JP4697566B2 - Oval sphere sorting method and apparatus - Google Patents

Oval sphere sorting method and apparatus Download PDF

Info

Publication number
JP4697566B2
JP4697566B2 JP2000240304A JP2000240304A JP4697566B2 JP 4697566 B2 JP4697566 B2 JP 4697566B2 JP 2000240304 A JP2000240304 A JP 2000240304A JP 2000240304 A JP2000240304 A JP 2000240304A JP 4697566 B2 JP4697566 B2 JP 4697566B2
Authority
JP
Japan
Prior art keywords
glass substrate
sphere
spheres
deformed
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000240304A
Other languages
Japanese (ja)
Other versions
JP2002052363A (en
Inventor
健 久保井
光司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000240304A priority Critical patent/JP4697566B2/en
Publication of JP2002052363A publication Critical patent/JP2002052363A/en
Application granted granted Critical
Publication of JP4697566B2 publication Critical patent/JP4697566B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Combined Means For Separation Of Solids (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ベアリングなどの精密部品やはんだボールなどの電子機器に用いられる球形部材に混入している不具合品を選別する異形球選別方法と装置に関する。
【0002】
【従来の技術】
従来より、真球度の低い球状部材の選別方法が種々提案されている。例えば、特開平1-249180号に開示されている方法として、気流中で、気流方向に対して直角ないし斜面方向に球状粒子を平面上に転動させて、直進する粒子を捕獲することにより、真球状粒子を捕獲する方法である。
また、これに類似した流体の選別方法で、例えば特開平10-146568号にはステンレス鋼板または軟鋼製鋼板の斜面上を転がし、斜面を転がる流体の形状による速度を利用して、形状の等しい粒子を選別、回収する方法も提案されている。
【0003】
【発明が解決しようとしている課題】
本発明者は、従来から提案されている種々の方法を検討した。その結果、特開平1-249180号で提案される気流を利用した選別方法では、気流の強さによっては高い真球度の粒子も気流に流されてしまい、精度よく高い真球度の粒子を捕獲し難いという欠点があり、また、特開平10-146568号の提案では、鋼板を用いて形状の等しい粒子を選別するため、斜面上を転がる粒子が鋼板表面の粗さの影響を受け易く、例えば500μm以下の径を有する粒子の選別には不向きであることを知見した。
本発明の目的は、高い真球度を粒子を精度よく選別可能で、特に実質500μm以下の直径を有する粒子の選別に好適な異形球選別方法と装置を提供することにある。
【0004】
【課題を解決するための手段】
本発明者は、粒子を斜面で転がした時、異形球のみを効率よく取り除く方法を鋭意検討した。その結果、斜面上を転がし、真球度の低い球は斜面に対して大きく横方向に進むので、これらを不具合品として取り除くことが出来れば、例えば、エレクトロニクスの格子端子型実装部品の端子材料に用いられるはんだボールのように非常に高い真球度が要求される粒子の選別に好適となることを知見した。
しかし、この方法を金属板上で行うと、非常に多くの良品を不良品と判定することになった。この原因は、金属板上にある凹凸などによって、ボールの軌道が変えられることであることがわかった。そこで、金属板の表面を鏡面研磨して、同様の実験を行った。その結果、鏡面研磨を行っても、金属板上のうねりなどを完全に無くすことは出来ず、若干の改善が認められた程度であった。
【0005】
そこで、平坦度が優れている板として、ガラス板を用いることを検討した。しかし、ガラス板では静電気が発生して緩やかに傾斜させた斜面を転がらず、少なくとも20°以上の傾斜が必要となることを知見した。この20°以上の急斜面では、異形球と真球度の高い球体を精度良く選別が不可能であることがわり、特に実質500μm以下の径の微小な金属粒子や、樹脂粒子ではこの現象が顕著になることを突き止めた。
そこで、本発明者はガラス基板の球体の転がる面上に静電気を防止する特別な皮膜を形成すれば、非常に高い精度で、真球度や異形を選別することが求められるボールの選別が可能であることを見出し本発明に到達した。
【0006】
即ち本発明は、異形の球体を選別する方法において、球体を導電性膜を形成したガラス基板上を転がすことによって選別する異形球選別方法である。
好ましくは、ガラス基板は表面粗さRzが0.5μm以下、そりが0.5%以下であり、更に好ましくは、球体は実質直径500μm以下の金属粒子または樹脂粒子の異形球選別方法である。
また本発明は、選別される球体を供給する供給部と、該供給部から供給された球体が転がるように傾斜されたガラス基板と、該ガラス基板上を転がった球体を捕獲する回収容器を具備する異形球選別装置であって、前記ガラス基板には導電性膜が形成されている異形球選別装置であり、好ましくは、上記のガラス基板は表面粗さRzが0.5μm以下である異形球選別装置である。
【0007】
【発明の実施形態】
本発明の最も重要な特徴は、選別する球体(粒子)を導電性膜を形成したガラス基板上を転がすことで、効率よく異形球を選別可能にしたことにある。以下に本発明を詳しく説明する。
まず、異形化した球体と、高い真球度を有する球体とを斜面上を転がすと、球体の転がる方向や速度が異なるため、これを利用して高い真球度を有する球体を選別することができる。しかしながら、上述したように球体が転がる斜面となった基板の粗さによっては、高い真球度の球体を精度よく捕獲することはできない場合もあり、単に平坦度に優れるガラス基板を用いても静電気の影響から高い真球度の球体を精度よく捕獲することはできない。
【0008】
そのため、優れた平坦度を有しながら、球体への帯電を防止する導電性とを兼ね備えることが必要である。
そこで本発明では、平坦度の優れている基板としてガラス基板上に、帯電を防止する導電性膜を球体が転がる面に成膜する。これにより、良品を不良品と判定する量は激減し、かつ直径100μm以下のボールでも転がせることが可能となる。
この導電性膜は必要に応じて接地して使用しても良いが、数十から数百ミクロン程度の金属球の場合、特に接地を必要とせず安定した転がり選別が可能になる。
【0009】
本発明の選別方法を例えばハンダボールやベアリングボールなどのように高精度での選別が要求される場合は、表面粗さRzが0.5μm以下のガラス基板を用いると良い。この理由は、実質直径500μm以下のボールでは、Rzが0.5μmを越えると、転がる方向や速度が変化するためである。
なお、本発明で言う実質とは、異形化した球体を除いた球体の直径が500μm以下のものを言い、本発明で言うRzはJIS B0601で規定されいる10点平均粗さである。また、ガラス基板の反りも考慮するとより好ましく、ガラス基板を平坦な板の上に置いて、この板から最も離れた高さが全厚みの0.5%以下であれば、ガラス基板上を転がる球体が減速や加速したり、転がる方向が反りの影響を受け難くなり、更に好適である。
さらに、Rzを0.1μm以下、かつ、反りを0.1%以下とすると、φ100μm以下の球体でもガラス基板表面の粗さの影響を受けることなく選別が可能になる。
【0010】
次に本発明者は導電性膜について、種々の検討を行った。その結果、金属膜としてはCr、Ta、Nb、Ti、導電性セラミック膜としてはITOが、特に好ましいことがわかった。なぜなら、導電性膜上に錆びが発生すると、錆びの部分で良品の軌道も変えらるために、良品も横方向に転がることになる。また、錆びによる球の汚染も問題となる。よって、耐食性に優れたCr、Ta、Nb、Ti金属膜かITOなどの導電性セラミック膜が好ましい。
【0011】
上述のガラス基板に導電性膜を成膜する方法としては、真空蒸着、スパッタ、化学的気相成長(CVD)など種々の方法で作製することが可能である。
このうち、本発明で使用するガラス基板には、50mm×100mm以上の大きさが必要とされる場合があるため、広い面積を短時間に成膜でき、ボールの転がりを阻害しない均一な膜厚分布が得られる方法として、スパッタによる成膜が適している。
【0012】
上述のようなガラス基板上を球体を転がすことで、精度よく異形球と高い真球度を有する球体とを選別することができる。
本発明のガラス基板上には導電性膜が形成されて、球体やガラス基板表面での帯電を防止することから静電気の影響を受け易い直径500μm以下の微小球の選別に好適であり、ガラス基板の傾斜角度も、10°以下の緩やかな傾斜で高い精度で異形球を選別可能となる。
なかでも、直径が数μmの程度のハンダボールや、球体そのものに帯電し易い、例えば異方性導電膜中にメッキを施されて配される樹脂製の球体や、液晶表示素子のスペーサ用途などの樹脂性球体の選別にも好適である。
【0013】
次に本発明の選別装置について説明する。
本発明の選別装置の一例として、模式図を図1に示す。選別される球体を供給部(1)に充填し、供給された球体は供給部に接続された供給口から、導電性膜が形成されて球体が転がるように傾斜するガラス基板(3)上に排出される。
排出された球体は、適量が転がるように絞り部(2)で絞られ、ガラス基板上を転がって行く。この時、真球度の高い球体は良品ボール(4)として、ガラス基板側面に外れること無く、良品ボールの軌道(5)を転がり、良品ボールを回収する捕獲容器(8)に転がり落ちることになる。
一方、楕円形やサテライトと呼ばれる突起を有する球体は、不良ボール(6)として、例えば不良ボールの軌道(7)を転がり、ガラス基板側面に落下することで、不良ボールと、良品ボールに選別される。
また、良品ボールは斜面を転がる速度が速く、不良品は斜面を転がる速度が比較的に遅い。そこで、回収容器の位置を適正量だけ、膜付きガラス基板から離して回収することによっても選別は可能である。
【0014】
この時に用いるガラス基板の表面粗さをRzが0.5μm以下のガラス基板を用いれば、ハンダボールやベアリングボールなどのように高精度での選別が要求される直径500μm以下のボールの選別に好適となる。
なお、選別する球体を連続で選別したい時は、供給部に連続供給可能な供給装置を別に装着しても良いし、球体の直径によってガラス基板の長さを適宜調整しても良い。
また、球体自身の重さが、例えばパチンコ球や真珠のように重い場合は、直接ガラス基板に落下して、ガラス基板を損傷しないように、ガラスの厚み厚くしたり、供給部に接続された供給口を通した後、絞り部を複数個設けて、絞り部で球体の減速を図っても良い。
【0015】
【実施例】
以下に、実施例として本発明を更に詳しく説明する。
先ず、本実施例では図1の模式図に示す異形球選別装置を用いた。
この異形球選別装置には、幅200mm、長さ500mm、厚み1.0mmのガラス基板を用いた。このガラス基板の表面粗さRzは0.05μmである。このガラス基板の球体が転がる面側には、導電性膜をスパッタにてCr膜を200nmの厚さで成膜している。また、ガラス基板の下には、ガラスが自重で反らないようにするために、アクリル製の板を設置し、ガラス基板の傾斜は5°とした。
そして、直径800μm、600μm、200μmの金属製の球体として、はんだボールをそれぞれ1000個づつ用意し、ダブルボールと呼ばれる2個の球が接合したような形状になっている不良品を1個を混ぜた。
【0016】
先ず、直径800μmのはんだボールを供給部(1)に充填し、供給された球体は供給部に接続された供給口から、導電性膜が形成されて球体が転がるように傾斜するガラス基板(3)上に排出した。供給方法としては、ガラス基板直上からボールを供給する構造になっており、ボールの初速度が一定になるようにした。
排出されたはんだボールは、適量が転がるようにガラス基板中央に設けた絞り部(2)で絞られ、ガラス基板上を転がる構造である。このボールを絞る理由は、ボールがあまりにも幅をもって転がり始めると、横方向に外れた量で異形球を選別する基準が設定出来なくなるからである。
この時、真球度の高い球体は良品ボール(4)として、ガラス基板側面に外れること無く、良品ボールの軌道(5)を転がり、良品ボールを回収する捕獲容器(8)に転がり落ちることになる。
この捕獲容器(8)は、容器内を二分割してあり、ガラス基板に近い手前側には速度の遅い主に異形球が回収され、ガラス基板から遠い捕獲容器部分には良品が捕獲回収されるようにした。
【0017】
一方、ダブルボールは、不良ボール(6)として、例えば不良ボールの軌道(7)を転がり、ガラス基板側面に落下することで、不良ボールと、良品ボールに選別される。もちろん、横方向に逸れた異形球も、良品とは混ざらない構造にした。
以上のようにして、異形球を選別した。
この選別装置で異形球として除去されなかったはんだボールを、目視と電子顕微鏡を用いて異形球の混在の有無を確認したが、異形球の混在は確認されなかった。なお、上述した異形球のダブルボールは、ガラス基板側面に落下した。
【0018】
上述した選別方法と同様の選別方法で、直径600μm、200μmのはんだボールをそれぞれ選別した。
異形球として混在させたダブルボールは、ガラス側面に落下し、良品として捕獲されたはんだボールについて、目視と電子顕微鏡を用いて異形球の混在の有無を確認したが、異形球の混在は確認されなかった。
【0019】
【発明の効果】
本発明の異形球選別方法、選別装置によてれば、ガラス基板に導電性膜が形成されているため、ガラス基板の傾斜角度を5°以下の低角度でも選別が可能になり、これによって、良品と不良品の軌道がより明確に異なるようになり、選別精度が顕著に向上した。
【図面の簡単な説明】
【図1】本発明の異形球選別装置の一例を示す模式図である。
【符号の説明】
1.供給部、2.絞り部、3.ガラス基板、4.良品ボール、5.良品ボールの軌道、6.不良ボール、7.不良ボールの軌道、8.捕獲容器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a deformed sphere sorting method and apparatus for sorting out defective products mixed in a spherical member used in precision parts such as bearings and electronic equipment such as solder balls.
[0002]
[Prior art]
Conventionally, various methods for selecting spherical members having low sphericity have been proposed. For example, as a method disclosed in Japanese Patent Application Laid-Open No. 1-249180, by capturing spherical particles by rolling spherical particles on a plane perpendicular to the direction of the air flow or in the direction of the slope in the air flow, This is a method of capturing true spherical particles.
Further, a similar fluid selection method, for example, in Japanese Patent Laid-Open No. 10-146568, particles having the same shape are rolled on the slope of a stainless steel plate or a mild steel plate, and the speed of the shape of the fluid rolling on the slope is used. A method for sorting and recovering the potato is also proposed.
