JP4702592B2 - Fuel cell system and operation method thereof - Google Patents

Fuel cell system and operation method thereof Download PDF

Info

Publication number
JP4702592B2
JP4702592B2 JP2004134582A JP2004134582A JP4702592B2 JP 4702592 B2 JP4702592 B2 JP 4702592B2 JP 2004134582 A JP2004134582 A JP 2004134582A JP 2004134582 A JP2004134582 A JP 2004134582A JP 4702592 B2 JP4702592 B2 JP 4702592B2
Authority
JP
Japan
Prior art keywords
fuel cell
voltage
ground
resistance
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004134582A
Other languages
Japanese (ja)
Other versions
JP2005317387A (en
Inventor
智紀 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004134582A priority Critical patent/JP4702592B2/en
Publication of JP2005317387A publication Critical patent/JP2005317387A/en
Application granted granted Critical
Publication of JP4702592B2 publication Critical patent/JP4702592B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池システム及びその運転方法に関する。   The present invention relates to a fuel cell system and an operation method thereof.

電気自動車や、燃料電池発電システム等においては、一般に、保守管理時に各種機器の絶縁抵抗を測定して、絶縁劣化の状況を監視することが行われている。このような絶縁抵抗の測定方法としては、例えば特許文献1に記載されている方法が挙げられる。この従来方法は、被測定物を直流接地することなくその絶縁抵抗の測定を実現することを企図したものである。具体的には、交流電源等によって発振維持可能にされたLC共振回路を、その回路と直列に接続されたコンデンサを介して電気自動車等の被測定物に接続し、そのLC共振回路の電圧を測定することによって、被測定物とアースとの間の絶縁抵抗が求められる。
特開平8−160082号公報
In an electric vehicle, a fuel cell power generation system, and the like, in general, the insulation resistance of various devices is measured during maintenance and the state of insulation deterioration is monitored. As a method for measuring such an insulation resistance, for example, a method described in Patent Document 1 can be cited. This conventional method is intended to realize the measurement of the insulation resistance of the object to be measured without DC grounding. Specifically, an LC resonance circuit that is capable of maintaining oscillation by an AC power source or the like is connected to a measurement object such as an electric vehicle via a capacitor connected in series with the circuit, and the voltage of the LC resonance circuit is set. By measuring, the insulation resistance between the object to be measured and the ground is obtained.
JP-A-8-160082

ところで、燃料電池自動車等に搭載される燃料電池システムに備わる高電圧回路は、安全性を確保するために、通常、アースと絶縁されている。しかし、燃料電池の構造上、マニホールドを介して配管が接続された電極は、配管を流れる生成水や冷却水の導電率で決定される抵抗値にて、不可避的にそのアースと電気的に接続されることとなる。このような状況で、生成水の成分が変化したり冷却水が劣化したりして導電率が増大すると、その抵抗値が低下し、これにより燃料電池とアースとの絶縁性が悪化してしまう。   Incidentally, a high voltage circuit provided in a fuel cell system mounted on a fuel cell vehicle or the like is usually insulated from the ground in order to ensure safety. However, due to the structure of the fuel cell, the electrode to which the pipe is connected via the manifold is inevitably electrically connected to the ground with a resistance value determined by the conductivity of the generated water and cooling water flowing through the pipe. Will be. In such a situation, when the electrical conductivity increases due to a change in the components of the generated water or the deterioration of the cooling water, the resistance value decreases, thereby deteriorating the insulation between the fuel cell and the ground. .

このような絶縁性の低下を検知すべく、上記従来の絶縁劣化検出方法を適用しようとしても、配管内を流れる生成水や冷却水の成分変化や劣化に起因する抵抗値の変化を正確に測定することは困難である。また、LC共振回路や交流電源等を備える複雑な発振装置を新たに追加する必要がある。さらに、特許文献1に記載されているように、被測定物である燃料電池とアース間の大地間静電容量の変動に追従して交流電源の周波数調整を行うといった操作も必要とされる。よって、コストの増大と制御操作の煩雑化を招いてしまう傾向にある。   In order to detect such a decrease in insulation, even if the conventional insulation deterioration detection method described above is applied, the change in the resistance value caused by the component change or deterioration of the generated water or cooling water flowing in the pipe is accurately measured. It is difficult to do. In addition, it is necessary to newly add a complicated oscillation device including an LC resonance circuit, an AC power source, and the like. Further, as described in Patent Document 1, an operation of adjusting the frequency of the AC power supply in accordance with the change in the capacitance between the ground between the fuel cell as the object to be measured and the ground is also required. Therefore, the cost tends to increase and the control operation becomes complicated.

そこで、本発明はかかる事情に鑑みてなされたものであり、燃料電池の生成水や冷却水に起因する燃料電池とアースとの絶縁性の低下を、正確に且つ簡易に検知することが可能な燃料電池システム及びその運転方法を提供することを目的とする。   Therefore, the present invention has been made in view of such circumstances, and it is possible to accurately and easily detect a decrease in insulation between the fuel cell and the ground caused by the generated water or cooling water of the fuel cell. It is an object of the present invention to provide a fuel cell system and an operation method thereof.

上記課題を解決するために、本発明による燃料電池システムは、燃料電池と、その燃料電池に放電抵抗を介して電圧を印加するように設けられた電源と、燃料電池の電圧を測定する第1の電圧測定部と、電源の電圧を測定する第2の電圧測定部と、燃料電池とアースとの間の電圧を測定する第3の電圧測定部と、放電抵抗及び燃料電池とアースとの間の絶縁抵抗をそれぞれ流れる電流の関係、燃料電池の電圧と放電抵抗及び絶縁抵抗による降下電圧との関係、並びに、電源電圧と放電抵抗及び絶縁抵抗による降下電圧との関係を数式化し、燃料電池の電圧、電源の電圧、及び燃料電池とアースとの間の電圧、並びに放電抵抗の既知の抵抗値に基づいて、該燃料電池と該アースとの間の絶縁抵抗の抵抗値を算出する演算部とを備えるものである。 In order to solve the above problems, a fuel cell system according to the present invention includes a fuel cell, a power source provided to apply a voltage to the fuel cell via a discharge resistor, and a first voltage for measuring the voltage of the fuel cell. A voltage measuring unit, a second voltage measuring unit for measuring the voltage of the power source, a third voltage measuring unit for measuring a voltage between the fuel cell and the ground, and between the discharge resistance and the fuel cell and the ground. The relationship between the current flowing through each of the insulation resistances, the relationship between the voltage of the fuel cell and the voltage drop due to the discharge resistance and the insulation resistance, and the relationship between the power supply voltage and the voltage drop due to the discharge resistance and the insulation resistance are mathematically expressed. voltage, the voltage of the power supply, and the voltage between the fuel cell and the ground, and based on the known resistance value of the discharge resistor, calculation unit for calculating the resistance value of the insulation resistance between the fuel cell and the ground It is equipped with

このように構成された燃料電池システムでは、燃料電池に抵抗を介して電源が接続されると共に、燃料電池が絶縁抵抗を介してアースに接続されるような閉回路ループが構成される。これを等価回路で表すと、抵抗及び絶縁抵抗をそれぞれ流れる電流の関係、燃料電池の電圧と抵抗及び絶縁抵抗による降下電圧との関係、並びに、電源電圧と抵抗及び絶縁抵抗による降下電圧との関係を数式化することができる。そして、これら複数の数式を解くことにより、絶縁抵抗の抵抗値を、抵抗の抵抗値、並びに、電源電圧、燃料電池電圧、及び燃料電池/アース間電圧の関係式として表し得る。これらのうち、抵抗の抵抗値は既知であり、各電圧値は、それぞれ第1の電圧測定部、第2の電圧測定部、及び第3の電圧測定部で実測される。   In the fuel cell system configured as described above, a closed circuit loop is configured in which a power source is connected to the fuel cell via a resistor and the fuel cell is connected to the ground via an insulation resistor. When this is expressed by an equivalent circuit, the relationship between the current flowing through the resistance and the insulation resistance, the relationship between the voltage of the fuel cell and the voltage drop due to the resistance and the insulation resistance, and the relationship between the power supply voltage and the voltage drop due to the resistance and the insulation resistance Can be mathematically expressed. Then, by solving these mathematical expressions, the resistance value of the insulation resistance can be expressed as a resistance value of the resistance and a relational expression of the power supply voltage, the fuel cell voltage, and the fuel cell / ground voltage. Among these, the resistance value of the resistor is known, and each voltage value is actually measured by the first voltage measuring unit, the second voltage measuring unit, and the third voltage measuring unit, respectively.

よって、演算部において、上記の絶縁抵抗の抵抗値を表す関係式に、これらの既定値及び実測値を代入することにより、絶縁抵抗の抵抗値が算出される。したがって、複雑な発振装置等を用いることなく、絶縁抵抗の抵抗値を測定できるので、燃料電池とアースとの間の絶縁性の変化を正確且つ簡易に検知できる。   Therefore, the resistance value of the insulation resistance is calculated by substituting the predetermined value and the actual measurement value into the relational expression representing the resistance value of the insulation resistance in the calculation unit. Accordingly, since the resistance value of the insulation resistance can be measured without using a complicated oscillation device or the like, a change in insulation between the fuel cell and the ground can be detected accurately and easily.

より具体的には、本発明による燃料電池システムは、燃料電池と電源との接続線を開くように作動する開回路手段(スイッチ、ダイオード等)を備えており、例えば、燃料電池及び電源の両者の同極同士がその開回路手段を介して接続されており、その開回路手段が開放された状態で形成される閉回路ループにおいて電圧測定が行われるものであると好ましい。   More specifically, the fuel cell system according to the present invention includes open circuit means (switches, diodes, etc.) that operate to open a connection line between the fuel cell and the power source. Are preferably connected to each other through the open circuit means, and voltage measurement is preferably performed in a closed circuit loop formed with the open circuit means open.

また、算出された燃料電池とアースとの間の抵抗値(絶縁抵抗値)が予め設定された基準値未満であるときに、燃料電池システムが異常であると判定する判定部を備えると好適である。基準値としては、燃料電池とアース間の絶縁を十分に担保して有意な漏電を防止できる。   In addition, it is preferable to include a determination unit that determines that the fuel cell system is abnormal when the calculated resistance value (insulation resistance value) between the fuel cell and the ground is less than a preset reference value. is there. As a reference value, the insulation between the fuel cell and the ground can be sufficiently secured to prevent significant leakage.

このような異常判定がなされれば、その判定に引き続き当該燃料電池システムを停止させるとか、そのような異常が生じたことを作業者、操作者、運転者等の作為者に対して通報するといった制御を行うことができる。こうすれば、絶縁抵抗の劣化に起因する漏電や感電といった不都合な事態を確実に回避できる。   If such an abnormality determination is made, the fuel cell system is stopped following the determination, or the operator, operator, driver, or the like is notified that such an abnormality has occurred. Control can be performed. In this way, it is possible to reliably avoid inconvenient situations such as electric leakage and electric shock due to deterioration of insulation resistance.

また、演算部は、燃料電池の電圧が電源の電圧以下まで低下した後に、燃料電池の電圧、電源の電圧、及び燃料電池とアースとの間の電圧に基づいて、燃料電池とアースとの間の抵抗値を算出するものであると好ましい。さらに、その所定値が電源の電圧であるとより好ましい。 In addition, after the voltage of the fuel cell has dropped below the voltage of the power source , the arithmetic unit determines whether the fuel cell is grounded based on the voltage of the fuel cell, the power source voltage, and the voltage between the fuel cell and ground. It is preferable that the resistance value is calculated. Furthermore, it is more preferable that the predetermined value is the voltage of the power source.

また、本発明による燃料電池システムの運転方法は、本発明の燃料電池システムを有効に運転するための方法であり、すなわち、燃料電池と、その燃料電池に接続された電源とを備える燃料電池システムの運転方法であって、燃料電池に放電抵抗を介して電圧を印加する電圧印加ステップと、燃料電池の電圧を測定する第1電圧測定ステップと、電源の電圧を測定する第2電圧測定ステップと、燃料電池とアースとの間の電圧を測定する第3電圧測定ステップと、放電抵抗及び燃料電池とアースとの間の絶縁抵抗をそれぞれ流れる電流の関係、燃料電池の電圧と放電抵抗及び絶縁抵抗による降下電圧との関係、並びに、電源電圧と放電抵抗及び絶縁抵抗による降下電圧との関係を数式化し、燃料電池の電圧、電源の電圧、及び燃料電池とアースとの間の電圧、並びに放電抵抗の既知の抵抗値に基づいて、燃料電池とアースとの間の絶縁抵抗の抵抗値を算出する演算ステップとを備える。 The fuel cell system operating method according to the present invention is a method for effectively operating the fuel cell system according to the present invention, that is, a fuel cell system including a fuel cell and a power source connected to the fuel cell. And a voltage applying step for applying a voltage to the fuel cell via a discharge resistor, a first voltage measuring step for measuring the voltage of the fuel cell, and a second voltage measuring step for measuring the voltage of the power source. A third voltage measuring step for measuring the voltage between the fuel cell and the ground, the relationship between the discharge resistance and the current flowing through the insulation resistance between the fuel cell and the ground, the voltage of the fuel cell, the discharge resistance and the insulation resistance, respectively the relationship between the voltage drop due to, as well, and formulas of the relationship between the voltage drop due to the power supply voltage and the discharge resistance and the insulation resistance, voltage of the fuel cell, the voltage of the power supply, and the fuel cell and ah Based voltage and the known resistance value of the discharge resistor between, and a calculation step of calculating a resistance value of the insulation resistance between the fuel cell and ground.

さらに、算出された燃料電池とアースとの間の抵抗値(絶縁抵抗値)が予め設定された基準値未満であるときに、燃料電池システムが異常であると判定する判定ステップを備えると好ましい。   Furthermore, it is preferable to provide a determination step of determining that the fuel cell system is abnormal when the calculated resistance value (insulation resistance value) between the fuel cell and ground is less than a preset reference value.

またさらに、演算ステップに先立って、燃料電池の電圧を電源の電圧以下まで低下させる電圧低下ステップを備えると好適であり、このとき、所定値を上記電源の電圧とするとより好ましい。 Furthermore, it is preferable to provide a voltage reduction step for reducing the voltage of the fuel cell to a voltage lower than that of the power source prior to the calculation step. At this time, it is more preferable that the predetermined value is the voltage of the power source.

本発明の燃料電池システム及びその運転方法によれば、燃料電池に抵抗を介して電圧を印加し、所定部位での電圧を実測することにより、燃料電池とアースとの絶縁抵抗を測定できるので、燃料電池の生成水や冷却水に起因する高電圧回路とアースとの絶縁性の低下や絶縁不良を正確にしかも簡易に検知することが可能となる。   According to the fuel cell system of the present invention and the operation method thereof, since the voltage is applied to the fuel cell via a resistor and the voltage at a predetermined part is measured, the insulation resistance between the fuel cell and the ground can be measured. It becomes possible to accurately and easily detect a decrease in insulation or a poor insulation between the high voltage circuit and the ground due to the generated water or cooling water of the fuel cell.

以下、本発明の実施形態について詳細に説明する。なお、同一要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、図示の比率に限られるものではない。   Hereinafter, embodiments of the present invention will be described in detail. In addition, the same code | symbol is attached | subjected to the same element and the overlapping description is abbreviate | omitted. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.

図1は、本発明による燃料電池システムの好適な一実施形態を示す回路ブロック図である。燃料電池システム1は、例えば燃料電池自動車等に搭載されたシステムであって、自動車等の負荷Hに接続された燃料電池2を備えており、高電圧回路を構成している。燃料電池2には、直流電源である補助電源3が、両者のカソード2a,3a間に設けられたスイッチ4を介して、且つ、互いに直列に接続された放電抵抗51,52を介して接続されている。すなわち、スイッチ4と補助電源3のカソード3aとの間の部位と、燃料電池2及び補助電源3の両者のアノード2b,3b間の部位とを結ぶように放電抵抗51,52が接続されている。このような構成により、スイッチ4が設けられた接続線が開放された状態で、補助電源3からの電圧が放電抵抗51,52を介して燃料電池2に印加される。   FIG. 1 is a circuit block diagram showing a preferred embodiment of a fuel cell system according to the present invention. The fuel cell system 1 is a system mounted on, for example, a fuel cell vehicle, and includes a fuel cell 2 connected to a load H of the vehicle or the like, and constitutes a high voltage circuit. The fuel cell 2 is connected to an auxiliary power source 3 which is a direct current power source via a switch 4 provided between the cathodes 2a and 3a and via discharge resistors 51 and 52 connected in series with each other. ing. That is, the discharge resistors 51 and 52 are connected so as to connect a portion between the switch 4 and the cathode 3a of the auxiliary power source 3 and a portion between the anodes 2b and 3b of both the fuel cell 2 and the auxiliary power source 3. . With such a configuration, the voltage from the auxiliary power source 3 is applied to the fuel cell 2 via the discharge resistors 51 and 52 in a state where the connection line provided with the switch 4 is opened.

