JP4703845B2 - Small rotation motor - Google Patents

Small rotation motor Download PDF

Info

Publication number
JP4703845B2
JP4703845B2 JP2000394768A JP2000394768A JP4703845B2 JP 4703845 B2 JP4703845 B2 JP 4703845B2 JP 2000394768 A JP2000394768 A JP 2000394768A JP 2000394768 A JP2000394768 A JP 2000394768A JP 4703845 B2 JP4703845 B2 JP 4703845B2
Authority
JP
Japan
Prior art keywords
rotary motor
hollow
bearing
flange portion
fixed shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000394768A
Other languages
Japanese (ja)
Other versions
JP2002199648A (en
Inventor
政裕 大石
悦治 神戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2000394768A priority Critical patent/JP4703845B2/en
Priority to EP01310518A priority patent/EP1220421A3/en
Priority to US10/023,380 priority patent/US20020079767A1/en
Publication of JP2002199648A publication Critical patent/JP2002199648A/en
Application granted granted Critical
Publication of JP4703845B2 publication Critical patent/JP4703845B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/083Structural association with bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/086Structural association with bearings radially supporting the rotor around a fixed spindle; radially supporting the rotor directly
    • H02K7/088Structural association with bearings radially supporting the rotor around a fixed spindle; radially supporting the rotor directly radially supporting the rotor directly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Motor Or Generator Frames (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Support Of The Bearing (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は小型回転モータ、特に回転モータ単独で使用可能な与圧機能を有する高精度の小型回転モータに関するものである。
【0002】
【従来の技術】
精密機械、特に光学機器に使用される小型回転モータは、高い回転精度を要求されている。一般にモータの回転は歯車等から構成される回転伝達部を介して駆動対象物に伝達されている。回転の精度は、回転速度の制御、回転角の制御等回転に関する制御の精度を向上すること、又回転伝達部の軸受のガタを抑制すること等で高めていた。
【0003】
ところが、小型機器等では増々小型軽量化が要請され、回転モータも回転伝達部を使用することなく単独で使用される場合が多くなっている。回転モータを単独で使用する場合には回転に関する制御を向上すると共に回転モータの出力軸が持つガタ自体を抑制することも精度の向上に必要となる。
【0004】
従来、回転モータの出力軸のガタ抑制の方法としては、回転モータ自体が出力軸を支持する為に具備する軸受に与圧を与えることが用いられている。
【0005】
図4により従来の回転モータについて説明する。
【0006】
外筒1の内部にロータ2が収納され、該ロータ2は両端より軸3,4が延出し、一方の軸4は出力軸となっている。前記軸3,4は玉軸受5,6を介して前記外筒1に回転自在に支持されている。
【0007】
前記ロータ2の外周面には交互に磁極が異なる様永久磁石7が円周方向に沿って設けられ、該永久磁石7に対向する前記外筒1の中央部分はステータ8となっており、該ステータ8は円周方向に所要等分され、該ステータ8の分割部分にはそれぞれコイル9が巻設されている。該コイル9に電流を通電することで、前記ロータ2が回転する。
【0008】
前記玉軸受5,6は製作上、構造上誤差を有することは避けられなく、特にロータ2の軸心方向のガタは微少ではあるが避けられない。この為、従来玉軸受5,6に内輪11、外輪12間に軸心方向の与圧を掛け、玉軸受5,6のガタを抑止している。
【0009】
図5は玉軸受5,6の内輪11、外輪12間に軸心方向の与圧を掛けた状態を誇張して示している。尚、玉軸受5,6の外輪12の支持構造について図4とは異なるが、外輪の軸心方向の動きが拘束されれば同様である。
【0010】
軸受保持部14は逃げ孔15、該逃げ孔15より若干大径の軸受嵌合孔16、該軸受嵌合孔16より大径の螺子孔17を有している。玉軸受5,6は前記軸受嵌合孔16に嵌合され、玉軸受5,6間にはカラー18が嵌設され、玉軸受6の外輪12が前記螺子孔17に螺合するリングナット19により締込まれ、玉軸受5,6の外輪12が軸心方向に拘束される。
【0011】
又、軸3には玉軸受5の内輪11が嵌合し、前記軸4には玉軸受6の内輪11が嵌合している。前記玉軸受5の内輪11は図中左方への変位が拘束され、前記玉軸受6の内輪11は軸4に螺着されたナット21により、図中右方への動きが拘束される。該ナット21と前記玉軸受6の内輪11間にはウェーブワッシャ22が圧縮された状態で介設されている。
【0012】
前記ウェーブワッシャ22の反力で前記玉軸受5,6の内輪11,11間には近接方向の力(与圧)が付与され、玉軸受5,6自身が有する軸心方向のガタが抑止される。又、同時に玉軸受5,6の半径方向のガタも完全に抑止される。而して、前記軸4は振れ、軸心方向のガタなく、回転を出力する。
【0013】
尚、外輪12,12に対して近接方向に与圧を与えても同様にガタが抑止される。
【0014】
【発明が解決しようとする課題】
上記した玉軸受は製作誤差により、個々のガタが微妙に異なる。この為、精度を優先する場合、手作業により個々のガタに対応した調整が必要となり、又緩いと精度が低下し、又締めすぎると玉軸受の寿命が短くなる等、調整が難しく、精度は熟練度に左右されるという問題があった。
【0015】
又、ウェーブワッシャ等で一定の与圧を掛ける場合、構造が複雑になるという問題があった。更に、光学機器等の小型機器に使用されるモータでは、駆動エネルギを小さくする為、軸受のトルク損失を低減する為、軸受を1つにするタイプの回転モータもある。上記した様に従来のガタ抑制機構では、2つの軸受間で与圧を与える構造であるので、軸受が1つの場合は与圧が与えられないという問題があった。
【0016】
本発明は斯かる実情に鑑み、簡単な構成で而も軸受が1つの場合でも、与圧を与えることが可能であり、更に作業者の熟練度に関係なく適正な与圧を与えることが可能な小型回転モータを提供するものである。
【0017】
【課題を解決するための手段】
本発明は、回転体が軸受を介してステータ側に支持され、前記回転体とステータとの間で前記回転体に軸心方向の磁力を作用させる様にした小型回転モータに係り、又ステータ側にドーナツ状の磁性板を設け、該磁性板を回転体の端面に対峙させ設け、前記磁性板と回転体間で磁力を作用させる様にした小型回転モータに係り、又前記磁性板は珪素鉄である小型回転モータに係り、又ステータ側に中空固定軸を固定し、該中空固定軸の周囲に円筒状の空間を形成する様にし、該中空固定軸に軸受を介して中空の回転体を外嵌し、該回転体に軸心方向の磁力が作用する様構成した小型回転モータに係り、又回転体の周囲に設けられた磁石の端面に対向して磁性板が設けられた小型回転モータに係り、又中空固定軸とステータ側とを固定する部位に前記回転体の端面を対峙させ、回転体の端面と前記部位間に磁力を作用させた小型回転モータ係り、又前記部位を珪素鉄とした小型回転モータに係り、更に又回転体の中空部に光学部材を設けた小型回転モータに係るものである。
【0018】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態を説明する。
【0019】
図1は第1の実施の形態を示すものであり、該実施の形態は2つの軸受を有する小型回転モータに実施されたものである。
【0020】
尚、図1中、図4中で示したものと同等のものには同符号を付し、説明を省略する。
【0021】
外筒1はステータ8を端板25,26で挾持した構成であり、前記端板25に玉軸受5が嵌合され、前記端板26に玉軸受6が嵌合される。又、前記ステータ8と前記端板26との間には磁性板27が挾設され、該磁性板27は前記ステータ8、端板26とは磁気的に絶縁されている。
【0022】
ロータ2から延出する軸3は前記玉軸受5に支持され、軸4は玉軸受6に支持されている。特に、詳細は図示していないが、前記玉軸受5、玉軸受6の外輪は軸心方向の変位が拘束され、前記玉軸受5、玉軸受6の少なくとも1つの内輪はロータ2に固定され、一体に変位する様になっている。
【0023】
前記磁性板27はドーナツ形状をしており、内周部は前記永久磁石7と僅かな間隙を持って対峙し、内径は前記ロータ2の外形と等しいか若干小径となっている。前記磁性板27の材質としては、強磁性体で且つヒステリシスの少ない材質例えば前記ステータ8と同系列の材質である珪素鋼板を使用する。
【0024】
上記構成であるので、前記永久磁石7により前記磁性板27が磁化され、永久磁石7と磁性板27間で磁力による吸引力が発生し、ロータ2は図1中右方に付勢される。
【0025】
前記ロータ2は前記玉軸受5、玉軸受6が持つガタ分だけ軸心方向に変位する。又、前記玉軸受5、玉軸受6の外輪12は軸心方向に拘束されているので、前記ロータ2が変位することで、玉軸受5、玉軸受6の少なくとも一方については、内輪11と外輪12間で相対変位が発生し、与圧が与えられ、軸受のガタが抑止される。
【0026】
ロータ2、即ち軸4のガタは一方の軸受でガタが抑止されれば充分であり、他方の軸受に与圧が発生しなくても精度には影響しない。
【0027】
又、玉軸受5、玉軸受6双方の内輪11を軸3、軸4に拘束する構造とした場合、玉軸受5、玉軸受6の製作誤差によりガタが一定しているとは限らず、玉軸受5,6に同時に同等の与圧が発生することはないが、前述した様に一方の軸受で完全にガタが抑止されれば機能上充分であるので、軸受個々の製作誤差は問題とならない。
【0028】
本実施の形態では、機械的な反発力ではなく磁力を利用しているので、構造が非常に単純化され、手作業による物理的な調整が必要ない。又、精度が要求される複雑な加工も必要なくなる。
【0029】
尚、上記実施の形態に於いて、磁性板27を円周方向に分割すると共に前記ステータ8と磁気的に一体化し、前記コイル9により前記磁性板27が磁化され、永久磁石7と磁性板27間で吸引力のみが発生する様にしてもよい。
【0030】
図2は第2の実施の形態を示すものであり、該実施の形態は1つの軸受を有する小型回転モータ29に実施されたものである。
【0031】
図1中の外筒1に相当する筒状のケーシング30がフランジ31を有し、前記ケーシング30は前記フランジ31を介して所定の支持部に固着される。
【0032】
中空固定軸32がフランジ部32aを介して前記ケーシング30に固定一体化され、該ケーシング30と前記中空固定軸32との間には円筒状の空間が形成される。該円筒状の空間に回転筒33が収納されると共に前記中空固定軸32に軸受34を介して回転自在に外嵌されている。尚、中空固定軸32とケーシング30との固定はフランジ部32aの代りに別途リング状の固定部材を設け、該固定部材を介して中空固定軸32とケーシング30間を固定してもよく、或はケーシング30に内側に突出するフランジを設け、該フランジを介してケーシング30と中空固定軸32とを固定してもよい。
【0033】
前記ケーシング30の内筒はステータとなっており、内筒面には円周方向に沿って所要ピッチでコイル35が固着され、該コイル35に接続されたリード線36が前記フランジ31とフランジ部32aとの間を貫通して延出し、モータの電源、制御部(図示せず)に接続される。
【0034】
前記回転筒33の外筒面には前記コイル35と対峙する様に円周方向所要ピッチでマグネット37が固着されている。該マグネット37の図中右側の端面は前記フランジ部32aに僅かな間隙をもって対峙している。前記中空固定軸32の材質は前記磁性板27と同様、強磁性体で且つヒステリシスの少ない材質例えば珪素鋼を使用する。前記回転筒33は焼結により形成してもよい。又、ケーシング30とフランジ部32aとを一体化してもよい。更に、中空固定軸32自体は非磁性体金属でフランジ部32aのマグネット対向部分に磁性体金属を埋設してもよい。
【0035】
前記回転筒33には前記中空固定軸32と干渉しない位置に内鍔33aが形成され、該内鍔33aに被駆動物が取付けられる。即ち、回転筒33が出力軸となっている。又、前記内鍔33aには突起或は窪み等(図示せず)が形成されており、該突起により被駆動物と回転筒33間の位置決めが可能となっている。
【0036】
而して、前記マグネット37と前記フランジ部32a間で磁力による吸引力が作用し、前記回転筒33がフランジ部32a側に引寄せられる。前記回転筒33に図中右方の力が作用することで軸受34の内輪11と外輪12間に与圧が与えられ、軸受34が持つガタが抑止される。又、前記リード線36を介して前記コイル35に給電することで、前記回転筒33が回転軸の振れもなく、軸心方向の変位もなく高精度で回転する。
【0037】
本実施の形態によれば従来の与圧付与方式ではできなかった、1軸受の小型回転モータにも与圧が与えられ、高精度の回転が得られる。
【0038】
尚、本発明に於いて、磁力により回転部と固定部間に磁力が作用する構成であればよく、例えば回転筒33を強磁性体とし、中空固定軸32に回転筒33を吸引する磁石を設けてもよい。更に、磁石により反発力が発生する様にしてもよい。
【0039】
次に、図3により第2の実施の形態の応用例を説明する。
【0040】
該応用例は、図2で示した回転モータ29を光波距離測定装置光学系のミキシング手段、光路切換え手段、光量調整手段の駆動源として使用したものである。
【0041】
前記光学系は、投光部40、測距光学部41、受光部42、測距回路43から主に構成されている。
【0042】
前記投光部40はレーザ光線を発する半導体レーザ44、該半導体レーザ44から発せられたレーザ光線をレンズ45、レンズ46により光ファイバ47に入射させる光学エキスパンダ48、前記レンズ45とレンズ46との間に設けられたミキシング手段50、前記光ファイバ47から射出されるレーザ光線を位置角度変換して光ファイバ49に入射させる為のセルホックレンズ51,52とから構成される。
【0043】
前記ミキシング手段50について、図2を参照して説明する。
【0044】
前記回転モータ29を光路と回転軸とが合致する様に配設し、前記回転モータ29の内鍔33aに位相板53を取付ける。前記コイル35に通電して回転筒33を回転することで、前記位相板53が回転し、前記半導体レーザ44から発せられたレーザ光線の波形班が解消される。
【0045】
又、前記測距光学部41について説明する。
【0046】
測距光出入光軸上にプリズム54、対物レンズ55が配設され、前記プリズム54を挾んで前記プリズム54への入射光軸上に光量調整手段56、前記プリズム54の反射光軸上に光路切替え手段59が配設され、更に前記光量調整手段56の入射側に分割プリズム57が又前記光路切替え手段59の射出側に分割プリズム61がそれぞれ配設され、前記測距光学部41が構成される。
【0047】
前記受光部42は前記分割プリズム61から射出されたレーザ光線を受光素子62に導く為の光ファイバ63、更にレーザ光線を前記受光素子62に集光させる為の集光レンズ64,65から構成される。
【0048】
前記測距回路43は、前記半導体レーザ44を駆動発光させ、前記受光素子62からの受光信号に基づき測定対象物迄の距離を演算する。
【0049】
前記光量調整手段56は図2で示した回転モータ29が用いられる。光量調整手段56では前記回転モータ29の内鍔33aに光量調整板66が取付けられる。該光量調整板66は円周方向に沿って濃度が変化している光学フィルタであり、前記光量調整板66の回転位置によりレーザ光線の透過量が変化する様になっている。
【0050】
前記光路切替え手段59は前記回転モータ29の内鍔33aに前記光路切替え板67を設けたものである。該光路切替え板67は円弧状の2つのスリット孔を有し、2つのスリット孔は半径方向、円周方向のいずれも位置がずれており、一方のスリット孔は反射測距光68′が通過し、他方のスリット孔は内部参照光69が通過する様になっている。而して、前記回転モータ29により前記光路切替え板67を回転させることで、前記受光素子62に到達するレーザ光線が反射測距光68′か内部参照光69かに切替え得る様になっている。
【0051】
前記測距回路43により半導体レーザ44が駆動されると共に前記ミキシング手段50が駆動され、前記位相板53が回転する。該位相板53の回転と、前記セルホックレンズ51,52により波形斑が解消される。前記光ファイバ49より射出されたレーザ光線は前記分割プリズム57で測距光68と内部参照光69とに分割され、該測距光68と内部参照光69は測定対象物迄の距離に応じて、又測定対象物からの反射状況に応じて、前記光量調整手段56が前記光量調整板66を回転し、前記受光素子62での受光光量が同一になる様に前記光量調整板66の回転位置が選択される。
【0052】
又、所定時間間隔で前記光路切替え手段59により前記光路切替え板67が正逆回転され、前記受光部42に入射する反射測距光68′、内部参照光69とが交互に切替えられる。
【0053】
前記測距回路43では前記受光素子62が受光した反射測距光68′、内部参照光69の受光信号に基づき測定対象物迄の距離が演算される。
【0054】
上記した様に、位相板53、光量調整板66、光路切替え板67を回転するものは、回転モータ29であり、更に前記フランジ部32aとマグネット37間の磁力で軸受34のガタが抑止されている。
【0055】
レーザ光線はこれら回転モータ29の中空部を通過する構造としてあるので、前記位相板53、光量調整板66、光路切替え板67の回転中心をレーザ光線の光軸と略一致させることができる。従って、前記位相板53、光量調整板66、光路切替え板67の全域を無駄なく使用できるので、形状を大幅に小さくできる。
【0056】
尚、中空モータにより回転移動させるものは、位相板53、光量調整板66、光路切替え板67等に限らず、焦点合せ機構の移動部であってもよい。中空モータを使用することで回転体、或は移動部とモータ間の動力伝達の為のギア機構等を省略でき、構造が簡潔化する。
【0057】
【発明の効果】
以上述べた如く本発明によれば、回転体が軸受を介してステータ側に支持され、前記回転体とステータとの間で前記回転体に軸心方向の磁力を作用させる様にし、磁力により軸受に与圧を与える様にしたので、簡単な構造で軸受に与圧を与えることができ、而も軸受が1つの場合でも、与圧を与えることが可能であり、更に作業者の熟練度に関係なく適正な与圧を与えることが可能である等優れた効果を発揮する。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を示す断面図である。
【図2】本発明の第2の実施の形態を示す断面図である。
【図3】本発明の応用例である光波距離測定装置の概略構成図である。
【図4】従来例を示す断面図である。
【図5】従来例の軸受与圧機構を示す説明図である。
【符号の説明】
1 外筒
2 ロータ
3 軸
4 軸
5 玉軸受
6 玉軸受
7 ステータ
9 コイル
11 内輪
12 外輪
27 磁性板
32 中空固定軸
33 回転筒
35 コイル
37 マグネット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a small rotary motor, and more particularly to a high-precision small rotary motor having a pressurizing function that can be used alone.
[0002]
[Prior art]
Small rotational motors used in precision machines, particularly optical instruments, are required to have high rotational accuracy. In general, the rotation of a motor is transmitted to an object to be driven through a rotation transmission unit composed of gears and the like. The accuracy of rotation has been improved by improving the accuracy of control related to rotation, such as control of the rotation speed and control of the rotation angle, and suppressing the play of the bearing of the rotation transmission unit.
[0003]
However, small devices and the like are increasingly required to be small and light, and a rotary motor is often used alone without using a rotation transmission unit. When the rotary motor is used alone, it is necessary to improve the control of the rotation and to suppress the play itself of the output shaft of the rotary motor.
[0004]
2. Description of the Related Art Conventionally, as a method for suppressing backlash of an output shaft of a rotary motor, it has been used to apply a pressure to a bearing that the rotary motor itself has to support the output shaft.
[0005]
A conventional rotary motor will be described with reference to FIG.
[0006]
A rotor 2 is accommodated in the outer cylinder 1, and the rotor 2 has shafts 3 and 4 extending from both ends, and one shaft 4 serves as an output shaft. The shafts 3 and 4 are rotatably supported by the outer cylinder 1 via ball bearings 5 and 6.
[0007]
Permanent magnets 7 are provided along the circumferential direction so that the magnetic poles are alternately different on the outer peripheral surface of the rotor 2, and the central portion of the outer cylinder 1 facing the permanent magnet 7 is a stator 8. The stator 8 is equally divided in the circumferential direction, and coils 9 are wound around the divided portions of the stator 8. When the coil 9 is energized, the rotor 2 rotates.
[0008]
The ball bearings 5 and 6 are inevitably inevitable in construction, and the backlash in the axial direction of the rotor 2 is inevitable although it is very small. For this reason, a pressure in the axial direction is applied to the conventional ball bearings 5 and 6 between the inner ring 11 and the outer ring 12 to suppress the play of the ball bearings 5 and 6.
[0009]
FIG. 5 exaggerates the state in which axial pressure is applied between the inner ring 11 and the outer ring 12 of the ball bearings 5 and 6. Although the support structure of the outer ring 12 of the ball bearings 5 and 6 is different from that shown in FIG. 4, it is the same if the movement of the outer ring in the axial direction is restricted.
[0010]
The bearing holding portion 14 has an escape hole 15, a bearing fitting hole 16 having a diameter slightly larger than the escape hole 15, and a screw hole 17 having a diameter larger than that of the bearing fitting hole 16. The ball bearings 5 and 6 are fitted in the bearing fitting hole 16, a collar 18 is fitted between the ball bearings 5 and 6, and a ring nut 19 in which the outer ring 12 of the ball bearing 6 is screwed into the screw hole 17. The outer ring 12 of the ball bearings 5 and 6 is restrained in the axial direction.
[0011]
An inner ring 11 of a ball bearing 5 is fitted to the shaft 3, and an inner ring 11 of a ball bearing 6 is fitted to the shaft 4. The inner ring 11 of the ball bearing 5 is restrained from being displaced leftward in the figure, and the inner ring 11 of the ball bearing 6 is restrained from moving rightward in the figure by a nut 21 screwed onto the shaft 4. A wave washer 22 is interposed between the nut 21 and the inner ring 11 of the ball bearing 6 in a compressed state.
[0012]
The reaction force of the wave washer 22 applies a force (pressurization) in the proximity direction between the inner rings 11 and 11 of the ball bearings 5 and 6, thereby suppressing backlash in the axial direction of the ball bearings 5 and 6 themselves. The At the same time, the backlash in the radial direction of the ball bearings 5 and 6 is completely suppressed. Thus, the shaft 4 swings and outputs rotation without axial backlash.
[0013]
In addition, even if a pressure is applied to the outer rings 12 and 12 in the proximity direction, backlash is similarly suppressed.
[0014]
[Problems to be solved by the invention]
The above-described ball bearings have slightly different individual play due to manufacturing errors. For this reason, when priority is given to accuracy, adjustments corresponding to individual play are required by manual work, and if it is loose, accuracy will be reduced, and if it is tightened too much, the life of the ball bearing will be shortened. There was a problem that it depends on the skill level.
[0015]
Further, when a certain pressure is applied by a wave washer or the like, there is a problem that the structure becomes complicated. Furthermore, in motors used in small devices such as optical devices, there is also a type of rotary motor in which a single bearing is used in order to reduce driving energy and to reduce torque loss of the bearing. As described above, the conventional backlash suppressing mechanism has a structure in which a pressurized pressure is applied between two bearings. Therefore, there is a problem that a pressurized pressure cannot be applied when there is one bearing.
[0016]
In view of such circumstances, the present invention can provide a pressurized pressure with a simple configuration even when there is only one bearing, and can provide an appropriate pressurized pressure regardless of the skill level of the operator. A small rotary motor is provided.
[0017]
[Means for Solving the Problems]
