JP4705417B2 - Display panel inspection method and apparatus - Google Patents

Display panel inspection method and apparatus Download PDF

Info

Publication number
JP4705417B2
JP4705417B2 JP2005186247A JP2005186247A JP4705417B2 JP 4705417 B2 JP4705417 B2 JP 4705417B2 JP 2005186247 A JP2005186247 A JP 2005186247A JP 2005186247 A JP2005186247 A JP 2005186247A JP 4705417 B2 JP4705417 B2 JP 4705417B2
Authority
JP
Japan
Prior art keywords
phosphor layer
liquid phosphor
liquid
display panel
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005186247A
Other languages
Japanese (ja)
Other versions
JP2007003447A (en
Inventor
裕方 佐々本
理 倉又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Toray Industries Inc
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Toray Industries Inc
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Toray Industries Inc, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005186247A priority Critical patent/JP4705417B2/en
Publication of JP2007003447A publication Critical patent/JP2007003447A/en
Application granted granted Critical
Publication of JP4705417B2 publication Critical patent/JP4705417B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Description

本発明は、ィスプレイパネルの検査方法および装置に関し、とくに、プラズマディスプレイパネルに代表される平面ディスプレイパネルにおいて、基板に形成される液状蛍光体層のパターン(とくに、曲率半径や高さ)を精度良く検査できるようにした検査方法および装置に関する。 The present invention relates to a testing method and apparatus for de I spray panel, in particular, accuracy in the flat display panel represented by a plasma display panel, a liquid phosphor layer formed on a substrate pattern (in particular, the radius of curvature or height) The present invention relates to an inspection method and apparatus that can be inspected well.

プラズマディスプレイパネルの背面板には、通常、R(赤)、G(緑)、B(青)用の蛍光体が、ストライプ状に順に繰り返し塗着されているが、各蛍光体が均一に塗着されていなければ、表示の輝度及び色調が不均一となる色ムラが生じたり、あるいは、塗着抜けにより発光状態におかれ得ない暗点が存在する等の不具合が生じる。   Usually, phosphors for R (red), G (green), and B (blue) are repeatedly applied in a stripe pattern on the back plate of the plasma display panel, but each phosphor is applied uniformly. If it is not worn, there will be problems such as color unevenness in which the luminance and color tone of the display are not uniform, or a dark spot that cannot be put into a light emitting state due to omission of coating.

このような蛍光体の塗着状態に不具合を持つ背面板を、前面板と貼り合わせることを防ぐために、また、塗着状態に不具合が発生した場合、直ちに製造工程の不具合箇所を修正して不良製品を造らないようにするためにも、蛍光体の塗着後速やかに検査を行うことが必要となってくる。   In order to prevent the back plate having a defect in the phosphor coating state from being bonded to the front plate, and if a defect occurs in the coating state, the defective part of the manufacturing process is immediately corrected to be defective. In order not to make the product, it is necessary to inspect immediately after applying the phosphor.

プラズマディスプレイパネルの背面板に塗布された液状蛍光体の塗布状態を検査するには、例えば特許文献1に記載の技術が適用できる。この技術は測定面に光を入射し、その反射光を捉え、得られた反射光量を測定することにより塗布量を検査するものである。
特開2003−75294号公報
To inspect the application state of the liquid phosphor applied to the back plate of the plasma display panel, for example, the technique described in Patent Document 1 can be applied. In this technique, light is incident on a measurement surface, the reflected light is captured, and the amount of reflected light obtained is measured to inspect the coating amount.
JP 2003-75294 A

ところが、上記特許文献1に記載の技術には、未だ、誤検出が多いという問題が残されている。すなわち、測定面に光を入射し、その反射光を捉え、得られた反射光量の強度変化を測定することにより塗布量のムラを検査する方法では、塗布量に対して反射光量は指数関数的に変化する。塗布ムラの検査においては、一般的に得られた信号に対してハイパスフィルタをかけ、しきい値を越えた変化をムラとして検出する。このため、塗布量に対して得られる反射光強度の感度が不均一であると、誤検出の原因となる。特に、基板全体で緩やかな塗布ムラをもった基板の場合、塗布量が多い部分で、感度が高くなり誤検出の発生につながる。誤検出が多発すると、その都度ラインを止めて実際の欠陥かどうかを確認する必要があるため、製造設備の稼働率が低下することとなる。   However, the technique described in Patent Document 1 still has a problem that there are many false detections. That is, in the method of inspecting unevenness of the coating amount by injecting light into the measurement surface, capturing the reflected light, and measuring the intensity change of the obtained reflected light amount, the reflected light amount is exponential with respect to the coating amount. To change. In the inspection of coating unevenness, a high-pass filter is generally applied to a signal obtained to detect a change exceeding a threshold value as unevenness. For this reason, if the sensitivity of the reflected light intensity obtained with respect to the coating amount is not uniform, it may cause erroneous detection. In particular, in the case of a substrate having gentle coating unevenness over the entire substrate, the sensitivity is increased at a portion where the coating amount is large, leading to occurrence of erroneous detection. When erroneous detection occurs frequently, it is necessary to stop the line each time and check whether it is an actual defect or not, so that the operating rate of the manufacturing facility is lowered.

そこで本発明の課題は、従来技術における上記のような問題点を解決し、基板全体で緩やかな塗布ムラをもった基板であっても的確に精度良く検査できる検査方法および装置を提供し、製造設備の稼働率を高めて製造コストを下げることにある。   Accordingly, an object of the present invention is to solve the above-described problems in the prior art, and to provide an inspection method and apparatus capable of accurately and accurately inspecting even a substrate having gentle coating unevenness over the entire substrate. The purpose is to increase the operating rate of the equipment and lower the manufacturing cost.

上記課題を解決するために、本発明においては、曲面の検査方法として、照明手段と、照明手段から被測定曲面に照射され反射した光のうち入射光入射角度と略同じ角度で反射した光を主として撮像する撮像手段と、信号処理手段とを有し、撮像手段で得られた反射光量と曲率半径係数から被測定曲面の曲率半径を求めることを特徴とする方法を基本的な技術思想としている。 In order to solve the above problems, Oite the present invention, as the inspection method of the curved surface, and the illumination means and reflected at substantially the same angle as the incident light incident angle among emitted from the illuminating means to the measured curved light reflected A basic technical idea comprising a method for obtaining a curvature radius of a curved surface to be measured from an amount of reflected light and a curvature radius coefficient obtained by the imaging means, having an imaging means for mainly imaging light and a signal processing means. It is said.

とくに本発明に係る技術思想は、前述したような平面ディスプレイパネルにおける、基板に形成される液状蛍光体層のパターン(とくに、曲率半径や高さ)の検査に最適なものである。すなわち、本発明に係るディスプレイパネルの検査方法は、照明手段と、照明手段から液状蛍光体層に照射され反射した光のうち入射光入射角度と略同じ角度で反射した光を主として撮像する撮像手段と、信号処理手段とを有し、撮像手段で得られた反射光量と曲率半径係数とから液状蛍光体層の曲率半径を求め、前記曲率半径と液状蛍光体層の両側の隔壁の上部間隔と該隔壁の高さから、液状蛍光体層の高さを算出することを特徴とする方法からなる。   In particular, the technical idea according to the present invention is optimal for inspecting the pattern (particularly, the curvature radius and height) of the liquid phosphor layer formed on the substrate in the flat display panel as described above. That is, the display panel inspection method according to the present invention includes an illuminating unit and an imaging unit that mainly images light reflected from the illuminating unit and reflected from the illuminating unit at a substantially same angle as the incident light incident angle. And a signal processing means, the curvature radius of the liquid phosphor layer is obtained from the amount of reflected light and the curvature radius coefficient obtained by the imaging means, and the curvature radius and the upper interval between the partition walls on both sides of the liquid phosphor layer, The height of the liquid phosphor layer is calculated from the height of the partition wall.

このディスプレイパネルの検査方法においては、液状蛍光体層と交差する方向へ、基板と照明手段および撮像手段とを相対移動させながら液状蛍光体層毎の反射光量を測定することができる。   In this display panel inspection method, it is possible to measure the amount of reflected light for each liquid phosphor layer while relatively moving the substrate, the illumination means, and the imaging means in a direction intersecting the liquid phosphor layer.

本発明においては、曲面の検査装置として、照明手段と、照明手段から被測定曲面に照射され反射した光のうち入射光入射角度と略同じ角度で反射した光を主として撮像する撮像手段と、信号処理手段と、少なくとも曲率半径係数を入力する条件入力手段とを有し、撮像手段で得られた反射光量と曲率半径係数から被測定曲面の曲率半径を求めることを特徴とする装置を基本的な技術思想としている。 Oite the present invention, as the inspection apparatus of the curved surface, and the illumination means, the imaging means mainly for imaging the light reflected at substantially the same angle as the incident light incident angle among emitted from the illuminating means to the measured curved light reflected a signal processing unit, and a condition input means for inputting at least the curvature radius coefficient, the apparatus characterized by determining the radius of curvature of the measured curved surface from the obtained reflected light and the curvature radius coefficient imaging means basic Technical idea.

また、本発明に係るディスプレイパネルの検査装置は、照明手段と、照明手段から液状蛍光体層に照射され反射した光のうち入射光入射角度と略同じ角度で反射した光を主として撮像する撮像手段と、信号処理手段と、少なくとも曲率半径係数と液状蛍光体層の両側の隔壁の上部間隔を入力する条件入力手段とを有し、撮像手段で得られた反射光量と入力された曲率半径係数と隔壁上部間隔と隔壁高さから、少なくとも液状蛍光体層の曲率半径、液状蛍光体層の高さのいずれかを算出することを特徴とする装置からなる。   The display panel inspection apparatus according to the present invention includes an illuminating unit and an imaging unit that mainly captures light reflected from the illuminating unit and reflected from the illuminating unit on the liquid phosphor layer at substantially the same angle as the incident light incident angle. And a signal processing means, and a condition input means for inputting at least the curvature radius coefficient and the upper interval between the partition walls on both sides of the liquid phosphor layer, the amount of reflected light obtained by the imaging means and the input curvature radius coefficient, The apparatus is characterized in that at least one of the radius of curvature of the liquid phosphor layer and the height of the liquid phosphor layer is calculated from the partition upper space and the partition height.

このディスプレイパネルの検査装置においては、液状蛍光体層と交差する方向へ、基板と照明手段および撮像手段とを相対移動させる走査手段を更に有する構成とすることができる。   The display panel inspection apparatus may further include a scanning unit that relatively moves the substrate, the illuminating unit, and the imaging unit in a direction intersecting the liquid phosphor layer.

本発明に係るディスプレイパネルの検査方法および装置によれば、基板全体で液状蛍光体層の緩やかな塗布ムラをもった基板に対しても、目視に近い感度で誤検出の少ない、精度の高い検査を行うことが可能となる。その結果、誤検出の確認の必要がなくなり、製造設備の稼働率を高めて製造コストを下げることが可能になる。 According to the inspection method and apparatus for engaging Lud I spray panel in the present invention, even for a substrate having a gentle uneven coating of the liquid phosphor layer across the substrate, less false detection with a sensitivity close to the visual accuracy High inspection can be performed. As a result, there is no need for confirmation of erroneous detection, and it becomes possible to increase the operating rate of the manufacturing facility and reduce the manufacturing cost.

以下に、本発明の望ましい実施の形態を、図面を参照して説明する。
図1は、本発明の一実施態様に係るディスプレイパネルの検査装置、とくに、プラズマディスプレイパネルの検査装置を示している。図1において、1は、検査に供されるプラズマディスプレイパネル(以下、PDPと略称することもある。)の背面板(基板)を示しており、このPDP背面板1には、図2に示すように、R(赤)、G(緑)、B(青)用の蛍光体305、306、307がストライプ状に順に繰り返し塗着されている。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a display panel inspection apparatus, particularly a plasma display panel inspection apparatus according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a back plate (substrate) of a plasma display panel (hereinafter also abbreviated as PDP) used for inspection. The PDP back plate 1 is shown in FIG. In this manner, phosphors 305, 306, and 307 for R (red), G (green), and B (blue) are repeatedly applied in order in a stripe shape.

プラズマディスプレイパネル300としては、図3に示すように、背面ガラス基板301上に、アドレス電極302が配置された誘電体層303上に、隔壁304間にRGB蛍光体305、306、307がストライプ状に順に繰り返し塗着されたPDP背面板1の上方に、表示電極309が配置された誘電体層310と保護膜311が介装された前面ガラス基板308が設けられ、前記蛍光体層と前面板との空間には、放電ガスを封入した構成となっている。   In the plasma display panel 300, as shown in FIG. 3, RGB phosphors 305, 306, and 307 are striped between barrier ribs 304 on a dielectric layer 303 on which address electrodes 302 are arranged on a back glass substrate 301. A front glass substrate 308 having a dielectric layer 310 on which display electrodes 309 are disposed and a protective film 311 is provided above the PDP back plate 1 that is repeatedly applied to the phosphor layer and the front plate. The space is filled with a discharge gas.

表示電極309とアドレス電極302との間に印加した電圧により放電ガスがプラズマ化することで紫外線が発生し、それによって選択された位置の蛍光体層が発色され、各蛍光体の発色の組み合わせにより所望の色表示が行われるようになっている。   The discharge gas is turned into plasma by the voltage applied between the display electrode 309 and the address electrode 302, and ultraviolet rays are generated. As a result, the phosphor layer at the selected position is colored, and depending on the combination of the coloring of each phosphor. Desired color display is performed.

プラズマ312は、前記蛍光体層と前面板との空間に発生するが、この空間の形状により、発生する紫外線量が変化、すなわち、表示光量が変化する。つまり、蛍光体形状が不均一であると、色ムラ発生の原因となるため、蛍光体層の形状を均一にし、前記空間の形状を均一に保つ必要がある。   The plasma 312 is generated in the space between the phosphor layer and the front plate. Depending on the shape of the space, the amount of generated ultraviolet light changes, that is, the amount of display light changes. That is, if the phosphor shape is not uniform, color unevenness is caused. Therefore, it is necessary to make the shape of the phosphor layer uniform and keep the shape of the space uniform.

PDP背面板1へのRGB蛍光体305、306、307の塗着方法には、スクリーン印刷、ノズル塗布などがある。スクリーン印刷は、図4に示した側面図のように、まず、所定幅の開口部403が、ピッチPの3倍のピッチで設けられたマスクスクリーン402を、PDP背面板1に対して位置合わせをし、隔壁間404と対向するように配置する。次に、所定発光色の蛍光体とバインダーとを混合した蛍光体ペースト405(液状蛍光体)を図4のように開口部から吐出して隔壁間404に落とし込む。このとき、蛍光体ペースト405として、上述のようにプラズマが発生する空間を設けるために、固形分濃度を10〜50%にしたものを用いる。この蛍光体ペーストを開口部からガラス基板側へ吐出するために、スキージ401を矢印の方向に移動させる。隔壁間の空隙に吐出する蛍光体ペーストの量はスキージ401の移動速度、角度、押し込み量で調節可能である。   Examples of methods for applying the RGB phosphors 305, 306, and 307 to the PDP back plate 1 include screen printing and nozzle application. In screen printing, as shown in the side view of FIG. 4, first, a mask screen 402 in which openings 403 having a predetermined width are provided at a pitch three times the pitch P is aligned with the PDP back plate 1. And arranged so as to face the partition wall 404. Next, a phosphor paste 405 (liquid phosphor) in which a phosphor of a predetermined emission color and a binder are mixed is discharged from the opening as shown in FIG. At this time, as the phosphor paste 405, one having a solid content concentration of 10 to 50% is used in order to provide a space for generating plasma as described above. In order to discharge this phosphor paste from the opening to the glass substrate side, the squeegee 401 is moved in the direction of the arrow. The amount of the phosphor paste discharged into the gap between the partition walls can be adjusted by the moving speed, angle, and pushing amount of the squeegee 401.

ノズル塗布による方法では、図5に示した側面図のように口金501にピッチPの3倍のピッチで設けられた吐出孔503を、PDP背面板1に対して位置合わせし隔壁間504と対向するように配置する。次に、圧力印加孔502から圧力を印加し、吐出孔503から蛍光体ペースト505を吐出させ隔壁間504に落とし込みながら、口金501を隔壁間504に平行に(図5では紙面奥行き方向に)移動させ、基板全面について蛍光体ペースト505を塗着する。なお、使用する蛍光体ペーストは、上述のスクリーン印刷で用いるものと同様である。また、隔壁間の空隙に吐出する蛍光体ペーストの量は印加する圧力により調節可能である。   In the nozzle coating method, as shown in the side view shown in FIG. 5, the discharge holes 503 provided in the base 501 at a pitch three times the pitch P are aligned with the PDP back plate 1 and face the partition wall 504. Arrange to do. Next, pressure is applied from the pressure application holes 502, the phosphor paste 505 is ejected from the ejection holes 503 and dropped into the partition walls 504, and the base 501 is moved in parallel to the partition walls 504 (in the depth direction of the drawing in FIG. 5). Then, the phosphor paste 505 is applied to the entire surface of the substrate. The phosphor paste used is the same as that used in the above screen printing. The amount of the phosphor paste discharged into the gap between the barrier ribs can be adjusted by the applied pressure.

次に、蛍光体ペーストを乾燥、焼成することで、バインダー成分を除去し、所定の形状の蛍光体層を形成する。図6(a)に蛍光体ペースト塗着直後のPDP背面板の断面図(塗着される蛍光体ペーストの量が大(601a)、小(601b)それぞれの場合)を、図6(b)に乾燥、焼成後のPDP背面板の断面図(塗着される蛍光体ペーストの量が大(602a)、小(602b)それぞれの場合)を示す。この図からわかるように、塗着される蛍光体ペーストの量が変化した場合には、焼成、乾燥後の蛍光体層の形状が変化し、色ムラ、塗着抜け等の欠陥が発生する。塗着される蛍光体ペーストの量が変化する原因としては、スクリーン印刷ではスクリーンの目詰まり、スキージの傷や蛍光体塗布装置の調整不良、ノズル塗布においてはノズル孔の詰まりや印加する圧力の変化が考えられる。これらに起因する欠陥は、一度発生するとその後全ての基板にわたって連続的に発生する連続欠陥となり、収率を大幅に下げる原因となるので、蛍光体ペーストの塗着後速やかに、つまり蛍光体層が液状のうちに検査を行うことが必要となってくる。   Next, the phosphor paste is dried and baked to remove the binder component and form a phosphor layer having a predetermined shape. FIG. 6A shows a cross-sectional view of the PDP back plate immediately after applying the phosphor paste (when the amount of the applied phosphor paste is large (601a) and small (601b), respectively), and FIG. 6 (b). Fig. 5 shows a cross-sectional view of the PDP back plate after drying and baking (in the case where the amount of the phosphor paste to be applied is large (602a) and small (602b), respectively). As can be seen from this figure, when the amount of the phosphor paste applied changes, the shape of the phosphor layer after firing and drying changes, and defects such as color unevenness and missing coating occur. Reasons for the amount of phosphor paste to be applied change include screen clogging in screen printing, scratches on the squeegee and poor adjustment of the phosphor coating device, nozzle nozzle clogging, and changes in applied pressure in nozzle coating. Can be considered. Once these defects are generated, they become continuous defects that occur continuously over all the substrates and cause a significant reduction in yield. It will be necessary to conduct an inspection while in liquid form.

なお、PDPのリブ間隔は200〜500μm程度である。この間隔であれば、塗布された液状蛍光体層の表面は表面張力のため、図6aに示すとおり円弧になる。また、液状蛍光体層の塗布について、上に凸となる条件で塗布した場合、隔壁頂部に液状蛍光体が付着し欠陥となる場合があるため、必ず凹状に塗布する。   In addition, the rib space | interval of PDP is about 200-500 micrometers. If it is this space | interval, the surface of the apply | coated liquid fluorescent substance layer will become a circular arc as shown in FIG. 6a because of surface tension. In addition, when applying the liquid phosphor layer under conditions that are convex upward, the liquid phosphor may adhere to the top of the partition wall, resulting in a defect.

図7(a)は、ノズル塗布法で塗布した基板について、共焦点レーザー変位計で隔壁の溝を横切るようにスキャンし、それぞれの溝での液状蛍光体層の高さをプロットしたグラフである。なお、液状蛍光体層の高さとは液状蛍光体層凹部の最下点と誘電体との距離である。   FIG. 7A is a graph in which the substrate coated by the nozzle coating method is scanned across a partition groove with a confocal laser displacement meter, and the height of the liquid phosphor layer in each groove is plotted. . The height of the liquid phosphor layer is the distance between the lowest point of the liquid phosphor layer recess and the dielectric.

塗布量の少ないストライプ701a、702a、703aのうち、製品化後に最も暗く見えるのは、最も液状蛍光体層高さが低い701aではなく、周辺との差の大きい702aである(つまり、移動平均線704に対して最も差の大きい702a)。これは、「マッハ効果」と呼ばれる目視の特性によるもので、なだらかな変化に対しては感度が低いが、周辺との急激な差に対しては感度が高いということに起因する。   Of the stripes 701a, 702a, and 703a having a small coating amount, the darkest appearance after commercialization is not 701a having the lowest liquid phosphor layer height but 702a having a large difference from the periphery (that is, moving average line). 702a) having the largest difference with respect to 704. This is due to a visual characteristic called “Mach effect”, which is low in sensitivity to gentle changes, but high in sensitivity to abrupt differences from the surroundings.

図7(b)に示すとおり、図7(a)のグラフを移動平均で正規化したグラフに対してしきい値を設定することで、目視の感度と検査の感度とを合わせることができる。この処理は、地合の変化を除去する際に一般的に使用されるものであり、ハイパスフィルタと同様の効果を持つ。   As shown in FIG. 7B, by setting a threshold value for a graph obtained by normalizing the graph of FIG. 7A with a moving average, the visual sensitivity and the inspection sensitivity can be matched. This process is generally used when removing changes in formation and has the same effect as a high-pass filter.

実際には共焦点レーザー変位計はスキャンの速度が遅い、振動の影響を受けやすいという問題があるため、本発明におけるように基板に光を入射し、その反射光を捉え、得られた反射光量を測定する方式による検査が望ましい。   Actually, the confocal laser displacement meter has a problem that the scanning speed is slow and it is easy to be affected by vibration. Therefore, as in the present invention, light is incident on the substrate, the reflected light is captured, and the amount of reflected light obtained is obtained. Inspection by the method of measuring is desirable.

PDP背面板1へのRGB蛍光体305、306、307の塗着における上記のような欠陥が、図1に示した検査装置により検査される。再び図1を参照して説明するに、搬送ローラ等を備えた搬送手段2によりPDP背面板1が搬送され、搬送手段2は駆動制御手段3によって制御される。搬送手段2の上方には、点灯制御装置5によって制御される照明手段4と、撮像手段6が配置されている。駆動制御手段3は、撮像手段6の撮像範囲をPDP背面板1の全面にわたって走査させるためのもので、PDP背面板1を一定速度で搬送する。照明手段4は、PDP背面板1上に塗着された液状蛍光体層に光を照射し、その正反射光は撮像手段6に至る。照明手段4としては、LED照明、ハロゲンランプを使用した光ファイバ照明等が使用可能であるが、冷却ファンが不必要で発塵しないという理由からLED照明が望ましい。撮像手段6は、PDP背面板1上のある範囲を画素に分割して、その画素ごとの正反射光強度を測定して映像信号に変換し、画像処理装置7に送信する。これらの撮像手段では、受光素子が一次元に配列されて内蔵されており、蛍光体層の方向に沿って、一次元的に映像を出力できるようになっている。画像処理装置7は、液状蛍光体層に発生する欠陥を検出するためのもので、撮像手段6で撮像された映像信号を入力し、画像処理技術により画像解析を行い欠陥を検出する。画像処理装置7により処理された画像は、表示装置8に表示できるようになっている。   Such defects in the application of the RGB phosphors 305, 306, and 307 to the PDP back plate 1 are inspected by the inspection apparatus shown in FIG. As will be described with reference to FIG. 1 again, the PDP back plate 1 is conveyed by the conveying means 2 provided with conveying rollers and the like, and the conveying means 2 is controlled by the drive control means 3. Above the transport means 2, an illumination means 4 and an imaging means 6 controlled by the lighting control device 5 are arranged. The drive control unit 3 is for scanning the imaging range of the imaging unit 6 over the entire surface of the PDP back plate 1 and transports the PDP back plate 1 at a constant speed. The illumination unit 4 irradiates the liquid phosphor layer coated on the PDP back plate 1 with light, and the regular reflection light reaches the imaging unit 6. As the illumination means 4, LED illumination, optical fiber illumination using a halogen lamp, or the like can be used, but LED illumination is desirable because a cooling fan is unnecessary and dust generation is not required. The imaging means 6 divides a certain range on the PDP back plate 1 into pixels, measures the regular reflection light intensity for each pixel, converts it into a video signal, and transmits it to the image processing device 7. In these imaging means, the light receiving elements are arranged one-dimensionally and are built in, and can output a one-dimensional image along the direction of the phosphor layer. The image processing device 7 is for detecting defects generated in the liquid phosphor layer. The image processing device 7 inputs a video signal picked up by the image pickup means 6 and performs image analysis using an image processing technique to detect defects. The image processed by the image processing device 7 can be displayed on the display device 8.

図8に撮像手段6から出力される映像信号(以下、輝度信号とする)と基板との対比を示す。正常に塗布され、表面形状がフラット形状の液状蛍光体800、802を含む溝b、hからは大きい輝度信号が、正常に塗布されなかった液状蛍光体801、803を含む溝e、kからは小さい値の輝度信号がそれぞれ得られ、液状蛍光体を塗布していない溝a、c、d、f、g、i、j、lからは溝e、kと同等の輝度が得られることを示している。ここで輝度信号波形820において液状蛍光体を塗布された溝、あるいは塗布されるべき溝の位置に対応した部分の輝度の頂点をそれぞれ810、811、812、813とし、以降輝度ピークと記す。   FIG. 8 shows a comparison between a video signal (hereinafter referred to as a luminance signal) output from the imaging means 6 and a substrate. From the grooves e and k including the liquid phosphors 801 and 803 which are not normally applied, a large luminance signal is applied from the grooves b and h including the liquid phosphors 800 and 802 which are normally applied and have a flat surface shape. A luminance signal having a small value is obtained, and the same brightness as that of the grooves e and k can be obtained from the grooves a, c, d, f, g, i, j, and l not coated with the liquid phosphor. ing. Here, in the luminance signal waveform 820, the vertices of the luminance corresponding to the position of the groove to which the liquid phosphor is applied or the groove to be applied are designated as 810, 811, 812 and 813, respectively, and are hereinafter referred to as the luminance peak.

PDPにおいては、液状蛍光体は所定の間隔で塗布されていることから、得られた輝度信号波形の輝度の頂点810、811、812、813は、液状蛍光体の塗布間隔に対応してある周期的な間隔で出現することとなる。よって輝度波形820に対し、あるN番目の輝度ピークより周期分だけ離れた点の輝度ピークをN+1番目の輝度ピークとして抜き出し、これを全輝度ピークについて繰り返すことにより、基板上の各溝に塗布された液状蛍光体からの輝度ピークの値が得られる。これら輝度ピークの値を各溝毎の代表輝度とし、これらを順に連ねることにより、上記頂点810、811、812、813に対応する輝度ピーク830、831、832、833を有する輝度ピーク波形840を得る。   In the PDP, since the liquid phosphor is applied at a predetermined interval, the luminance peaks 810, 811, 812, 813 of the obtained luminance signal waveform have a period corresponding to the application interval of the liquid phosphor. Appear at regular intervals. Therefore, a luminance peak at a point separated from a certain Nth luminance peak by a period from the luminance waveform 820 is extracted as the (N + 1) th luminance peak, and this is repeated for all luminance peaks to be applied to each groove on the substrate. The value of the luminance peak from the obtained liquid phosphor is obtained. The luminance peak value 840 having the luminance peaks 830, 831, 832, and 833 corresponding to the vertices 810, 811, 812, and 813 is obtained by using these luminance peak values as the representative luminance for each groove and connecting them in order. .

次に液状蛍光体層の状態と、輝度ピークとの関係を図9に示す(図9(a)は液状蛍光体層の塗布状態、図9(b)は対応する塗布状態における塗布量と輝度ピークとの関係を示している)。図9に示すとおり、904aのように隔壁間の空隙を蛍光体ペーストで埋め尽くした状態、つまり液状蛍光体層の上面が平面となるとき、輝度ピークは最大となる。この状態より蛍光体ペーストの吐出量が少なくなった場合には、液状蛍光体層の上面は表面張力のため903aのように凹状の円弧となる。さらに蛍光体ペーストの吐出量が少なくなる程に円弧の半径が小さくなり(例えば、902aの状態)、映像信号も小さくなっていき、全く蛍光体ペーストがない場合(例えば、901aの状態)には、映像信号は901bのように最小値となる。   Next, the relationship between the state of the liquid phosphor layer and the luminance peak is shown in FIG. 9 (FIG. 9A shows the application state of the liquid phosphor layer, and FIG. 9B shows the application amount and luminance in the corresponding application state. Shows the relationship with the peak). As shown in FIG. 9, when the gap between the barrier ribs is filled with the phosphor paste as in 904a, that is, when the upper surface of the liquid phosphor layer is flat, the luminance peak is maximized. When the discharge amount of the phosphor paste is smaller than this state, the upper surface of the liquid phosphor layer becomes a concave arc like 903a due to surface tension. Further, as the discharge amount of the phosphor paste decreases, the radius of the arc decreases (for example, the state of 902a), the video signal also decreases, and when there is no phosphor paste (for example, the state of 901a). The video signal has a minimum value such as 901b.

次に図7で使用した基板に対して、輝度ピーク波形を測定した結果を図10(a)に示す。この輝度ピーク波形に対して、前述と同様に目視と感度を合わせるため移動平均値で正規化したグラフを図10(b)に示す。グラフ右側の信号バラツキが大きくなっているのは、図9(b)の感度曲線の影響を受けたためであり、塗布量が多い部分で感度が極めて高くなるためである。図10(b)において、102bと103bの信号の大小が入れ替わっており、102bを検出するようにしきい値を設定すると、本来検出してはならない103bを誤検出する。   Next, the result of measuring the luminance peak waveform for the substrate used in FIG. 7 is shown in FIG. FIG. 10B shows a graph obtained by normalizing the luminance peak waveform with a moving average value in order to match the visual and sensitivity in the same manner as described above. The signal variation on the right side of the graph is large because it is influenced by the sensitivity curve in FIG. 9B, and the sensitivity is extremely high in the portion where the coating amount is large. In FIG. 10B, the magnitudes of the signals 102b and 103b are switched, and if a threshold value is set to detect 102b, 103b that should not be detected is erroneously detected.

本発明者らは、この誤検出を無くすため鋭意検討の結果、輝度ピークと液状蛍光体層凹部の曲率半径と比例することを実験により導き出し、曲率半径から液状蛍光体層高さと液状蛍光体層充填率が測定できることを想到し、本発明に到達した。   As a result of intensive investigations to eliminate this false detection, the present inventors have derived from experiments that the luminance peak is proportional to the curvature radius of the concave portion of the liquid phosphor layer, and the liquid phosphor layer height and the liquid phosphor layer are derived from the curvature radius. The inventors reached the present invention by conceiving that the filling rate can be measured.

輝度ピークKdは、液状蛍光体層凹部の曲率半径Rに比例するため、下記式(1)が成り立つ。なお、曲率半径定数Cは、基板条件、光学系条件、光源強度、ペースト反射率から決定される定数であり、同一の測定系であれば一定である。
Kd=C・R ・・・・(1)
この式より、事前に共焦点レーザー変位計で測定し液状蛍光体層凹部の曲率半径Rが既知の溝の輝度ピークを測定し、その時のKdから曲率半径定数Cを求めることで、各溝の輝度ピークKdから曲率半径Rを求めることが可能である。
Since the luminance peak Kd is proportional to the radius of curvature R of the concave portion of the liquid phosphor layer, the following formula (1) is established. The curvature radius constant C is a constant determined from the substrate conditions, the optical system conditions, the light source intensity, and the paste reflectance, and is constant for the same measurement system.
Kd = C · R (1)
From this equation, by measuring with a confocal laser displacement meter in advance and measuring the luminance peak of the groove where the curvature radius R of the concave portion of the liquid phosphor layer is known, and obtaining the curvature radius constant C from the Kd at that time, The radius of curvature R can be obtained from the luminance peak Kd.

次に、曲率半径Rと基板条件から式(2)(数1)により液状蛍光体層高さhpを求めることができる。   Next, the liquid phosphor layer height hp can be obtained from the radius of curvature R and the substrate condition by the formula (2) (Equation 1).

Figure 0004705417
Figure 0004705417

さらに、式(3)(数2)から充填率Vを求めることができる。この充填率は蛍光体ペーストの吐出量と比例する。このため、例えば圧空で吐出量の制御を行っているノズル塗布法であれば、この充填率を測定することで、容易に所定の充填率に調整することが可能である。   Furthermore, the filling rate V can be obtained from the equation (3) (Equation 2). This filling rate is proportional to the discharge amount of the phosphor paste. For this reason, for example, in the case of a nozzle coating method in which the discharge amount is controlled by compressed air, the filling rate can be easily adjusted to a predetermined filling rate by measuring the filling rate.

Figure 0004705417
Figure 0004705417

なお、上記式(2)、(3)中の基板条件(図11)は以下の通りである。
R:ペースト表面の曲率半径
w:上部隔壁間隔
w’:下部隔壁間隔
k:隔壁高さ
In addition, the board | substrate conditions (FIG. 11) in said Formula (2), (3) are as follows.
R: radius of curvature of paste surface w: upper partition wall spacing w ': lower partition wall spacing k: partition height

このように、本発明においては、基板全体で緩やかな塗布ムラをもった基板に対しても、目視に近い感度で誤検出の少ない、精度の高い検査を行うことが可能となる。   As described above, according to the present invention, it is possible to perform a highly accurate inspection with a sensitivity close to visual observation with few false detections even on a substrate having gentle coating unevenness over the entire substrate.

なお、図12に、本発明に係る検査装置での検査対象となるプラズマディスプレイパネル背面板の一例を示す。この例では、縦方向に延びる隔壁304とともに、横方向に延びる横隔壁313が設けられている。   FIG. 12 shows an example of a plasma display panel back plate to be inspected by the inspection apparatus according to the present invention. In this example, a horizontal partition 313 extending in the horizontal direction is provided together with the partition 304 extending in the vertical direction.

本発明の一実施態様に係るプラズマディスプレイパネルの検査装置の概略構成図である。It is a schematic block diagram of the inspection apparatus of the plasma display panel which concerns on one embodiment of this invention. プラズマディスプレイパネル背面板の概略平面図である。It is a schematic plan view of a plasma display panel back plate. プラズマディスプレイパネルの部分縦断面図である。It is a partial longitudinal cross-sectional view of a plasma display panel. スクリーン印刷によるプラズマディスプレイパネル背面板への蛍光体ペースト塗着の例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the example of fluorescent substance paste application to the plasma display panel backplate by screen printing. ノズル塗布によるプラズマディスプレイパネル背面板への蛍光体ペースト塗着の例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the example of fluorescent substance paste application to the plasma display panel backplate by nozzle application. (a)は、プラズマディスプレイパネル背面板の蛍光体ペースト塗着工程直後の部分縦断面図であり、(b)は、プラズマディスプレイパネル背面板の乾燥、焼成後の部分縦断面図である。(A) is a partial longitudinal cross-sectional view immediately after the phosphor paste application | coating process of a plasma display panel backplate, (b) is a partial longitudinal cross-sectional view after drying and baking of a plasma display panel backplate. (a)は、共焦点レーザー変位計で液状蛍光体層の高さをプロットしたグラフであり、(b)は、(a)のグラフを移動平均で正規化したグラフである。(A) is the graph which plotted the height of the liquid fluorescent substance layer with the confocal laser displacement meter, (b) is the graph which normalized the graph of (a) by the moving average. 撮像手段から出力される映像信号と基板との対比を示す図である。It is a figure which shows contrast with the video signal output from an imaging means, and a board | substrate. 液状蛍光体層の状態と輝度ピークとの関係を示す図である。It is a figure which shows the relationship between the state of a liquid fluorescent substance layer, and a luminance peak. (a)は、液状蛍光体層毎の輝度ピークをプロットしたグラフであり、(b)は、(a)のグラフを移動平均で正規化したグラフである。(A) is the graph which plotted the luminance peak for every liquid phosphor layer, (b) is the graph which normalized the graph of (a) by the moving average. 基板条件等を示す図である。It is a figure which shows board | substrate conditions etc. 本発明に係る検査装置での検査対象となるプラズマディスプレイパネル背面板の一例を示す部分斜視図である。It is a fragmentary perspective view which shows an example of the plasma display panel backplate used as the test object in the test | inspection apparatus which concerns on this invention.

符号の説明Explanation of symbols

1 プラズマディスプレイパネル
2 搬送手段
4 駆動制御装置
5 点灯制御装置
6 撮像手段
7 画像処理手段
8 表示装置
9 制御装置
301 背面ガラス基板
302 アドレス電極
303 誘電体層
304 隔壁
305 蛍光体(R色)
306 蛍光体(G色)
307 蛍光体(B色)
308 前面ガラス基板
309 表示電極
310 誘電体層
311 保護膜
312 プラズマ
313 横隔壁
401 スキージ
402 印刷スクリーン
403 印刷スクリーンの開口部
404 隔壁間
405 蛍光体ペースト
501 口金
502 圧力印加孔
503 吐出孔
504 隔壁間
505 蛍光体ペースト
601a、602a、液状蛍光体層
601b、602b、乾燥、焼成後の蛍光体層
DESCRIPTION OF SYMBOLS 1 Plasma display panel 2 Conveying means 4 Drive control apparatus 5 Lighting control apparatus 6 Imaging means 7 Image processing means 8 Display apparatus 9 Control apparatus 301 Rear glass substrate 302 Address electrode 303 Dielectric layer 304 Partition 305 Phosphor (R color)
306 Phosphor (G color)
307 Phosphor (B color)
308 Front glass substrate 309 Display electrode 310 Dielectric layer 311 Protective film 312 Plasma 313 Horizontal partition 401 Squeegee 402 Printing screen 403 Printing screen opening 404 Inter-partition 405 Phosphor paste 501 Base 502 Pressure application hole 503 Discharge hole 504 Inter-partition 505 Phosphor pastes 601a and 602a, liquid phosphor layers 601b and 602b, phosphor layers after drying and firing

Claims (4)

照明手段と、照明手段から液状蛍光体層に照射され反射した光のうち入射光入射角度と略同じ角度で反射した光を主として撮像する撮像手段と、信号処理手段とを有し、撮像手段で得られた反射光量と曲率半径係数とから液状蛍光体層の曲率半径を求め、前記曲率半径と液状蛍光体層の両側の隔壁の上部間隔と該隔壁の高さから、液状蛍光体層の高さを算出することを特徴とする、ディスプレイパネルの検査方法。   An illumination unit; an imaging unit that mainly captures light reflected from the illumination unit on the liquid phosphor layer and reflected at an angle substantially equal to an incident light incident angle; and a signal processing unit. The curvature radius of the liquid phosphor layer is determined from the obtained amount of reflected light and the radius of curvature coefficient, and the height of the liquid phosphor layer is calculated from the curvature radius and the upper interval between the partition walls on both sides of the liquid phosphor layer and the height of the partition walls. A method for inspecting a display panel, characterized by calculating the thickness. 液状蛍光体層と交差する方向へ、基板と照明手段および撮像手段とを相対移動させながら液状蛍光体層毎の反射光量を測定する、請求項に記載のディスプレイパネルの検査方法。 A direction intersecting the liquid phosphor layer, measuring the reflection light quantity of the liquid phosphor layers each while relatively moving the substrate and the illumination means and the imaging means, the inspection method of a display panel according to claim 1. 照明手段と、照明手段から液状蛍光体層に照射され反射した光のうち入射光入射角度と略同じ角度で反射した光を主として撮像する撮像手段と、信号処理手段と、少なくとも曲率半径係数と液状蛍光体層の両側の隔壁の上部間隔を入力する条件入力手段とを有し、撮像手段で得られた反射光量と入力された曲率半径係数と隔壁上部間隔と隔壁高さから、少なくとも液状蛍光体層の曲率半径、液状蛍光体層の高さのいずれかを算出することを特徴とするディスプレイパネルの検査装置。   Illumination means, imaging means for mainly imaging light reflected from the illumination means on the liquid phosphor layer and reflected at substantially the same angle as the incident light incident angle, signal processing means, at least a radius of curvature coefficient and liquid Condition input means for inputting the upper interval of the partition walls on both sides of the phosphor layer, and at least a liquid phosphor based on the amount of reflected light obtained by the imaging means, the input curvature radius coefficient, the upper partition interval, and the partition height An inspection apparatus for a display panel, wherein one of a curvature radius of the layer and a height of the liquid phosphor layer is calculated. 液状蛍光体層と交差する方向へ、基板と照明手段および撮像手段とを相対移動させる走査手段を更に有することを特徴とする、請求項に記載のディスプレイパネルの検査装置。 4. The display panel inspection apparatus according to claim 3 , further comprising scanning means for relatively moving the substrate, the illuminating means, and the imaging means in a direction crossing the liquid phosphor layer.
JP2005186247A 2005-06-27 2005-06-27 Display panel inspection method and apparatus Expired - Fee Related JP4705417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005186247A JP4705417B2 (en) 2005-06-27 2005-06-27 Display panel inspection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005186247A JP4705417B2 (en) 2005-06-27 2005-06-27 Display panel inspection method and apparatus

Publications (2)

Publication Number Publication Date
JP2007003447A JP2007003447A (en) 2007-01-11
JP4705417B2 true JP4705417B2 (en) 2011-06-22

Family

ID=37689218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005186247A Expired - Fee Related JP4705417B2 (en) 2005-06-27 2005-06-27 Display panel inspection method and apparatus

Country Status (1)

Country Link
JP (1) JP4705417B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101323257B1 (en) * 2010-12-27 2013-10-30 주식회사 미르기술 Height inspection apparatus for fluorescent substance of light emitting diod component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193881A (en) * 1995-01-11 1996-07-30 Honda Motor Co Ltd Infrared detector
JPH10239025A (en) * 1996-12-25 1998-09-11 Hitachi Tobu Semiconductor Ltd External appearance inspecting method and device
JP2004294274A (en) * 2003-03-27 2004-10-21 Toray Ind Inc Inspection device for display panel
JP2004335339A (en) * 2003-05-09 2004-11-25 Matsushita Electric Ind Co Ltd Plasma display panel and its manufacturing method
JP2006509342A (en) * 2002-12-09 2006-03-16 エルジー ミクロン リミテッド Rear panel of plasma display panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193881A (en) * 1995-01-11 1996-07-30 Honda Motor Co Ltd Infrared detector
JPH10239025A (en) * 1996-12-25 1998-09-11 Hitachi Tobu Semiconductor Ltd External appearance inspecting method and device
JP2006509342A (en) * 2002-12-09 2006-03-16 エルジー ミクロン リミテッド Rear panel of plasma display panel
JP2004294274A (en) * 2003-03-27 2004-10-21 Toray Ind Inc Inspection device for display panel
JP2004335339A (en) * 2003-05-09 2004-11-25 Matsushita Electric Ind Co Ltd Plasma display panel and its manufacturing method

Also Published As

Publication number Publication date
JP2007003447A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
KR100850490B1 (en) Inspection method, inspection device, and manufacturing method for display panel
JP4768014B2 (en) Color filter inspection method, color filter manufacturing method, and color filter inspection apparatus
TWI495867B (en) Application of repeated exposure to multiple exposure image blending detection method
JP2004219108A (en) Method and apparatus for inspecting irregularities in film thickness of colored film
US7449213B2 (en) Method for manufacturing plasma display panel, inspection method for inspecting phosphor layer and inspection apparatus for inspecting phosphor layer
JP4705417B2 (en) Display panel inspection method and apparatus
JP5050398B2 (en) Display panel inspection method, inspection apparatus, and manufacturing method
JP2005037281A (en) Manufacturing method of display device, inspection method of substrate for display device, and inspection device of substrate for display device
KR100880335B1 (en) Manufacturing method for a plasma display panel and device for testing the same
JP2003075294A (en) Method for inspecting substrate
JP3771901B2 (en) Phosphor inspection method and phosphor inspection apparatus
JP2008026147A (en) Inspection device for color filter, and inspection method for the color filter
JP2006292668A (en) Surface inspection device and surface inspection method
KR20150094948A (en) Optical inspection apparatus and method of optical inspection
JP3661466B2 (en) Coating unevenness inspection apparatus and method
JP4531186B2 (en) Plasma display panel back plate inspection apparatus and manufacturing method
JP2021067588A (en) Surface inspection device for object to be inspected and surface inspection method for object to be inspected
KR20030064298A (en) Fluorescent material detecting method and apparatus
JP2013064831A (en) Ink jet coating device
JP4614624B2 (en) Pattern defect inspection system
JP4009595B2 (en) Pattern defect inspection apparatus and pattern defect inspection method
JP2010014430A (en) Phosphor inspection device
JP2001250480A (en) Device and method for inspecting plasma display panel rear plate
JP2004294274A (en) Inspection device for display panel
JP2007205820A (en) Inspecting device for color filter, and inspecting method for color filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080626

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110311

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees