4710233 B2 JP4710233 B2 JP 4710233B2 JP 2004054034 A JP2004054034 A JP 2004054034A JP 2004054034 A JP2004054034 A JP 2004054034A JP 4710233 B2 JP4710233 B2 JP 4710233B2
Authority
JP
Japan
Prior art keywords
group
structural unit
crosslinked polymer
aromatic
polymer according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004054034A
Other languages
Japanese (ja)
Other versions
JP2005239961A (en
Inventor
隆 石村
慎太郎 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2004054034A priority Critical patent/JP4710233B2/en
Publication of JP2005239961A publication Critical patent/JP2005239961A/en
Application granted granted Critical
Publication of JP4710233B2 publication Critical patent/JP4710233B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、半金属との錯体形成能を有する置換基を含有し、半金属吸着剤として用いられる芳香族架橋重合体に関するものである。詳しくは、本発明は、ホウ素等の半金属の吸着能に優れ、ホウ素等の半金属を含む廃水中の該半金属を吸着除去するための処理剤等として好適に用いられる半金属吸着剤及びその半金属吸着剤に有用な芳香族架橋重合体に関するものである。   The present invention relates to an aromatic cross-linked polymer that contains a substituent capable of forming a complex with a metalloid and is used as a metalloid adsorbent. Specifically, the present invention is excellent in the ability to adsorb a semimetal such as boron, and is preferably used as a treatment agent for adsorbing and removing the semimetal in wastewater containing a semimetal such as boron. The present invention relates to an aromatic crosslinked polymer useful for the metalloid adsorbent.

従来、ホウ素含有廃水の処理方法及び海水の淡水化方法における一方法として、イオン交換樹脂によるイオン交換樹脂法が廣く知られている。イオン交換樹脂法で使用されるイオン交換樹脂としては、アミノポリオール型のキレート樹脂が多用されている(特許文献1)が、従来使用されているアミノポリオール型のキレート樹脂(イオン交換樹脂)では、吸着速度と動的吸着容量とを両立させることが困難であった。吸着速度を上げる為、イオン交換樹脂母体の構造を変化させると吸着量が低下し、逆に、吸着量が増えるように母体構造を変化させると、吸着速度が低下すると共に、母体のアミノポリオール導入への反応性が下がりその導入量を上げることが出来なかった。
一方、工場廃水や海水中には、ホウ素をはじめ、セレン、ヒ素、テルル、ゲルマニウムなど種々の金属と共に半金属が含まれている場合があり、これらの半金属は有害なことが多い為、半金属を効率良く除去するイオン交換樹脂の開発が望まれていた。
特開平9−59315号
Conventionally, an ion exchange resin method using an ion exchange resin has been widely known as a method for treating a boron-containing wastewater and desalinating seawater. As the ion exchange resin used in the ion exchange resin method, aminopolyol type chelate resins are frequently used (Patent Document 1), but conventionally used aminopolyol type chelate resins (ion exchange resins), It was difficult to achieve both adsorption speed and dynamic adsorption capacity. In order to increase the adsorption rate, the amount of adsorption decreases when the structure of the ion-exchange resin matrix is changed. Conversely, when the matrix structure is changed so that the amount of adsorption increases, the adsorption rate decreases and the aminopolyol is introduced into the matrix. The amount of introduction was not able to be increased.
On the other hand, factory wastewater and seawater may contain semimetals along with various metals such as boron, selenium, arsenic, tellurium, germanium, and these semimetals are often harmful. Development of an ion exchange resin that efficiently removes metal has been desired.
JP-A-9-59315

本発明は、イオン交換樹脂の樹脂内部における半金属イオンの拡散速度を高め、半金属の吸着容量が高く、かつ、反応速度の速いイオン交換樹脂に適した芳香族架橋重合体及び該重合体からなる半金属の吸着剤を提供する事を目的とするものである。   The present invention relates to an aromatic cross-linked polymer suitable for an ion exchange resin having an increased diffusion rate of metalloid ions inside the resin of the ion exchange resin, a high metalloid adsorption capacity, and a high reaction rate, and the polymer. It is an object of the present invention to provide a semimetal adsorbent.

本発明者らは、半金属に対して高い吸着容量をもつイオン交換樹脂(キレート樹脂)を開発すべく、樹脂内における半金属の拡散性について着目し鋭意研究を重ねた結果、樹脂内部における半金属、即ちホウ素の拡散速度はホウ素の樹脂内での拡散の容易さと関係しており、拡散速度を高めるためには拡散のし易さを改善することが有効であることを見出した。かかる知見に基づき、半金属の樹脂内での拡散性の容易さ、つまり、ホウ素等の半金属の拡散速度は、樹脂内に半金属に対する吸着基とは別に親水性の高い部位を存在させ、樹脂内での半金属イオンの拡散を生起し易くする事により向上させることが出来、それによって、従来のイオン交換樹脂(キレート樹脂)より高い吸着容量を付与することを可能にし本発明を達成した。   In order to develop an ion exchange resin (chelate resin) having a high adsorption capacity for the semimetal, the present inventors have made extensive studies focusing on the diffusibility of the semimetal in the resin, and as a result, It has been found that the diffusion rate of the metal, that is, boron is related to the ease of diffusion of boron in the resin, and it is effective to improve the ease of diffusion in order to increase the diffusion rate. Based on this knowledge, the ease of diffusibility of the semimetal in the resin, that is, the diffusion rate of the semimetal such as boron, the resin has a highly hydrophilic site separate from the adsorption group for the semimetal, This can be improved by facilitating the diffusion of metalloid ions in the resin, thereby making it possible to provide a higher adsorption capacity than conventional ion exchange resins (chelate resins) and achieving the present invention. .