放電抵抗51,52としては、高電圧回路に備わるコンデンサ(図示せず)に蓄積された電荷を放電するための抵抗を用いることができ、補助電源3の抵抗値に比して十分に大きな抵抗値を有することが望ましい。さらに、放電抵抗51,52が、例えば車体のアースE(接地電位;ボディアース)に接続されており、燃料電池2の電極とアースEとは、その間に十分に大きな抵抗値を有する絶縁抵抗6が形成されたのと等価状態にあり、実質的に絶縁されている。   As the discharge resistors 51 and 52, resistors for discharging charges accumulated in a capacitor (not shown) provided in the high voltage circuit can be used, and the resistance is sufficiently larger than the resistance value of the auxiliary power supply 3. It is desirable to have a value. Furthermore, the discharge resistors 51 and 52 are connected to, for example, a ground E (ground potential; body ground) of the vehicle body, and the electrode of the fuel cell 2 and the ground E have an insulation resistance 6 having a sufficiently large resistance value therebetween. Is in an equivalent state as formed, and is substantially insulated.

またさらに、燃料電池システム1は、燃料電池2及び補助電源3のそれぞれの電圧を測定するための電圧計11(第1の電圧測定部)及び電圧計12(第2の電圧測定部)を備えている。さらにまた、電圧計13(第3の電圧測定部)が、燃料電池2のカソード2aとスイッチ4との間の部位と、放電抵抗51,52間の部位とに接続されている。この電圧計13により、燃料電池2とアースEとの間の電圧、つまり絶縁抵抗6の両端における電圧(電位差)が測定される。   Furthermore, the fuel cell system 1 includes a voltmeter 11 (first voltage measuring unit) and a voltmeter 12 (second voltage measuring unit) for measuring the voltages of the fuel cell 2 and the auxiliary power supply 3. ing. Furthermore, the voltmeter 13 (third voltage measuring unit) is connected to a portion between the cathode 2 a of the fuel cell 2 and the switch 4 and a portion between the discharge resistors 51 and 52. The voltmeter 13 measures the voltage between the fuel cell 2 and the ground E, that is, the voltage (potential difference) at both ends of the insulation resistor 6.

また、電圧計11,12,13は、制御系等に設けられた演算部8に接続されており、各電圧計11,12,13で取得された電圧値信号が演算部8へ出力され、絶縁抵抗6の抵抗値を求めるための演算が行われる。演算部8は、判定部9に接続されており、算出された絶縁抵抗6の抵抗値と予め設定された基準値との比較演算が行われ、その結果に基づいて絶縁不良発生等の異常の有無が判定される。   Moreover, the voltmeters 11, 12, and 13 are connected to the calculation unit 8 provided in the control system or the like, and the voltage value signals acquired by the voltmeters 11, 12, and 13 are output to the calculation unit 8, An operation for obtaining the resistance value of the insulation resistor 6 is performed. The calculation unit 8 is connected to the determination unit 9 and performs a comparison calculation between the calculated resistance value of the insulation resistance 6 and a preset reference value, and based on the result, abnormality such as the occurrence of an insulation failure is calculated. Presence / absence is determined.

このように構成された燃料電池システム1を用い、本発明による燃料電池システムの運転方法を実施する手順の一例について説明する。まず、燃料電池2の運転を停止(負荷Hへの電流の引き出しを停止)し、スイッチ4を開放する。これにより、補助電源3から、放電抵抗51,52を介して燃料電池2に高電圧を印加する(電圧印加ステップ)。それから、各電圧計11,12,13による電圧測定を継続的又は断続的に実施し、各電圧値信号を演算部8へ出力する(第1〜第3電圧測定ステップ)。   An example of a procedure for carrying out the operation method of the fuel cell system according to the present invention using the fuel cell system 1 configured as described above will be described. First, the operation of the fuel cell 2 is stopped (the current drawing to the load H is stopped), and the switch 4 is opened. Thereby, a high voltage is applied from the auxiliary power source 3 to the fuel cell 2 via the discharge resistors 51 and 52 (voltage application step). Then, the voltage measurement by each voltmeter 11, 12, 13 is performed continuously or intermittently, and each voltage value signal is output to the calculation unit 8 (first to third voltage measurement steps).

さらに、燃料電池2への燃料ガス(水素ガス)及び酸化剤ガス(空気)の供給を停止し、燃料電池2内の発電を停止させるようにする。これにより、燃料電池2内の電圧が低下していき、やがて、燃料電池2の電圧が補助電源3の電圧よりも小さくなる(電圧低下ステップ)。このような条件になった後、演算部8において、以下に例示するようにして絶縁抵抗6の抵抗値を算出する。   Further, the supply of fuel gas (hydrogen gas) and oxidant gas (air) to the fuel cell 2 is stopped, and power generation in the fuel cell 2 is stopped. As a result, the voltage in the fuel cell 2 decreases and eventually the voltage of the fuel cell 2 becomes smaller than the voltage of the auxiliary power supply 3 (voltage reduction step). After satisfying such conditions, the calculation unit 8 calculates the resistance value of the insulation resistor 6 as exemplified below.

ここで、図2は、スイッチ4が開放されたときの燃料電池システム1における燃料電池2及び補助電源3を含む回路ループの等価回路図である。なお、同図に示す等価回路10において、燃料電池2及び補助電源3の各電圧をそれぞれVFC,VBatとし、放電抵抗51,52の各抵抗値をそれぞれRA,RB、及び両者を流れる各電流値をそれぞれI1,I2とし、さらに、測定対象である絶縁抵抗6の抵抗値をRX、それを流れる電流値をI3、及びその両端間の電圧をVLLCとする。 Here, FIG. 2 is an equivalent circuit diagram of a circuit loop including the fuel cell 2 and the auxiliary power supply 3 in the fuel cell system 1 when the switch 4 is opened. In the equivalent circuit 10 shown in the figure, the voltages of the fuel cell 2 and the auxiliary power source 3 are V FC and V Bat , respectively, and the resistance values of the discharge resistors 51 and 52 are R A and R B , respectively. The respective current values flowing are I 1 and I 2 , the resistance value of the insulation resistance 6 to be measured is R X , the current value flowing therethrough is I 3 , and the voltage between both ends is V LLC .

そうすると、等価回路10では下記式(1)〜(3)で表される関係が満たされる。   Then, the equivalent circuit 10 satisfies the relationships represented by the following formulas (1) to (3).

Figure 0004702592
Figure 0004702592

式(1)及び式(2)より、I2を消去して下記式(4)で表される関係が得られる。 From the equations (1) and (2), the relationship represented by the following equation (4) can be obtained by eliminating I 2 .

Figure 0004702592
Figure 0004702592

また、式(1)及び式(3)より、I2を消去して下記式(5)で表される関係が得られる。 Further, from the equations (1) and (3), the relationship represented by the following equation (5) is obtained by eliminating I 2 .

Figure 0004702592
Figure 0004702592

さらに、式(4)に(RA+RB)を乗じて、下記式(6)を得る。 Furthermore, the following formula (6) is obtained by multiplying the formula (4) by (R A + R B ).

Figure 0004702592
Figure 0004702592

またさらに、式(5)にRBを乗じて、下記式(7)を得る。 Furthermore, to obtain multiplied by R B in the formula (5), the following equation (7).

Figure 0004702592
Figure 0004702592

次に、式(6)から式(7)を減じ、さらに、I3について解くと下記式(8)で表される関係が得られる。 Next, when the equation (7) is subtracted from the equation (6) and further solved for I 3 , the relationship represented by the following equation (8) is obtained.

Figure 0004702592
Figure 0004702592

ここで、絶縁抵抗6では、下記式(9)で表される関係が満たされる。   Here, in the insulation resistance 6, the relationship represented by the following formula (9) is satisfied.

Figure 0004702592
Figure 0004702592

この式(9)に式(8)を代入して下記式(10)で表される関係が得られる。   By substituting equation (8) into equation (9), the relationship represented by equation (10) below is obtained.

Figure 0004702592
Figure 0004702592

さらに、式(10)において、RAとRBが等しい(RA=RB)とし、さらに、RXについて解くと下記式(11)で表される関係が得られる。 Furthermore, in Equation (10), when R A and R B are equal (R A = R B ), and further solving for R X , the relationship represented by the following Equation (11) is obtained.

Figure 0004702592
Figure 0004702592

この式(11)に、既知の値であるRA、並びにVBat、VFC、及びVLLCの各実測値を代入し、絶縁抵抗6の抵抗値RXが算出される(演算ステップ)。さらに、得られた抵抗値RXを判定部9へ出力する。判定部9では、入力された抵抗値RXと予め設定しておいた基準値Rthとの比較演算が行われ、抵抗値RXが基準値Rth未満である場合に、絶縁不良によるシステム異常が発生したと判定する(判定ステップ)。一方、抵抗値RXが基準値Rth以上である場合には、燃料電池2とアースEとの絶縁は十分に担保されており、処理を終了する。或いは、電圧計11,12,13による各電圧測定、演算部8における上述した絶縁抵抗6の抵抗値RXの算出、及び判定部9における基準値Rthとの比較演算を繰り返して、異常発生の検知を引き続き実施してもよい。 Substituting the known values R A and the measured values of V Bat , V FC , and V LLC into Equation (11), the resistance value R X of the insulation resistance 6 is calculated (calculation step). Further, the obtained resistance value R X is output to the determination unit 9. The determination unit 9 performs a comparison operation between the input resistance value R X and a preset reference value R th, and if the resistance value R X is less than the reference value R th , the system caused by insulation failure It is determined that an abnormality has occurred (determination step). On the other hand, when the resistance value R X is equal to or greater than the reference value R th , the insulation between the fuel cell 2 and the ground E is sufficiently secured, and the process is terminated. Alternatively, each voltage measurement by the voltmeters 11, 12, 13, the calculation of the resistance value R X of the insulation resistance 6 in the calculation unit 8, and the comparison calculation with the reference value R th in the determination unit 9 are repeated to generate an abnormality. This detection may be continued.