The present invention relates to a small rotary motor in which a rotating body is supported on a stator side via a bearing, and a magnetic force in an axial direction is applied to the rotating body between the rotating body and the stator. A doughnut-shaped magnetic plate is provided, and the magnetic plate is opposed to an end surface of the rotating body, and the magnetic plate is related to a small rotary motor that applies a magnetic force between the magnetic plate and the rotating body. The hollow fixed shaft is fixed to the stator side, and a cylindrical space is formed around the hollow fixed shaft. A hollow rotating body is attached to the hollow fixed shaft via a bearing. A small-sized rotary motor that is externally fitted and configured so that a magnetic force in the axial direction acts on the rotating body, and a small-sized rotating motor provided with a magnetic plate facing an end face of a magnet provided around the rotating body. The part that fixes the hollow fixed shaft and the stator side The rotary body is related to a small rotary motor in which the end faces of the rotary body are opposed to each other, and a magnetic force is applied between the end face of the rotary body and the part, and the rotary part is made of silicon iron as the part. The present invention relates to a small rotary motor provided with an optical member.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0019]
FIG. 1 shows a first embodiment, which is implemented in a small rotary motor having two bearings.
[0020]
In FIG. 1, the same components as those shown in FIG.
[0021]
The outer cylinder 1 has a configuration in which the stator 8 is held by end plates 25 and 26, and the ball bearing 5 is fitted to the end plate 25 and the ball bearing 6 is fitted to the end plate 26. A magnetic plate 27 is provided between the stator 8 and the end plate 26, and the magnetic plate 27 is magnetically insulated from the stator 8 and the end plate 26.
[0022]
The shaft 3 extending from the rotor 2 is supported by the ball bearing 5, and the shaft 4 is supported by the ball bearing 6. In particular, although not shown in detail, the outer rings of the ball bearing 5 and ball bearing 6 are restrained from axial displacement, and at least one inner ring of the ball bearing 5 and ball bearing 6 is fixed to the rotor 2. It is designed to be displaced together.
[0023]
The magnetic plate 27 has a donut shape, the inner peripheral portion faces the permanent magnet 7 with a slight gap, and the inner diameter is equal to or slightly smaller than the outer shape of the rotor 2. As the material of the magnetic plate 27, a material that is ferromagnetic and has little hysteresis, for example, a silicon steel plate that is the same material as the stator 8 is used.
[0024]
Due to the above configuration, the magnetic plate 27 is magnetized by the permanent magnet 7, an attractive force is generated between the permanent magnet 7 and the magnetic plate 27, and the rotor 2 is urged to the right in FIG. 1.
[0025]
The rotor 2 is displaced in the axial direction by the backlash of the ball bearing 5 and the ball bearing 6. Further, since the outer ring 12 of the ball bearing 5 and the ball bearing 6 is constrained in the axial direction, the inner ring 11 and the outer ring of at least one of the ball bearing 5 and the ball bearing 6 are displaced when the rotor 2 is displaced. Relative displacement occurs between 12, pressure is applied, and bearing play is suppressed.
[0026]
The backlash of the rotor 2, that is, the shaft 4 suffices if the backlash is suppressed by one of the bearings, and the accuracy is not affected even if no pressure is generated in the other bearing.
[0027]
Further, when the inner ring 11 of both the ball bearing 5 and the ball bearing 6 is constrained to the shaft 3 and the shaft 4, the play is not always constant due to manufacturing errors of the ball bearing 5 and the ball bearing 6. Although equal pressurization does not occur at the same time in the bearings 5 and 6, as described above, it is sufficient for the function to be completely suppressed by one of the bearings. .
[0028]
In this embodiment, since a magnetic force is used instead of a mechanical repulsive force, the structure is greatly simplified and no manual adjustment is required. Further, complicated processing requiring high accuracy is not required.
[0029]
In the above embodiment, the magnetic plate 27 is divided in the circumferential direction and magnetically integrated with the stator 8, and the magnetic plate 27 is magnetized by the coil 9, so that the permanent magnet 7 and the magnetic plate 27 are magnetized. Only a suction force may be generated between them.
[0030]
FIG. 2 shows a second embodiment, which is implemented in a small rotary motor 29 having one bearing.
[0031]
A cylindrical casing 30 corresponding to the outer cylinder 1 in FIG. 1 has a flange 31, and the casing 30 is fixed to a predetermined support portion via the flange 31.
[0032]
A hollow fixed shaft 32 is fixed and integrated with the casing 30 via a flange portion 32 a, and a cylindrical space is formed between the casing 30 and the hollow fixed shaft 32. A rotating cylinder 33 is housed in the cylindrical space and is rotatably fitted to the hollow fixed shaft 32 via a bearing 34. The hollow fixed shaft 32 and the casing 30 may be fixed by providing a separate ring-shaped fixing member instead of the flange portion 32a, and the hollow fixed shaft 32 and the casing 30 may be fixed via the fixing member. The casing 30 may be provided with a flange protruding inward, and the casing 30 and the hollow fixed shaft 32 may be fixed via the flange.
[0033]
An inner cylinder of the casing 30 is a stator, and a coil 35 is fixed to the inner cylinder surface at a required pitch along the circumferential direction, and a lead wire 36 connected to the coil 35 is connected to the flange 31 and the flange portion. 32a is extended through and connected to a motor power source and a control unit (not shown).
[0034]
Magnets 37 are fixed to the outer cylinder surface of the rotating cylinder 33 at a required pitch in the circumferential direction so as to face the coil 35. The end surface on the right side of the magnet 37 in the drawing faces the flange portion 32a with a slight gap. As with the magnetic plate 27, the hollow fixed shaft 32 is made of a ferromagnetic material with little hysteresis, such as silicon steel. The rotating cylinder 33 may be formed by sintering. Moreover, you may integrate the casing 30 and the flange part 32a. Further, the hollow fixed shaft 32 itself may be a non-magnetic metal, and the magnetic metal may be embedded in the magnet facing portion of the flange portion 32a.
[0035]
An inner flange 33a is formed in the rotary cylinder 33 at a position where it does not interfere with the hollow fixed shaft 32, and a driven object is attached to the inner flange 33a. That is, the rotary cylinder 33 is an output shaft. Further, the inner flange 33a is formed with a protrusion or a recess (not shown), and the protrusion can position the driven object and the rotary cylinder 33.
[0036]
Thus, an attractive force due to a magnetic force acts between the magnet 37 and the flange portion 32a, and the rotating cylinder 33 is pulled toward the flange portion 32a. When a rightward force in the drawing acts on the rotating cylinder 33, a pressure is applied between the inner ring 11 and the outer ring 12 of the bearing 34, and the play of the bearing 34 is suppressed. Further, by supplying power to the coil 35 via the lead wire 36, the rotating cylinder 33 rotates with high accuracy without any swing of the rotating shaft and without displacement in the axial direction.
[0037]
According to the present embodiment, pressurization is also applied to a single-bearing small rotary motor, which was not possible with the conventional pressurization method, and high-precision rotation can be obtained.
[0038]
In the present invention, any structure may be used as long as the magnetic force acts between the rotating part and the fixed part by the magnetic force. For example, the rotating cylinder 33 is made of a ferromagnetic material, and a magnet that attracts the rotating cylinder 33 to the hollow fixed shaft 32 is provided. It may be provided. Further, a repulsive force may be generated by a magnet.
[0039]
Next, an application example of the second embodiment will be described with reference to FIG.
[0040]
In this application example, the rotary motor 29 shown in FIG. 2 is used as a drive source for mixing means, optical path switching means, and light quantity adjusting means of the optical distance measuring device optical system.
[0041]
The optical system mainly includes a light projecting unit 40, a distance measuring optical unit 41, a light receiving unit 42, and a distance measuring circuit 43.
[0042]
The light projecting unit 40 includes a semiconductor laser 44 that emits a laser beam, an optical expander 48 that causes the laser beam emitted from the semiconductor laser 44 to enter the optical fiber 47 through the lens 45 and the lens 46, and the lens 45 and the lens 46. Mixing means 50 provided therebetween, and cell hook lenses 51 and 52 for changing the angle of the laser beam emitted from the optical fiber 47 and making it incident on the optical fiber 49 are formed.
[0043]
The mixing means 50 will be described with reference to FIG.
[0044]
The rotation motor 29 is disposed so that the optical path and the rotation axis coincide with each other, and the phase plate 53 is attached to the inner flange 33a of the rotation motor 29. By energizing the coil 35 and rotating the rotating cylinder 33, the phase plate 53 rotates, and the waveform of the laser beam emitted from the semiconductor laser 44 is eliminated.
[0045]
The distance measuring optical unit 41 will be described.
[0046]
A prism 54 and an objective lens 55 are provided on the distance measuring light input / output optical axis, and the light quantity adjusting means 56 is provided on the optical axis incident on the prism 54 with the prism 54 interposed therebetween, and the optical path on the reflected optical axis of the prism 54. A switching means 59 is provided, a splitting prism 57 is further provided on the incident side of the light amount adjusting means 56, and a splitting prism 61 is provided on the exit side of the optical path switching means 59, whereby the distance measuring optical unit 41 is configured. The
[0047]
The light receiving unit 42 includes an optical fiber 63 for guiding the laser beam emitted from the split prism 61 to the light receiving element 62, and condensing lenses 64 and 65 for condensing the laser beam on the light receiving element 62. The
[0048]
The distance measuring circuit 43 drives the semiconductor laser 44 to emit light, and calculates the distance to the measurement object based on the light reception signal from the light receiving element 62.
[0049]
The light amount adjusting means 56 uses the rotary motor 29 shown in FIG. In the light amount adjusting means 56, a light amount adjusting plate 66 is attached to the inner flange 33 a of the rotary motor 29. The light amount adjusting plate 66 is an optical filter whose density changes along the circumferential direction, and the amount of transmitted laser beam changes depending on the rotational position of the light amount adjusting plate 66.
[0050]
The optical path switching means 59 is provided with the optical path switching plate 67 on the inner flange 33 a of the rotary motor 29. The optical path switching plate 67 has two arc-shaped slit holes. The two slit holes are displaced in the radial direction and the circumferential direction, and the reflected distance measuring light 68 'passes through one of the slit holes. The other slit hole allows the internal reference light 69 to pass through. Thus, by rotating the optical path switching plate 67 by the rotary motor 29, the laser beam reaching the light receiving element 62 can be switched between the reflected distance measuring light 68 'and the internal reference light 69. .
[0051]
The distance measuring circuit 43 drives the semiconductor laser 44 and the mixing means 50 to rotate the phase plate 53. Waveform spots are eliminated by the rotation of the phase plate 53 and the cell hook lenses 51 and 52. The laser beam emitted from the optical fiber 49 is divided by the split prism 57 into distance measuring light 68 and internal reference light 69. The distance measuring light 68 and the internal reference light 69 are in accordance with the distance to the measurement object. Further, the light amount adjusting means 56 rotates the light amount adjusting plate 66 according to the reflection state from the measurement object, and the rotational position of the light amount adjusting plate 66 so that the received light amount at the light receiving element 62 becomes the same. Is selected.
[0052]
Further, the optical path switching plate 67 is rotated forward and backward by the optical path switching means 59 at a predetermined time interval, and the reflected distance measuring light 68 ′ incident on the light receiving unit 42 and the internal reference light 69 are switched alternately.
[0053]
The distance measuring circuit 43 calculates the distance to the object to be measured based on the reflected distance measuring light 68 ′ received by the light receiving element 62 and the light receiving signal of the internal reference light 69.
[0054]
As described above, the rotating motor 29 is what rotates the phase plate 53, the light amount adjusting plate 66, and the optical path switching plate 67, and the backlash of the bearing 34 is suppressed by the magnetic force between the flange portion 32a and the magnet 37. Yes.
[0055]
Since the laser beam is structured to pass through the hollow portions of these rotary motors 29, the rotation centers of the phase plate 53, the light amount adjusting plate 66, and the optical path switching plate 67 can be made to substantially coincide with the optical axis of the laser beam. Accordingly, since the entire region of the phase plate 53, the light amount adjusting plate 66, and the optical path switching plate 67 can be used without waste, the shape can be greatly reduced.
[0056]
Note that what is rotationally moved by the hollow motor is not limited to the phase plate 53, the light amount adjustment plate 66, the optical path switching plate 67, and the like, but may be a moving unit of a focusing mechanism. By using a hollow motor, a rotating body or a gear mechanism for power transmission between the moving part and the motor can be omitted, and the structure is simplified.
[0057]
【The invention's effect】
As described above, according to the present invention, the rotating body is supported on the stator side via the bearing, and a magnetic force in the axial direction is applied to the rotating body between the rotating body and the stator. Since the pressurization is applied to the bearing, it is possible to apply the pressurization to the bearing with a simple structure, and even if there is only one bearing, it is possible to apply the pressurization and further improve the skill level of the operator. Exhibits excellent effects such as being able to give an appropriate pressure regardless of the condition.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a first embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a second embodiment of the present invention.
FIG. 3 is a schematic configuration diagram of a light wave distance measuring apparatus which is an application example of the present invention.
FIG. 4 is a cross-sectional view showing a conventional example.
FIG. 5 is an explanatory view showing a conventional bearing pressurizing mechanism.
[Explanation of symbols]
1 outer cylinder 2 rotor 3 shaft 4 shaft 5 ball bearing 6 ball bearing 7 stator 9 coil 11 inner ring 12 outer ring 27 magnetic plate 32 hollow fixed shaft 33 rotating cylinder 35 coil 37 magnet

Claims (5)

中空固定軸が強磁性体のフランジ部を有し、該フランジ部にステータが外嵌され、前記中空固定軸の周囲に円筒状の空間を形成する様にし、該空間に収納される様に中空の回転体を前記中空固定軸に軸受を介して外嵌し、
前記中空回転体の外筒面に円周方向に沿って所要ピッチでマグネットを固着し、該マグネットの端面を前記フランジ部に対峙させ、該マグネットと前記フランジ部との間に磁力を作用させ、
前記軸受に軸心方向の与圧を作用させる様構成したことを特徴とする小型回転モータ。
The hollow fixed shaft has a ferromagnetic flange portion, and a stator is fitted on the flange portion to form a cylindrical space around the hollow fixed shaft, and the hollow fixed shaft is hollow to be accommodated in the space. The rotating body is externally fitted to the hollow fixed shaft via a bearing,
Fixing a magnet at predetermined pitch along the circumferential direction on the outer cylindrical surface of the hollow rotating body, the end face of the magnet is opposed to the flange portion, by the action of magnetic force between the magnet and the flange portion ,
A compact rotary motor configured to apply axial pressure to the bearing.
前記回転体の中空部に光が通過可能な光学部材を設けた請求項1の小型回転モータ。  The small rotary motor according to claim 1, wherein an optical member through which light can pass is provided in a hollow portion of the rotating body. 前記フランジ部は珪素鉄である請求項1の小型回転モータ。  The small rotary motor according to claim 1, wherein the flange portion is made of silicon iron. 光波距離測定装置の光学系に用いられる請求項1の小型回転モータであって、該小型回転モータは前記光学系の光路が中空回転体の中空部を通過する様に配設され、該中空部に前記光路を遮る様に光学部材が設けられたことを特徴とする小型回転モータ。  2. The small rotary motor according to claim 1, which is used in an optical system of a light wave distance measuring device, wherein the small rotary motor is disposed so that an optical path of the optical system passes through a hollow portion of a hollow rotating body. A small rotary motor characterized in that an optical member is provided so as to block the optical path. 前記光学部材は、ミキシング手段、光路切換え手段、光量調整手段のいずれかである請求項4の小型回転モータ。  The small-sized rotary motor according to claim 4, wherein the optical member is any one of a mixing unit, an optical path switching unit, and a light amount adjusting unit.
JP2000394768A 2000-12-26 2000-12-26 Small rotation motor Expired - Fee Related JP4703845B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000394768A JP4703845B2 (en) 2000-12-26 2000-12-26 Small rotation motor
EP01310518A EP1220421A3 (en) 2000-12-26 2001-12-17 Small size rotory motor
US10/023,380 US20020079767A1 (en) 2000-12-26 2001-12-17 Small size rotary motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000394768A JP4703845B2 (en) 2000-12-26 2000-12-26 Small rotation motor

