JPS60102948A - Anion exchange resin for concentrating boron isotope - Google Patents

Anion exchange resin for concentrating boron isotope

Info

Publication number
JPS60102948A
JPS60102948A JP58212248A JP21224883A JPS60102948A JP S60102948 A JPS60102948 A JP S60102948A JP 58212248 A JP58212248 A JP 58212248A JP 21224883 A JP21224883 A JP 21224883A JP S60102948 A JPS60102948 A JP S60102948A
Authority
JP
Japan
Prior art keywords
boric acid
exchange resin
anion exchange
resin
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58212248A
Other languages
Japanese (ja)
Other versions
JPH0460701B2 (en
Inventor
Masao Kosuge
小菅 正夫
Junji Fukuda
純二 福田
Kiyoto Ando
清人 安藤
Jiyunya Watanabe
純哉 渡辺
Toshiaki Itoi
糸井 利明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP58212248A priority Critical patent/JPS60102948A/en
Publication of JPS60102948A publication Critical patent/JPS60102948A/en
Publication of JPH0460701B2 publication Critical patent/JPH0460701B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To enable to efficiently concentrate a boron isotope, by using the titled anion exchange resin having a specified volume change ratio. CONSTITUTION:In an anion exchange resin used in concentrating a boron isotope by passing boric acid through an ion exchange resin bed formed of an aminopolyol-type anion exchange resin to provide a boric acid adsorption zone followed by passing an acidic solution therethrough, the volume change ratio represented by formula I , wherein V1 is the volume of the resin in the free amine form in water, and V2 is the volume of the resin with hydrochloric acid adsorbed thereon in water, is set to be 8-30. The anion exchange resin is a resin which has an aminopolyol group of formula II, wherein n is an integer of 1-6, R is H, a 1-5C alkyo group or -CH2-(CHOH)m-CH2OH, wherein m is 0 or 1-6, as a functional group. The anion exchange resin can be used for efficiently concentrating the boron isotope.

Description

【発明の詳細な説明】 本発明紘、ホウ素同位体濃縮用陰イオン交換樹脂に関す
るものである。さらに詳しくは、特定の物性を有するホ
ウ素同位体凝縮用アミノポリオール型陰イオン交換1#
脂に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an anion exchange resin for concentrating boron isotopes. More specifically, the aminopolyol type anion exchanger for boron isotope condensation with specific physical properties 1#
It's about fat.

ホウ素は天然にホウ素10(、B)が約−20%。Boron naturally contains about -20% boron 10 (, B).

ホウ素//(B)が約70%の割合で存在し。Boron // (B) is present in a proportion of about 70%.

このうち B Ff:、原子核反応等によシ生成する中
性子の吸収材として秀れた特性を有し、各種の原子炉に
おいて制御棒等の中性子吸収材として使用され、原子力
産業において必要不可欠の物質である。
Among these, BFf: has excellent properties as an absorber of neutrons generated by nuclear reactions, etc., and is used as a neutron absorber such as control rods in various nuclear reactors, and is an essential material in the nuclear power industry. It is.

然るに Bは上記の如く、天然存在比がλθ係で残シは
中性子吸収能力の殆んどないDBであるため原子炉等に
おいて効率的に中性子吸収を行なってこれを制御するた
めにはi−B とHBの同位体混合物である天然ホウ素
から10Bを分離濃縮して用いることが必要である。
However, as mentioned above, B has a natural abundance ratio of λθ, and the remainder is DB with almost no neutron absorption capacity, so in order to efficiently absorb neutrons in a nuclear reactor etc. and control it, i- It is necessary to separate and concentrate 10B from natural boron, which is an isotopic mixture of B and HB.

ホウ素同位体の分離方法の一つにイオン交換樹脂を充填
した複数のイオン交換塔を使用し、ホウ酸ヲイオン交換
クロマトグラフィーによシ展開してホウ素同位体の凝縮
ヲ行なう方法が知られている。中でもホウ酸に対し高い
選択性を示すアミノポリオール類を官能基として有する
スチレン系のキレート性陰イオン交換樹脂は、ホウ素同
位体の分離に対し、[[]式 で表わされる同位体の分離係数(α11 )が他の通常
の強塩基性陰イオン交換樹脂や弱塩基性陰イオン交換樹
脂のそれと比較して高いため、興味ある樹脂である(フ
ランス特許第1j、2θ!、27号)入これ等の樹脂は
、ダイヤイオン■0RBO2(三菱化成工業株式会社製
造販光)、アンバーライト エRA7り3 (米国ロー
ムeアンドΦハース社製造販売、商品名、旧名 XE 
J&j ) として市販されている。
One known method for separating boron isotopes is to use multiple ion exchange towers filled with ion exchange resins and develop boric acid using ion exchange chromatography to condense the boron isotopes. . Among them, styrene-based chelating anion exchange resins having aminopolyols as functional groups that exhibit high selectivity for boric acid have an isotope separation coefficient ( This resin is interesting because its α11 ) is higher than that of other ordinary strong and weak base anion exchange resins (French Patent No. 1j, 2θ!, No. 27). The resins are Diaion ■0RBO2 (manufactured and sold by Mitsubishi Chemical Industries, Ltd.) and Amberlite ERA7ri3 (manufactured and sold by Rohm E & Φ Haas Co., Ltd. in the United States, product name, former name: XE).
J&J).

然しなからこれ等の樹脂は、一般にホウ酸の吸脱着反応
速度が遅く、更に、ホウ素同位体濃遅く、下記〔13式
で衣わされる)iJIIiTP(Height Equ
ivalent Of a Theoretical 
Plate、同位体交換反応速度を表わす尺度として使
用)の値が大きく、これがために該陰イオン交換樹脂を
用いるホウ素同位体の濃縮は、特に秀れた方法とは云え
なかった。
However, these resins generally have a slow adsorption/desorption reaction rate of boric acid, and are also slow in boron isotope concentration, and have a low concentration of boron isotopes, iJIIiTP (Height Equ.
ivalent Of a Theoretical
Plate (used as a measure of isotope exchange reaction rate) was large, and for this reason, enrichment of boron isotopes using the anion exchange resin could not be said to be a particularly excellent method.

(但し、馬%R5はホウ素同位体濃縮帯の位置L1とり
、の同位体比) 本発明者は、特定の陰イオン交換樹脂を使用してホウ素
同位体を濃縮する際に、上記HETPと該隙イオン交換
樹脂の体積変化率に相関々係が存在し、特定の膨潤度の
範囲にある該陰イオン交換樹脂が、ホウ素同位体の織細
に効率良く使用できることを発見し、本発明を完成した
(However, %R5 is the isotope ratio of position L1 of the boron isotope enrichment zone.) The present inventor has determined that when concentrating boron isotopes using a specific anion exchange resin, the HETP and the It was discovered that there is a correlation between the rate of change in volume of ion exchange resins, and that anion exchange resins with a specific degree of swelling can be used efficiently for weaving boron isotopes, and the present invention was completed. did.