このように構成された燃料電池システム1及びその運転方法によれば、燃料電池2に放電抵抗51,52を介して補助電源3から所定の高電圧が印加され、そのときの燃料電池2、補助電源3、及び燃料電池2とアースEとの間の各電圧VFC,VBat,VLLCが実測される。そして、それら実測値と放電抵抗51,52の抵抗値を用い、具体的には上記式(11)で表される関係に基づいて、演算部8において絶縁抵抗6の抵抗値RXを算出することができる。 According to the fuel cell system 1 configured as described above and the operation method thereof, a predetermined high voltage is applied to the fuel cell 2 from the auxiliary power source 3 via the discharge resistors 51 and 52. The voltages V FC , V Bat and V LLC between the power source 3 and the fuel cell 2 and the ground E are actually measured. Then, using these measured values and the resistance values of the discharge resistors 51 and 52, specifically, the resistance value R X of the insulation resistor 6 is calculated in the calculation unit 8 based on the relationship represented by the above formula (11). be able to.

よって、従来のような複雑な発振装置等を設けることなく、正確且つ簡易に燃料電池2とアースEとの間の絶縁抵抗値の変化(絶縁劣化)を検出できる。したがって、燃料電池システム1において、燃料電池2での生成水、冷却水の成分変化や劣化によって導電率が増大してしまい、万一これに起因して絶縁性が不都合に悪化したとしても、そのような異常発生の有無を正確且つ迅速に検知できる。したがって、漏電事故や感電事故を確実に抑止できると共に、システム異常の誤判定ひいては不要なシステム停止を防止できる。また、装置構成が複雑ではなく、且つ、絶縁抵抗値を簡便に算出できるので、操作性及び操作制御性を向上できると共に、コストの増大をも防止できる。   Therefore, a change (insulation deterioration) in the insulation resistance value between the fuel cell 2 and the ground E can be detected accurately and easily without providing a conventional complicated oscillation device or the like. Therefore, in the fuel cell system 1, the conductivity increases due to the component change or deterioration of the generated water and cooling water in the fuel cell 2, and even if the insulation deteriorates undesirably due to this, The presence or absence of such an abnormality can be detected accurately and quickly. Therefore, it is possible to reliably suppress a leakage accident and an electric shock accident, and it is possible to prevent erroneous determination of system abnormality and unnecessary system stoppage. In addition, since the apparatus configuration is not complicated and the insulation resistance value can be easily calculated, it is possible to improve operability and operation controllability and to prevent an increase in cost.

なお、本発明は上述した実施形態に限定されるものではなく、その要旨を変更しない限度において様々な変形が可能である。例えば、スイッチ4の代わりに、他の開回路を形成できる部材、例えばダイオードを設けてもよい。また、燃料電池2内の電圧を低下させるのに、燃料電池2への燃料ガス及び酸化剤ガスの供給を停止すると共に、それらガスの供給配管内の残存ガスを燃料電池2の発電により消費させるようにしてもよく、或いは、ガス供給を停止しつつそれらの供給配管に不活性ガスを送気するようにしてもよい。   In addition, this invention is not limited to embodiment mentioned above, A various deformation | transformation is possible in the limit which does not change the summary. For example, instead of the switch 4, a member capable of forming another open circuit, for example, a diode may be provided. Further, in order to lower the voltage in the fuel cell 2, the supply of the fuel gas and the oxidant gas to the fuel cell 2 is stopped and the remaining gas in the gas supply pipe is consumed by the power generation of the fuel cell 2. Alternatively, the inert gas may be supplied to the supply pipes while the gas supply is stopped.

本発明による燃料電池システム及びその運転方法は、燃料電池に抵抗を介して電圧を印加し、所定部位の電圧測定結果に基づいて、燃料電池とアースとの間の絶縁抵抗値を測定できるので、生成水や冷却水に起因する絶縁性の低下を正確に且つ簡易に検知することが可能となる。よって、燃料電池自動車、発電設備等の燃料電池システムを備える機器、動機、設備等に広く利用することができる。   The fuel cell system and the operation method thereof according to the present invention can measure the insulation resistance value between the fuel cell and the ground based on the voltage measurement result of a predetermined portion by applying a voltage to the fuel cell via the resistance. It is possible to accurately and easily detect a decrease in insulation caused by generated water or cooling water. Therefore, it can be widely used for devices, motives, facilities, and the like that are equipped with a fuel cell system such as a fuel cell vehicle and power generation facilities.

本発明による燃料電池システムの好適な一実施形態を示す回路ブロック図 である。1 is a circuit block diagram showing a preferred embodiment of a fuel cell system according to the present invention. スイッチ4が開放されたときの燃料電池システム1における燃料電池2及 び補助電源3を含む回路ループの等価回路図である。2 is an equivalent circuit diagram of a circuit loop including a fuel cell 2 and an auxiliary power supply 3 in the fuel cell system 1 when a switch 4 is opened. FIG.

符号の説明Explanation of symbols

H…負荷、1…燃料電池システム、2a,3a…カソード、2b,3b…アノード、2…燃料電池、3…補助電源(電源)、4…スイッチ、6…絶縁抵抗、8…演算部、9…判定部、10…等価回路、11…電圧計(第1の電圧測定部)、12…電圧計(第2の電圧測定部)、13…電圧計(第3の電圧測定部)、51,52…放電抵抗、E…アース。   H: Load, 1 ... Fuel cell system, 2a, 3a ... Cathode, 2b, 3b ... Anode, 2 ... Fuel cell, 3 ... Auxiliary power supply (power supply), 4 ... Switch, 6 ... Insulation resistance, 8 ... Calculation unit, 9 Determining unit, 10 ... Equivalent circuit, 11 ... Voltmeter (first voltage measuring unit), 12 ... Voltmeter (second voltage measuring unit), 13 ... Voltmeter (third voltage measuring unit), 51, 52: Discharge resistance, E: Ground.

Claims (6)

燃料電池と、
前記燃料電池に放電抵抗を介して電圧を印加するように設けられた電源と、
前記燃料電池の電圧を測定する第1の電圧測定部と、
前記電源の電圧を測定する第2の電圧測定部と、
前記燃料電池とアースとの間の電圧を測定する第3の電圧測定部と、
前記放電抵抗及び前記燃料電池と前記アースとの間の絶縁抵抗をそれぞれ流れる電流の関係、燃料電池の電圧と放電抵抗及び絶縁抵抗による降下電圧との関係、並びに、電源電圧と放電抵抗及び絶縁抵抗による降下電圧との関係を数式化し、前記燃料電池の電圧、前記電源の電圧、及び前記燃料電池とアースとの間の電圧、並びに前記放電抵抗の既知の抵抗値に基づいて、該燃料電池と該アースとの間の絶縁抵抗の抵抗値を算出する演算部と、
を備える燃料電池システム。
A fuel cell;
A power source provided to apply a voltage to the fuel cell via a discharge resistor;
A first voltage measuring unit for measuring a voltage of the fuel cell;
A second voltage measuring unit for measuring the voltage of the power source;
A third voltage measuring unit for measuring a voltage between the fuel cell and ground;
The discharge resistance and relationship between the current flowing through each insulation resistance between the fuel cell and the ground, the relationship between the voltage drop due to voltage and the discharge resistor and the insulation resistance of the fuel cell, as well as the power supply voltage and the discharge resistance and insulation resistance And the voltage of the fuel cell, the voltage of the power source, the voltage between the fuel cell and the ground, and the known resistance value of the discharge resistance. A calculation unit for calculating a resistance value of an insulation resistance between the ground and the ground;
A fuel cell system comprising:
算出された前記燃料電池と該アースとの間の抵抗値が予め設定された基準値未満であるときに、当該燃料電池システムが異常であると判定する判定部を備える、
請求項1記載の燃料電池システム。
A determination unit that determines that the fuel cell system is abnormal when the calculated resistance value between the fuel cell and the ground is less than a preset reference value;
The fuel cell system according to claim 1.
前記演算部は、前記燃料電池の電圧が前記電源の電圧以下まで低下した後に、該燃料電池の電圧、前記電源の電圧、及び前記燃料電池とアースとの間の電圧に基づいて、該燃料電池と該アースとの間の抵抗値を算出するものである、
請求項1又は2に記載の燃料電池システム。
After the voltage of the fuel cell has dropped below the voltage of the power source, the arithmetic unit is configured to determine the fuel cell based on the voltage of the fuel cell, the voltage of the power source, and the voltage between the fuel cell and ground. A resistance value between the ground and the ground,
The fuel cell system according to claim 1 or 2.
燃料電池と、該燃料電池に接続された電源とを備える燃料電池システムの運転方法であって、
前記燃料電池に放電抵抗を介して電圧を印加する電圧印加ステップと、
前記燃料電池の電圧を測定する第1電圧測定ステップと、
前記電源の電圧を測定する第2電圧測定ステップと、
前記燃料電池とアースとの間の電圧を測定する第3電圧測定ステップと、
前記放電抵抗及び前記燃料電池と前記アースとの間の絶縁抵抗をそれぞれ流れる電流の関係、燃料電池の電圧と放電抵抗及び絶縁抵抗による降下電圧との関係、並びに、電源電圧と放電抵抗及び絶縁抵抗による降下電圧との関係を数式化し、前記燃料電池の電圧、前記電源の電圧、及び前記燃料電池とアースとの間の電圧、並びに前記放電抵抗の既知の抵抗値に基づいて、該燃料電池と該アースとの間の絶縁抵抗の抵抗値を算出する演算ステップと、
を備える燃料電池システムの運転方法。
A method of operating a fuel cell system comprising a fuel cell and a power source connected to the fuel cell,
A voltage application step of applying a voltage to the fuel cell via a discharge resistor;
A first voltage measuring step for measuring a voltage of the fuel cell;
A second voltage measuring step for measuring the voltage of the power source;
A third voltage measuring step for measuring a voltage between the fuel cell and ground;
The discharge resistance and relationship between the current flowing through each insulation resistance between the fuel cell and the ground, the relationship between the voltage drop due to voltage and the discharge resistor and the insulation resistance of the fuel cell, as well as the power supply voltage and the discharge resistance and insulation resistance And the voltage of the fuel cell, the voltage of the power source, the voltage between the fuel cell and the ground, and the known resistance value of the discharge resistance. A calculation step of calculating a resistance value of an insulation resistance with respect to the ground;
A method for operating a fuel cell system comprising:
算出された前記燃料電池と該アースとの間の抵抗値が予め設定された基準値未満であるときに、当該燃料電池システムが異常であると判定する判定ステップを備える、
請求項4記載の燃料電池システムの運転方法。
A determination step of determining that the fuel cell system is abnormal when the calculated resistance value between the fuel cell and the ground is less than a preset reference value;
The operation method of the fuel cell system according to claim 4.
前記演算ステップに先立って、前記燃料電池の電圧を前記電源の電圧以下まで低下させる電圧低下ステップを備える、
請求項4又は5に記載の燃料電池システムの運転方法。
Prior to the calculation step, a voltage reduction step of reducing the voltage of the fuel cell to a voltage equal to or lower than the voltage of the power source is provided.
The operation method of the fuel cell system according to claim 4 or 5.
JP2004134582A 2004-04-28 2004-04-28 Fuel cell system and operation method thereof Expired - Fee Related JP4702592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004134582A JP4702592B2 (en) 2004-04-28 2004-04-28 Fuel cell system and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004134582A JP4702592B2 (en) 2004-04-28 2004-04-28 Fuel cell system and operation method thereof

Publications (2)

Publication Number Publication Date
JP2005317387A JP2005317387A (en) 2005-11-10
JP4702592B2 true JP4702592B2 (en) 2011-06-15

Family

ID=35444574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004134582A Expired - Fee Related JP4702592B2 (en) 2004-04-28 2004-04-28 Fuel cell system and operation method thereof

Country Status (1)

Country Link
JP (1) JP4702592B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4432958B2 (en) * 2006-11-10 2010-03-17 トヨタ自動車株式会社 Mobile body equipped with a fuel cell
JP7167825B2 (en) * 2019-04-11 2022-11-09 トヨタ自動車株式会社 fuel cell system
KR102216631B1 (en) * 2019-12-20 2021-02-17 주식회사 현대케피코 Method for detecting breakdown of insulation resistance of vehicle and electronic device thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227968A (en) * 1988-03-09 1989-09-12 Nippon Steel Corp Measuring method for insulation resistance of insulated joint for buried pipe line
JPH0215569A (en) * 1988-07-04 1990-01-19 Fuji Electric Co Ltd Grounding detection circuit of fuel cell
JPH04166773A (en) * 1990-10-29 1992-06-12 Kyocera Corp Method of judging whether insulation resistance of solar cell array is good or bad
JPH05273287A (en) * 1992-03-27 1993-10-22 Tokyo Electric Power Co Inc:The Method and apparatus for ground detection for battery
JPH07282831A (en) * 1994-04-12 1995-10-27 Toshiba Corp Short circuit protecting device for fuel cell
JP2000067890A (en) * 1998-08-27 2000-03-03 Toshiba Corp Fuel cell
JP2002313377A (en) * 2001-04-12 2002-10-25 Nissan Motor Co Ltd Conductivity controlling device of fuel cell system
JP2002319426A (en) * 2001-01-19 2002-10-31 Ballard Power Systems Ag Quality control method of cooling liquid for fuel cell system
JP2004234881A (en) * 2003-01-28 2004-08-19 Nissan Motor Co Ltd Fuel cell system
JP2005539353A (en) * 2002-09-16 2005-12-22 ユーティーシー フューエル セルズ,エルエルシー System and method for determining gas composition in a fuel cell power plant that has been shut down

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227968A (en) * 1988-03-09 1989-09-12 Nippon Steel Corp Measuring method for insulation resistance of insulated joint for buried pipe line
JPH0215569A (en) * 1988-07-04 1990-01-19 Fuji Electric Co Ltd Grounding detection circuit of fuel cell
JPH04166773A (en) * 1990-10-29 1992-06-12 Kyocera Corp Method of judging whether insulation resistance of solar cell array is good or bad
JPH05273287A (en) * 1992-03-27 1993-10-22 Tokyo Electric Power Co Inc:The Method and apparatus for ground detection for battery
JPH07282831A (en) * 1994-04-12 1995-10-27 Toshiba Corp Short circuit protecting device for fuel cell
JP2000067890A (en) * 1998-08-27 2000-03-03 Toshiba Corp Fuel cell
JP2002319426A (en) * 2001-01-19 2002-10-31 Ballard Power Systems Ag Quality control method of cooling liquid for fuel cell system
JP2002313377A (en) * 2001-04-12 2002-10-25 Nissan Motor Co Ltd Conductivity controlling device of fuel cell system
JP2005539353A (en) * 2002-09-16 2005-12-22 ユーティーシー フューエル セルズ,エルエルシー System and method for determining gas composition in a fuel cell power plant that has been shut down
JP2004234881A (en) * 2003-01-28 2004-08-19 Nissan Motor Co Ltd Fuel cell system

Also Published As

Publication number Publication date
JP2005317387A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
JP6698599B2 (en) Ground fault detector
CN106896274B (en) Apparatus, system and method for insulation resistance measurement and insulation loss diagnosis
US20210055355A1 (en) Method for monitoring the status of a plurality of battery cells in a battery pack
US9255957B2 (en) Earth fault detection circuit and power source device
CN100593276C (en) Monitoring device for power supply system
WO2009148160A1 (en) Capacitor's remaining lifetime diagnosing device, and electric power compensating device having the remaining lifetime diagnosing device
KR101516419B1 (en) Power conversion devices for fuel cell and the control method
CN112557941A (en) Ground fault detection device
JP2011021990A (en) Insulation state detector
JP5382813B2 (en) Earth leakage detector
JP6369407B2 (en) Failure detection system
JP2005331482A (en) Remaining capacity operational equipment for electricity accumulation device
JP2006126172A (en) State-detecting method of secondary battery, and state detector of secondary battery
JP2009204320A (en) Charge rate estimating device and charge rate estimating method for secondary cell
JP4702592B2 (en) Fuel cell system and operation method thereof
JP2002223526A (en) Residue detector for electric dipole layer capacitor
JP2019163948A (en) Monitor device of battery
JP4509674B2 (en) Remaining capacity calculation device for power storage device
CN111337850B (en) Ground fault detection device
US20230236254A1 (en) Battery voltage measurement circuit
JPWO2004034074A1 (en) Battery management method and apparatus
JP2005345254A (en) Residual capacity arithmetic unit for charge accumulating device
EP4099028B1 (en) Earth fault detection apparatus
JP6836411B2 (en) Ground fault detector, power supply system
JP2010261807A (en) Storage battery deterioration determination method and charge/discharge control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110223

LAPS Cancellation because of no payment of annual fees