Publications (2)

Publication Number Publication Date
JP2002199648A JP2002199648A (en) 2002-07-12
JP4703845B2 true JP4703845B2 (en) 2011-06-15

Family

ID=18860344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000394768A Expired - Fee Related JP4703845B2 (en) 2000-12-26 2000-12-26 Small rotation motor

Country Status (3)

Country Link
US (1) US20020079767A1 (en)
EP (1) EP1220421A3 (en)
JP (1) JP4703845B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10320851A1 (en) * 2003-05-09 2004-11-25 Leybold Vakuum Gmbh turbopump
GB2435912B (en) 2006-03-06 2008-05-14 Honda Motor Co Ltd Electric motor and electric power steering apparatus
US7587832B2 (en) 2007-09-10 2009-09-15 Trimble Navigation Limited Rotating laser transmitter
JP5840226B2 (en) * 2011-12-09 2016-01-06 三菱電機株式会社 Electric motor
JP2016192832A (en) * 2015-03-30 2016-11-10 日本電産株式会社 motor
EP3436221B1 (en) 2016-03-30 2021-12-15 Milwaukee Electric Tool Corporation Brushless motor for a power tool
EP3492391B1 (en) 2016-10-10 2021-04-28 SZ DJI Osmo Technology Co., Ltd. Three-axis pan-tilt base, and three-axis pan-tilt camera device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0366550U (en) * 1989-10-31 1991-06-27
JPH0523782U (en) * 1991-08-30 1993-03-26 東京パーツ工業株式会社 Radial air gap type brushless motor
JPH0646552A (en) * 1991-01-30 1994-02-18 Nippon Seiko Kk Motor with detector
JPH06223494A (en) * 1993-01-29 1994-08-12 Matsushita Electric Ind Co Ltd Disk driving device
JPH08142471A (en) * 1994-11-22 1996-06-04 Riso Kagaku Corp Plate cylinder of stencil printing machine
JPH11252878A (en) * 1998-02-26 1999-09-17 Matsushita Electric Ind Co Ltd Spindle motor
JP2000050595A (en) * 1998-07-31 2000-02-18 Nec Home Electron Ltd Brushless motor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271402A (en) * 1988-09-06 1990-03-12 Canon Inc Rotary drum device
JPH08322192A (en) * 1995-05-29 1996-12-03 Hitachi Ltd Polygon mirror
US5654597A (en) * 1995-09-08 1997-08-05 Kabushiki Kaisha Sankyo Seiki Seisakusho Magnetic disk drive motor
JP4005670B2 (en) * 1997-07-10 2007-11-07 日本電産コパル株式会社 Axial fan motor
JPH11341734A (en) * 1998-05-22 1999-12-10 Mitsubishi Electric Corp Disk type motor
JP2000134892A (en) * 1998-08-19 2000-05-12 Nippon Densan Corp Motor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0366550U (en) * 1989-10-31 1991-06-27
JPH0646552A (en) * 1991-01-30 1994-02-18 Nippon Seiko Kk Motor with detector
JPH0523782U (en) * 1991-08-30 1993-03-26 東京パーツ工業株式会社 Radial air gap type brushless motor
JPH06223494A (en) * 1993-01-29 1994-08-12 Matsushita Electric Ind Co Ltd Disk driving device
JPH08142471A (en) * 1994-11-22 1996-06-04 Riso Kagaku Corp Plate cylinder of stencil printing machine
JPH11252878A (en) * 1998-02-26 1999-09-17 Matsushita Electric Ind Co Ltd Spindle motor
JP2000050595A (en) * 1998-07-31 2000-02-18 Nec Home Electron Ltd Brushless motor

Also Published As

Publication number Publication date
US20020079767A1 (en) 2002-06-27
EP1220421A3 (en) 2003-08-20
JP2002199648A (en) 2002-07-12
EP1220421A2 (en) 2002-07-03

Similar Documents

Publication Publication Date Title
CN106959508B (en) Compact rotator and method for manufacturing a beam steering device
JPH10184685A (en) Magnetic bearing
JP4703845B2 (en) Small rotation motor
JP3456130B2 (en) Distance measuring device
JP2007104849A (en) Small stepping motor and drive/positioning mechanism comprising it
US6317562B1 (en) Lens driving apparatus
JP2017104936A (en) Vibration Spindle
JP5358824B2 (en) Annular motor
JP3341308B2 (en) Lens barrel
JP2002199682A (en) Hollow motor and light wave range finder
US20030107274A1 (en) Stepping motor
JP2010226922A (en) Air core stepping motor and lens device
JP2006333652A (en) Linear motor and precision rotary table
JP2019012104A (en) Housing and housing unit
US5744884A (en) Liner motion micropositioning apparatus and method
US20200028428A1 (en) Magnetic reduction device
JP4733534B2 (en) Rotating body balance adjusting device and machine tool
JP4785432B2 (en) Lens barrel
JP2006087174A (en) Stepping motor and electronic apparatus using stepping motor
JP2558631Y2 (en) Electromagnetic finite rotary motor
JPH07238924A (en) Dynamic pressure air bearing
JP4497594B2 (en) Linear motion mechanism using ultrasonic motor and electronic equipment using the same
JP5218493B2 (en) Actuator
JP2543533Y2 (en) Rotor origin return mechanism for electromagnetic finite rotary motor
JPH0486714A (en) Lens barrel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110309

R150 Certificate of patent or registration of utility model

Ref document number: 4703845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees