JP4708268B2 - Surface modification of polyolefin moldings - Google Patents

Surface modification of polyolefin moldings Download PDF

Info

Publication number
JP4708268B2
JP4708268B2 JP2006171413A JP2006171413A JP4708268B2 JP 4708268 B2 JP4708268 B2 JP 4708268B2 JP 2006171413 A JP2006171413 A JP 2006171413A JP 2006171413 A JP2006171413 A JP 2006171413A JP 4708268 B2 JP4708268 B2 JP 4708268B2
Authority
JP
Japan
Prior art keywords
polyolefin
molded body
bromine
sheet
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006171413A
Other languages
Japanese (ja)
Other versions
JP2008001773A (en
Inventor
智昭 松木
純治 斎藤
信夫 川原
真吾 松尾
英之 金子
典夫 柏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2006171413A priority Critical patent/JP4708268B2/en
Publication of JP2008001773A publication Critical patent/JP2008001773A/en
Application granted granted Critical
Publication of JP4708268B2 publication Critical patent/JP4708268B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)

Description

本発明は、ポリオレフィン成形体表面の改質方法、詳しくは成形体表面のハロゲン原子による被覆方法、並びに該方法により得られる表面改質されたポリオレフィン成形体に関する。   The present invention relates to a method for modifying the surface of a polyolefin molded body, more specifically, a method for coating the surface of a molded body with a halogen atom, and a surface-modified polyolefin molded body obtained by the method.

ポリオレフィンは、加工性、耐薬品性、機械的強度、透明性などの物性が優れているために、フィルム、シート、容器などをはじめとする各種成形品として広く使用されている。しかしながら、ポリオレフィンは本来疎水性であるために、成形品の表面を塗装する必要があるなどの用途によっては、そのままでは対処できないという問題点がある。   Polyolefins are widely used as various molded articles including films, sheets, containers and the like because of their excellent properties such as processability, chemical resistance, mechanical strength and transparency. However, since polyolefin is inherently hydrophobic, there is a problem that it cannot be dealt with as it is depending on applications such as the need to coat the surface of a molded product.

このようなポリオレフィン成形品の表面の性質を改良するため、熱処理、波動エネルギーまたは粒子線による処理、プラズマ処理、コロナ処理などさまざまな表面処理が試みられており、それぞれに一応の成果を上げている。コロナ処理もポリオレフィン成形品の親水性を高めるために利用されているが、ポリプロピレンのような熱分解型ポリオレフィンの場合には、コロナ処理後に経時的に親水性が低下する傾向が見られ、根本的な解決方法とは言えない状況にある。熱分解型ポリオレフィンにおけるこのように親水性が低下する原因は、熱分解型ポリオレフィンにおいては、成形時に生成した低分子量重合体が経時的に表面にブリードアウトし、これがコロナ処理面を覆うためと考えられる。   In order to improve the surface properties of such polyolefin molded products, various surface treatments such as heat treatment, wave energy or particle beam treatment, plasma treatment, corona treatment have been tried, and each has achieved a certain result. . Corona treatment is also used to increase the hydrophilicity of polyolefin molded products, but in the case of thermally decomposable polyolefins such as polypropylene, there is a tendency for hydrophilicity to decrease over time after corona treatment, which is fundamental. It is in a situation that cannot be said to be a proper solution. The reason for this decrease in hydrophilicity in pyrolytic polyolefin is thought to be that in pyrolytic polyolefin, the low molecular weight polymer produced during molding bleeds out to the surface over time, which covers the corona-treated surface. It is done.

一方、本出願人らによる特開2004−131620号公報では、オレフィンと極性基含有モノマーとの共重合により得られたポリオレフィン中の極性基を、ハロゲン原子を有する原子移動ラジカル重合開始末端に変換してアクリル酸エステルなどの極性基含有モノマーを原子移動ラジカル重合によりグラフト化する方法が開示されている。該方法によれば、架橋や分解といった副反応が抑えられ、低分子量重合体成分や非グラフト化極性重合体などが極力存在しない、ポリオレフィン−極性重合体グラフトポリマーが得られる。この手法で得られたポリオレフィン系材料から得られる成形体では、前述のようなさまざまな表面処理方法に比べ、表面のブリードアウトなどの問題が改善されることが予想される。しかしながら、該成形体は、極性重合体セグメントがポリオレフィン内部及び表面の両方に存在するため、ポリオレフィン成形体の表面の性質を十分に改質する効果を発現させにくいばかりでなく、異種ポリマーが内部に分散しているためポリオレフィン本来の物性的特性を損ねてしまうことが問題である。
特開2004−131620号公報
On the other hand, in Japanese Patent Application Laid-Open No. 2004-131620 by the present applicants, a polar group in a polyolefin obtained by copolymerization of an olefin and a polar group-containing monomer is converted into an atom transfer radical polymerization initiation terminal having a halogen atom. A method of grafting a polar group-containing monomer such as an acrylate ester by atom transfer radical polymerization is disclosed. According to this method, a side-reaction such as crosslinking and decomposition is suppressed, and a polyolefin-polar polymer graft polymer can be obtained in which a low molecular weight polymer component, a non-grafted polar polymer, and the like are not present as much as possible. In a molded product obtained from a polyolefin-based material obtained by this method, it is expected that problems such as surface bleed out will be improved as compared with various surface treatment methods as described above. However, since the polar polymer segment exists in both the inside and the surface of the polyolefin, the molded body not only hardly exhibits the effect of sufficiently modifying the surface properties of the polyolefin molded body, but also has a different polymer inside. Since it is dispersed, the inherent physical properties of polyolefin are impaired.
JP 2004-131620 A

かかる実状において本発明者らが解決しようとする課題は、ポリオレフィン本来の性質を可能な限り損なうことなく、工業的に有利な手法にてポリオレフィン成形体表面を改質する技術、並びにこの改質技術によって得られる表面改質されたポリオレフィン成形体を提供することである。   In such a situation, the problems to be solved by the present inventors are a technique for modifying the surface of a polyolefin molded article by an industrially advantageous method without impairing the original properties of polyolefin as much as possible, and this modification technique. It is to provide a surface-modified polyolefin molded body obtained by the above.

本発明は、上記課題を解決するために提案されたものであって、従来にない新しい手法にてポリオレフィン表面が改質された成形体を提供するものである。すなわち、本発明によればポリオレフィン成形体の表面に効果的にハロゲン原子が導入され、成形体表面にハロゲン原子が導入されたポリオレフィン成形体を与えるのである。該ハロゲン原子導入部位は、原子移動ラジカル重合開始末端としての機能を持ち、例えば非オレフィン系モノマ
ーを原子移動ラジカル重合させることによって非オレフィン系ポリマーで表面改質されたポリオレフィン成形体を提供する。
The present invention has been proposed in order to solve the above-mentioned problems, and provides a molded body having a modified polyolefin surface by a new technique that has not been conventionally used. In other words, according to the present invention, a halogen atom is effectively introduced on the surface of the polyolefin molded body, and a polyolefin molded body having a halogen atom introduced on the surface of the molded body is obtained. The halogen atom introduction site has a function as an atom transfer radical polymerization initiation terminal, and provides, for example, a polyolefin molded body whose surface is modified with a non-olefin polymer by atom transfer radical polymerization of a non-olefin monomer.

具体的には、ポリオレフィン成形体にハロゲン化剤を作用させることにより得られる該成形体の表面にハロゲン原子が導入されたハロゲン化ポリオレフィン成形体、及びその工業的に有効な製造方法を提供する。   Specifically, the present invention provides a halogenated polyolefin molded article in which halogen atoms are introduced on the surface of the molded article obtained by allowing a halogenated agent to act on the polyolefin molded article, and an industrially effective production method thereof.

本発明によって、低コスト、簡略プロセスにて、表面にてラジカル重合可能なビニルモノマーの原子移動ラジカル重合能を有すハロゲン原子が導入されたポリオレフィン成形体を得ることが可能となる。本発明の技術により、低コストかつ従来にない全く新しい手法で、幅広い種類の重合体セグメントが導入されたポリオレフィン成形体を得ることが可能となり、成形体表面に導入された重合体の量や種類に応じ、印刷性、塗装性、耐熱性、耐衝撃性、親水性、疎水性、生体適合性、刺激応答性、・強度・硬さ、耐磨耗性、導電性、ガスバリア性、生体適合性、または金属、プラスチック、紙類などとの接着性能などに優れた性能を発揮するポリオレフィン系成形体を提供することが可能となる。   According to the present invention, it is possible to obtain a polyolefin molded article into which a halogen atom having an atom transfer radical polymerization ability of a vinyl monomer capable of radical polymerization on the surface is introduced by a low-cost and simple process. The technology of the present invention makes it possible to obtain a polyolefin molded product having a wide variety of polymer segments introduced at a low cost and a completely new method, and the amount and type of polymer introduced on the surface of the molded product. Depending on the printability, paintability, heat resistance, impact resistance, hydrophilicity, hydrophobicity, biocompatibility, stimulus responsiveness, strength / hardness, wear resistance, conductivity, gas barrier property, biocompatibility Alternatively, it is possible to provide a polyolefin-based molded article that exhibits excellent performance in adhesion performance with metals, plastics, papers, and the like.

以下、ポリオレフィン成形体にハロゲン化剤を作用させることにより、該成形体の表面にハロゲン原子が導入されたハロゲン化ポリオレフィン成形体、及びその製造方法について具体的に説明する。   Hereinafter, the halogenated polyolefin molded product in which halogen atoms are introduced into the surface of the molded product by allowing a halogenating agent to act on the polyolefin molded product, and the production method thereof will be specifically described.

まず、本発明に係るポリオレフィン成形体にハロゲン化剤を作用させることにより得られる、該成形体の表面にハロゲン原子が導入されたハロゲン化ポリオレフィン成形体について説明する。   First, a halogenated polyolefin molded product obtained by allowing a halogen atom to act on the polyolefin molded product according to the present invention and having a halogen atom introduced into the surface of the molded product will be described.

本発明のハロゲン化ポリオレフィン成形体を得るために用いられるポリオレフィン成形体は、ポリオレフィン樹脂を必須とする成形体であって、射出成形、押出成形、押出しラミネート成形、インフレーション加工、中空成形、圧縮成形、キャスト成形あるいはそれらを二次加工したものなど、ポリオレフィン樹脂に熱および圧力を同時に、又は別々に作用させ、型を用いて所望の形状付与処理を施した後、その形状が保持されたものであれば、本発明に係るハロゲン化ポリオレフィン成形体の原料として用いることができる。   The polyolefin molded body used to obtain the halogenated polyolefin molded body of the present invention is a molded body in which a polyolefin resin is essential, and injection molding, extrusion molding, extrusion lamination molding, inflation processing, hollow molding, compression molding, If the shape is maintained after applying desired shape using a mold by applying heat and pressure to the polyolefin resin simultaneously or separately, such as cast molding or secondary processing of them, etc. For example, it can be used as a raw material for the halogenated polyolefin molded article according to the present invention.

本発明に用いられるポリオレフィン成形体は、ハロゲン化するために、表面の一部、または全面にポリオレイン樹脂が露出している成形体であって、このような要件を満たす限りは、ポリオレフィン以外の材料との複合加工品の一部であってもかまわない。   The polyolefin molded body used in the present invention is a molded body in which the polyolefin resin is exposed on a part of the surface or the entire surface in order to be halogenated. It may be a part of a composite processed product with the material.

ポリオレフィン成形体を構成する主成分のポリオレフィン樹脂とは、エチレンまたはα-オレフィンを主成分モノマーとする(共)重合体であり、好ましいポリオレフィン樹脂として、高密度ポリエチレン、中密度ポリエチレン、エチレン系エラストマ−、プロピレン系エラストマー、イソタクチックポリポリプロピレン、シンジオタクチックポリプロピレン、高圧法低密度ポリエチレン及びそのアクリル酸、アクリル酸エステル、酢酸ビニルとのコポリマー、ポリオレフィン系アイオノマー、4−メチルペンテン−1重合体、エチレン−環状オレフィン共重合体などが挙げられる。また、過酸化物存在下、アクリル酸エステルや無水マレイン酸などで、グラフト変性されたポリオレフィン樹脂など、上記のポリオレフィン樹脂をあらゆる手法で変性させた樹脂や、架橋剤によって架橋された樹脂も、本発明に係るポリオレフィン成形体を構成するポリオレフィン樹脂として用いることができる。
これらは単独で、或いは2種類以上を含む樹脂であっても構わない。
The main component polyolefin resin constituting the polyolefin molded body is a (co) polymer having ethylene or α-olefin as a main component monomer. Preferred polyolefin resins include high-density polyethylene, medium-density polyethylene, and ethylene-based elastomer. , Propylene-based elastomer, isotactic polypolypropylene, syndiotactic polypropylene, high-pressure low-density polyethylene and its acrylic acid, acrylate ester, copolymer with vinyl acetate, polyolefin ionomer, 4-methylpentene-1 polymer, ethylene -A cyclic olefin copolymer etc. are mentioned. In addition, a resin obtained by modifying the above polyolefin resin by any method such as a polyolefin resin graft-modified with an acrylate ester or maleic anhydride in the presence of a peroxide, or a resin crosslinked with a crosslinking agent is also present. It can be used as a polyolefin resin constituting the polyolefin molded body according to the invention.
These may be used alone or in combination of two or more.

ポリオレフィン成形体には、本発明のハロゲン化反応を阻害しない範囲において必要に
応じて、あらゆる非ポリオレフィン系樹脂、改質剤、相溶化剤や無機フィラー成分または添加剤等が配合されていてもよい。添加剤としては、例えば軟化剤、安定剤、充填剤、酸化防止剤、結晶核剤、ワックス、増粘剤、機械的安定性付与剤、レベリング剤、濡れ剤、造膜助剤、架橋剤、防腐剤、防錆剤、顔料、充填剤、分散剤、凍結防止剤、消泡剤等が挙げられ、これらは単独で、或いは2種類以上組み合わせて添加される。
Any non-polyolefin resin, modifier, compatibilizing agent, inorganic filler component, or additive may be blended in the polyolefin molded body as necessary as long as the halogenation reaction of the present invention is not inhibited. . Examples of additives include softeners, stabilizers, fillers, antioxidants, crystal nucleating agents, waxes, thickeners, mechanical stability imparting agents, leveling agents, wetting agents, film-forming aids, crosslinking agents, Examples include antiseptics, rust inhibitors, pigments, fillers, dispersants, antifreezing agents, antifoaming agents, and the like. These may be added alone or in combination of two or more.

ポリオレフィン成形体表面へ導入されるハロゲン原子として、塩素、臭素、ヨウ素が好ましく、分子構造の安定性及び原子移動ラジカル重合の容易さより、臭素原子が特に好ましい。
ポリオレフィン成形体表面へのハロゲン原子導入は、ハロゲン化剤を用いて反応条件を制御することで可能となる。
As the halogen atom introduced into the surface of the polyolefin molded body, chlorine, bromine and iodine are preferable, and a bromine atom is particularly preferable from the viewpoint of stability of molecular structure and ease of atom transfer radical polymerization.
Introduction of halogen atoms to the surface of the polyolefin molded body can be achieved by controlling reaction conditions using a halogenating agent.

本発明で用いられるハロゲン化剤としては、ポリオレフィン成形体をハロゲン化してハロゲン化ポリオレフィン成形体を製造できるものであれば特に制限はないが、具体的には、塩素、臭素、ヨウ素、三塩化リン、三臭化リン、三ヨウ化リン、五塩化リン、五臭化リン、五ヨウ化リン、塩化チオニル、塩化スルフリル、臭化チオニル、N−クロロスクシンイミド、N−ブロモスクシンイミド、N−ブロモカプロラクタム、N−ブロモフタルイミド、1,3−ジブロモ−5,5−ジメチルヒダントイン、N−クロログルタルイミド、N−ブロモグルタルイミド、N,N‘−ジブロモイソシアヌル酸、N−ブロモアセトアミド、N−ブロモカルバミド酸エステル、ジオキサンジブロミド、フェニルトリメチルアンモニウムトリブロミド、ピリジニウムヒドロブロミドペルブロミド、ピロリドンヒドロトリブロミド、次亜塩素酸t−ブチル、次亜臭素酸t−ブチル、塩化銅(II)、臭化銅(II)、塩化鉄(III)、塩化オキサリル、IBrなどが挙げられるが、特に、温和な条件でハロゲン化が可能な、臭素及びN−ブロモスクシンイミドが好ましい。   The halogenating agent used in the present invention is not particularly limited as long as it can produce a halogenated polyolefin molded body by halogenating a polyolefin molded body. Specifically, chlorine, bromine, iodine, phosphorus trichloride are used. Phosphorus tribromide, phosphorus triiodide, phosphorus pentachloride, phosphorus pentabromide, phosphorus pentaiodide, thionyl chloride, sulfuryl chloride, thionyl bromide, N-chlorosuccinimide, N-bromosuccinimide, N-bromocaprolactam, N-bromophthalimide, 1,3-dibromo-5,5-dimethylhydantoin, N-chloroglutarimide, N-bromoglutarimide, N, N′-dibromoisocyanuric acid, N-bromoacetamide, N-bromocarbamic acid ester , Dioxane dibromide, phenyltrimethylammonium tribromide, pyridini Muhydrobromide perbromide, pyrrolidone hydrotribromide, t-butyl hypochlorite, t-butyl hypobromite, copper (II) chloride, copper (II) bromide, iron (III) chloride, oxalyl chloride, IBr In particular, bromine and N-bromosuccinimide, which can be halogenated under mild conditions, are preferable.

本発明においては、ポリオレフィン成形体へのハロゲン原子の導入方法については特に限定されるものではないが、ポリオレフィン成形体へのハロゲン原子の導入のし易さ、ポリオレフィン成形体の種類、反応条件がマイルドであるかどうか等の視点から、最適の手法が選択される。   In the present invention, the method for introducing halogen atoms into the polyolefin molded body is not particularly limited, but the ease of introduction of halogen atoms into the polyolefin molded body, the type of polyolefin molded body, and the reaction conditions are mild. The optimal method is selected from the viewpoint of whether or not.

例えば臭素化について、G. A. Russelらによる、J. Am. Chem. Soc., 77, 4025 (1955)に開示されているような、臭素を光照射下で反応させることによってアルケンを臭素化させる光臭素化反応やP. R. Schneinerらによる、Angew. Chem. Int. Ed. Engl., 37, 1895
(1998)に開示されているような、50%NaOH水溶液と四臭化炭素の存在下に溶媒中で加熱還流することで、環状アルキルを臭素化する方法、M. C. Fordらによる、J. Chem.
Soc., 2240 (1952)に開示されているN−ブロモコハク酸イミドをアゾビスイソブチロニトリル等のラジカル開始剤を用いてラジカル反応でアルキル末端を臭素化する方法等がある。
For example, for bromination, a photobromine that brominates alkenes by reacting bromine under light irradiation, as disclosed in GA Russel et al., J. Am. Chem. Soc., 77, 4025 (1955). Angew. Chem. Int. Ed. Engl., 37, 1895, by PR Schneiner et al.
(1998), a method of brominating cyclic alkyl by heating to reflux in a solvent in the presence of 50% aqueous NaOH and carbon tetrabromide, as described in MC Ford et al., J. Chem.
Soc., 2240 (1952) discloses a method in which N-bromosuccinimide is brominated at the alkyl terminal by a radical reaction using a radical initiator such as azobisisobutyronitrile.

本発明のポリオレフィン成形体表面へのハロゲン原子導入、すなわちハロゲン化を行うに当たり、溶媒を使用してもしなくても良い。溶媒を使用する場合、ハロゲン化反応を阻害せず、かつポリオレフィン成形体を溶解しないものであれば何れでも使用することができる。具体例として、ベンゼン、トルエンおよびキシレン等の芳香族炭化水素系溶媒、ペンタン、ヘキサン、ヘプタン、オクタン、ノナンおよびデカン等の脂肪族炭化水素系溶媒、シクロヘキサン、メチルシクロヘキサンおよびデカヒドロナフタレンのような脂環族炭化水素系溶媒、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、塩化メチレン、クロロホルム、四塩化炭素およびテトラクロルエチレン等の塩素化炭化水素系溶媒、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノールおよびtert-ブタノール等のアルコール系溶媒、アセトン、メチルエチルケトンおよびメチルイソブチルケトン等のケトン系溶媒、酢酸エチルおよびジメチルフタレート等のエステル系溶媒、ジメチルエーテル、ジエチルエーテル、ジ-n-アミルエーテル、テトラ
ヒドロフランおよびジオキシアニソールのようなエーテル系溶媒等を挙げることができる。また、水を溶媒とすることもできる。これらの溶媒は、単独でもまたは二種以上を混合して使用してもよい。
A solvent may or may not be used for introducing a halogen atom into the surface of the polyolefin molded article of the present invention, that is, halogenation. When a solvent is used, any solvent that does not inhibit the halogenation reaction and does not dissolve the polyolefin molded article can be used. Specific examples include aromatic hydrocarbon solvents such as benzene, toluene and xylene, aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, nonane and decane, and fats such as cyclohexane, methylcyclohexane and decahydronaphthalene. Cyclic hydrocarbon solvents, chlorinated hydrocarbon solvents such as chlorobenzene, dichlorobenzene, trichlorobenzene, methylene chloride, chloroform, carbon tetrachloride and tetrachloroethylene, methanol, ethanol, n-propanol, iso-propanol, n- Alcohol solvents such as butanol, sec-butanol and tert-butanol, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, ester solvents such as ethyl acetate and dimethyl phthalate, dimethyl ether, die Ether, di -n- amyl ether, and ether solvents such as tetrahydrofuran and dioxy anisole and the like. Water can also be used as a solvent. These solvents may be used alone or in combination of two or more.

反応温度はポリオレフィン成形体が溶融または膨潤しない温度でかつハロゲン化反応が進行する温度であれば何れでも構わず一様ではないが、通常、-50℃〜150℃である。好ましくは0℃〜80℃であり、更に好ましくは0℃〜50℃といった温和な条件での反応が好ましい。反応は場合によって減圧、常圧または加圧の何れでも実施できる。   The reaction temperature is not particularly limited as long as it is a temperature at which the polyolefin molded body does not melt or swell and the halogenation reaction proceeds, but it is usually -50 ° C to 150 ° C. The reaction is preferably 0 ° C to 80 ° C, more preferably a reaction under mild conditions such as 0 ° C to 50 ° C. In some cases, the reaction can be performed under reduced pressure, normal pressure, or increased pressure.

なお、本願明細書に記載した実施例においては、無溶媒下、臭素蒸気を用いる常温ブロム化方法を採用したが、簡便性、ブロム化効率性の視点から推奨される方法の一つである。
ポリオレフィン成形体表面へのハロゲン原子の導入は、X線光電子分光法、電子線マイクロアナライザー、または核磁気共鳴スペクトル等の分光学的手法により確認することができる。
In the examples described in the specification of the present application, a room temperature bromination method using bromine vapor in the absence of a solvent is adopted, but this is one of the recommended methods from the viewpoint of simplicity and bromination efficiency.
Introduction of halogen atoms to the surface of the polyolefin molded body can be confirmed by a spectroscopic method such as X-ray photoelectron spectroscopy, electron beam microanalyzer, or nuclear magnetic resonance spectrum.

また、本発明における製造法によれば、ハロゲン原子をポリオレフィン成形体内部に比べ表面に高濃度に導入することが可能であり、ポリオレフィン樹脂の物性低下、すなわち融点の低下や成形時の着色を極力抑えることが可能となる。   In addition, according to the production method of the present invention, it is possible to introduce halogen atoms at a higher concentration on the surface than inside the polyolefin molded body, and as a result, the physical properties of the polyolefin resin are reduced, that is, the melting point is lowered and coloring during molding is minimized. It becomes possible to suppress.

本発明において、望ましいハロゲン化ポリオレフィン成形体は、該成形体における表層、すなわち、通常は成形体表面より0〜500μmの深さの表層部分、好ましくは、0〜200μmの深さの表層部分、更に好ましくは0〜100μmの深さの表層部分のハロゲン化濃度が、その内部に比べて相対的に高い成形体である。   In the present invention, a desirable halogenated polyolefin molded body is a surface layer of the molded body, that is, a surface layer portion usually having a depth of 0 to 500 μm from the surface of the molded body, preferably a surface layer portion having a depth of 0 to 200 μm, Preferably, the molded body has a halogenated concentration of a surface layer portion having a depth of 0 to 100 μm, which is relatively high compared to the inside thereof.

前述により得られた本発明に係るハロゲン化ポリオレフィン成形体は、表面に導入されたハロゲン原子がその炭素原子との共有結合間の解離を伴う原子移動ラジカル重合開始基としての機能を有することが特徴である。
原子移動ラジカル重合(ATRP)は、Science,(1996),272,866、Chem. Rev., 101, 2921 (2001)、WO96/30421号公報、WO97/18247号公報、WO98/01480号公報、WO98/40415号公報、WO00/156795号公報、あるいは澤本ら、Chem. Rev., 101, 3689 (2001)、特開平8-41117号公報、特開平9-208616号公報、特開2000-264914号公報、特開2001-316410号公報、特開2002-80523号公報、特開2004-307872号公報で開示されているように、有機ハロゲン化物又はハロゲン化スルホニル化合物を開始剤、遷移金属を中心金属とする金属錯体を触媒としてラジカル重合性単量体をラジカル重合する方法であり、本発明に係る表面に導入されたハロゲン原子がその炭素原子との共有結合間の解離を伴う重合開始基として機能する。
The halogenated polyolefin molded article according to the present invention obtained as described above is characterized in that the halogen atom introduced on the surface has a function as an atom transfer radical polymerization initiating group accompanied by dissociation between covalent bonds with the carbon atom. It is.
Atom transfer radical polymerization (ATRP) is described in Science, (1996), 272,866, Chem. Rev., 101, 2921 (2001), WO96 / 30421, WO97 / 18247, WO98 / 01480, WO98 / 40415. No., WO00 / 156795, or Sawamoto et al., Chem. Rev., 101, 3689 (2001), JP-A-8-41117, JP-A-9-208616, JP-A-2000-264914, As disclosed in JP 2001-316410, JP 2002-80523, and JP 2004-307872, a metal having an organic halide or a sulfonyl halide as an initiator and a transition metal as a central metal In this method, a radical polymerizable monomer is radically polymerized using a complex as a catalyst, and the halogen atom introduced into the surface according to the present invention functions as a polymerization initiating group accompanied by dissociation between covalent bonds with the carbon atom.

以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。
本実施例中に示される成形体表面のX線光電子分光分析は、SSI社製、SSX−100型X線光電子分光装置を用い、臭素原子の分布状態は、島津製作所社製、EPMA−1600型電子線マイクロアナライザーを用いて行った。また、ATR/IR分析は、Biorad社製、FTS−6000型赤外分光光度計を用いて行った。
EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limited to these Examples.
The X-ray photoelectron spectroscopic analysis of the surface of the molded body shown in this example uses an SSX-100 type X-ray photoelectron spectrometer manufactured by SSI, and the bromine atom distribution state is an EPMA-1600 type manufactured by Shimadzu Corporation. An electron beam microanalyzer was used. In addition, ATR / IR analysis was performed using an FTS-6000 type infrared spectrophotometer manufactured by Biorad.

表面に臭素原子が導入されたハロゲン化ポリプロピレン成形体の製造
市販のポリプロピレン(PP)パウダー(F102WP・三井化学製)をプレス成形機を用いて180℃、10MPaで加圧し、約1mm厚のシート状ポリプロピレン(PP)成形体(以下、PPシート)を作成した。作成したPPシートを1cm×2cmの大きさにカットし、25℃で200mlガラス製容器にセットした。この容器中に臭素0.5mlを入
れたガラス製のミクロチューブを中身がこぼれないように静かに装入し、ナスフラスコの口を栓で閉じ、フラスコ内を臭素の蒸気で充満した状態にして、25℃で1時間静置した。その後、フラスコ内のPPシートをピンセットを用いて取り出し、取り出したPPシートを100mlのメタノール中と100mlのアセトン中で逐次洗浄した。洗浄したPPシートは80℃、10時間減圧下で乾燥させた。乾燥後のPPシートは、成形直後(臭素処理前)と同様の形状であり着色もなかった。
Production of halogenated polypropylene molded body with bromine atoms introduced on the surface. Commercially available polypropylene (PP) powder (F102WP, manufactured by Mitsui Chemicals) is pressed at 180 ° C. and 10 MPa using a press molding machine, and is about 1 mm thick sheet. A polypropylene (PP) molded body (hereinafter referred to as PP sheet) was prepared. The produced PP sheet was cut into a size of 1 cm × 2 cm and set in a 200 ml glass container at 25 ° C. Gently insert a glass microtube containing 0.5 ml of bromine into this container so that the contents do not spill, close the mouth of the eggplant flask with a stopper, and fill the flask with bromine vapor. And left at 25 ° C. for 1 hour. Thereafter, the PP sheet in the flask was taken out using tweezers, and the taken out PP sheet was washed successively in 100 ml of methanol and 100 ml of acetone. The washed PP sheet was dried under reduced pressure at 80 ° C. for 10 hours. The dried PP sheet had the same shape as that immediately after molding (before bromine treatment) and was not colored.

得られたPPシートの表面をX線光電子分光法(XPS,ESCA)で分析したところ、0.2atom%の臭素元素が検出された。また、電子線マイクロアナライザー(EPMA)でシートの深さ方向の臭素原子の分布状態を分析したところ、シート表面から約70μmまでの領域で臭素原子が検出され、表面から内部に行くに従って検出量は少なくなるという分布状態が確認された。このようにして、表面に臭素を導入したポリプロピレン成形体を得た。   When the surface of the obtained PP sheet was analyzed by X-ray photoelectron spectroscopy (XPS, ESCA), 0.2 atom% of bromine element was detected. In addition, when the distribution state of bromine atoms in the depth direction of the sheet was analyzed with an electron beam microanalyzer (EPMA), bromine atoms were detected in the region from the sheet surface to about 70 μm, and the detected amount increased from the surface to the inside. The distribution state of decreasing was confirmed. In this way, a polypropylene molded body having bromine introduced on the surface was obtained.

シート状ハロゲン化ポリプロピレン成形体表面の原子移動ラジカル重合開始基としての機能の確認
十分に窒素置換した50mlのガラス製反応器の中に、スターラーチップと上記により得られたシート状ハロゲン化ポリプロピレン成形体1枚を25℃でセットし、窒素雰囲気下で脱気処理した市販アセトン24.5mlとメタクリル酸メチルモノマー(MMA)4.5mlを加え、栓をしてスターラーで緩やかに攪拌した。20分後、別の容器にて調製しておいた、臭化第一銅(CuBr)65mgとN,N,N’,N”,N”−ペンタメチルジエチレントリアミン(PMDETA)0.17mlのアセトン2ml溶液を反応器に添加しきちんと栓をした後、25℃で30分間緩やかに攪拌を続けた。その後スターラーでの攪拌を停止し、PPシートを装入した反応液を窒素雰囲気下25℃で静置した。3日後、中のシートをピンセットで取り出し、100mlのメタノール中と100mlのアセトン中でそれぞれ良く洗浄した。洗浄したシート状成形体をガラスシャーレーにとり、24時間風乾させた。乾燥したシート表面のATR/IR分析を行ったところ、1730cm-1、1270cm-1、1242cm-1、1193cm-1、1149cm-1にポリメタクリル酸エステルの特徴的なピークが観測され、シート表面のポリメタクリル酸メチルの存在が確認された。
Confirmation of the function as an atom transfer radical polymerization initiating group on the surface of the sheet-shaped halogenated polypropylene molded body In a 50 ml glass reactor sufficiently substituted with nitrogen, a stirrer chip and the sheet-shaped halogenated polypropylene molded body obtained as described above were used. One piece was set at 25 ° C., 24.5 ml of commercially available acetone degassed under a nitrogen atmosphere and 4.5 ml of methyl methacrylate monomer (MMA) were added, stoppered and gently stirred with a stirrer. After 20 minutes, 65 mg of cuprous bromide (CuBr) and N, N, N ′, N ″, N ″ -pentamethyldiethylenetriamine (PMDETA) 0.17 ml acetone 2 ml prepared in a separate container The solution was added to the reactor and properly plugged, and then gently stirred at 25 ° C. for 30 minutes. Thereafter, stirring with a stirrer was stopped, and the reaction solution charged with the PP sheet was allowed to stand at 25 ° C. under a nitrogen atmosphere. Three days later, the inner sheet was taken out with tweezers and washed well in 100 ml of methanol and 100 ml of acetone, respectively. The washed sheet-like molded body was placed in a glass petri dish and allowed to air dry for 24 hours. When ATR / IR analysis was performed on the dried sheet surface, characteristic peaks of polymethacrylate were observed at 1730 cm-1, 1270 cm-1, 1242 cm-1, 1193 cm-1, 1149 cm-1, and The presence of polymethyl methacrylate was confirmed.

〔比較例1〕
実施例1に記載の臭素による処理前のシート状ポリプロピレン(PP)成形体についても同様に、MMAの原子移動ラジカル重合を試みた。得られたシート状成形体の表面をATR/IR分析にて解析したところ、その吸収パターンは、重合前のシート表面の吸収パターンと何ら変化なく、MMAの重合体の生成は確認されなかった。
[Comparative Example 1]
Similarly, atom transfer radical polymerization of MMA was attempted for the sheet-like polypropylene (PP) molded body before the treatment with bromine described in Example 1. When the surface of the obtained sheet-like molded body was analyzed by ATR / IR analysis, the absorption pattern was not changed from the absorption pattern on the sheet surface before polymerization, and the production of MMA polymer was not confirmed.

実施例1で得られたハロゲン化ポリプロピレン成形体の、EPMAによる臭素のマッピング結果を示す(分析データをもとに指定した面内において画像処理を行い、臭素の濃度を色調の濃淡によって示している。図中、白色部分が臭素濃度が高いことを示しており、成形体表面付近に臭素がより多く存在していることが判明した。図面の左右方向は成形体の深さ方向に対応)。The brominated mapping result by EPMA of the halogenated polypropylene molded body obtained in Example 1 is shown (image processing is performed in the specified plane based on the analysis data, and the bromine concentration is shown by the shade of the color tone. In the figure, the white portion indicates that the bromine concentration is high, and it was found that more bromine was present near the surface of the molded body (the left-right direction of the drawing corresponds to the depth direction of the molded body). 実施例1で得られたハロゲン化ポリプロピレン成形体の、EPMAによる臭素の特性X線スペクトルデータを示す(図面の左右方向は成形体の深さ方向に対応。図面の上下方向はスペクトル強度を示す。上方向に行くほど強度が大きい。すなわち成形体表面付近で臭素の特性X線スペクトル強度が大きいことを示している)。2 shows characteristic X-ray spectrum data of bromine by EPMA of the halogenated polypropylene molded product obtained in Example 1 (the horizontal direction in the drawing corresponds to the depth direction of the molded product, and the vertical direction in the drawing indicates the spectral intensity. The intensity increases as it goes upward, indicating that the characteristic X-ray spectrum intensity of bromine is large near the surface of the molded body).

Claims (1)

100μm超の厚みを有するポリオレフィンを主成分とするポリオレフィン成形体に、無溶媒下、0〜80℃でハロゲン化剤を作用させることにより得られ、前記ポリオレフィンの主鎖にハロゲン原子が直接結合している成形体の表面において、
前記ハロゲン原子を原子移動ラジカル重合開始基として、非オレフィン系モノマーを原子移動ラジカル重合させる工程を含む、
非オレフィン系ポリマーで表面改質されたポリオレフィン成形体を製造する方法であって、
前記ポリオレフィンの主鎖にハロゲン原子が直接結合している成形体において、その表面より100μmまでの表層部分のハロゲン濃度が、前記表層部分よりも内部のハロゲン濃度よりも高い、製造方法。
It is obtained by allowing a halogenated agent to act at 0 to 80 ° C. in the absence of a solvent on a polyolefin molded body containing a polyolefin having a thickness of more than 100 μm as a main component, and halogen atoms are directly bonded to the main chain of the polyolefin. On the surface of the molded body
Including a step of atom transfer radical polymerization of a non-olefin monomer using the halogen atom as an atom transfer radical polymerization initiation group,
A method for producing a polyolefin molded body surface-modified with a non-olefin polymer,
In the molded product in which halogen atoms are directly bonded to the polyolefin main chain, the halogen concentration in the surface layer portion up to 100 μm from the surface is higher than the internal halogen concentration in the surface layer portion.
JP2006171413A 2006-06-21 2006-06-21 Surface modification of polyolefin moldings Active JP4708268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006171413A JP4708268B2 (en) 2006-06-21 2006-06-21 Surface modification of polyolefin moldings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006171413A JP4708268B2 (en) 2006-06-21 2006-06-21 Surface modification of polyolefin moldings

Publications (2)

Publication Number Publication Date
JP2008001773A JP2008001773A (en) 2008-01-10
JP4708268B2 true JP4708268B2 (en) 2011-06-22

Family

ID=39006421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006171413A Active JP4708268B2 (en) 2006-06-21 2006-06-21 Surface modification of polyolefin moldings

Country Status (1)

Country Link
JP (1) JP4708268B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5111016B2 (en) * 2006-11-01 2012-12-26 三井化学株式会社 Surface hydrophilic polyolefin molded body and method for producing the same
KR100908887B1 (en) * 2009-04-07 2009-07-23 (주)코리아마그네슘 Kitchen bowl composed of magnesium alloy and manufacturing method of the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270610A (en) * 1986-05-16 1987-11-25 Agency Of Ind Science & Technol Graft polymerization of acetylene derivative

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080214690A1 (en) * 2004-09-27 2008-09-04 Makoto Komatsu Grafted Material, and Method of Manufacturing the Same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270610A (en) * 1986-05-16 1987-11-25 Agency Of Ind Science & Technol Graft polymerization of acetylene derivative

Also Published As

Publication number Publication date
JP2008001773A (en) 2008-01-10

Similar Documents

Publication Publication Date Title
EP2294101B1 (en) Polymers modified by silanes
KR101603083B1 (en) Modified polyolefins
JP5111016B2 (en) Surface hydrophilic polyolefin molded body and method for producing the same
US20120283388A1 (en) Polyolefins modified by silicones
WO2013181784A1 (en) Crosslinked polyethylene composition having improved processability
KR20080074940A (en) Coagent-mediated, grafted copolymers
JP4708268B2 (en) Surface modification of polyolefin moldings
JP2022183207A (en) Method of additive manufacturing using high performance polyolefin
KR20150026404A (en) Acrylic Rubber Modified Graft Copolymer Having Excellent Impact-resistance and Colorability, and Method for Preparing Same
JP2019522719A (en) Nucleated polyolefin compositions and methods and uses thereof
JP5002128B2 (en) Process for producing modified polypropylene polymer and polymer
JP4708284B2 (en) Surface hydrophilized polyolefin molding
CN114502637A (en) Impact modification of polyolefin acrylic polymers to styrene polymers
JP2009292911A (en) Surface-hydrophilic polyolefin molded article and method for producing it
JP6891663B2 (en) Thermoplastic resin composition and its molded product
JP2970934B2 (en) Method for producing modified styrene / olefin block copolymer
JPH07138426A (en) Polyolefin-based resin composition
JPH06106685A (en) Resin laminate using modified propylene polymer
JPH08337724A (en) Blow molding and its molding
JPH05169586A (en) Metal-resin laminate using modified propylene type polymer composition
WO2011083047A1 (en) Modified polyolefins
JPH05112694A (en) Production of modified polypropylene
JPH07173229A (en) Production of modified polyolefin
JP2001122931A (en) Method for producing modified ethylene-based resin
JP2002046214A (en) Asa resin molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110316

R150 Certificate of patent or registration of utility model

Ref document number: 4708268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250