本発明は、半金属の吸着容量が高く、かつ反応速度の速いイオン交換樹脂に最適な特定構造の芳香族架橋重合体に関わり、本発明の第1の要旨は、主たる構造単位が、少なくとも下記式(A)及び(B)で表される構造単位からなり、且つ該主たる構造単位が全重合体中、50重量%以上を占めることを特徴とする芳香族架橋重合体に存する。 The present invention relates to an aromatic crosslinked polymer having a specific structure optimum for an ion exchange resin having a high metalloid adsorption capacity and a high reaction rate. The first gist of the present invention is that the main structural unit is at least the following: Ri Do a structural unit represented by formula (a) and (B), and the main serving structural units in the total polymer consists in an aromatic crosslinked polymer, characterized in that account for more than 50 wt%.

Figure 0004710233
(式(A)中、nは0〜4の整数である。R1は水素原子又は置換基を有していても良い炭素数1〜10のアルキル基を示し、R2水酸基を有するアルキル基を示す。)
Figure 0004710233
(In formula (A), n is an integer of 0 to 4. R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms which may have a substituent, and R 2 represents an alkyl having a hydroxyl group. Group.)

Figure 0004710233
(式(B)中、Qは2価の連結基を示し、aは0又は1を示す。R〜Rはそれぞれ独立して水素原子、置換基を有していても良い炭素数1〜10のアルキル基を示す。Xは対アニオンを表す。)
本発明の第2の要旨は、上記芳香族架橋重合体からなる半金属吸着剤、特にホウ素吸着剤に存し、更なる本発明の要旨は、上記架橋芳香族架橋重合体の製造方法に存する。
Figure 0004710233
(In formula (B), Q represents a divalent linking group, and a represents 0 or 1. R 3 to R 5 each independently represent a hydrogen atom or a substituent having 1 carbon atom. .X showing a 10 alkyl group - represents a counter anion).
The second gist of the present invention resides in a semimetal adsorbent comprising the above aromatic crosslinked polymer, particularly a boron adsorbent, and a further gist of the present invention resides in a method for producing the above crosslinked aromatic crosslinked polymer. .

本発明の芳香族架橋重合体は、その樹脂内部での半金属イオンの拡散速度が高いため、この芳香族架橋重合体からなるイオン交換樹脂は、半金属の吸着容量が高く、かつ、反応速度の速い半金属の吸着性能に優れた半金属用吸着剤を提供することが出来、このイオン交換樹脂を使用することにより工場廃水や海水中の半金属を効率よく回収・除去することが出来る。   Since the aromatic crosslinked polymer of the present invention has a high diffusion rate of metalloid ions inside the resin, the ion exchange resin comprising this aromatic crosslinked polymer has a high metalloid adsorption capacity and a reaction rate. It is possible to provide an adsorbent for a semimetal excellent in the adsorption performance of a fast metalloid, and by using this ion exchange resin, it is possible to efficiently recover and remove the metalloid in factory wastewater and seawater.

本発明の芳香族架橋重合体は、その主たる構造単位が少なくとも上記式(A)及び式(B)で表される構造単位からなる特定構造の重合体である。
ここで、主たる構造単位とは、芳香族架橋重合体の全重量中、50重量%以上、好ましくは60重量%以上を占めることを表す。
以下、各構造単位について説明する。
The aromatic crosslinked polymer of the present invention is a polymer having a specific structure, the main structural unit of which is composed of at least the structural units represented by the above formulas (A) and (B).
Here, the main structural unit represents 50% by weight or more, preferably 60% by weight or more in the total weight of the aromatic crosslinked polymer.
Hereinafter, each structural unit will be described.

[1]構造単位:式(A)
下記式(A)で表される構造単位部分(以下構造単位(A)と称することもある)は、半金属を吸着する機能を呈する部分であり、少なくとも半金属を吸着する置換基、即ち半金属と錯体を形成し得る置換基で置換されたアミノ基を有する弱塩基性陰イオン交換樹脂構造に相当する部分である。
[1] Structural unit: Formula (A)
The structural unit portion represented by the following formula (A) (hereinafter sometimes referred to as the structural unit (A)) is a portion that exhibits a function of adsorbing a metalloid, and at least a substituent that adsorbs the metalloid, It is a portion corresponding to a weakly basic anion exchange resin structure having an amino group substituted with a substituent capable of forming a complex with a metal.

Figure 0004710233
(式(A)中、nは0〜4の整数である。R1は水素原子又は置換基を有していても良い炭素数1〜10のアルキル基を示し、R2水酸基を有するアルキル基を示す。)
Figure 0004710233
(In formula (A), n is an integer of 0 to 4. R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms which may have a substituent, and R 2 represents an alkyl having a hydroxyl group. Group.)

式(A)において、nは0〜4の整数であり、半金属と錯体を形成し得る置換基を有するアミノ基はベンゼン核に直接又はアルキレン鎖を介して連結されるが、半金属の吸着性からは該アミノ基はベンゼン核に直接結合するか、短い連結鎖(n=1〜2)で連結するのが好ましい。
アミノ基の置換基Rは、水素原子又は置換基を有していてもよい炭素数1〜10のアルキル基を示すが、好ましくは水素原子又はメチル、エチル、プロピル、ブチル等の直鎖若しくは分岐状の炭素数1〜4の低級アルキルであり、より好ましくは水素原子又はメチル基、エチル基が挙げられる。Rで示されるアルキル基は、Rが有する半金属と錯体を形成し得る置換基の錯体形成能を阻害しない限り、他の置換基で置換されていても良い。
In the formula (A), n is an integer of 0 to 4, and an amino group having a substituent capable of forming a complex with a metalloid is linked to the benzene nucleus directly or via an alkylene chain. From the standpoint of properties, it is preferable that the amino group is directly bonded to the benzene nucleus or connected with a short connecting chain (n = 1-2).
The substituent R 1 of the amino group represents a hydrogen atom or an optionally substituted alkyl group having 1 to 10 carbon atoms, preferably a hydrogen atom or a straight chain such as methyl, ethyl, propyl, butyl or the like. Branched lower alkyl having 1 to 4 carbon atoms, more preferably a hydrogen atom, a methyl group, or an ethyl group. The alkyl group represented by R 1 may be substituted with another substituent as long as it does not inhibit the complex-forming ability of the substituent that can form a complex with the metalloid of R 2 .