[0003]
[Problems to be solved by the invention]
The inventor examined various methods that have been proposed in the past. As a result, in the sorting method using airflow proposed in Japanese Patent Application Laid-Open No. 1-249180, particles with high sphericity are also flowed into the airflow depending on the strength of the airflow, and particles with high sphericity are accurately obtained. There is a disadvantage that it is difficult to capture, and in the proposal of Japanese Patent Laid-Open No. 10-146568, since particles having the same shape are selected using a steel plate, the particles rolling on the slope are easily affected by the roughness of the steel plate surface, For example, it has been found that it is not suitable for selecting particles having a diameter of 500 μm or less.
An object of the present invention is to provide a deformed sphere sorting method and apparatus suitable for sorting particles having a diameter of substantially 500 μm or less, which can sort particles having high sphericity with high accuracy.
[0004]
[Means for Solving the Problems]
The inventor diligently studied a method for efficiently removing only the deformed sphere when the particles are rolled on the slope. As a result, the spheres rolling on the slope and the sphere with low sphericity travel greatly in the lateral direction with respect to the slope, so if these can be removed as defective products, for example, as a terminal material for electronic grid terminal type mounting parts It has been found that it is suitable for the selection of particles that require a very high sphericity such as the solder balls used.
However, when this method is performed on a metal plate, a great number of non-defective products are determined to be defective. It has been found that the cause is that the trajectory of the ball can be changed by unevenness on the metal plate. Therefore, the same experiment was conducted by mirror polishing the surface of the metal plate. As a result, even if mirror polishing was performed, undulations on the metal plate could not be completely eliminated, and only a slight improvement was observed.
[0005]
Therefore, the use of a glass plate as a plate having excellent flatness was examined. However, it has been found that the glass plate does not roll on the slope that is gently inclined due to the generation of static electricity, and requires an inclination of at least 20 °. This steep slope of 20 ° or more indicates that it is impossible to accurately select a deformed sphere and a sphere with a high sphericity, and this phenomenon is particularly noticeable in the case of minute metal particles having a diameter of substantially 500 μm or less and resin particles. I found out.
Therefore, if the inventor forms a special film to prevent static electricity on the rolling surface of the glass substrate sphere, it is possible to sort the balls that are required to sort out the sphericity and irregular shape with very high accuracy. The present invention has been found.
[0006]
That is, the present invention is a method for selecting a deformed sphere by selecting the sphere by rolling it on a glass substrate on which a conductive film is formed.
Preferably, the glass substrate has a surface roughness Rz of 0.5 μm or less and a warpage of 0.5% or less, and more preferably, the sphere is a method for selecting irregular spheres of metal particles or resin particles having a substantial diameter of 500 μm or less.