すなわち、本発明は、アミノポリオール型陰イオン交換
切脂で作製したイオン交換樹脂層にホウ酸を流通してホ
ウ酸吸着帯金形成させ、次いで酸溶液を流通してホウ素
同位体を濃縮する除に使用する陰イオン交換樹脂であっ
て、下記[1)式で表わされる体積変化率がr〜3θで
あることを特徴とするホウ素同位体@縮用陰イオン交換
樹脂 但し、vl:遊離アミン形樹脂の水中での体積Vt:塩
*a層形mB′iIo水中−to体sをその要旨とする
ものである。
That is, the present invention involves passing boric acid through an ion exchange resin layer made of aminopolyol type anion exchange resin to form a boric acid adsorption band, and then passing an acid solution to concentrate boron isotopes. An anion exchange resin used for boron isotope @condensation, characterized in that the volume change rate expressed by the following formula [1] is r ~ 3θ, where vl: free amine form Volume of resin in water Vt: salt*a-layer mB'iIo-to-form s in water.

本発明に使用する、陰イオン交換樹脂は、まず、ハロメ
チル基を有する架橋重合体IJ遺し、ついでこれt特定
のアミンと反応させることによシ製造される。
The anion exchange resin used in the present invention is produced by first forming a crosslinked polymer IJ having a halomethyl group, and then reacting this with a specific amine.

ハロメチル基を有する架橋共重合体は、公知の方法によ
シ、たとえは、スチレンのようなモノビニル芳香族モノ
マーとジビニルベンゼンのさせる溶媒、たとえばベンゼ
ン、トルエン、キシレン、クロルベンゼン、四塩化炭素
、テトラクロルエタン、トリクロルエチレン等を、モノ
マーに対してo、、zoo重量%程度加−て共重合を行
ない、得られるゲル状若しくは多孔性の共重合体全クロ
ロメチルメチルエーテルと反応させる方法、あるいは上
記モノマーを共重合さセルtlAにポリスチレンのよう
な芳香族線状ポリマーt1モノマー全量に対して0−1
0重量係程度加えて共重合を行った後、該線状ポリマー
t−溶媒により抽出除去して得られるゲル状若しくは多
孔性の共重合体をクロロメチルメチルエーテルと反応さ
せる方法、あるいは、上述のモノマーは溶解するが、生
成した架橋共重合体は溶解しない溶媒(沈澱溶媒)たと
えばn−ペンタン、1−オクタン、n−へブタン等をモ
ノマー全量に対しθ〜/20重ii俤程度加えて重合を
行い、生成したゲル状若しくは多孔性の共重合体を前述
の方法によジハロメチル化する方法等によって製造され
る。
The crosslinked copolymer having a halomethyl group can be prepared by a known method, for example, by combining a monovinyl aromatic monomer such as styrene with a solvent such as benzene, toluene, xylene, chlorobenzene, carbon tetrachloride, tetrachloride, etc. A method of copolymerizing by adding chloroethane, trichlorethylene, etc. in an amount of about 0,000% by weight to the monomer, and reacting the resulting gel-like or porous copolymer with total chloromethyl methyl ether, or the above method The monomers are copolymerized into a cell tlA with an aromatic linear polymer such as polystyrene t1 of 0-1 based on the total amount of monomers.
After copolymerization with addition of about 0 weight coefficient, the linear polymer is extracted and removed with a t-solvent, and the obtained gel-like or porous copolymer is reacted with chloromethyl methyl ether, or the above-mentioned method. Polymerization is carried out by adding a solvent (precipitation solvent) such as n-pentane, 1-octane, n-hebutane, etc., which dissolves the monomer but does not dissolve the produced crosslinked copolymer, in an amount of θ to /20% to the total amount of monomers. The resulting gel-like or porous copolymer is then dihalomethylated by the method described above.

上記方法で用いられるモノビニル芳香族モノマートシテ
ハ、スチレンの外にビニルトルエン、エチルスチレン、
ビニルアニソール、ビニルナフタリンのような芳香族ビ
ニル化合物が有用である。またポリビニル芳香族モノマ
ーとしては、ジビニルベンゼンの外ニジビニルエチルベ
ンゼン、ジビニルトルエン、ジビニルナフタレン、ジビ
ニルキシ17ン、ジビニルエーテル、エチレングリコー
ルジメタクリレート、エチレングリコールジアクリレー
ト、ジビニルケトンポリアリルエーテル等が有用であシ
、その使用量としては、全モノマーに対し2〜72重量
%の範囲金挙げることができる。
In addition to styrene, the monovinyl aromatic monomer used in the above method includes vinyltoluene, ethylstyrene,
Aromatic vinyl compounds such as vinylanisole and vinylnaphthalene are useful. In addition to divinylbenzene, useful polyvinyl aromatic monomers include divinylethylbenzene, divinyltoluene, divinylnaphthalene, divinylxylene, divinyl ether, ethylene glycol dimethacrylate, ethylene glycol diacrylate, and divinyl ketone polyallyl ether. The amount of gold used can range from 2 to 72% by weight based on the total monomers.

共重合は過酸化ベンゾイル、過酸化ラウロイル、アゾビ
スイソブチロニトリルのような重合触媒全モノマーに対
し0./〜10重jjk%加え、60〜り0℃に於いて
g−2θ時間反応させることによって行われる。該重合
方法としては、懸濁重合法、塊重合法等の公知の方法を
採用することができる。
The copolymerization is carried out using a polymerization catalyst such as benzoyl peroxide, lauroyl peroxide, azobisisobutyronitrile, etc. of 0.0% for all monomers. The reaction is carried out by adding 10 wt. As the polymerization method, known methods such as suspension polymerization and bulk polymerization can be employed.

芳香族架橋共重合体のハロメチル化は公知の方法、たと
えば、り吐メチルメチルエーテルを用いて塩化亜鉛のよ
うなフリーデルクラフト触媒の存在下で%−20−tO
℃に加温して行なわれる。クロルメチルメチルエーテル
の量は芳香族架橋共重合体10077に対し広い範囲で
変え得るが好ましくは109−300gの範囲を挙げる
ことができる。
Halomethylation of aromatic crosslinked copolymers can be carried out using known methods, e.g., using distilled methyl methyl ether in the presence of a Friedel-Crafts catalyst such as zinc chloride at %-20-tO
It is carried out by heating to ℃. The amount of chloromethyl methyl ether can vary within a wide range based on the aromatic crosslinked copolymer 10077, but preferably ranges from 109 to 300 g.

上述の方法の外、ノ10メチル基を有する芳香族架橋重
合体はクロルメチルスチレンのようなハロメチル化され
た芳香族モノビニル化合物と、ジビニルベンゼンのよう
なポリビニル化合物と全前述の方法に従って架橋共重合
する方法によっても製造することができる。
In addition to the above-mentioned method, the aromatic cross-linked polymer having 10 methyl groups can be cross-linked copolymerized with a halomethylated aromatic monovinyl compound such as chloromethylstyrene and a polyvinyl compound such as divinylbenzene according to all the above-mentioned methods. It can also be manufactured by a method.

上記ハロメチル基を有する架橋共重合体とを反応させる
特定のアミンとしては、下記一般式〔但し1式中% n
は/ないしgの整数を示し。
The specific amine to be reacted with the crosslinked copolymer having a halomethyl group has the following general formula [however, in 1 formula, % n
indicates an integer between / and g.

Rは水素原子、炭素数7ないしょのアルキル基または一
〇H2+0H(OH)−)OH20H(式中mは0./
ないし6の整数を示す)t−示す〕 で表わされるものである。
R is a hydrogen atom, an alkyl group with 7 carbon atoms, or 10H2+0H(OH)-)OH20H (in the formula, m is 0./
t-indicates an integer from 6 to 6).

上記特定のアミンとしては、具体的には、N−グルカミ
ン、N−ガラクタミン、N−マンノチミン、N−アラビ
テルアミン% N−メチル−グルカミン、N−エチル−
グルカミン、N−メチルーガラクタミン、N−エチルー
ガラクタミン、N−メfルーマンノサミy、N−エチル
−マンノサミン、ジーアラピチルアミン醇ヲ挙げること
ができる。
Specifically, the above-mentioned specific amines include N-glucamine, N-galactamine, N-mannothymine, N-arabitelamine% N-methyl-glucamine, N-ethyl-
Mention may be made of glucamine, N-methyl-galactamine, N-ethyl-galactamine, N-methyl-mannosamine, N-ethyl-mannosamine, and diarapitylamine.

前述の方法で得られたハロメチル基を有する架橋重合体
と上記特定のアミンとの反応は適当な溶媒の存在下にお
いて20〜/θθ℃の温度で2〜20時間加温下で行ガ
われる。溶媒としては水、の他にジオキサンのようなエ
ーテル系溶媒、アセトン、メチルエチルケトンのような
ケトン糸溶貌、クロロホルム、ジクロルエタン。
The reaction between the crosslinked polymer having a halomethyl group obtained by the above method and the above-mentioned specific amine is carried out under heating at a temperature of 20 to θθ°C for 2 to 20 hours in the presence of a suitable solvent. Examples of solvents include water, ether solvents such as dioxane, acetone, ketone filaments such as methyl ethyl ketone, chloroform, and dichloroethane.

クロルベンゼンのようなハロゲン化炭化水素系溶媒、ベ
ンゼン、トルエンのような芳香族炭化水素系溶媒、メタ
ノール、エタノールのようなアルコール系溶媒が挙げら
れる。また、この際反応を促進させる為にヨウ化カリ、
水酸化ナトリウム等を添加することができる。
Examples include halogenated hydrocarbon solvents such as chlorobenzene, aromatic hydrocarbon solvents such as benzene and toluene, and alcohol solvents such as methanol and ethanol. In addition, in order to accelerate the reaction, potassium iodide,
Sodium hydroxide etc. can be added.

さらに本発明に使用する陰イオン交換樹脂としては、フ
ェノール類に上記一般式〔径〕のアミン@を反応させた
後、アルデヒド類と縮合して得られるアミノポリオール
型陰イオン交換樹脂を挙げることができる。
Furthermore, examples of the anion exchange resin used in the present invention include aminopolyol-type anion exchange resins obtained by reacting phenols with amines of the above general formula [diameter] and then condensing them with aldehydes. can.

このようにして前述の式〔1〕で表わされる体積膨潤度
が/〜30である本発明のアミノポリオール型陰イオン
交換樹脂vc−製造することができる。
In this way, the aminopolyol type anion exchange resin VC of the present invention, which has a volume swelling degree of / to 30 and is represented by the above-mentioned formula [1], can be produced.

本発明のアミノポリオール型陰イオン交換樹脂は、アミ
ノポリオール基によシ所謂キレート性陰イオン交換衝脂
としての性質を示すものである。
The aminopolyol type anion exchange resin of the present invention exhibits properties as a so-called chelating anion exchange resin due to the aminopolyol group.

上述の方法で得られた本発明の陰イオン交換樹脂を使用
するホウ素同位体の濃縮方法としては、一般に、該陰イ
オン交換樹脂を充填した塔に、ホウ酸溶液を流通させ、
該樹脂層にホウ酸を吸着させ1次いで酸溶液によって該
ホウ酸吸着帯を展開させる所請カラムクロマトグラフィ
ーによって行なわれる◎ 本発明の上記陰イオン交換樹脂を用いてホウ酸吸着帯を
形成させる際のホウ酸濃度としては00−2〜−2.0
脂ル(M)/Aの範囲上挙げることができ、濃度が低い
場合には分離係数が大となる利点がある一力、展開に周
込る酸浴液量が多量になる欠点があシ、娘度が尚い場合
には、分離係数が低下するが該樹脂に対するホウ酸吸着
量が上がる利点がある。
As a method for concentrating boron isotopes using the anion exchange resin of the present invention obtained by the above method, generally, a boric acid solution is passed through a column packed with the anion exchange resin,
This is carried out by column chromatography in which boric acid is adsorbed onto the resin layer and then the boric acid adsorption zone is developed with an acid solution.◎ When forming the boric acid adsorption zone using the above anion exchange resin of the present invention The boric acid concentration is 00-2 to -2.0
This can be mentioned in the range of fatty acid (M)/A, and when the concentration is low, the separation coefficient is large, which is an advantage, but the disadvantage is that a large amount of acid bath liquid is involved in the development. If the daughterness is still low, the separation coefficient decreases, but there is an advantage that the amount of boric acid adsorbed to the resin increases.

展開に使用する酸としては、基鈑%mrR等を挙げるこ
とができる。また該展開に使用する敵の織度としてはθ
、コ〜2.OM/lの範囲1挙げることができる。ホウ
素同位体分離の操作温度は、高い程同位体交換反応速度
が上昇し、分離操作時のイオン交換塔の圧力損失が溶液
粘度の低下によシ低下する。そのため、尚い温度が好ま
しいが使用する樹脂の長時間使用における耐熱性等lら
aO〜100℃の範囲が好ましい。
Examples of the acid used for development include base plate% mrR. Also, the enemy's origrade used for this deployment is θ
, Ko~2. One range of OM/l can be mentioned. The higher the operating temperature for boron isotope separation, the higher the isotope exchange reaction rate, and the lower the pressure loss in the ion exchange column during the separation operation due to the lower solution viscosity. Therefore, the temperature is preferably in the range of aO to 100° C. due to the heat resistance of the resin used during long-term use.

本発明の陰イオン交換lft1脂の粒径としては。The particle size of the anion exchange lft1 fat of the present invention is as follows.

ホウ素同位体分離における同位体交換反応速度や叡展開
時のホウ酸と展開に用いる酸との吸脱着速度および該樹
脂を充填したイオン交換塔の圧力損失等全考慮して決め
られるが、上記ホウ酸濃度および操作温度範囲において
は、該樹脂の平均粒子直径として!Q〜300μmの範
囲を挙げることができる。
It is determined by taking into consideration all factors such as the isotope exchange reaction rate in boron isotope separation, the rate of adsorption and desorption between boric acid and the acid used in the development during the development, and the pressure loss of the ion exchange tower packed with the resin. As the average particle diameter of the resin over the acid concentration and operating temperature range! A range of Q to 300 μm can be mentioned.

さらに上記条件下で該樹脂を充填したイオン交換塔音用
いたホウ#を吸着帯の酸による展開の速度は該樹脂の同
位体交換反応速度やイオン交換塔の圧力損失全考慮して
決めら詐るが、展開速度が遅いとホウ素同位体の分離濃
縮−の生産性が低下し、速いと展開液の線速も速いため
Furthermore, under the above conditions, the rate of development of the adsorption zone by the acid in the ion exchange tower filled with the resin is determined by taking into account the isotope exchange reaction rate of the resin and the total pressure loss of the ion exchange tower. However, if the developing speed is slow, the productivity of separation and concentration of boron isotopes will decrease, and if the developing speed is fast, the linear velocity of the developing solution will also be high.

イオン交換塔の圧力損失が大きくなシすぎたシ。The pressure loss in the ion exchange tower was too large.

酸による展開が終了したイオン交換塔の!N脂の再生に
支障をきたすこと等から上記ホウ酸濃度および操作温度
a囲においては、流速(T−V)として0.j〜λOm
/hrの範囲が望ましい。
The ion exchange tower that has been developed with acid! At the above boric acid concentration and operating temperature in the range a, the flow rate (TV) should be set at 0.0% to prevent the regeneration of N fat from occurring. j〜λOm
A range of /hr is desirable.

次に1本発明の陰イオン交換樹脂を充填したイオン交換
塔を用いたホウ素同位体の分離濃縮方法について説明す
ると1本発明に使用する分離濃縮方法としては、以下に
説明するように、■逆ブレークスルー法、■置換展開法
および■逆ブレークスルー法と置換展開法を併用した方
法を挙げることができる。
Next, we will explain the method for separating and concentrating boron isotopes using an ion exchange column filled with an anion exchange resin of the present invention.1 The separation and concentration method used in the present invention is as follows: Examples include the breakthrough method, (1) substitution expansion method, and (2) a method that combines the reverse breakthrough method and substitution expansion method.

■ 逆ブレークスルー法(Bull、 Ohem、 B
oo、 JPNj3巻2号 1140頁) 第1図によシ逆ブレークスルー法を使用した本発明方法
の7例を説明する。第1図の01から偽は前述の本発明
の陰イオン交換樹脂を充填したイオン交換塔である。こ
の塔内温度は、供給g!Lt−加温し、かつ塔にジャケ
ットを設は温水等を循環するか、断熱材を設けることに
よシ一定に保たれる。■+1から焉6は塔に液を供給す
るだめの溶液切替バルブでさシ、v21からv28は塔
から排出される液の仕分は會“行なうための溶液切替パ
ルプでs ”1からM6はホウwIa着帯監視用検出器
を示す。
■ Reverse breakthrough method (Bull, Ohem, B
oo, JPNj Vol. 3, No. 2, p. 1140) Seven examples of the method of the present invention using the inverse breakthrough method will be explained with reference to FIG. 1 to 01 in FIG. 1 are ion exchange towers filled with the anion exchange resin of the present invention described above. This tower internal temperature is the supply g! Lt-heating and jacketing the tower can be maintained constant by circulating hot water or by providing insulation. ■+1 to 6 are solution switching valves for supplying liquid to the tower, and v21 to v28 are solution switching valves for sorting the liquid discharged from the tower. A detector for monitoring wIa belting is shown.

先ずOKから06 の各イオン交換塔を水酸化ナトリウ
ム、水酸化アンモニウム等のアルカリ溶液で再生し、次
いで脱塩水で水洗後% C1から0、tシリーズに接続
し%VHから排液しつつ、71m からホウ酸溶液を供
給して該樹脂に平衡になる迄ホウ酸溶液を供給する。然
る後にvllから酸溶液で該樹脂に吸着しているホウ酸
を展開しなからv16から排液する。酸による展開を続
はホウ酸吸着帯後端界面が02塔へ移った所で酸の供給
t” vIIに切シ替え酸吸着形、となったC1塔はv
Hからアルカリ溶液を供給してvllから排液すること
によシ再生し、次いでVllから脱塩水全供給しs v
Hから排液して洗浄し、次いで。
First, each ion exchange tower from OK to 06 was regenerated with an alkaline solution such as sodium hydroxide or ammonium hydroxide, and then washed with demineralized water. A boric acid solution is fed to the resin until equilibrium is reached. After that, the boric acid adsorbed on the resin is developed with an acid solution from vll, and then the liquid is drained from v16. Continuing the development with acid, when the rear end interface of the boric acid adsorption zone has moved to the 02 tower, the acid supply is switched to t'' vII, and the C1 tower, which has become the acid adsorption type, is v
Regeneration is performed by supplying an alkaline solution from H and draining the liquid from Vll, and then completely supplying demineralized water from Vll.
Drain and wash from H and then.

vII からホウ酸溶液を供給し、 Vttから排液し
てO,塔内樹脂に平衡となる量のホウ#R1−通液する
。このC1塔の再生、水洗、ホウ酸吸着の工程は、醒で
展開しているホウ酸吸着帯の後端界面がC1塔からC8
塔に移るまでに終了するように行ない、ホウ#l@着帯
後端界面が01塔に移った時点テ酸ノ供給t” Vts
に切シ替えb V*s’t vu に連結し、ホウ酸吸
着帯の展開の排液f:V!1から行なってホウ酸吸着帯
の酸による展開を続ける。ここで02塔は先の01塔と
同様に再生、水洗、ホウ酸吸着を行なう。この方法金繰
シ返すことによシ、ホウ酸吸着帯の後端界面に30 B
が繞縮される。 B濃縮度が所望の濃度に到達した時点
で例えば Be縮界面がイオン交換塔下部の排液パルプ
から抜出すことにより Ba縮細物生産が行なわれる。
A boric acid solution is supplied from vII, drained from Vtt, and an amount of boron #R1 that is in equilibrium is passed through the resin in the column. In this process of regeneration, water washing, and boric acid adsorption of the C1 tower, the rear end interface of the boric acid adsorption zone developed at the bottom is from the C1 tower to the C8
The process was carried out so that it was completed before the transfer to the tower, and when the rear end interface of #l @ the belt was transferred to the 01 tower, the acid was supplied t” Vts
Switch to b V*s't vu and drain f:V! of the development of the boric acid adsorption zone. Start from step 1 and continue developing the boric acid adsorption zone with acid. Here, the 02 column performs regeneration, water washing, and boric acid adsorption in the same manner as the 01 column. By repeating this method, 30 B was added to the rear interface of the boric acid adsorption zone.
is reduced. When the B concentration reaches a desired concentration, Ba shrinkage is produced by, for example, extracting the Be shrinkage interface from the waste pulp at the bottom of the ion exchange column.

■ 置換展開法(J、Am、 Chem、 Sac、 
、 77巻4/2J頁) 上述の■逆ブレークスルー法と同様の隘イオン交換樹脂
及び装置を使用し、離磯縮した例t−同じく第1図によ
シ説明する。例えばOIから06のイオン交換塔を水酸
化ナトリウム等のアルカリ溶液で再生後脱塩水で水洗し
01塔から0si6までシリーズに連結して7口からホ
ウ酸溶液を供給し、■!3 から排液して完全に平衡状
態となるまでホウ酸溶液を通液する。次いで01塔から
Os塔まで連結してVllから酸溶液を供給してホウ酸
吸着帯の置換展開を行なう。ホウ酸吸着帯の後端界面が
C1塔に移った時点で酸の供給t−v11からvllに
切9替え同時に06 塔を連結して排液をvnからV1
6へ切シ替えて置換展開を続行する。
■ Substitution expansion method (J, Am, Chem, Sac,
, Vol. 77, p. 4/2J) An example of detachment using the same ion-exchange resin and equipment as in the above-mentioned reverse breakthrough method is also explained with reference to FIG. 1. For example, after regenerating the ion exchange towers from OI to 06 with an alkaline solution such as sodium hydroxide, they are washed with demineralized water, connected in series from the 01 tower to 0si6, and boric acid solution is supplied from 7 ports, ■! Drain the liquid from step 3 and pass the boric acid solution through it until it reaches a completely equilibrium state. Next, the 01 tower is connected to the Os tower, and an acid solution is supplied from Vll to perform displacement development of the boric acid adsorption zone. When the rear end interface of the boric acid adsorption zone moves to the C1 column, the acid supply is switched from t-v11 to vll at the same time.
Switch to 6 and continue replacement expansion.

−万般による展開が終了した01塔はVttからアルカ
リ溶液を供給しvllから排液して再生し、同様に次い
で水洗し1次の展開に備える。
- The 01 tower, which has completed the general development, is regenerated by supplying an alkaline solution from Vtt and draining it from Vll, and then similarly washed with water to prepare for the first development.

とのC,塔の再生、水洗の操作はホウ酸吸着帯の後端界
面がC1塔に移る迄に終了するように行なう。ホウ酸吸
着帯の後端界面が03塔に移った時点で酸の供給t−v
l!からvlmに切シ替えC6塔の次に01kfrt連
結して排液tviから行なって置換展開を続行する。こ
の間に02塔は再生、水洗を行なう。この方法を繰シ返
すことによシホウ酸吸着帯の前端界面に Bが後端界面
に Bが濃縮され、各々が所望の績縮度に到達した時に
1例えば各々の界面がイオン交換塔下部の排液パルプを
通過する際に抜出し、その抜出量に見合うモル数のホウ
酸をイオン交換塔上部のホウ酸給液パルプからホウ酸吸
着帯中の原料ホウ酸と同位体組成比的に同一の所がその
パルプを通過する際にホウ酸給液を供給する方法によf
iBおよび”B i9縮物の生産とBλ料ホウ酸の供給
が行なわれる。
The operations of regenerating the C column and washing with water are completed until the rear end interface of the boric acid adsorption zone is transferred to the C1 column. At the point when the rear end interface of the boric acid adsorption zone moves to the 03 column, the acid supply t-v
l! Switch to vlm, connect 01kfrt next to the C6 tower, and continue the replacement development by starting from the drain liquid tvi. During this time, the 02 tower is regenerated and washed with water. By repeating this process, B is concentrated at the front end interface of the sulfuric acid adsorption zone, B is concentrated at the rear end interface, and when each reaches the desired degree of shrinkage, for example, each interface is concentrated at the bottom of the ion exchange column. Boric acid is extracted from the boric acid feed pulp at the top of the ion exchange tower in an isotopic composition ratio corresponding to the amount of boric acid extracted as it passes through the waste pulp. f depending on the method of supplying the boric acid feed liquid as it passes through the pulp.
Production of iB and B i9 condensates and supply of Bλ feed boric acid are carried out.

■ 逆ブレークスルー法と酸換展開法全併用した方法。■ A method that uses both the reverse breakthrough method and the acid exchange expansion method.

との方法の7例について同じく第1図を用いて説明する
。例えばC,から06のイオン交換塔f * (R化す
) IJつ”Ifのアルカリ溶液で再生し、次いで脱塩
水で洗淳ks 0ti6から04塔までシリーズに連結
して% Vll からホウ酸溶液を供給してVttから
排液して完全に平衡状態となるまでホウ酸溶液を通液す
る。矢に■の逆ブレークスルー法と同様にVllから酸
溶液で該樹脂に@着しているホウ酸を展開しながら、v
24から排液する。この時C,塔にはVlllからホウ
rRm液を供給してVtsから排液してC5塔に完全に
平衡になるまでホウ酸溶液全通液する。vttから#t
t−供給して展開′f続け、ホウ酸膜着帯後端界面が0
雪塔へ移った所で酸の供給t”■からv1!へ切シ替え
、同時に04塔の後にO@塔全全接続てvts から排
液することで展開を行なう。ここでホウ酸膜石膏後端界
面が02塔を進行する間に、C6塔にv16からホウ酸
溶液を供給しVtaから’F!)畝してC6塔へのホウ
酸吸着を行々い、展開が端子して販吸着形となった01
塔はv、iからアルカリ溶液を供給してv2!から排液
しで再化し、次いで脱塩水で洗浄する。次いで敵による
ホウ酸吸着伶展洲の後端展開の後端界面がQs塔に移っ
た所で酸の供給kV+sに切多替え、O1l塔の後に0
6塔を接続しVweから排液して展開を続け、この時C
I塔はホウ酸の吸着そしてC,塔は再生、水洗上行なう
。このように操作金繰シ返すことでホウ酸吸着帯の&廟
界面に Bが貞縮されてくる。
Seven examples of the method will be explained using FIG. 1 as well. For example, the ion exchange tower f* (R) from C, 06 is regenerated with an alkaline solution of IJ" If, then washed with demineralized water, the ion exchange column from 0ti6 to 04 is connected in series and the boric acid solution from %Vll is The boric acid solution is supplied and drained from Vtt, and the boric acid solution is passed through until a complete equilibrium state is reached.Similar to the reverse breakthrough method shown in the arrow, the boric acid adhering to the resin is While expanding v
Drain from 24. At this time, the boric acid solution is supplied to the C column from Vllll, drained from Vts, and the entire boric acid solution is passed through the C5 column until it is completely balanced. vtt to #t
Continue to supply and expand until the rear edge interface of the boric acid film is 0.
After moving to the snow tower, switch the acid supply from t"■ to v1!, and at the same time, after the 04 tower, connect all the O@ towers and drain the liquid from the VTS. While the rear end interface advances through the 02 tower, a boric acid solution is supplied from v16 to the C6 tower, and the boric acid solution is ridged from Vta to adsorb boric acid to the C6 tower. 01 became an adsorption type
The tower supplies alkaline solution from v, i and v2! Drain and reconstitute, then wash with demineralized water. Next, when the rear end interface of the enemy's boric acid adsorption and expansion of the rear end transitioned to the Qs tower, the acid supply was switched to kV+s, and after the O1l tower, the
6 towers are connected and the liquid is drained from Vwe to continue development, and at this time C
The I column adsorbs boric acid, and the C column performs regeneration and water washing. By repeating the operation in this way, B is concentrated at the &myo interface of the boric acid adsorption zone.

10Bが目的良度ないしはその近傍まで濃縮された時点
でホウ酸吸着帯t−酸によシ、シリーズに展開している
イオン交換塔の前のイオン交換塔へのホウ酸吸着を停止
し、イオン交換塔’6p塔シリーズから!塔シリーズに
切シ替えて■の置換展開を行危う。ホウ酸吸着帯の置換
展開と展開法の塔の再生、水洗を繰シ返し、ホウ酸吸着
帯の後端には更に B#縮が進行し、前端界面に置換展
開に切シ替えてから後端界面に蓄積した Bの濃縮箭に
見合う■ Bが施網してくる。この後適肖な間隔で例えばホウ酸吸
着帯の前端および後端界面が各々塔下部の排液バルブを
通過する際に B#縮細物よび B旋細物全抜出しその
抜出モル数に見合うモル数の原料ホウ酸をイオン交換上
部のホウ酸溶液給液バルブからホウ酸吸着帯中の原料ホ
ウ酸と同位体組成比的に同一の所が、そのバルブを通過
する際にホウ酸溶液を供給する方法により%10nおよ
び”B a細物の生産と原料ホウ酸の供給を行々う。こ
の方法は Bi縮細物に高g%細物の生産に適した方法
である。
When 10B is concentrated to the target quality or near it, the boric acid adsorption zone is removed by t-acid, and the boric acid adsorption to the ion exchange tower in front of the ion exchange tower deployed in the series is stopped. From the exchange tower '6p tower series! Switching to the Tower series, I am in danger of doing the replacement expansion of ■. By repeating the column regeneration and water washing of the displacement expansion and expansion method of the boric acid adsorption zone, B# shrinkage further progresses at the rear end of the boric acid adsorption zone, and after switching to displacement expansion at the front end interface, ■B will come to the net to meet the concentration of B that has accumulated on the edge interface. After this, at appropriate intervals, for example, when the front and rear interfaces of the boric acid adsorption zone each pass through the drain valve at the bottom of the column, all of the B# shrinkage and B whirlpools are extracted in proportion to the number of moles extracted. A number of moles of raw material boric acid is fed from the boric acid solution supply valve at the top of the ion exchanger to a place in the boric acid adsorption zone that has the same isotopic composition as the raw material boric acid, and as it passes through the valve, the boric acid solution is The production of %10n and "Ba fine products and the supply of the raw material boric acid are carried out by the feeding method. This method is suitable for producing high g% Bi reduced products.

本発明の陰イオン交換樹脂がホウ素同位体の分離濃縮に
有効である理由については、今のところ明確に解明され
ていないが、次のように考えられる。
The reason why the anion exchange resin of the present invention is effective in separating and concentrating boron isotopes has not yet been clearly elucidated, but is thought to be as follows.

すなわち、アミノポリオール型陰イオン交換樹脂を使用
するホウ素同位体濃縮においては、前述の式〔1〕で表
わされる体積変化率が大きくなるにっ−flHETP値
が小さくなり、ホウ酸交換反応速度が向上し5、ホウ素
同位体濃縮におけるホウ酸吸着帯を短かくしても澱縮に
必要々段数を充分確保することができ、さらにホウ酸吸
着帯の移動速度を向上させるため、極めて効率的にホウ
素同位体分離を行うことができる。しかし乍ら、一方で
体積変化率の余シ大きな樹脂を使用した場合は、使用樹
脂の遊離アミン形々いしホウ鼓吸着形と、酸吸着形との
体積変化が大に合わせてあらかじめ確保しておく場合に
は、この体積変化率が大きすぎると塔内のりS脂上部界
面上の空阻部も大きく取る必要が生じ、この部分が大き
くなるとこの部分における漬液混合が大きくなシ、ホウ
素同位体分離の如く一塔当シの分離効釆が小さい場合に
は、極めて効率を低下させるという問題を生ずる。
That is, in boron isotope enrichment using an aminopolyol type anion exchange resin, the volume change rate expressed by the above formula [1] increases, the flHETP value decreases, and the boric acid exchange reaction rate improves. 5. Even if the boric acid adsorption zone in boron isotope enrichment is shortened, the necessary number of stages can be secured for depletion, and furthermore, the movement speed of the boric acid adsorption zone is improved, so boron isotope concentration is extremely efficiently achieved. Separation can be performed. However, if a resin with a large volume change rate is used, it is necessary to ensure in advance that the volume change between the free amine type and the acid adsorption type of the resin used is large. If this volume change rate is too large, it will be necessary to make a large air barrier area on the upper interface of the S fat in the column, and if this area becomes large, the mixing of soaked liquid in this area will be large. If the separation efficiency of one column is small, a problem arises in that the efficiency is extremely reduced.

従って、アミノポリオール型陰イオン交換樹脂を用いた
ホウ累同位体分陰においては、上記の点を潟゛尽して該
樹脂の体積変化率がl〜30のもの音用いることによp
1ホウ累同位体交換反応迷庭が速く、効率的かつ安定し
てホウ素同位体の分離が行なえることと考えられる。
Therefore, in the isotope fractionation using an aminopolyol type anion exchange resin, the above points are taken into account and the volume change rate of the resin is 1 to 30.
It is believed that the single-boron isotope exchange reaction labyrinth is fast, efficient, and stable in separating boron isotopes.

このような(ゴf庸はとnまでに市販されている化率が
6と小さく、さらにダイヤイオン0kIBO2ではざ、
/でめシ、そのためIVJJ位体交換反応速度が迦<、
ホウ素同位体分離には必ずしも良い樹脂とは云えない。
The commercially available conversion rate is as low as 6, and furthermore, Diamond ion 0kIBO2 is
/demeshi, so the IVJJ regioexchange reaction rate is <,
It is not necessarily a good resin for boron isotope separation.

次に、本発明の詳細な実施の態様について実施例により
、説明するが、本発明は以下の実施例によシ限定される
ものではない。
Next, detailed embodiments of the present invention will be explained with reference to examples, but the present invention is not limited to the following examples.

実施例/ 加して重合した架橋共重合物全クロロメチルエーテルで
クロロメチル化し、とれにN−メチル−D−グルカミン
を官能基として導入した陰イオン交換樹脂(酸吸着容量
2.9tmeψ樹脂、水分コク係平均粒径λooミクロ
ン、均一係数/、2j、体積変化率?。りヲ遊離アミン
形として内径10711+、長さ100θ■のジャケッ
ト付ガラスカラム6塔に各々2!−充填し、これをシリ
ーズに接続した(第1図)。ジャケットに6θ℃の恒温
水を通し、カラム内t−to℃に保ち、逆ブレークスル
ー法によシホウ素同位体の分離を行なった。すなわち先
ず第1塔目が≦O°0に予熱した0、6Mホウ酸氷水浴
液一2000dを流速LV / m/hrで流通し、第
6塔目から排液して、4塔の樹脂にホウ酸を吸着させた
Example/ Anion exchange resin (acid adsorption capacity 2.9 tmeψ resin, water Body coefficient average particle diameter λoo microns, uniformity coefficient /, 2j, volume change rate?. Riwo free amine form was packed into 6 jacketed glass columns each with an inner diameter of 10711+ and a length of 100θ■, and this was used as a series. (Fig. 1). Constant temperature water at 6θ°C was passed through the jacket, and the column was maintained at t-to°C, and siboron isotopes were separated by the reverse breakthrough method. That is, first, the first column 2000 d of 0.6 M boric acid ice-water bath solution preheated to ≦O°0 was passed through at a flow rate of LV/m/hr, and the liquid was drained from the 6th column to adsorb boric acid onto the resin in the 4th column. .

次いで第1塔目から30℃に余熱した0、tNN塩酸水
浴液流速LV / m/hrで流通して樹脂に吸着して
いるホウ酸の展開を行ない、第6塔目から流出するホウ
酸水溶液を!−ずつ分取して、ホウ酸濃度を分析した所
O0♂3M/lであ0 つた。このホウ酸水溶液中の B /i 1 のホウ素
同位体比の測定は、パリアンマント社製OH−!型固体
質奮分析計で行なった。この時θ、J N塩酸水浴液に
よる展開開始から終了までに要した時間は70.2時間
で、ホウ酸吸着帯後端界面の移動速度はj j、7 W
hrであった。
Next, a 0,tNN hydrochloric acid aqueous solution preheated to 30°C is passed from the first column at a flow rate of LV/m/hr to develop the boric acid adsorbed on the resin, and the boric acid aqueous solution flows out from the sixth column. of! The boric acid concentration was analyzed and found to be O0♂3M/l. The boron isotope ratio of B/i 1 in this boric acid aqueous solution was measured using OH-! The analysis was carried out using a type solid mass spectrometer. At this time, the time required from the start to the end of development with θ, J N hydrochloric acid water bath was 70.2 hours, and the moving speed of the rear end interface of the boric acid adsorption zone was j j, 7 W.
It was hr.

以上のことから、ホウ酸膜着帯1にご塔逆ブレークスル
ー法によシ展開した時のホウ酸膜着帯最後端の B濃度
は、最初に樹脂に吸着させた天然組成の原料ホウ酸中の
 B緘度の79゜/j係に対し1.:z4t、r%であ
シ、約4tj、の長さにわたって Bがホウ酸吸着帯後
端界面に濃縮されていたことが判明した。
From the above, the B concentration at the last end of the boric acid film deposited zone when the boric acid film deposited zone 1 is developed by the reverse breakthrough method is the same as that of the natural composition raw material boric acid that was first adsorbed on the resin. 1 for the medium B degree of 79°/j. It was found that B was concentrated at the rear end interface of the boric acid adsorption zone over a length of: z4t, r%, approximately 4tj.

これから計算される分離係数は/、O/夕で。The separation factor calculated from this is /, O/.

HITPは/ 4t、4を閣であった。なお、参考のた
めに、原料及び物性の一部を比較のため第7表及び第2
表に示した。
HITP was /4t, 4. For reference, some of the raw materials and physical properties are shown in Table 7 and Table 2 for comparison.
Shown in the table.

比較例/ 官能基としてN−メチル−D−グルカミンを導入したグ
イ)イオン0RB0.2 (平均粒径100ミクロン、
均一係数へ3%体積変化率乙、/)の遊離アミン形を実
施例/のカラムに乙塔充填し、シリーズに結続し、逆ブ
レークスルー法によりホウ素向位体の分離を行なった。
Comparative example/Gui) ion 0RB0.2 (average particle size 100 microns,
The free amine form with a volume change rate of 3% to homogeneity factor (/) was packed into the column of Example//, connected in series, and the boron diagonal was separated by the reverse breakthrough method.

すなわち、先ず第1塔目から30℃に予熱し九〇、6N
塩酸水溶液f20001d流速’LV / m/hrで
流通し、第ご塔目から排液し、6塔の樹脂にホウ酸を吸
着させた。次いで第1塔目から60℃に予熱した066
N塩酸水溶液全流速LV / m/hrで通液して樹脂
に吸着しているホウ酸の展開を行ない第6塔目から流出
するホウ酸水溶液を!−ずつ分取しホウ酸濃度を分析し
た所θ、e J’ M / Lであった。
That is, first, the first column was preheated to 30℃ and heated to 90,6N.
The aqueous hydrochloric acid solution f20001d was circulated at a flow rate of 'LV/m/hr, and the liquid was drained from the 6th column, and boric acid was adsorbed on the resin in the 6th column. Next, 066 preheated to 60°C from the first column
The aqueous N-hydrochloric acid solution is passed at a total flow rate of LV/m/hr to develop the boric acid adsorbed on the resin, and the aqueous boric acid solution flows out from the 6th column! The concentration of boric acid was analyzed and found to be θ, e J' M/L.

この時ご塔のカラムの展開に要した時間は、70.2時
間で、ホウ酸吸着帯後端の界面移動速度は!コ、 j 
cm/h rであった。
The time required for the column to develop at this time was 70.2 hours, and the interfacial movement rate at the rear end of the boric acid adsorption zone was! Ko, j
cm/hr.

次に分取したホウ酸水溶液のホウ素同位体比゛を測定し
た所、ホウ酸膜着帯最後端の B1111度は% コダ
、/%であり、約4jtynの長さにわたって Bがホ
ウば吸着帯の後端界面に凝縮されていた。
Next, when the boron isotope ratio of the aqueous boric acid solution was measured, it was found that the B1111 degree at the end of the boric acid film adsorption zone was % Koda,/%, and over a length of approximately 4jtyn, B was in the boron adsorption zone. It was condensed at the trailing edge interface.

これから計算される分離係数は/、O/ご であシ、 
HK’rPは4tコ閣であった。なお結果を比較のため
第2表にあわせて記載した。
The separation factor calculated from this is /, O/go,
HK'rP was a 4t tower. The results are also listed in Table 2 for comparison.

しての1−オクタン、膨@渚媒としてのトルエンを第1
表の如く組み合わせて重合した。次いでこの架橋共重合
物をクロロメチルメチルエーテルでクロロメチル化し、
これに官能基としてN−メチル−D−グルカミン′fr
:導入して陰イオン交換樹脂(平均粒径700ミクロン
、均一係数/、ダ)を合成し、た。
1-octane as a solvent, and toluene as a swelling medium as the first
Polymerization was carried out in combinations as shown in the table. Next, this crosslinked copolymer was chloromethylated with chloromethyl methyl ether,
This has N-methyl-D-glucamine'fr as a functional group.
: anion exchange resin (average particle size 700 microns, uniformity coefficient /, da) was synthesized.

第 / 表 これらの樹脂の遊離アミン形のものを、実施ガ/で用い
たジャケット付ガラスカラムλ塔に各2!−ずつ充填し
、シリーズに接続し、実施例/と同様にto’aで先ず
0.3Mホウ酸溶液を樹脂に吸着させ、次いで6θ℃で
0.4 N塩酸水浴液を流速LM/m/hrで通液して
樹脂に吸着しているホウ酸の展開を行なって、流出して
くるホウ酸水溶液を分取し、その同位体の分析からHI
TPをめた。その結果を第一?表に用いた樹脂の体積変
化率と共に示す。
Table 1: Free amine forms of these resins were added to the jacketed glass column λ column used in Example 2, respectively. 0.3M boric acid solution was first adsorbed onto the resin in the same manner as in Example/, and then 0.4N hydrochloric acid solution was added at 6θ℃ at a flow rate of LM/m/m/m. The boric acid adsorbed on the resin is developed by passing the liquid through the resin for hours, and the boric acid aqueous solution that flows out is fractionated, and its isotope is analyzed to determine HI.
I won TP. Do you put the results first? It is shown together with the volume change rate of the resin used in the table.

比較例として体積変化率6.3のアンバーライトエRA
−74tJの一〇 〜j Omeah品を粉砕してIO
θ〜−00meahとしたもの全実施例−と同様にホウ
素同位体の分mt−行なってHKTPをめた。これを第
一2我に示す。
As a comparative example, Amberlite RA with a volume change rate of 6.3
-74tJ 10 ~j Crush Omiah products and IO
HKTP was determined using mt for the boron isotope in the same manner as in all Examples. This is shown in the first two parts.

第 λ 表 第2表から明らかなように、体積変化率t〜30の7ミ
ノボリオール型陰イオン交換l!J脂のHITPが格段
の相違で小さいことを示している。
As is clear from Table 2, 7 minoboriol type anion exchange l! with a volume change rate t~30. This shows that the HITP of J fat is significantly different and smaller.

第一2我の体積変化率とH]l1TPとの関係を第2図
に示す。
FIG. 2 shows the relationship between the rate of change in volume of 12g and H]l1TP.

【図面の簡単な説明】[Brief explanation of the drawing]

第7図は本発明を実施するためのイオン交換4ifII
I塔、その配管及びパルプを示す概念図である。 第2図は実施例−に於て得られた体積変化率とHlnT
Pとの関係を示す図で1ハ縦軸はHBiTp士、そして
横軸は体積変化率を示す。 1+ O,:隘イオン交換塔 ■11〜v16:バルブ V21〜v2.;パルプ M、 %= M6 :検出器 /:体aK化率−uIiiTPa@ 第1頁の続き ■■nt、c1.4識別記号 // G 21 C7706 [相]発明者糸井 判明 庁内整理番号 8204−2G 横浜市緑区鴨志田町100()I地 三菱化成工業株式
会社総合研究所内
FIG. 7 shows ion exchange 4ifII for carrying out the present invention.
It is a conceptual diagram showing an I tower, its piping, and pulp. Figure 2 shows the volume change rate and HlnT obtained in Example.
In the diagram showing the relationship with P, the vertical axis in 1C shows HBiTp, and the horizontal axis shows the volume change rate. 1+ O,: Valve ion exchange tower ■11~v16: Valve V21~v2. ; Pulp M, % = M6 : Detector / : Body aK conversion rate - uIiiiTPa @ Continuation of 1st page ■■ nt, c1.4 identification code // G 21 C7706 [Phase] Inventor Itoi Identification Office serial number 8204 -2G 100()I, Kamoshida-cho, Midori-ku, Yokohama City Mitsubishi Chemical Industries, Ltd. General Research Center

Claims (1)

【特許請求の範囲】[Claims] (1) アミノポリオール型陰イオン交換樹脂で作製し
たイオン交換樹脂層にホウ酸を流通してホウ酸吸着帯を
形成させ、次いで酸溶液を流通してホウ素同位体を濃縮
する際に使用する陰イオン交換樹脂であって、下記[1
E式で表わされる体積変化率がr〜30であることを%
徴とするホウ素同位体濃縮用陰イオン交換w脂。 但し、vl:遊離アミン形ai廁の水中での体積v、:
塩故吸着形樹脂の水中での体積 (2、特許請求の範囲第1項記載のホウ素同位体綴縮用
隘イオン交換amにおいて、アミノポリオール型陰イオ
ン交換樹脂が、 一般式[Ir] 〔但し、式中、nは/ないし乙の整数を示し、Rは水素
原子、Ai=;数/ないし夕のアルキル基塘たは−OH
,モ0H(OH)−) OH,OH(式中mは01/な
いし乙の整数を示す)を示す〕 で表わされるアミノポリオール基Th1i能基として有
する樹脂であることを%徴とするホウ素同位体濃縮用陰
イオン交換樹脂。
(1) Boric acid is passed through an ion exchange resin layer made of an aminopolyol type anion exchange resin to form a boric acid adsorption zone, and then an acid solution is passed through the anion exchange resin layer to be used when concentrating boron isotopes. An ion exchange resin comprising the following [1
% that the volume change rate expressed by E formula is r ~ 30
Anion exchange fat for enriching boron isotopes. However, vl: volume of free amine form ai in water v,:
Volume of salt adsorption type resin in water (2. In the ion exchange am for boron isotope condensation described in claim 1, the aminopolyol type anion exchange resin has the general formula [Ir] [However, , in the formula, n represents an integer from / to B, R is a hydrogen atom, Ai =; a number from / to an alkyl group or -OH
, Mo0H(OH)-) OH,OH (in the formula, m represents an integer from 01/ to Anion exchange resin for body concentration.
JP58212248A 1983-11-11 1983-11-11 Anion exchange resin for concentrating boron isotope Granted JPS60102948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58212248A JPS60102948A (en) 1983-11-11 1983-11-11 Anion exchange resin for concentrating boron isotope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58212248A JPS60102948A (en) 1983-11-11 1983-11-11 Anion exchange resin for concentrating boron isotope

Publications (2)

Publication Number Publication Date
JPS60102948A true JPS60102948A (en) 1985-06-07
JPH0460701B2 JPH0460701B2 (en) 1992-09-28

Family

ID=16619424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58212248A Granted JPS60102948A (en) 1983-11-11 1983-11-11 Anion exchange resin for concentrating boron isotope

Country Status (1)

Country Link
JP (1) JPS60102948A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005239961A (en) * 2004-02-27 2005-09-08 Mitsubishi Chemicals Corp Aromatic crosslinked polymer having metalloid complex-forming group and absorbent
CN112321837A (en) * 2020-10-19 2021-02-05 江苏威奇达药业有限公司 Resin for adsorbing boric acid in azithromycin process and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005239961A (en) * 2004-02-27 2005-09-08 Mitsubishi Chemicals Corp Aromatic crosslinked polymer having metalloid complex-forming group and absorbent
JP4710233B2 (en) * 2004-02-27 2011-06-29 三菱化学株式会社 Aromatic cross-linked polymers and adsorbents having metalloid complex forming groups
CN112321837A (en) * 2020-10-19 2021-02-05 江苏威奇达药业有限公司 Resin for adsorbing boric acid in azithromycin process and preparation method thereof
CN112321837B (en) * 2020-10-19 2022-04-29 江苏威奇达药业有限公司 Resin for adsorbing boric acid in azithromycin process and preparation method thereof

Also Published As

Publication number Publication date
JPH0460701B2 (en) 1992-09-28

Similar Documents

Publication Publication Date Title
US5221478A (en) Chromatographic separation using ion-exchange resins
US5244926A (en) Preparation of ion exchange and adsorbent copolymers
US3957698A (en) Thermally reversible, amphoteric ion exchange resins consisting of crosslinked microbeads embedded in crosslinked matrix of opposite exchange group type
EP0670184A2 (en) Method of demineralizing water or an aqueous solution
EP1490521A1 (en) Separation of sugars, sugar alcohols, carbohydrates and mixtures thereof
US3078140A (en) Ion retardation method of separating solutes
US6059975A (en) Bifunctional anion-exchange resins with improved selectivity and exchange kinetics
US4621103A (en) Aminopolyol anion exchange resins for separation isotopes
US5667693A (en) Exclusion chromatographic separation of ionic from nonionic solutes
FI83529B (en) GRAENSSKIKTPAERLOR FOER BLANDBAEDD-JONBYTARHARTSER.
JPS6243755B2 (en)
JPS60102948A (en) Anion exchange resin for concentrating boron isotope
US3247242A (en) Removal of inhibitors from ethylenically unsaturated monomers
JPS60102947A (en) Anion exchange resin for separating and concentrating boron isotope
US4092398A (en) Ion exchange apparatus for uranium technology
KR910005666B1 (en) Preparation of anion exchange resins having very low chlorine content
JPH05111641A (en) Oxidation resisting cation-exchange resin
JP3087905B2 (en) Adsorbent and method for removing suspended impurities
JPH0571285B2 (en)
CA1332269C (en) Process for the chromatographic separations of fluid mixtures using ion-exchange resins
JPS60102924A (en) Concentration of boron isotope
JPH0222904B2 (en)
JPH07289923A (en) Anion exchanger for hot water treatment in power equipment
JPH0571286B2 (en)
US20020022671A1 (en) Sulfonation process