JP4706780B2 - Method for producing electrophotographic toner - Google Patents

Method for producing electrophotographic toner Download PDF

Info

Publication number
JP4706780B2
JP4706780B2 JP2009151785A JP2009151785A JP4706780B2 JP 4706780 B2 JP4706780 B2 JP 4706780B2 JP 2009151785 A JP2009151785 A JP 2009151785A JP 2009151785 A JP2009151785 A JP 2009151785A JP 4706780 B2 JP4706780 B2 JP 4706780B2
Authority
JP
Japan
Prior art keywords
water
wet
toner
fine particles
pulverization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009151785A
Other languages
Japanese (ja)
Other versions
JP2011008047A (en
Inventor
智文 佐野
正博 前田
豊 山崎
雄太 菅
忠洋 椿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2009151785A priority Critical patent/JP4706780B2/en
Publication of JP2011008047A publication Critical patent/JP2011008047A/en
Application granted granted Critical
Publication of JP4706780B2 publication Critical patent/JP4706780B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電子写真トナー及びその製造方法に係り、特に、結着樹脂として生分解性樹脂を用いた電子写真トナーの製造方法に関する。 The present invention relates to an electrophotographic toner and a method of manufacturing the same, a biodegradable resin a process for producing an electrophotographic toner chromatography using as a binder resin.

電子写真方式による画像形成は、静電荷像をトナーにより現像して可視化し、得られたトナー像を用紙に転写した後、熱と圧力により定着させることにより行う。このような画像形成に用いるトナーとしては、従来より結着樹脂に着色剤や帯電制御剤などを配合した混合物を混練し、粉砕して所定の粒度分布に分級・調整した所謂粉砕トナーが広く知られている。   Image formation by electrophotography is performed by developing and visualizing an electrostatic image with toner, transferring the obtained toner image onto a sheet, and then fixing it with heat and pressure. As a toner used for such image formation, a so-called pulverized toner obtained by kneading a mixture of a binder resin and a colorant or a charge control agent, and pulverizing and classifying and adjusting to a predetermined particle size distribution has been widely known. It has been.

このような粉砕トナーの製造プロセスにおいて、粉砕工程に用いられる粉砕機として、気流式粉砕機や機械式粉砕機などの乾式粉砕機があるが、前者の方がより小粒子径に粉砕する能力に優れており、最近求められる低温定着性とも絡む小粒子径トナーの製造に、気流式粉砕機が一般的に用いられている。   In such a pulverized toner manufacturing process, as a pulverizer used in the pulverization step, there are dry pulverizers such as an airflow pulverizer and a mechanical pulverizer, but the former has the ability to pulverize to a smaller particle diameter. An airflow type pulverizer is generally used for the production of a small particle diameter toner which is excellent and has a low-temperature fixability which is recently required.

気流粉砕機は、ジェット気流の如き高圧気体を用い、ジェット気流で被粉砕物を搬送し、被粉砕物を衝突部材に衝突させ、その衝撃力により粉砕するものである。   The airflow pulverizer uses a high-pressure gas such as a jet stream, conveys the object to be pulverized by the jet stream, collides the object to be crushed with a collision member, and pulverizes by the impact force.

しかしながら、トナーの小粒子径化にともない、粉砕に要するエネルギーが増大してきており、気流式粉砕機と雖も技術的な難易度が高くなっている。小粒子径トナーへの粉砕を困難にする原因の一つとして、粒子同士の静電凝集力の増大が知られており、粉砕機内において粒子の粉砕に使用されるべきエネルギーが凝集を解くことに使用されて、粒子の粉砕に十分なエネルギーが使用されずに粉砕の効率を低下させている。   However, as the toner particle size is reduced, the energy required for pulverization has increased, and the technical difficulty of the airflow pulverizer and the soot has increased. One of the causes that makes it difficult to pulverize into a small particle size toner is known to increase electrostatic cohesion between particles, and the energy that should be used to pulverize the particles in the pulverizer is used to release the aggregation. Used, not enough energy is used to pulverize the particles, reducing the efficiency of pulverization.

なお、上記乾式粉砕機と対照的に湿式の粉砕機も知られている。例えば、従来より化粧品や食品、薬品、塗料、などの分野において素材の微粒子や乳化物を得るために、素材粒子を分散させた流体の高圧噴射を利用した高圧湿式微粒化装置が用いられてきた。この高圧湿式微粒化装置の一つとして、例えば、原料液をチャンバ内に噴射してなる噴流をチャンバ内の衝突壁にあるいは噴流同士を互いに衝突させた際の衝撃を利用して流体中の粒子の微粒子化や分散乳化などを行う噴流衝合装置が挙げられる(例えば、特許文献1参照。)。   In contrast to the dry pulverizer, a wet pulverizer is also known. For example, in order to obtain fine particles and emulsions of raw materials in the fields of cosmetics, foods, medicines, paints, etc., high-pressure wet atomization devices that use high-pressure jets of fluid in which material particles are dispersed have been used. . As one example of this high-pressure wet atomization apparatus, for example, particles in a fluid are used by utilizing an impact when jets formed by injecting a raw material liquid into a chamber collide with a collision wall in the chamber or when jets collide with each other. There is a jet abutting device that performs fine particle formation, dispersion emulsification, and the like (see, for example, Patent Document 1).

ところで、従来、トナーに用いる結着樹脂としては、スチレン・アクリル樹脂や、ポリエステル樹脂などの石油由来の樹脂が使用されている。しかし、近年、環境への配慮から、廃棄時に環境への負荷の少ない生分解性樹脂をトナー用結着樹脂として用いる方法が提案されている。   Conventionally, petroleum-derived resins such as styrene / acrylic resins and polyester resins have been used as binder resins for use in toners. However, in recent years, in consideration of the environment, a method has been proposed in which a biodegradable resin that has a low environmental impact during disposal is used as a binder resin for toner.

生分解性樹脂として現在最も有望な樹脂の一つとしてポリ乳酸がある。しかしながら、汎用のポリ乳酸は融点が170℃程度、ガラス転移点が60℃程度、分子量が10〜15万程度の結晶性ポリエステルであり、汎用のポリ乳酸をそのままトナー用樹脂として使用する場合、硬く、粉砕性が悪いことと、軟化温度が高く、低温定着に向かないという問題があった。   One of the most promising resins as a biodegradable resin is polylactic acid. However, general-purpose polylactic acid is a crystalline polyester having a melting point of about 170 ° C., a glass transition point of about 60 ° C., and a molecular weight of about 1 to 150,000. When general-purpose polylactic acid is used as it is as a resin for toner, it is hard. There are problems that the grindability is poor and that the softening temperature is high and it is not suitable for low-temperature fixing.

そのような問題を解決するために、ポリ乳酸と共にポリエステル樹脂を用いることで粉砕性を改善する方法が提案されている(例えば、特許文献2参照。)。しかし、この提案では、依然として石油由来原料のポリエステルを用いることになり、環境保全効果が少なくなってしまう。   In order to solve such a problem, a method for improving the pulverization property by using a polyester resin together with polylactic acid has been proposed (for example, see Patent Document 2). However, in this proposal, polyester of petroleum-derived raw materials is still used, and the environmental conservation effect is reduced.

また、生分解性樹脂を熱処理して結晶性を上げた後、粉砕する技術が知られているが(例えば、特許文献3参照。)、これは、結晶性を上げることにより硬度を増加させて研磨能力や洗浄能力を高めるもので、得られた粉体の主たる用途は研磨剤であり、また、用いられる生分解性樹脂の分子量も高いものである。なお、この特許文献2には、トナー用樹脂としての使用も記載されてはいるが、その分子量等からみて、トナーが必要とする10μm以下の粒径に粉砕することは、極めて困難である。   In addition, a technique is known in which a biodegradable resin is heat treated to increase crystallinity and then pulverized (see, for example, Patent Document 3), which increases hardness by increasing crystallinity. It is intended to enhance the polishing ability and the cleaning ability. The main use of the obtained powder is an abrasive, and the biodegradable resin used has a high molecular weight. Although Patent Document 2 also describes use as a resin for toner, it is extremely difficult to pulverize to a particle size of 10 μm or less required by the toner in view of its molecular weight and the like.

また、ポリ乳酸系生分解性樹脂にテルペンフェノール共重合体と特定のワックスとを配合する提案がある(例えば、特許文献4参照。)。この提案では、ポリ乳酸の強靭さと、樹脂強度は低いが低温定着性には有効であるテルペンフェノール共重合体をブレンドすることで、耐久性を損なうことなく、良好な低温定着性と粉砕性を両立させることができるというものである。   There is also a proposal of blending a terpene phenol copolymer and a specific wax into a polylactic acid-based biodegradable resin (see, for example, Patent Document 4). In this proposal, blending a terpene phenol copolymer that has low toughness of polylactic acid and low resin strength but is effective for low-temperature fixability provides good low-temperature fixability and grindability without sacrificing durability. It can be made compatible.

しかしながら、ポリ乳酸系生分解性樹脂の配合量は30重量%程度が限界であり、これ以上配合量を増やすと、粉砕性が悪化し、トナーを作成することが困難となってしまう。また、溶融粘度も高くなり、低温定着性が悪化してしまう。   However, the blending amount of the polylactic acid-based biodegradable resin is limited to about 30% by weight. If the blending amount is further increased, the grindability is deteriorated and it becomes difficult to prepare a toner. Also, the melt viscosity becomes high, and the low-temperature fixability deteriorates.

また、ポリ乳酸を溶剤に溶解、または溶剤を含む液に分散させてポリ乳酸を含むトナーを製造する方法も提案されている(例えば、特許文献5参照)。しかし、溶剤はトナー中に残留するとトナー定着時に溶剤が揮発して画像形成装置使用者の健康を害する可能性があるため、十分に溶剤を除去する必要があり、そのための大きな手間とエネルギーが必要となり好ましい方法とは言えない。   In addition, a method for producing a toner containing polylactic acid by dissolving polylactic acid in a solvent or dispersing in a liquid containing a solvent has been proposed (for example, see Patent Document 5). However, if the solvent remains in the toner, the solvent may volatilize at the time of fixing the toner, which may harm the health of the user of the image forming apparatus. Therefore, it is necessary to remove the solvent sufficiently. Therefore, it is not a preferable method.

特許第3151706号公報Japanese Patent No. 3151706 特開2008−250171号公報JP 2008-250171 A 特開2007−197602号公報JP 2007-197602 A 特許第3779221号公報Japanese Patent No. 3779221 特開2009−058628号公報JP 2009-058628 A

以上のように、生分解性樹脂をトナーの結着樹脂の主成分とするには課題が多く、その一部を置き換えた場合でも、配合量が限られており、良好な特性を維持しつつ、より多くの生分解性樹脂をトナーの結着樹脂として配合できることが望まれている。   As described above, there are many problems in using a biodegradable resin as a main component of the binder resin of the toner, and even when a part of the biodegradable resin is replaced, the blending amount is limited, while maintaining good characteristics. Therefore, it is desired that more biodegradable resin can be blended as a binder resin for toner.

本発明は、以上のような事情の下に為されたものであり、結着樹脂としてポリ乳酸系樹脂を含み、良好な粉砕性及び定着性が得られる電子写真トナー及びその製造方法を提供することを目的とする。   The present invention has been made under the circumstances as described above, and provides an electrophotographic toner that includes a polylactic acid-based resin as a binder resin and that provides good pulverization and fixing properties, and a method for producing the same. For the purpose.

上記課題を解決するため、本発明の第1の態様は、ポリ乳酸を含有する結着樹脂を含む原料混合物を混練する工程、該混練工程で得られた混練物を冷却後に粉砕する工程、該粉砕工程で得られた粉砕物を水に浸漬し加温しつつ攪拌することで加水分解を行って粉砕物分散水を得る加水分解処理工程、前記粉砕物分散水に対して湿式粉砕機にて湿式粉砕を行って微粒子分散水を得る湿式粉砕処理工程、前記微粒子分散水から微粒子を濾過し乾燥する濾過乾燥工程、該濾過乾燥工程で得られた微粒子に添加剤を外添混合する工程を具備することを特徴とする電子写真トナーの製造方法を提供する。 In order to solve the above problems, a first aspect of the present invention includes a step of kneading a raw material mixture containing a binder resin containing polylactic acid, a step of pulverizing the kneaded material obtained in the kneading step after cooling , A hydrolysis treatment step for obtaining a pulverized product dispersion water by hydrolyzing by immersing the pulverized product obtained in the pulverization step in water and stirring while heating , with a wet pulverizer for the pulverized product dispersion water wet grinding process step of performing wet grinding to obtain a fine particle dispersion water, filtered and dried drying and filtering particulates from the particle-dispersed water, comprising the step of externally added and mixed with additives to particles obtained by the filtering and drying process An electrophotographic toner manufacturing method is provided.

また、上記課題を解決するため、本発明の第2の態様は、ポリ乳酸を含有する結着樹脂を含む原料混合物を混練する工程、該混練工程で得られた混練物を冷却後に粉砕する工程、該粉砕工程で得られた粉砕物を水に浸漬し湿式粉砕機にて湿式粉砕を行って微粒子分散水を得る湿式粉砕処理工程、前記微粒子分散水を加温しつつ攪拌することで加水分解を行う加水分解処理工程、該加水分解処理工程で得られた微粒子分散水から微粒子を濾過し乾燥する濾過乾燥工程、該濾過乾燥工程で得られた微粒子に添加剤を外添混合する工程を具備することを特徴とする電子写真トナーの製造方法を提供する。 In order to solve the above problems, the second aspect of the present invention includes a step of kneading a raw material mixture containing a binder resin containing polylactic acid, and a step of pulverizing the kneaded product obtained in the kneading step after cooling. , hydrolysis by stirring the pulverized product obtained in the pulverization step wet pulverization treatment step was immersed in water by performing the wet powder crushing in a wet pulverizer to obtain a fine particle dispersion water, while heated the fine particles dispersing water A hydrolysis treatment step for performing decomposition, a filtration drying step for filtering and drying fine particles from the fine particle dispersion obtained in the hydrolysis treatment step, and a step for externally adding an additive to the fine particles obtained in the filtration drying step. An electrophotographic toner manufacturing method is provided.

本発明によると、結着樹脂として生分解性樹脂を含むにもかかわらず、良好な粉砕性及び定着性が得られる電子写真トナー及びその製造方法が提供される。   According to the present invention, there is provided an electrophotographic toner and a method for producing the same that can provide good grindability and fixability despite containing a biodegradable resin as a binder resin.

湿式粉砕処理に用いる湿式微粒化装置の一例を示し、チャンバ内での粉砕の様子を説明する模式的概略図である。It is a typical schematic diagram showing an example of a wet atomization apparatus used for wet pulverization processing and explaining a state of pulverization in a chamber.

以下、本発明の種々の実施形態について説明する。
本発明の一実施形態に係る電子写真トナーは、ポリ乳酸を含有する結着樹脂を含む原料混合物を混練した後、冷却粉砕した粉砕物を水中にて加水分解処理と湿式粉砕処理を行った後、濾過乾燥して得られた微粒子を含んでなることを特徴とする。
Hereinafter, various embodiments of the present invention will be described.
The electrophotographic toner according to an embodiment of the present invention is obtained by kneading a raw material mixture containing a binder resin containing polylactic acid, and then subjecting the cooled and pulverized pulverized product to hydrolysis and wet pulverization in water. It is characterized by comprising fine particles obtained by filtration and drying.

本実施形態に係る電子写真トナーにおいて、上記加水分解処理と湿式粉砕処理は、その順に行ってもよく、また逆順に行なっても良い。すなわち、粉砕工程で得られた粉砕物を水に浸漬し加温しつつ攪拌することで加水分解処理を行った後、湿式粉砕処理を行うか、上記粉砕工程で得られた粉砕物を水に浸漬して湿式粉砕処理を行った後に、加温しつつ攪拌することで加水分解処理を行う。   In the electrophotographic toner according to the exemplary embodiment, the hydrolysis treatment and the wet pulverization treatment may be performed in the order or in the reverse order. That is, after the pulverized product obtained in the pulverization step is immersed in water and stirred while heating, the hydrolysis treatment is performed, and then the wet pulverization treatment is performed, or the pulverized product obtained in the above pulverization step is added to water. After the immersion and wet pulverization treatment, the hydrolysis treatment is performed by stirring while heating.

なお、湿式粉砕処理は、市販の湿式微粒化装置を好適に用いることができる。
図1は、本発明の湿式粉砕処理に用いる湿式微粒化装置の一例を示し、チャンバ内での粉砕の様子を説明する模式的概略図である。
In addition, the wet pulverization process can use a commercially available wet atomization apparatus suitably.
FIG. 1 is a schematic diagram illustrating an example of a wet atomization apparatus used in the wet pulverization process of the present invention and illustrating a state of pulverization in a chamber.

同図に示すように、不図示のハウジング本体内部にチャンバが形成され、粗粉砕混練物1が分散された粗粉砕混練物分散水2が導入される流路3a,4aをそれぞれ備える第1のノズル3と第2のノズル4とが、チャンバのほぼ中央位置に設定されている噴流衝合部Xに向けて互いの噴射口3b,4bから粗粉砕混練物分散水2を高圧噴射させるように、ハウジング本体に所定角度で取り付けられている。   As shown in the figure, a chamber is formed inside a housing body (not shown), and first channels each having flow paths 3a and 4a into which coarsely pulverized and kneaded material dispersion water 2 into which coarsely pulverized and kneaded material 1 is dispersed are introduced. The nozzle 3 and the second nozzle 4 cause the coarsely pulverized kneaded material dispersion water 2 to be injected at high pressure from the mutual injection ports 3b, 4b toward the jet abutting portion X set at a substantially central position of the chamber. The housing body is attached at a predetermined angle.

粗粉砕混練物分散水2は、例えば粗粉砕混練物1と水とが不図示の原料タンクに投入混合されて収容され、該原料タンクから不図示の吸水ポンプ機構によって増圧機へ送られ加圧された後、図1の矢印a,bで示すように二手に分かれた上記流路3a,4aに高圧供給されて前記噴射口3b,4bから噴射(白抜き矢印c,d)される。   The coarsely pulverized kneaded material dispersion water 2 is, for example, supplied and mixed with a coarsely pulverized kneaded material 1 and water in a raw material tank (not shown), and sent from the raw material tank to a pressure intensifier by a water pump mechanism (not shown) for pressurization. After that, as shown by arrows a and b in FIG. 1, high pressure is supplied to the flow paths 3a and 4a divided into two hands, and injection is performed from the injection ports 3b and 4b (white arrows c and d).

噴射され衝突した粗粉砕混練物分散水2は、この衝突の結果、粗粉砕混練物1が微粒子化された微粉砕混練物5を含む処理液6となり、この処理液6が不図示の導出口から排出され回収タンク内に回収される。この回収タンク内に回収された処理液6は、不図示のバルブの解放によって再び原料タンクへ戻され、順次、衝突処理が繰り返されるようになっている。   As a result of the collision, the coarsely pulverized kneaded product dispersion water 2 that has been jetted and collided becomes the treatment liquid 6 containing the finely pulverized kneaded product 5 in which the coarsely pulverized kneaded product 1 is made into fine particles. And is collected in the collection tank. The treatment liquid 6 collected in the collection tank is returned to the raw material tank again by opening a valve (not shown), and the collision process is sequentially repeated.

本発明の第1の実施形態によれば、粉砕物を水中にて加水分解処理と上記図1に示したような装置を使用して湿式粉砕処理を行うことにより、効率的に微粉砕が行えると共に保存性の良好なトナーを得ることが可能となった。   According to the first embodiment of the present invention, the pulverized product is hydrolyzed in water and wet pulverized using the apparatus shown in FIG. At the same time, it is possible to obtain a toner having good storage stability.

本実施形態で使用されるポリ乳酸の製造方法としては、特に限定されず、従来公知の方法を用いることができる。原料となるとうもろこし等の澱粉を発酵し、乳酸を得た後、乳酸モノマーから直接脱水縮合する方法や乳酸から環状二量体ラクチドを経て、触媒の存在下で開環重合によって合成する方法がある。   It does not specifically limit as a manufacturing method of polylactic acid used by this embodiment, A conventionally well-known method can be used. There is a method of fermenting starch such as corn as a raw material to obtain lactic acid, and then dehydrating and condensing directly from lactic acid monomer, or a method of synthesizing from lactic acid via cyclic dimer lactide by ring-opening polymerization in the presence of a catalyst. .

本実施形態に係るトナーで使用される着色剤としては、従来公知のものを使用できる。例えば、黒の着色剤としては、カーボンブラック、青系の着色剤としては、C.I.Pigment15:3、赤系の着色剤としては、C.I.Pigment57:1、122、269、黄色系の着色剤としては、C.I.Pigment74、180、185等が挙げられる。本発明の目的の一つである環境への影響を考慮すると、着色剤単体で安全性が高いものが好ましい。   A conventionally known colorant can be used as the colorant used in the toner according to the exemplary embodiment. For example, as a black colorant, carbon black and as a blue colorant, C.I. I. Pigment 15: 3, and red colorants include C.I. I. Pigment 57: 1, 122, 269, and yellow colorants include C.I. I. Pigment 74, 180, 185 and the like. In consideration of the influence on the environment which is one of the objects of the present invention, a single colorant having high safety is preferable.

これら着色剤の含有量は、トナー全体に対して、1〜10質量%であることが好ましい。また、着色剤は、予め樹脂と着色剤を高濃度に分散したマスターバッチの形として用いても良い。   The content of these colorants is preferably 1 to 10% by mass with respect to the whole toner. The colorant may be used in the form of a masterbatch in which a resin and a colorant are dispersed in high concentration in advance.

本実施形態に係るトナーには、必要に応じて、従来公知の離型剤を添加することができる。そのような離型剤としては、例えば、ポリプロピレンワックス、ポリエチレンワックス、フィッシャートロプシュワックス等のオレフィン系ワックスや、カルナウバワックス、ライスワックス、カイガラムシワックス等の天然ワックス、合成エステルワックス等が挙げられる。   A conventionally known release agent can be added to the toner according to the exemplary embodiment as necessary. Examples of such release agents include olefinic waxes such as polypropylene wax, polyethylene wax, and Fischer-Tropsch wax, natural waxes such as carnauba wax, rice wax, and scale insect wax, and synthetic ester waxes.

低温定着性や高速印字性能を向上させるには、60〜100℃程度と比較的低い融点を有する離型剤が好ましく、具体的には、カルナウバワックスや、合成エステルワックスが好ましい。環境への影響を考慮すると、天然物系のカルナウバワックスがより好ましい。   In order to improve low-temperature fixability and high-speed printing performance, a release agent having a relatively low melting point of about 60 to 100 ° C. is preferable, and specifically, carnauba wax and synthetic ester wax are preferable. In consideration of environmental impact, natural product carnauba wax is more preferable.

離型剤の配合量は、トナー全体に対して、1〜10質量%であることが好ましい。
本実施形態に係るトナーには、必要に応じて、従来公知の正帯電又は負帯電の帯電制御剤を添加することができる。正帯電制御剤としては、例えば、4級アンモニウム塩、アミノ基を含有する樹脂等が挙げられ、負帯電制御剤としては、サルチル酸の金属錯塩、ベンジル酸の金属錯塩、カリックスアレン型のフェノール系縮合物、カルボキシル基を含有する樹脂などが挙げられる。
The compounding amount of the release agent is preferably 1 to 10% by mass with respect to the whole toner.
A conventionally known charge control agent of positive charge or negative charge can be added to the toner according to the exemplary embodiment as necessary. Examples of the positive charge control agent include quaternary ammonium salts, resins containing amino groups, and the like. Examples of the negative charge control agent include metal complexes of salicylic acid, metal complexes of benzylic acid, and calixarene type phenolic compounds. Examples include condensates and resins containing carboxyl groups.

帯電制御剤の配合量は、トナー全体に対して、0.1〜5質量%であることが好ましい。
本実施形態に係るトナーには、ポリ乳酸以外に、必要に応じて、従来公知のトナー用樹脂を添加することができる。そのような樹脂としては、スチレン・アクリル樹脂、ポリエステル樹脂があるが、顔料分散性、低温定着性の観点から、トナー用に開発されたポリエステル樹脂が好ましい。樹脂は単独であっても、2種類以上を混合しても構わない。
The blending amount of the charge control agent is preferably 0.1 to 5% by mass with respect to the whole toner.
In addition to polylactic acid, conventionally known toner resins can be added to the toner according to the exemplary embodiment, if necessary. Examples of such resins include styrene / acrylic resins and polyester resins. From the viewpoint of pigment dispersibility and low-temperature fixability, polyester resins developed for toners are preferred. Resin may be individual or may mix 2 or more types.

トナー用樹脂の配合量は、本発明の目的の一つである環境への影響を考慮すると、トナー全体に対して、0〜50質量%であることが好ましい。   The amount of the resin for toner is preferably 0 to 50% by mass with respect to the whole toner in consideration of the influence on the environment which is one of the objects of the present invention.

その他の樹脂材料として、粉砕性、定着性等改善のため、低分子量樹脂を添加することができる。ここで、低分子量樹脂とは、分子量数百〜数千のオリゴマー領域の樹脂であり、粘着付与剤として市販されている、ロジン及びロジン誘導体、ポリテルペン樹脂、テルペンフェノール樹脂、石油樹脂等がある。   As other resin materials, a low molecular weight resin can be added to improve grindability, fixability and the like. Here, the low molecular weight resin is a resin in an oligomer region having a molecular weight of several hundred to several thousand, and examples thereof include rosin and rosin derivatives, polyterpene resins, terpene phenol resins, and petroleum resins that are commercially available as tackifiers.

ここで、トナーの粒径は特に限定されないが、通常5〜10μmとなるように調整される。このようにして得られたトナーに対し、流動性向上、帯電性調整、耐久性向上のため、外添剤を添加することができる。   Here, the particle size of the toner is not particularly limited, but is usually adjusted to be 5 to 10 μm. An external additive can be added to the toner thus obtained in order to improve fluidity, adjust chargeability, and improve durability.

外添剤としては、無機微粒子が一般的であり、シリカ、チタニア、アルミナ等が挙げられ、そのうち疎水化処理されたシリカ(日本アエロジル(株)、CABOT(株)より市販)が好ましい。無機微粒子の粒径は、1次粒子径として、7〜40nmのものが良く、機能向上のため、2種類以上を混ぜ合わせても良い。   As the external additive, inorganic fine particles are generally used, and examples thereof include silica, titania, alumina, etc. Among them, silica subjected to hydrophobic treatment (commercially available from Nippon Aerosil Co., Ltd., CABOT Co., Ltd.) is preferable. The particle diameter of the inorganic fine particles is preferably 7 to 40 nm as the primary particle diameter, and two or more kinds may be mixed for improving the function.

以下に本発明の実施例と比較例を示し、本発明についてより具体的に説明する。なお、実施例及び比較例で用いた成分の各物性値の測定方法は下記の通りである。   Examples of the present invention and comparative examples are shown below, and the present invention will be described more specifically. In addition, the measuring method of each physical-property value of the component used by the Example and the comparative example is as follows.

(ガラス転移点(Tg)の測定)
装置:示差走査熱量計(島津製作所社製:DSC−60)
試料:8mg
昇温条件:10℃/分で160℃まで昇温し、降温速度10℃/分で35℃まで冷却したあと、再度10℃/分で160℃まで昇温する。2回目の昇温時において、転移により得られる曲線部分の2つの接線の交点をガラス転移点とした。
(Measurement of glass transition point (Tg))
Apparatus: Differential scanning calorimeter (manufactured by Shimadzu Corporation: DSC-60)
Sample: 8mg
Temperature raising conditions: The temperature is raised to 160 ° C. at 10 ° C./min, cooled to 35 ° C. at a temperature lowering rate of 10 ° C./min, and then raised again to 160 ° C. at 10 ° C./min. At the second temperature increase, the intersection of two tangents of the curve portion obtained by the transition was taken as the glass transition point.

(軟化点の測定)
装置:フローテスター(島津製作所(株)製、CFT−500D)
試料:1g
昇温速度:6℃/分
荷重:20kg
ノズル:直径1mm、長さ1mm
1/2法:試料の半分が流出した温度を軟化点とした。
(Measurement of softening point)
Apparatus: Flow tester (manufactured by Shimadzu Corporation, CFT-500D)
Sample: 1g
Temperature increase rate: 6 ° C / min Load: 20kg
Nozzle: 1mm diameter, 1mm length
1/2 method: The temperature at which half of the sample flowed out was taken as the softening point.

(トナー粒径の測定)
装置:マルチサイザーII(コールター(株)製)
試料:ビーカーに試料少量と精製水、界面活性剤を入れ、超音波洗浄器にて分散した。
測定:アパーチャーは100μmで行い、カウントは50,000個で行い、体積平均粒径を得た。
(Measurement of toner particle size)
Equipment: Multisizer II (manufactured by Coulter, Inc.)
Sample: A small amount of sample, purified water, and a surfactant were placed in a beaker and dispersed with an ultrasonic cleaner.
Measurement: The aperture was 100 μm, the count was 50,000, and the volume average particle size was obtained.

実施例1
下記の配合量の各成分をヘンシェルミキサー(標準羽装着、三井鉱山(株)製)に投入し、混合した。
ポリ乳酸(ガラス転移点 57℃、軟化点 160℃) 90質量部
着色剤:カーボンブラック(CABOT(株)製MOGUL L) 4質量部
離型剤:カルナウバワックス1号粉末(日本ワックス(株)製) 5質量部
帯電制御剤:E−84(オリエント化学(株)製) 1質量部
Example 1
Each component of the following blending amount was put into a Henschel mixer (standard feather mounted, manufactured by Mitsui Mining Co., Ltd.) and mixed.
Polylactic acid (glass transition point 57 ° C., softening point 160 ° C.) 90 parts by weight Colorant: Carbon black (MOGUL L manufactured by CABOT Co., Ltd.) 4 parts by weight Release agent: Carnauba wax No. 1 powder (Nippon Wax Co., Ltd.) 5 parts by mass Charge control agent: E-84 (manufactured by Orient Chemical Co., Ltd.) 1 part by mass

得られた混合粉体を2軸押出機(スクリュウ径43mm、L/D=34)で溶融混練した後、延伸、冷却し、混練物を得た。得られた混練物をロートプレックス(ホソカワミクロン社製、2mmスクリーン)で粗粉砕した。   The obtained mixed powder was melt-kneaded with a twin-screw extruder (screw diameter 43 mm, L / D = 34), and then stretched and cooled to obtain a kneaded product. The obtained kneaded material was coarsely pulverized with a rotoplex (manufactured by Hosokawa Micron Corporation, 2 mm screen).

この粗粉砕物100質量部をヒーター付き攪拌容器に採り、イオン交換水500質量部を加えて、200回転/分、95℃で8時間攪拌した(加水分解処理)。   100 parts by mass of this coarsely pulverized product was placed in a stirring vessel equipped with a heater, 500 parts by mass of ion-exchanged water was added, and the mixture was stirred at 200 rpm / 95 ° C. for 8 hours (hydrolysis treatment).

その後、粉砕物分散水の濃度を粉砕物/イオン交換水=1/2に調整し、30℃にて湿式微粒化装置(スギノマシン社製スターバースト粉砕機)に投入して粉砕(湿式粉砕処理)し、微粒子の懸濁液を得た。なお、粉砕時の水圧は48MPaで8回通した。この懸濁液を濾過して乾燥し微粒子を得た。   Thereafter, the concentration of the pulverized product dispersion water is adjusted to crushed product / ion exchange water = 1/2, and the pulverized product is added to a wet atomizer (Starburst pulverizer manufactured by Sugino Machine Co., Ltd.) at 30 ° C. and pulverized (wet pulverization treatment). To obtain a suspension of fine particles. The water pressure during pulverization was 8 times at 48 MPa. This suspension was filtered and dried to obtain fine particles.

得られた微粒子100質量部に外添剤として、「RY200」(日本アエロジル(株)製:疎水性シリカ、1次粒子径12nm)を2質量部添加し、ヘンシェルミキサー(撹拌強化羽装着、三井鉱山(株)製)で3分間撹拌混合し、平均粒径9.8μmのトナーを得た(軟化点140℃)。   As an external additive, 2 parts by mass of “RY200” (manufactured by Nippon Aerosil Co., Ltd .: hydrophobic silica, primary particle size of 12 nm) is added to 100 parts by mass of the obtained fine particles, and a Henschel mixer (with stirring reinforcing wings, Mitsui) is added. (Mine Co., Ltd.) for 3 minutes with stirring to obtain a toner having an average particle size of 9.8 μm (softening point: 140 ° C.).

実施例2、3
上記湿式微粒化装置による粉砕時の条件(粉砕時水圧、粉砕機通し回数)を下記表2に示す値に設定したことを除いて、実施例1と同様にしてトナーを得た(平均粒径はそれぞれ9.2μm,8.8μm、軟化点は実施例1と同様140℃)。
Examples 2 and 3
A toner was obtained in the same manner as in Example 1 except that the conditions at the time of pulverization (the water pressure during pulverization and the number of times the pulverizer was passed) were set to the values shown in Table 2 below (average particle diameter). Are 9.2 μm and 8.8 μm, respectively, and the softening point is 140 ° C. as in Example 1.

実施例4
上記実施例1と同様にして得た粗粉砕物に対して上記加水分解処理を行わずに、粗粉砕物分散水の濃度を粗粉砕物/イオン交換水=1/2に調整し、30℃にて湿式微粒化装置(スギノマシン社製スターバースト粉砕機)に投入して粉砕(湿式粉砕処理)し、微粒子の懸濁液を得た。次に、この懸濁液を200回転/分、50℃で4時間攪拌(加水分解処理)後、濾過して乾燥し微粒子を得た。その後、実施例1と同様にして平均粒径9.7μmのトナーを得た(軟化点141℃)。
Example 4
Without performing the above hydrolysis treatment on the coarsely pulverized product obtained in the same manner as in Example 1, the concentration of the coarsely pulverized product dispersion water was adjusted to coarsely pulverized product / ion-exchanged water = 1/2, and 30 ° C. Were put into a wet atomizer (Starburst pulverizer manufactured by Sugino Machine Co., Ltd.) and pulverized (wet pulverization treatment) to obtain a fine particle suspension. Next, this suspension was stirred (hydrolysis treatment) at 200 rpm for 5 hours at 50 ° C., then filtered and dried to obtain fine particles. Thereafter, a toner having an average particle diameter of 9.7 μm was obtained in the same manner as in Example 1 (softening point 141 ° C.).

実施例5、6
上記湿式微粒化装置による粉砕時の条件(粉砕時水圧、粉砕機通し回数)を下記表2に示す値に設定したことを除いて、実施例4と同様にしてトナーを得た(平均粒径はそれぞれ9.3μm,8.7μm、軟化点は実施例4と同様141℃)。
Examples 5 and 6
A toner was obtained (average particle diameter) in the same manner as in Example 4 except that the conditions at the time of pulverization by the wet atomization apparatus (water pressure during pulverization and the number of times the pulverizer was passed) were set to the values shown in Table 2 below. Are 9.3 μm and 8.7 μm, respectively, and the softening point is 141 ° C. as in Example 4.

比較例1
上記実施例4と同様にして得た懸濁液を加水分解処理せずに濾過して乾燥し微粒子を得た。その後、実施例1と同様にして平均粒径9.7μmのトナーを得た(軟化点160℃)。
Comparative Example 1
The suspension obtained in the same manner as in Example 4 was filtered and dried without hydrolyzing to obtain fine particles. Thereafter, a toner having an average particle diameter of 9.7 μm was obtained in the same manner as in Example 1 (softening point: 160 ° C.).

比較例2
上記実施例1と同様にして得た粗粉砕物に対して、気流式粉砕機にて粉砕を試みたが、粉砕性が著しく悪く、トナー粒子径(10μm以下)まで微粉砕することが出来なかった。
Comparative Example 2
The coarsely pulverized product obtained in the same manner as in Example 1 was pulverized with an airflow pulverizer. However, the pulverization property was remarkably poor, and it was not possible to finely pulverize the toner particle size (less than 10 μm). It was.

比較例3
上記ヘンシェルミキサーに投入する前のポリ乳酸をイオン交換水中で200回転/分、95℃で8時間攪拌して加水分解前処理を行い、その分散水を濾過して乾燥し加水分解処理済みポリ乳酸を得た。この加水分解前処理済みのポリ乳酸を用い、上記実施例1と同様にして混練物を得、得られた混練物を粗粉砕した。この粗粉砕物を気流式粉砕機にて粉砕し微粒子を得た。得られた微粒子に対して、実施例1と同様にして平均粒径9.9μmのトナーを得た(軟化点140℃)。
Comparative Example 3
The polylactic acid before being charged into the Henschel mixer is stirred in ion-exchanged water at 200 rpm for 8 hours at 95 ° C. and subjected to hydrolysis pretreatment, the dispersion is filtered and dried, and hydrolyzed polylactic acid. Got. Using this polylactic acid that had been subjected to hydrolysis pretreatment, a kneaded product was obtained in the same manner as in Example 1, and the obtained kneaded product was coarsely pulverized. The coarsely pulverized product was pulverized with an airflow pulverizer to obtain fine particles. From the obtained fine particles, a toner having an average particle diameter of 9.9 μm was obtained in the same manner as in Example 1 (softening point 140 ° C.).

以上のようにして得られた実施例1〜6及び比較例1〜3のトナーの定着性、及び粉砕性について、下記の試験方法により試験し、評価した。   The fixability and grindability of the toners of Examples 1 to 6 and Comparative Examples 1 to 3 obtained as described above were tested and evaluated by the following test methods.

試験1−定着性
非磁性一成分現像装置「カシオページプレストN−5」(カシオ計算機(株)製:カラープリンタ毎分29枚(A4横)機、プロセススピード129mm/sec)の定着部分の温度を可変できるように改造し、定着試験器とする。この装置で未定着画像を得た後、定着温度を100〜200℃の範囲で10℃毎に可変し、未定着画像を定着器に通した。画像サンプルのコールドオフセット、ホットオフセット、剥離爪跡を目視で評価し、非オフセット領域を求め、評価した。プロセス速度は129.3mm/sec、用紙はXEROX P紙A4サイズ(重量64g/m)で行った。また、定着器のオイル供給ロールは外して行った。
Test 1-Fixability Fixing temperature of non-magnetic one-component developing device “Casio Page Presto N-5” (manufactured by Casio Computer Co., Ltd .: color printer 29 sheets per minute (A4 horizontal) machine, process speed 129 mm / sec) Is modified so that it can be changed to a fixing tester. After obtaining an unfixed image with this apparatus, the fixing temperature was varied in the range of 100 to 200 ° C. every 10 ° C., and the unfixed image was passed through a fixing device. The cold offset, hot offset, and peeled nail trace of the image sample were visually evaluated, and a non-offset area was obtained and evaluated. The process speed was 129.3 mm / sec, and the paper was XEROX P paper A4 size (weight 64 g / m 2 ). The oil supply roll of the fixing device was removed.

◎:非オフセット領域が30℃以上である。
○:非オフセット領域が20℃以上である。
×:非オフセット領域が20℃未満である。
×:非オフセット領域が10℃未満である。
(Double-circle): A non-offset area | region is 30 degreeC or more.
○: The non-offset region is 20 ° C. or higher.
X: Non-offset area | region is less than 20 degreeC.
X: A non-offset area | region is less than 10 degreeC.

試験2−粉砕性
混練粗粉砕物を粉砕する際の粉砕水圧及び通し回数から判断する。
Test 2-Crushability Judged from the pulverization water pressure and the number of passes when pulverizing the kneaded coarsely pulverized product.

◎:水圧×通し回数 が 800未満
○:水圧×通し回数 が 800以上
×:粉砕不可
以上の試験結果を下記表1に示す。
A: Water pressure × number of passes is less than 800 ○: Water pressure × number of passes is 800 or more X: Cannot be crushed The above test results are shown in Table 1.

Figure 0004706780
Figure 0004706780

上記表1より、以下のことが明らかである。
すなわち、未処理のポリ乳酸を結着樹脂として従来の気流式粉砕機にて粉砕を試みた比較例2(粉砕性が著しく困難でトナー化できなかった)に対して、ポリ乳酸を予め加水分解処理した比較例3の場合、粉砕性が向上していることが判る。
From Table 1 above, the following is clear.
That is, polylactic acid was hydrolyzed in advance for Comparative Example 2 in which untreated polylactic acid was used as a binder resin and pulverization was attempted with a conventional airflow pulverizer (pulverization was extremely difficult and toner could not be formed). In the case of the comparative example 3 processed, it turns out that the grindability is improving.

一方、実施例1〜6及び比較例1の結果から、湿式粉砕処理の採用により、粉砕が容易になることが判る。
なお、比較例3においては、粉砕は可能であったが、気流式粉砕機の消費電力は湿式粉砕機より大きく、また生産性も湿式粉砕機に劣っていたため、粉砕効率を△としてある。
On the other hand, it can be seen from the results of Examples 1 to 6 and Comparative Example 1 that the pulverization is facilitated by employing the wet pulverization treatment.
In Comparative Example 3, although pulverization was possible, the power consumption of the airflow pulverizer was larger than that of the wet pulverizer and the productivity was also inferior to that of the wet pulverizer.

とりわけ、粉砕物を水中にて加水分解処理と湿式粉砕処理を行った実施例1〜6は、いずれも効率的に微粉砕が行え且つ定着性の良好なトナーを得ることができている。   In particular, Examples 1 to 6 in which the pulverized product was hydrolyzed and wet pulverized in water were able to efficiently perform fine pulverization and to obtain a toner having good fixability.

これに対して、同じように湿式粉砕処理を行っている比較例1は、加水分解されないままトナー化したために定着性で劣っている。   On the other hand, Comparative Example 1 in which wet pulverization is performed in the same manner is inferior in fixability because it is converted into toner without being hydrolyzed.

また、実施例1〜3は加水分解によりポリ乳酸を粉砕しやすくした後に粉砕しているために粉砕効率が良く、実施例4〜6では、微粉化した後に加水分解したことにより、微粉砕物と水との接触面積が粗粉砕物より大きいことから、低温かつ短時間で必要なレベルまで加水分解が可能となり加水分解効率が良い。   Moreover, since Examples 1-3 are pulverized after making it easy to grind polylactic acid by hydrolysis, pulverization efficiency is good in Examples 4-6. Since the contact area between water and water is larger than that of the coarsely pulverized product, hydrolysis can be achieved to a required level at a low temperature in a short time, and the hydrolysis efficiency is good.

湿式粉砕時の粉砕条件は、水圧、および通し回数が生産時のエネルギー、および手間に大きく関わり、生産性に影響する。つまり、可能な限り低い水圧で、少ない通し回数であることが望ましい。実施例1〜3は実施例4〜6と比較して、水圧と通し回数の積が小さいため、粉砕時の効率が優れていると言える。   As for the pulverization conditions during wet pulverization, the water pressure and the number of passes are greatly related to energy during production and labor, and affect productivity. In other words, it is desirable that the water pressure be as low as possible and the number of times of passage is small. Since Examples 1-3 are small compared with Examples 4-6 in the product of a water pressure and the frequency | count of threading, it can be said that the efficiency at the time of a grinding | pulverization is excellent.

実施例1〜3と4〜6とを比較すると、粉砕効率は1〜3が勝っており、加水分解効率は4〜6が勝っている。従って、加水分解と湿式粉砕の順番は特に限定されない。   When Examples 1 to 3 and 4 to 6 are compared, the grinding efficiency is 1 to 3, and the hydrolysis efficiency is 4 to 6. Therefore, the order of hydrolysis and wet grinding is not particularly limited.

これらのことから、本願発明の加水分解処理と湿式粉砕処理の併用が最も好ましいことが判明する。   From these, it is found that the combined use of the hydrolysis treatment and wet pulverization treatment of the present invention is most preferable.

本発明は、生分解性樹脂としてポリ乳酸系樹脂を結着樹脂として含む電子写真トナーに利用することができる。   The present invention can be used for an electrophotographic toner containing a polylactic acid resin as a biodegradable resin as a binder resin.

1…粗粉砕混練物、2…粗粉砕混練物分散水、3a,4a…流路、3b,4b…噴射口、5…微粉砕混練物、6…処理液、X…噴流衝合部。   DESCRIPTION OF SYMBOLS 1 ... Coarse pulverized kneaded material, 2 ... Coarse pulverized kneaded material dispersion water, 3a, 4a ... Flow path, 3b, 4b ... Injection port, 5 ... Finely pulverized kneaded material, 6 ... Treatment liquid, X ... Jet collision part.

Claims (2)

ポリ乳酸を含有する結着樹脂を含む原料混合物を混練する工程、該混練工程で得られた混練物を冷却後に粉砕する工程、該粉砕工程で得られた粉砕物を水に浸漬し加温しつつ攪拌することで加水分解を行って粉砕物分散水を得る加水分解処理工程、前記粉砕物分散水に対して湿式粉砕機にて湿式粉砕を行って微粒子分散水を得る湿式粉砕処理工程、前記微粒子分散水から微粒子を濾過し乾燥する濾過乾燥工程、該濾過乾燥工程で得られた微粒子に添加剤を外添混合する工程を具備することを特徴とする電子写真トナーの製造方法。 A step of kneading a raw material mixture containing a binder resin containing polylactic acid, a step of crushing the kneaded product obtained in the kneading step after cooling , and immersing the crushed product obtained in the crushing step in water and heating Hydrolysis treatment step for obtaining pulverized product dispersion water by stirring while stirring, wet pulverization treatment step for obtaining fine particle dispersion water by performing wet pulverization on the pulverized product dispersion water in a wet pulverizer , filtration and drying steps, the production method of an electrophotographic toner characterized by comprising the step of mixing externally added additives into fine particles obtained by the filtration drying step of fine particles were filtered and dried from the microparticle dispersion water. ポリ乳酸を含有する結着樹脂を含む原料混合物を混練する工程、該混練工程で得られた混練物を冷却後に粉砕する工程、該粉砕工程で得られた粉砕物を水に浸漬し湿式粉砕機にて湿式粉砕を行って微粒子分散水を得る湿式粉砕処理工程、前記微粒子分散水を加温しつつ攪拌することで加水分解を行う加水分解処理工程、該加水分解処理工程で得られた微粒子分散水から微粒子を濾過し乾燥する濾過乾燥工程、該濾過乾燥工程で得られた微粒子に添加剤を外添混合する工程を具備することを特徴とする電子写真トナーの製造方法。 A step of kneading a raw material mixture containing a binder resin containing polylactic acid, a step of pulverizing the kneaded product obtained in the kneading step after cooling, a wet pulverizer wherein the pulverized product obtained in the pulverizing step is immersed in water wet grinding process of performing wet powder crushed to obtain a fine particle dispersion water in hydrolysis treatment step of performing hydrolysis by stirring while heating the fine particle dispersion water, fine particles obtained in hydrolysis step A method for producing an electrophotographic toner comprising: a filtration drying step of filtering and drying fine particles from dispersed water; and a step of externally adding an additive to the fine particles obtained in the filtration drying step.
JP2009151785A 2009-06-26 2009-06-26 Method for producing electrophotographic toner Expired - Fee Related JP4706780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009151785A JP4706780B2 (en) 2009-06-26 2009-06-26 Method for producing electrophotographic toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009151785A JP4706780B2 (en) 2009-06-26 2009-06-26 Method for producing electrophotographic toner

Publications (2)

Publication Number Publication Date
JP2011008047A JP2011008047A (en) 2011-01-13
JP4706780B2 true JP4706780B2 (en) 2011-06-22

Family

ID=43564787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009151785A Expired - Fee Related JP4706780B2 (en) 2009-06-26 2009-06-26 Method for producing electrophotographic toner

Country Status (1)

Country Link
JP (1) JP4706780B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008250171A (en) * 2007-03-30 2008-10-16 Tomoegawa Paper Co Ltd Method for manufacturing toner for electrostatic charge image development

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008250171A (en) * 2007-03-30 2008-10-16 Tomoegawa Paper Co Ltd Method for manufacturing toner for electrostatic charge image development

Also Published As

Publication number Publication date
JP2011008047A (en) 2011-01-13

Similar Documents

Publication Publication Date Title
JP2014164274A (en) Toner for electrostatic charge image development
JP4491328B2 (en) Toner production method
JP5267630B2 (en) Electrophotographic toner using bioplastic and method for producing the same
JP2010175841A (en) Electrophotographic toner and method of manufacturing the same
JP4706780B2 (en) Method for producing electrophotographic toner
JP6261077B2 (en) Method for producing toner for electrophotography
JP5257461B2 (en) Method for producing toner for electrophotography
JP4021277B2 (en) Toner production method
JP4450287B2 (en) Toner for full color image formation
JP4228803B2 (en) Toner manufacturing apparatus and toner
JP5263235B2 (en) Method for producing toner for electrophotography
JP2006215490A (en) Method for manufacturing toner
JP2009128651A (en) Method of manufacturing toner
JP2006227431A (en) Electrostatic charge image developing toner
JP4012490B2 (en) Toner production method
JP4702460B2 (en) Method for producing toner for electrophotography
JP6650712B2 (en) Toner for developing electrostatic images
JP5257463B2 (en) Method for producing toner for electrophotography
JP2006091175A (en) Toner manufacturing method
JP4422085B2 (en) Toner production method
JP4666072B2 (en) Toner for electrophotography and method for producing the same
JP2010175724A (en) Electrophotographic toner
JP5338764B2 (en) Toner for electrophotography and method for producing the same
JP4027926B2 (en) Toner production method
JP2017003787A (en) Capsule toner and manufacturing method of the same

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20101026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110228

LAPS Cancellation because of no payment of annual fees