The present invention also includes a supply unit that supplies spheres to be selected, a glass substrate that is inclined so that the spheres supplied from the supply unit roll, and a collection container that captures the spheres that have rolled on the glass substrate. A deformed sphere sorting device, wherein the glass substrate has a conductive film formed thereon, preferably, the glass substrate has a surface roughness Rz of 0.5 μm or less. Sorting device.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The most important feature of the present invention is that the deformed spheres can be efficiently sorted by rolling the spheres (particles) to be sorted on the glass substrate on which the conductive film is formed. The present invention is described in detail below.
First, when rolling a deformed sphere and a sphere with high sphericity on the slope, the rolling direction and speed of the sphere are different, so it is possible to use this to select spheres with high sphericity. it can. However, depending on the roughness of the substrate on which the sphere rolls as described above, it may not be possible to accurately capture a sphere with high sphericity. It is not possible to capture spheres with high sphericity with high accuracy.
[0008]
Therefore, it is necessary to combine conductivity that prevents charging of the sphere while having excellent flatness.
Therefore, in the present invention, a conductive film for preventing electrification is formed on a surface on which a sphere rolls on a glass substrate as a substrate having excellent flatness. As a result, the amount for determining a non-defective product as a defective product is drastically reduced, and even a ball having a diameter of 100 μm or less can be rolled.
This conductive film may be used by grounding it if necessary. However, in the case of a metal ball of about several tens to several hundreds of microns, stable rolling selection is possible without particularly requiring grounding.
[0009]
When the sorting method of the present invention requires sorting with high accuracy, such as solder balls and bearing balls, a glass substrate having a surface roughness Rz of 0.5 μm or less may be used. This is because, in a ball having a substantial diameter of 500 μm or less, the rolling direction and speed change when Rz exceeds 0.5 μm.
The term “substance” as used in the present invention means that the diameter of a sphere excluding a deformed sphere is 500 μm or less, and Rz as used in the present invention is a 10-point average roughness defined in JIS B0601. Moreover, it is more preferable in consideration of the warpage of the glass substrate. If the glass substrate is placed on a flat plate and the height farthest from this plate is 0.5% or less of the total thickness, the glass substrate rolls on the glass substrate. The spherical body decelerates and accelerates, and the rolling direction is less affected by the warp, which is more preferable.
Furthermore, when Rz is 0.1 μm or less and the warpage is 0.1% or less, even a sphere having a diameter of 100 μm or less can be selected without being affected by the roughness of the glass substrate surface.
[0010]
Next, the present inventor conducted various studies on the conductive film. As a result, it was found that Cr, Ta, Nb, Ti as the metal film and ITO as the conductive ceramic film are particularly preferable. This is because, when rust is generated on the conductive film, the track of the non-defective product is changed at the rust portion, and the non-defective product also rolls in the lateral direction. Also, contamination of the sphere due to rust becomes a problem. Therefore, a conductive ceramic film such as Cr, Ta, Nb, Ti metal film or ITO having excellent corrosion resistance is preferable.
[0011]
As a method for forming a conductive film on the above glass substrate, various methods such as vacuum deposition, sputtering, chemical vapor deposition (CVD), and the like can be used.