アミノ基の置換基Rは、半金属と錯体を形成し得る置換基を有するアルキル基を示す。半金属と錯体を形成し得る置換基としては水酸基が好ましく、アルキル鎖上に水酸基を2個以上有し、且つ少なくとも2個の水酸基が隣接する炭素原子に結合している炭素数2〜10のアルキル基が好ましい。アルキル基としては、炭素数3〜6の直鎖アルキル基がより好ましい。Rとして特に好ましいアルキレンポリオールは、式−CH(CHOH)CHOH(但し、mは1〜4の整数)で示されるポリヒドロキシアルキル基である。 The amino group substituent R 2 represents an alkyl group having a substituent capable of forming a complex with a metalloid. The substituent that can form a complex with the metalloid is preferably a hydroxyl group, having 2 or more hydroxyl groups on the alkyl chain, and having 2 to 10 carbon atoms in which at least two hydroxyl groups are bonded to adjacent carbon atoms. Alkyl groups are preferred. As an alkyl group, a C3-C6 linear alkyl group is more preferable. A particularly preferred alkylene polyol as R 2 is a polyhydroxyalkyl group represented by the formula —CH 2 (CHOH) m CH 2 OH (where m is an integer of 1 to 4).

式(A)で示される構造単位の具体例を以下に示す。   Specific examples of the structural unit represented by the formula (A) are shown below.

Figure 0004710233
Figure 0004710233

[2]構造単位:式(B)
下記式(B)で表される構造単位部分(以下、構造単位(B)と称することもある。)は、4級アンモニウム基を有することにより親水性の高い部位を形成し、樹脂内での半金属イオンの拡散を起こりやすくし、構造単位(A)部分における半金属吸着速度及び吸着量を高める機能を奏する部分であり、4級アンモニウム基を有する強塩基性陰イオン交換樹脂構造に相当する部分である。

Figure 0004710233
式(B)において、Qは2価の連結基を示し、aは0又は1を示す。2価の連結基としては、置換基を有していてもよい炭素数1〜4のアルキレン基が好ましく、炭素数1〜3のアルキレン基がより好ましく、更に好ましくはメチレン基である。Qとしては、aが0であるか、aが1で置換基を有していてもよい炭素数1〜4のアルキレン基であるのが好ましい。 [2] Structural unit: Formula (B)
The structural unit portion represented by the following formula (B) (hereinafter sometimes referred to as the structural unit (B)) forms a highly hydrophilic site by having a quaternary ammonium group. This is a part that facilitates diffusion of metalloid ions and has a function of increasing the metalloid adsorption rate and adsorption amount in the structural unit (A), and corresponds to a strongly basic anion exchange resin structure having a quaternary ammonium group. Part.
Figure 0004710233
In the formula (B), Q represents a divalent linking group, and a represents 0 or 1. As a bivalent coupling group, the C1-C4 alkylene group which may have a substituent is preferable, A C1-C3 alkylene group is more preferable, More preferably, it is a methylene group. Q is preferably an alkylene group having 1 to 4 carbon atoms in which a is 0 or a is 1 and may have a substituent.

アンモニウム基の置換基R〜Rは、それぞれ独立して水素原子、置換基を有していてもよい炭素数1〜10のアルキル基を示し、Xは対アニオンを表す。
アルキル基としては、炭素数1〜4のアルキル基が好ましく、特にメチル、エチル基が好ましい。アルキル基が有し得る置換基としては、水酸基等の親水性のものが好ましく、具体的にはヒドロキシメチル基等が挙げられる。置換基R〜Rは、互いに同じでも異なっていてもよい。これらの置換基を適宜選定し、構造単位(B)の部位が構造単位(A)の部位よりも、より親水性が高くなるようにするのが好ましい。
また、対アニオンXとしては、塩化物イオン、硫酸イオン、炭酸イオン、炭酸水素イオン、水酸化物イオン等が挙げられる。
The substituents R 3 to R 5 of the ammonium group each independently represent a hydrogen atom or an optionally substituted alkyl group having 1 to 10 carbon atoms, and X represents a counter anion.
As the alkyl group, an alkyl group having 1 to 4 carbon atoms is preferable, and methyl and ethyl groups are particularly preferable. The substituent that the alkyl group may have is preferably a hydrophilic group such as a hydroxyl group, and specifically includes a hydroxymethyl group. The substituents R 3 to R 5 may be the same as or different from each other. It is preferable to appropriately select these substituents so that the site of the structural unit (B) is more hydrophilic than the site of the structural unit (A).
Further, examples of the counter anion X include chloride ion, sulfate ion, carbonate ion, hydrogencarbonate ion, hydroxide ion and the like.

式(B)で示される構造単位の具体例を以下に示す。   Specific examples of the structural unit represented by the formula (B) are shown below.

Figure 0004710233
Figure 0004710233

本発明の芳香族架橋重合体の主たる構造単位は上記構造単位(A)及び構造単位(B)からなるが、該重合体をイオン交換樹脂である半金属吸着剤となした場合、樹脂中における半金属イオンの拡散性を向上するには、重合体中に親水性の高い部位を存在させることが有効である。高い親水性は、構造単位(B)の含有量にもよるので、構造単位(B)の重合体中における割合は、通常、主たる構造単位中0.1〜50重量%である。構造単位(B)の存在量がこの範囲を超えて少な過ぎると、樹脂中における半金属イオンの拡散性を向上させることができず、他方、多すぎると相対的に半金属の吸着性能を有する構造単位(A)が少なくなるので半金属イオンの吸着量が低下し好ましくない。構造単位(B)の存在量は、好ましくは0.1〜30重量%、より好ましくは0.2〜20重量%である。
又、構造単位(A)は、半金属の吸着機能を奏するので、重合体の主たる構造単位中に占める割合は、少なくとも50重量%以上であり、好ましくは60重量%以上である。
The main structural unit of the aromatic crosslinked polymer of the present invention consists of the structural unit (A) and the structural unit (B). When the polymer is a semimetal adsorbent which is an ion exchange resin, In order to improve the diffusibility of metalloid ions, it is effective to make the polymer have a highly hydrophilic site. Since the high hydrophilicity depends on the content of the structural unit (B), the proportion of the structural unit (B) in the polymer is usually 0.1 to 50% by weight in the main structural unit. If the abundance of the structural unit (B) is too small beyond this range, the diffusibility of the metalloid ions in the resin cannot be improved. Since the structural unit (A) is reduced, the amount of adsorption of metalloid ions is unfavorable. The abundance of the structural unit (B) is preferably 0.1 to 30% by weight, more preferably 0.2 to 20% by weight.
In addition, since the structural unit (A) exhibits a semimetal adsorption function, the proportion of the polymer in the main structural unit is at least 50% by weight, preferably 60% by weight or more.

[3]その他の構造単位
本発明の芳香族架橋重合体は、主たる構造単位が上記(A)及び構造単位(B)からなるが、これらの構造単位以外の他の構造単位を含有していてもよい。他の構造単位としては、本発明の芳香族架橋重合体が、例えばスチレン系の架橋共重合体から製造される場合には、スチレン骨格の構造単位が挙げられる。また、他の構造単位として、下記に示す構造単位(C)及び(D)なども挙げられるが、これらの構造単位は、場合により芳香族架橋共重合体の製造時に副生し、生成重合体に含有される。
本発明の芳香族架橋重合体における上記構造単位(A)及び構造単位(B)からなる主たる構造単位は、全重合体中、50重量%以上を占め、好ましくは60重量%以上である。
[3] Other structural units In the aromatic crosslinked polymer of the present invention, the main structural unit is composed of the above (A) and structural unit (B), but contains other structural units other than these structural units. Also good. As another structural unit, when the aromatic crosslinked polymer of the present invention is produced from, for example, a styrene-based crosslinked copolymer, a structural unit having a styrene skeleton may be mentioned. Examples of other structural units include the structural units (C) and (D) shown below. These structural units are sometimes produced as a by-product during the production of the aromatic cross-linked copolymer, resulting in a produced polymer. Contained in
The main structural unit consisting of the structural unit (A) and the structural unit (B) in the aromatic crosslinked polymer of the present invention accounts for 50% by weight or more, preferably 60% by weight or more in the whole polymer.

Figure 0004710233
(式(C)中、R1、及びnは前記式(A)におけると同義であり、Xは、アニオンを表す。)
Figure 0004710233
(In the formula (C), R 1, R 2 and n are as defined in the formula (A), and X represents an anion.)

Figure 0004710233
Figure 0004710233

[4] 製造方法
本発明の芳香族架橋重合体は、公知のイオン交換樹脂の製造方法に準じて製造することが出来、例えば以下に示す方法により製造することが出来るが、本発明はこれらの方法に限定されるものではない。
本発明の芳香族架橋重合体は、その基体となるスチレン等の芳香族モノビニルモノマーとジビニルベンゼン等のポリビニルモノマーとの架橋共重合体ポリマーに、公知の方法によりクロロメチルメチルエーテル等のクロロメチル化剤を反応させてクロロメチル化ポリマー(以下、CMPと略称することがある。)を合成し、次いで半金属吸着基となる置換基を導入するが、その導入の前後で親水性の置換基を導入することによって製造することが出来る。
[4] Production method The aromatic crosslinked polymer of the present invention can be produced in accordance with a known production method of an ion exchange resin, and can be produced, for example, by the method shown below. The method is not limited.
The aromatic cross-linked polymer of the present invention is obtained by subjecting a cross-linked copolymer polymer of an aromatic monovinyl monomer such as styrene and a polyvinyl monomer such as divinylbenzene to a chloromethylation of chloromethyl methyl ether or the like by a known method. A chloromethylated polymer (hereinafter sometimes abbreviated as CMP) is synthesized by reacting an agent, and then a substituent which becomes a semimetal adsorbing group is introduced. Before and after the introduction, a hydrophilic substituent is introduced. It can manufacture by introducing.

架橋共重合体ポリマーを製造するモノビニルモノマーとしては、スチレン、ビニルナフタレン、ビニルトルエン、エチルビニルベンゼン等の芳香族モノビニルモノマーが挙げられ、この中でスチレンが好ましい。架橋剤としてのポリビニルモノマーは、ジビニルベンゼン、ジビニルトルエン、ジビニルナフタレン、ジビニルキシレン等が挙げられるが、これらの中、ジビニルベンゼンが好ましい。
これらのモノビニルモノマー及びポリビニルモノマーは、通常、ラジカル開始剤の存在下、懸濁重合することにより球状の架橋共重合体ポリマーを形成することができる。架橋共重合体は、多孔質構造或いは細孔を有さないゲル状構造のいずれでもよく、多孔質体は、公知の方法により重合する際多孔質化剤を用いることにより製造することが出来る。
Examples of the monovinyl monomer for producing the crosslinked copolymer polymer include aromatic monovinyl monomers such as styrene, vinyl naphthalene, vinyl toluene, and ethyl vinyl benzene. Among these, styrene is preferable. Examples of the polyvinyl monomer as the crosslinking agent include divinylbenzene, divinyltoluene, divinylnaphthalene, divinylxylene, and the like. Among these, divinylbenzene is preferable.
These monovinyl monomers and polyvinyl monomers can usually form a spherical crosslinked copolymer polymer by suspension polymerization in the presence of a radical initiator. The crosslinked copolymer may be either a porous structure or a gel-like structure having no pores, and the porous body can be produced by using a porosifying agent when polymerized by a known method.

架橋共重合体ポリマーにクロロメチルメチルエーテルを反応させ、クロルメチル基を導入したクロロメチル化ポリマーに、半金属吸着基及び親水性基を導入する。
半金属吸着基の導入は、例えば、前記の基体架橋共重合体ポリマーにクロルメチル基を導入したCMPにアミノポリオール基を導入することにより行う。アミノポリオール基の導入は、官能基としてアミノ基と水酸基を2個以上有する化合物(アミノポリオール)と基体樹脂(CMP)とを反応させることにより行うことが出来る。
The cross-linked copolymer polymer is reacted with chloromethyl methyl ether, and a metalloid adsorbing group and a hydrophilic group are introduced into the chloromethylated polymer into which the chloromethyl group has been introduced.
The metalloid adsorbing group is introduced, for example, by introducing an aminopolyol group into the CMP in which a chloromethyl group is introduced into the above-mentioned substrate crosslinked copolymer polymer. The introduction of the amino polyol group can be carried out by reacting a compound (amino polyol) having two or more amino groups and hydroxyl groups as functional groups with a base resin (CMP).

アミノポリオールとしては、分子中に少なくとも1個のアミノ基と2個以上の水酸基を有する化合物が使用される。具体的には、1−デオキシ−1−(メチルアミノ)ソルビトール、2−アミノ−2−(ヒドロキシメチル)−1,3−プロパンジオール、3−アミノ−1,2−プロパンジオール、2−アミノ−1,3−プロパンジオール、2−アミノ−2−メチル−1,3−プロパンジオール、3−ジメチルアミノ−1,2−プロパンジオール、3−ジエチルアミノ−1,2−プロパンジオール等が挙げられるが、これらの中、1−デオキシ−1−(メチルアミノ)ソルビトール[通称:N−メチルグルカミン]が有用である。   As the amino polyol, a compound having at least one amino group and two or more hydroxyl groups in the molecule is used. Specifically, 1-deoxy-1- (methylamino) sorbitol, 2-amino-2- (hydroxymethyl) -1,3-propanediol, 3-amino-1,2-propanediol, 2-amino- 1,3-propanediol, 2-amino-2-methyl-1,3-propanediol, 3-dimethylamino-1,2-propanediol, 3-diethylamino-1,2-propanediol, etc. Among these, 1-deoxy-1- (methylamino) sorbitol [common name: N-methylglucamine] is useful.

本発明の芳香族架橋重合体は、その基体樹脂中に親水性の高い部位を存在させることにより、樹脂内での半金属イオンの拡散を生起し易くするが、親水性部位は基体樹脂に親水基を導入することにより行われる。親水基としては、トリメチルアミン、トリエチルアミン、N−(ヒドロキシメチル)ジメチルアミン、N−(ヒドロキシメチル)ジエチルアミン、トリ(ヒドロキシメチル)アミン等のトリアルキルアミン及びヒドロキシ置換アルキルアミン等が挙げられる。親水基は、半金属吸着基の種類にもよるが半金属吸着基よりも親水性の高い基であるのが好ましい。   In the aromatic crosslinked polymer of the present invention, the presence of a highly hydrophilic site in the base resin facilitates the diffusion of metalloid ions in the resin, but the hydrophilic site is hydrophilic to the base resin. This is done by introducing a group. Examples of the hydrophilic group include trialkylamines such as trimethylamine, triethylamine, N- (hydroxymethyl) dimethylamine, N- (hydroxymethyl) diethylamine, and tri (hydroxymethyl) amine, and hydroxy-substituted alkylamines. The hydrophilic group is preferably a group having higher hydrophilicity than the semimetal adsorbing group, although it depends on the kind of the semimetal adsorbing group.

基体樹脂への親水基の導入は、半金属吸着基の導入の前でも後でも、或いは同時に行うこともできる。例えば、親水性の高い部位をトリメチルアミノ基(アンモニウム基)とする場合、トリメチルアミン(以下、TMAとすることがある。)親水性部分の導入は、半金属吸着基の導入の前でも、後でも良いが、半金属吸着基がN−メチルグルカミンにより導入される場合には、半金属吸着基の導入と同時に行うことが好ましい。
N−メチルグルカミンとトリメチルアミンを同時にCMPに反応させた場合、それぞれのCMPとの反応性の違いから、トリメチルアミンが先に反応し、後からN−メチルグルカミンが反応する。この場合、CMPがトリメチルアミンによって、部分的に親水性化されるため、よりN−メチルグルカミンとの反応が進行しやすくなり、事実上、N−メチルグルカミンの導入量を増やすことが出来る。
The introduction of the hydrophilic group into the base resin can be performed before, after or simultaneously with the introduction of the semimetal adsorption group. For example, when a highly hydrophilic site is a trimethylamino group (ammonium group), trimethylamine (hereinafter sometimes referred to as TMA) hydrophilic portion may be introduced before or after the introduction of the semimetal adsorbing group. Although it is good, when the metalloid adsorbing group is introduced by N-methylglucamine, it is preferably performed simultaneously with the introduction of the metalloid adsorption group.
When N-methylglucamine and trimethylamine are simultaneously reacted with CMP, trimethylamine reacts first and N-methylglucamine reacts later due to the difference in reactivity with each CMP. In this case, since CMP is partially rendered hydrophilic by trimethylamine, the reaction with N-methylglucamine is more likely to proceed, and the amount of N-methylglucamine introduced can be increased in effect.

また、従来のキレート樹脂の製造における反応では、疎水性のCMPと親水性のN−メチルグカミンとを反応させるため、ジメチルホルムアミド(DMF)等の非極性非プロトン性溶媒を用いていたが、非極性非プロトン性溶媒は、沸点が高く除去が困難な上、高温で分解し、更には、価格が高いなどの欠点がある。本発明方法では、親水性を与えるトリメチルアミンなどの低分子のアルキルアミン類を適当量共存させることにより、CMPの部分的な親水性化により、半金属吸着基であるN−メチルグルカミンとの反応性が改善されるため、非極性非プロトン性溶媒を使用しなくとも、通常使用されている疎水性の溶媒と親水性の溶媒とを混合溶媒を使用することにより反応を進行させることが出来るので、工業的に極めて有利である。例えば、疎水性溶媒としてトルエン、親水性溶媒としてメタノール等が使用される。   In addition, in the conventional reaction in the production of a chelate resin, a nonpolar aprotic solvent such as dimethylformamide (DMF) is used to react hydrophobic CMP with hydrophilic N-methylgucamine. Aprotic solvents have disadvantages such as high boiling point and difficulty in removal, decomposition at high temperature, and high cost. In the method of the present invention, a suitable amount of low-molecular alkylamines such as trimethylamine which impart hydrophilicity is allowed to coexist, whereby the reaction with N-methylglucamine which is a semi-metal adsorbing group is achieved by partial hydrophilicity of CMP. The reaction can be advanced by using a mixed solvent of a hydrophobic solvent and a hydrophilic solvent that are usually used without using an apolar aprotic solvent. It is very advantageous industrially. For example, toluene is used as the hydrophobic solvent, and methanol is used as the hydrophilic solvent.

本発明の芳香族架橋重合体は、陰イオン交換樹脂としての性能を有するが、アミノポリオールにより導入された基が2個以上の水酸基を有し、且つ少なくとも隣接する炭素原子に結合した2個の水酸基を有するのでキレート樹脂としての性能も有するものである。特に、基体樹脂が金属に対するキレート的吸着基とともに、親水基の導入による高い親水性部位を有することにより、ホウ素等の半金属の吸着剤として極めて有用である。   The aromatic crosslinked polymer of the present invention has performance as an anion exchange resin, but the group introduced by amino polyol has two or more hydroxyl groups, and at least two bonded to adjacent carbon atoms. Since it has a hydroxyl group, it also has performance as a chelate resin. In particular, since the base resin has a highly hydrophilic site by introducing a hydrophilic group together with a chelating adsorption group for a metal, it is extremely useful as an adsorbent for a semimetal such as boron.

以下、本発明を実施例により更に詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。
[実施例1]
公知の技術にて製造した、多孔質のポリスチレン−ジビニルベンゼン(PS−DVB)架橋共重合体に、クロロメチルメチルエーテルをルイス酸触媒を用いて反応させた後、80℃で8時間乾燥し、乾燥クロロメチル化ポリマー(CMP)を得た。このクロロメチル化ポリマーの塩素量は20重量%であった。得られた乾燥CMP50gに、メタノール250ml、トルエン350ml、N−メチルグルカミン(NMG)75g、30%トリメチルアミン水溶液1g、及び無水炭酸ナトリウム30gを加えて、65℃で9時間反応させた。反応混合物から溶媒を留去した後、脱塩水で水洗し、1mol/Lの水酸化ナトリウム水溶液を通液して再生し、樹脂Aを得た。TMA基の導入は、固体NMRにて確認した。TMA(アンモニウム基)の導入量は樹脂乾燥重量あたり0.033meqであった。
EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to a following example, unless the summary is exceeded.
[Example 1]
A porous polystyrene-divinylbenzene (PS-DVB) crosslinked copolymer produced by a known technique was reacted with chloromethyl methyl ether using a Lewis acid catalyst, and then dried at 80 ° C. for 8 hours. A dry chloromethylated polymer (CMP) was obtained. The amount of chlorine in this chloromethylated polymer was 20% by weight. To 50 g of the obtained dry CMP, 250 ml of methanol, 350 ml of toluene, 75 g of N-methylglucamine (NMG), 1 g of a 30% trimethylamine aqueous solution, and 30 g of anhydrous sodium carbonate were added and reacted at 65 ° C. for 9 hours. After distilling off the solvent from the reaction mixture, the reaction mixture was washed with demineralized water and regenerated by passing through a 1 mol / L aqueous sodium hydroxide solution to obtain Resin A. The introduction of the TMA group was confirmed by solid state NMR. The amount of TMA (ammonium group) introduced was 0.033 meq per resin dry weight.

[実施例2]
上記実施例1で得られた樹脂A50mlを、内径15mm 長さ250mmの硝子製カラムに充填した。原水としてホウ素濃度100ppm、食塩濃度0.3重量%に調製した水溶液をSV5でカラムに通液し、カラムから流出する液中のホウ素濃度をICP発光分析にて測定した。処理液量と流出液中のホウ素濃度との関係をグラフとして図1に示す。
[Example 2]
50 ml of the resin A obtained in Example 1 was packed into a glass column having an inner diameter of 15 mm and a length of 250 mm. An aqueous solution prepared as raw water with a boron concentration of 100 ppm and a sodium chloride concentration of 0.3% by weight was passed through the column with SV5, and the boron concentration in the liquid flowing out of the column was measured by ICP emission analysis. The relationship between the amount of the treatment liquid and the boron concentration in the effluent is shown as a graph in FIG.

[実施例3]
樹脂Aの平衡吸着量を求めるため、溶液中のホウ素濃度を20ppm、100ppm、200ppmに調製した各水溶液300mlのそれぞれに、樹脂A0.4gを加え、30℃で72時間振とうした後、外液中のホウ素濃度をIPC発光分析にて測定した。溶液平衡濃度が100ppmの時のホウ素吸着量を作図(図2)によって求めた結果、10.2g/L−Rであった。
[Example 3]
In order to determine the equilibrium adsorption amount of Resin A, 0.4 g of Resin A was added to 300 ml of each aqueous solution prepared at a boron concentration of 20 ppm, 100 ppm, and 200 ppm, and the mixture was shaken at 30 ° C. for 72 hours. The boron concentration was measured by IPC emission analysis. The amount of boron adsorbed when the solution equilibrium concentration was 100 ppm was determined by drawing (FIG. 2), and was 10.2 g / LR.

[比較例1]
従来品と同様のキレート樹脂を得るため、実施例1で製造した乾燥CMPを用い、NMGを導入する際、トリメチルアミン水溶液を添加しなかったこと以外は、実施例1と同様の手順で、反応を行い樹脂Bを製造した。得られた樹脂Bを用い実施例2と同様の通液試験を実施した。その結果を図1に示した。この図から、TMA基の存在する樹脂Aは、ホウ素吸着容量が高く、吸着速度も同等であることが解る。
[比較例2]
樹脂Bについて、実施例3と同様の平衡吸着量測定を実施した。その結果、溶液平衡濃度が100ppmの時のホウ素吸着量は6.0g/L−Rであった。
[Comparative Example 1]
In order to obtain the same chelate resin as the conventional product, the reaction was carried out in the same procedure as in Example 1 except that the dry CMP produced in Example 1 was used and NMG was not added when NMG was introduced. Resin B was manufactured. Using the obtained resin B, the same liquid passing test as in Example 2 was performed. The results are shown in FIG. From this figure, it can be seen that the resin A in which TMA groups are present has a high boron adsorption capacity and the same adsorption rate.
[Comparative Example 2]
For resin B, the same amount of equilibrium adsorption as in Example 3 was measured. As a result, the amount of boron adsorbed when the solution equilibrium concentration was 100 ppm was 6.0 g / LR.

上記実施例及び比較例で得られた樹脂A及び樹脂Bの物性を纏めて表1に示す。   Table 1 summarizes the physical properties of Resin A and Resin B obtained in the above Examples and Comparative Examples.

Figure 0004710233
Figure 0004710233

ホウ素含有水溶液の処理液量と流出液中のホウ素濃度との関係を示すグラフである。It is a graph which shows the relationship between the process liquid amount of a boron containing aqueous solution, and the boron concentration in an effluent. 樹脂のホウ素吸着量とホウ素溶液の平衡濃度との関係を示すグラフである。It is a graph which shows the relationship between the boron adsorption amount of resin, and the equilibrium density | concentration of a boron solution.

Claims (10)

主たる構造単位が、少なくとも下記式(A)及び(B)で表される構造単位からなり、且つ該主たる構造単位が全重合体中、50重量%以上を占めることを特徴とする芳香族架橋重合体。
Figure 0004710233
(式(A)中、nは0〜4の整数である。R1は水素原子又は置換基を有していても良い炭素数1〜10のアルキル基を示し、R2水酸基を有するアルキル基を示す。)
Figure 0004710233
(式(B)中、Qは2価の連結基を示し、aは0又は1を示す。R3〜R5はそれぞれ独立して水素原子、置換基を有していても良い炭素数1〜10のアルキル基を示す。X-は対アニオンを表す。)
Aromatic cross-linking heavy, wherein the main structural unit comprises at least a structural unit represented by the following formulas (A) and (B), and the main structural unit accounts for 50% by weight or more in the entire polymer. Coalescence.
Figure 0004710233
(In formula (A), n is an integer of 0 to 4. R 1 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms which may have a substituent, and R 2 represents an alkyl having a hydroxyl group. Group.)
Figure 0004710233
(In formula (B), Q represents a divalent linking group, and a represents 0 or 1. R 3 to R 5 each independently represent a hydrogen atom or a substituent having 1 carbon atom. Represents an alkyl group of from 10 to 10. X represents a counter anion.)
式(B)中、Qで示される2価の連結基が、置換基を有していても良い炭素数1〜4のアルキレン基であり、aは0又は1であることを特徴とする請求項1に記載の芳香族架橋重合体。       In formula (B), the divalent linking group represented by Q is an alkylene group having 1 to 4 carbon atoms which may have a substituent, and a is 0 or 1. Item 12. The aromatic crosslinked polymer according to Item 1. 式(A)中、R2は、2個以上の水酸基を有し、且つ少なくとも2個の水酸基が隣接する炭素原子に結合している炭素数2〜10のアルキル基であることを特徴とする請求項1又は2に記載の芳香族架橋重合体。 In the formula (A), R 2 is an alkyl group having 2 to 10 carbon atoms and having 2 or more hydroxyl groups, and at least two hydroxyl groups bonded to adjacent carbon atoms. The aromatic crosslinked polymer according to claim 1 or 2 . 式(A)中、R2が、−CH2(CHOH)mCH2OH(但し、mは1〜4の整数)で示されるポリヒドロキシアルキル基であることを特徴とする請求項1〜のいずれかに記載の芳香族架橋重合体。 Wherein (A), R 2 is, -CH 2 (CHOH) m CH 2 OH ( where, m is an integer from 1 to 4) according to claim 1 to 3, characterized in that the polyhydroxyalkyl radical represented by The aromatic crosslinked polymer according to any one of the above. 式(B)中、R3〜R5で示されるアルキル基が、水酸基を有することを特徴とする請求項1〜のいずれかに記載の芳香族架橋重合体。 In the formula (B), the alkyl group represented by R 3 to R 5 has a hydroxyl group, The aromatic crosslinked polymer according to any one of claims 1 to 4 . 芳香族架橋重合体の主たる構造単位中、構造単位(A)は50重量%以上であることを特徴とする請求項1〜のいずれかに記載の芳香族架橋重合体。 The aromatic crosslinked polymer according to any one of claims 1 to 5 , wherein the structural unit (A) is 50% by weight or more in the main structural unit of the aromatic crosslinked polymer. 芳香族架橋重合体の主たる構造単位中、構造単位(B)は、0.1〜50重量%であることを特徴とする請求項1〜のいずれかに記載の芳香族架橋重合体。 The aromatic crosslinked polymer according to any one of claims 1 to 6 , wherein the structural unit (B) in the main structural unit of the aromatic crosslinked polymer is 0.1 to 50% by weight. 請求項1〜のいずれかに記載の芳香族架橋重合体からなることを特徴とする半金属吸着剤。 A metalloid adsorbent comprising the aromatic crosslinked polymer according to any one of claims 1 to 7 . 請求項1〜のいずれかに記載の芳香族架橋重合体からなることを特徴とするホウ素吸着剤。 A boron adsorbent comprising the aromatic crosslinked polymer according to any one of claims 1 to 7 . クロロメチル化したスチレン架橋共重合体に、ポリヒドロキシアルキルアミン及びトリアルキルアミンを反応させることを特徴とする請求項1〜のいずれかに記載の芳香族架橋重合体の製造方法。 The method for producing an aromatic crosslinked polymer according to any one of claims 1 to 7 , wherein the chloromethylated styrene crosslinked copolymer is reacted with polyhydroxyalkylamine and trialkylamine.
JP2004054034A 2004-02-27 2004-02-27 Aromatic cross-linked polymers and adsorbents having metalloid complex forming groups Expired - Lifetime JP4710233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004054034A JP4710233B2 (en) 2004-02-27 2004-02-27 Aromatic cross-linked polymers and adsorbents having metalloid complex forming groups

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004054034A JP4710233B2 (en) 2004-02-27 2004-02-27 Aromatic cross-linked polymers and adsorbents having metalloid complex forming groups

Publications (2)

Publication Number Publication Date
JP2005239961A JP2005239961A (en) 2005-09-08
JP4710233B2 true JP4710233B2 (en) 2011-06-29

Family

ID=35022021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004054034A Expired - Lifetime JP4710233B2 (en) 2004-02-27 2004-02-27 Aromatic cross-linked polymers and adsorbents having metalloid complex forming groups

Country Status (1)

Country Link
JP (1) JP4710233B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5455545B2 (en) * 2009-10-15 2014-03-26 株式会社東芝 Boron adsorbent, boron adsorbent precursor, and method for producing boron adsorbent
KR102325730B1 (en) * 2019-11-14 2021-11-12 (주)비피케미칼 Chelate resins comprising random copolymer for adsorbing boron ions having an excellent boron ions adsorbing property and method for preparing the same.
WO2023021551A1 (en) 2021-08-16 2023-02-23 国立大学法人金沢大学 Cellulose derivative, and boron adsorbent containing said cellulose derivative

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5284190A (en) * 1976-01-06 1977-07-13 Mitsubishi Chem Ind Ltd Ion exchange resin and production thereof
JPS5755902A (en) * 1981-07-24 1982-04-03 Tokyo Organ Chem Ind Ltd Production of functional crosslinked copolymer
JPS60102948A (en) * 1983-11-11 1985-06-07 Mitsubishi Chem Ind Ltd Anion exchange resin for concentrating boron isotope
JPS60102947A (en) * 1983-11-11 1985-06-07 Mitsubishi Chem Ind Ltd Anion exchange resin for separating and concentrating boron isotope
JP2003024800A (en) * 2001-07-13 2003-01-28 Mitsubishi Chemicals Corp Anion exchange resin and method for producing pure water using the resin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5284190A (en) * 1976-01-06 1977-07-13 Mitsubishi Chem Ind Ltd Ion exchange resin and production thereof
JPS5755902A (en) * 1981-07-24 1982-04-03 Tokyo Organ Chem Ind Ltd Production of functional crosslinked copolymer
JPS60102948A (en) * 1983-11-11 1985-06-07 Mitsubishi Chem Ind Ltd Anion exchange resin for concentrating boron isotope
JPS60102947A (en) * 1983-11-11 1985-06-07 Mitsubishi Chem Ind Ltd Anion exchange resin for separating and concentrating boron isotope
JP2003024800A (en) * 2001-07-13 2003-01-28 Mitsubishi Chemicals Corp Anion exchange resin and method for producing pure water using the resin

Also Published As

Publication number Publication date
JP2005239961A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
EP2132143B1 (en) System and process for the removal of fluorochemicals from water
JP2006527078A (en) Arsenic adsorption ion exchanger
CN1197085A (en) Improved chelating resins
JP4768659B2 (en) Cellulose obtained by reacting cellulose with glycidyl methacrylate and then reacting with polyethyleneimine, and selective metal separation agent and selective separation method using the same
JP5455545B2 (en) Boron adsorbent, boron adsorbent precursor, and method for producing boron adsorbent
JP4710233B2 (en) Aromatic cross-linked polymers and adsorbents having metalloid complex forming groups
JPS5814441B2 (en) Bromination method for resins based on cross-linked vinyl aromatic copolymers
JPH0242542B2 (en)
JP2002363216A (en) Method for producing heterodisperse chelating resin
CN107849179B (en) Novel aluminum-doped, iminoacetic acid group-containing chelate resins
Dragan et al. Organic ion exchangers as beads. Synthesis, characterization and applications
JP3837478B2 (en) Boron-adsorbing polymer porous body, method for producing the same, and boron adsorbent
JPS5970652A (en) Iminodiacetic acid derivative
JP2001187823A (en) Separation-functional material
JP5522618B2 (en) Monolithic organic porous anion exchanger and method for producing the same
CN114302771B (en) Macroporous polymeric cryogel based on N-alkyl-D-glucamine for sequestering and/or removing toxic contaminants
KR102325730B1 (en) Chelate resins comprising random copolymer for adsorbing boron ions having an excellent boron ions adsorbing property and method for preparing the same.
KR102189336B1 (en) Method of preparing chelate resin for adsorbing boron ions
JP5711510B2 (en) Acrylic resin for adsorbent, water treatment column, and water treatment method
JP2005325269A (en) Poly n-vinylamine derivative and adsorbent of semimetal
JP5017801B2 (en) Chelating resin
JP7565283B2 (en) Polyether carbonate polyol refining process
JPH0724334A (en) Anion exchanger and gas adsorbent composed thereof
JPH05168917A (en) Production of activated carbon adsorbent
JPH0326687B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060929

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101116

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110307

R150 Certificate of patent or registration of utility model

Ref document number: 4710233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term