Among these, since the glass substrate used in the present invention may be required to have a size of 50 mm × 100 mm or more, a wide area can be formed in a short time, and a uniform film thickness that does not hinder rolling of the ball As a method for obtaining the distribution, film formation by sputtering is suitable.
[0012]
By rolling the sphere on the glass substrate as described above, the deformed sphere and the sphere having high sphericity can be selected with high accuracy.
Since the conductive film is formed on the glass substrate of the present invention and prevents charging on the surface of the sphere or the glass substrate, it is suitable for selection of microspheres having a diameter of 500 μm or less that are easily affected by static electricity. It is possible to sort out deformed spheres with a high accuracy with a gentle inclination of 10 ° or less.
Among them, solder balls with a diameter of several μm, spheres themselves are easily charged, for example, resin spheres arranged by plating in anisotropic conductive films, liquid crystal display element spacer applications, etc. It is also suitable for sorting resinous spheres.
[0013]
Next, the sorting apparatus of the present invention will be described.
As an example of the sorting apparatus of the present invention, a schematic diagram is shown in FIG. The supply spheres are filled with the spheres to be selected, and the supplied spheres are formed on the glass substrate (3) inclined from the supply port connected to the supply unit so that a conductive film is formed and the spheres roll. Discharged.
The discharged sphere is squeezed by the squeezing portion (2) so that an appropriate amount rolls, and rolls on the glass substrate. At this time, the sphere with a high sphericity will be rolled as a non-defective ball (4) onto the trapping container (8) that rolls the track (5) of the non-defective ball without falling off the side of the glass substrate and collects the non-defective ball. Become.
On the other hand, a sphere having a projection called an oval or a satellite rolls as a defective ball (6), for example, rolls on the track (7) of the defective ball and falls to the side of the glass substrate, and is sorted into a defective ball and a good ball. The
In addition, non-defective balls roll on the slope at a high speed, and defective balls roll on the slope at a relatively low speed. Therefore, sorting can also be performed by separating the collection container from the glass substrate with a film by an appropriate amount.
[0014]
If a glass substrate having a surface roughness Rz of 0.5 μm or less is used at this time, it is suitable for sorting balls having a diameter of 500 μm or less, such as solder balls and bearing balls, which require high precision sorting. It becomes.
When continuously selecting the spheres to be selected, a supply device capable of continuous supply to the supply unit may be separately installed, or the length of the glass substrate may be appropriately adjusted according to the diameter of the sphere.
Also, if the weight of the sphere itself is heavy, such as a pachinko ball or a pearl, the glass is thickened or connected to the supply unit so that it does not fall directly on the glass substrate and damage the glass substrate. After passing through the supply port, a plurality of throttle portions may be provided, and the spherical body may be decelerated by the throttle portions.
[0015]
【Example】
Hereinafter, the present invention will be described in more detail by way of examples.
First, in this embodiment, the deformed sphere sorting apparatus shown in the schematic diagram of FIG. 1 was used.
A glass substrate having a width of 200 mm, a length of 500 mm, and a thickness of 1.0 mm was used for this deformed sphere sorting device. The glass substrate has a surface roughness Rz of 0.05 μm. On the surface of the glass substrate on which the sphere rolls, a Cr film is formed to a thickness of 200 nm by sputtering a conductive film. In addition, an acrylic plate was installed under the glass substrate to prevent the glass from being warped by its own weight, and the inclination of the glass substrate was set to 5 °.
Then, 1000 solder balls are prepared as metal spheres with diameters of 800 μm, 600 μm, and 200 μm, respectively, and one defective product that is shaped like two balls called double balls joined together is mixed. It was.
[0016]
First, a solder ball having a diameter of 800 μm is filled in the supply part (1), and the supplied sphere is formed from a supply port connected to the supply part, a conductive film is formed and the glass substrate is inclined so that the sphere rolls (3 ) Discharged on top. As a supply method, the ball is supplied from directly above the glass substrate so that the initial velocity of the ball is constant.
The discharged solder balls are squeezed by a squeezing portion (2) provided at the center of the glass substrate so that an appropriate amount rolls, and roll on the glass substrate. The reason for squeezing the ball is that if the ball begins to roll with a width that is too large, it becomes impossible to set a standard for selecting the deformed spheres by the amount deviated in the lateral direction.
At this time, the sphere with a high sphericity will be rolled as a non-defective ball (4) onto the trapping container (8) that rolls the track (5) of the non-defective ball without falling off the side of the glass substrate and collects the non-defective ball. Become.
This capture container (8) is divided into two parts, mainly deformed spheres with slow speed are collected on the near side near the glass substrate, and good products are captured and collected in the capture container part far from the glass substrate. It was to so.
[0017]
On the other hand, the double ball is sorted as a defective ball and a non-defective ball, for example, by rolling on the track (7) of the defective ball and dropping on the side surface of the glass substrate as the defective ball (6). Of course, the deformed sphere that deviated in the lateral direction has a structure that does not mix with non-defective products.
As described above, the deformed spheres were selected.
Solder balls that were not removed as deformed spheres by this sorting device were checked for the presence or absence of deformed spheres using visual inspection and an electron microscope, but the presence of deformed spheres was not confirmed. In addition, the double ball of the odd-shaped sphere mentioned above fell on the glass substrate side surface.
[0018]
Solder balls having a diameter of 600 μm and 200 μm were sorted by the same sorting method as described above.
Double balls mixed as deformed spheres dropped on the side of the glass, and solder balls captured as good products were checked for presence or absence of deformed spheres using visual and electron microscopes. There wasn't.
[0019]
【The invention's effect】
According to the deformed sphere sorting method and sorting apparatus of the present invention, since the conductive film is formed on the glass substrate, the glass substrate can be sorted even at a low angle of 5 ° or less. As a result, the trajectory of non-defective products and defective products has become more distinct, and the sorting accuracy has been significantly improved.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of a deformed sphere sorting apparatus of the present invention.
[Explanation of symbols]
1. 1. supply unit; 2. Diaphragm part, 3. glass substrate, 4. Good ball, 5. Good ball trajectory, 6. Bad ball, 7. Bad ball trajectory, Capture container

Claims (5)

異形の球体を選別する方法において、球体を導電性膜を形成したガラス基板上を転がすことによって選別することを特徴とする異形球選別方法。In the method for sorting out irregularly shaped spheres, the irregularly shaped spheres are sorted by rolling on a glass substrate on which a conductive film is formed. ガラス基板は、表面粗さRzが0.5μm以下であることを特徴とする請求項1に記載の異形球選別方法。2. The method for sorting out deformed spheres according to claim 1, wherein the glass substrate has a surface roughness Rz of 0.5 μm or less. 球体は実質直径500μm以下の金属粒子または樹脂粒子であることを特徴とする請求項1または2に記載の異形球選別方法。3. The method of selecting a deformed sphere according to claim 1, wherein the sphere is a metal particle or resin particle having a substantial diameter of 500 μm or less. 選別される球体を供給する供給部と、該供給部から供給された球体が転がるように傾斜されたガラス基板と、該ガラス基板上を転がった球体を捕獲する回収容器を具備する異形球選別装置であって、前記ガラス基板には導電性膜が形成されていることを特徴とする異形球選別装置。A deformed sphere sorting apparatus comprising: a supply unit that supplies spheres to be sorted; a glass substrate that is inclined so that the spheres supplied from the supply unit roll; and a collection container that captures the spheres that roll on the glass substrate An irregular sphere sorting device, wherein a conductive film is formed on the glass substrate. ガラス基板は、表面粗さRzが0.5μm以下であることを特徴とする請求項4に記載の異形球選別装置。The deformed sphere sorting device according to claim 4, wherein the glass substrate has a surface roughness Rz of 0.5 µm or less.
JP2000240304A 2000-08-08 2000-08-08 Oval sphere sorting method and apparatus Expired - Fee Related JP4697566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000240304A JP4697566B2 (en) 2000-08-08 2000-08-08 Oval sphere sorting method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000240304A JP4697566B2 (en) 2000-08-08 2000-08-08 Oval sphere sorting method and apparatus

Publications (2)

Publication Number Publication Date
JP2002052363A JP2002052363A (en) 2002-02-19
JP4697566B2 true JP4697566B2 (en) 2011-06-08

Family

ID=18731685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000240304A Expired - Fee Related JP4697566B2 (en) 2000-08-08 2000-08-08 Oval sphere sorting method and apparatus

Country Status (1)

Country Link
JP (1) JP4697566B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062710A1 (en) * 2006-11-20 2008-05-29 Hitachi Metals, Ltd. Single ball separating device and single ball separating method
JP5099758B2 (en) * 2007-10-09 2012-12-19 一般財団法人電力中央研究所 Needle-like slag removal device
EP3736052B1 (en) * 2019-05-09 2022-02-16 International Tobacco Machinery Poland SP. Z O.O. A device and a method for sorting spherical objects
CN110153028B (en) * 2019-06-21 2024-03-01 福建农林大学 High-precision steel ball screening equipment and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000037664A (en) * 1998-07-23 2000-02-08 Dowa Mining Co Ltd Method and apparatus for recovering metal from metal- containing mixture

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6066100U (en) * 1983-10-12 1985-05-10 富士通株式会社 Antistatic sheet
JPH01249180A (en) * 1988-03-31 1989-10-04 Nuclear Fuel Ind Ltd Method and device for screening spherical particle
JPH0742093U (en) * 1993-12-24 1995-07-21 株式会社東海理化電機製作所 Antistatic plate
JPH107323A (en) * 1996-06-20 1998-01-13 Nippon Steel Corp Life judging method and device for wire rope
JPH10146568A (en) * 1996-11-20 1998-06-02 Toyota Motor Corp Separation and recovering method of granule
JPH11319722A (en) * 1998-05-20 1999-11-24 Sumitomo Metal Mining Co Ltd Single sphere sorting apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000037664A (en) * 1998-07-23 2000-02-08 Dowa Mining Co Ltd Method and apparatus for recovering metal from metal- containing mixture

Also Published As

Publication number Publication date
JP2002052363A (en) 2002-02-19

Similar Documents

Publication Publication Date Title
Dodd The statistics of liquid spray and dust electrification by the Hopper and Laby method
JP3449459B2 (en) Method for manufacturing member for thin film forming apparatus and member for the apparatus
John et al. Charge transfer to metal surfaces from bouncing aerosol particles
Zito et al. Nanoscale engineering of two-dimensional disordered hyperuniform block-copolymer assemblies
JP4697566B2 (en) Oval sphere sorting method and apparatus
JP2016036829A (en) Rolled copper foil, and secondary battery power collector using the same
CN111426674B (en) Sunflower nano array structure for enhancing SERS activity and preparation method thereof
Dalal et al. Cracks in the 3D-printed conductive traces of silver nanoparticle ink
Rimai et al. Particles on surfaces: adhesion induced deformations
Banerjee et al. Adhesion of charged powders to a metal surface in the powder coating process
JP4725769B2 (en) Microsphere sorting method
JP3814718B2 (en) Microsphere sorting device
TW202000940A (en) Solder particles and method for producing solder particles
JP2556766B2 (en) Electronic component chip sorter
Morrison et al. Properties of microcraters and cosmic dust of less than 1000 A dimensions
Rimai et al. The adhesion and removal of particles from surfaces
Szabadi et al. In situ characterization of particle structures generated at different flow velocities on a single fiber in the gas phase
Rimai et al. Adhesion induced deformations of a highly compliant elastomeric substrate in contact with rigid particles
JP3589195B2 (en) Sorting method for small metal balls
JPH11319722A (en) Single sphere sorting apparatus
WO2022239124A1 (en) Solder particle classifying method, monodispersed solder particle, and solder particle classifying system
JP2009189950A (en) Method and apparatus for sorting deformed ball
JP4439652B2 (en) Thin film forming apparatus member and manufacturing method thereof
Bowen et al. A method of determining the contact area between a particle and substrate using scanning electron microscopy
Cardot et al. Adhesion and removal of particles from surfaces under humidity controlled air stream

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110217

R150 Certificate of patent or registration of utility model

Ref document number: 4697566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees