JP3814718B2 - Microsphere sorting device - Google Patents

Microsphere sorting device Download PDF

Info

Publication number
JP3814718B2
JP3814718B2 JP2001357405A JP2001357405A JP3814718B2 JP 3814718 B2 JP3814718 B2 JP 3814718B2 JP 2001357405 A JP2001357405 A JP 2001357405A JP 2001357405 A JP2001357405 A JP 2001357405A JP 3814718 B2 JP3814718 B2 JP 3814718B2
Authority
JP
Japan
Prior art keywords
sphere
inclined plate
plate
spheres
deformed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001357405A
Other languages
Japanese (ja)
Other versions
JP2003154317A (en
Inventor
信幸 安田
正俊 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yutaka Co Ltd
Original Assignee
Yutaka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yutaka Co Ltd filed Critical Yutaka Co Ltd
Priority to JP2001357405A priority Critical patent/JP3814718B2/en
Publication of JP2003154317A publication Critical patent/JP2003154317A/en
Application granted granted Critical
Publication of JP3814718B2 publication Critical patent/JP3814718B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Combined Means For Separation Of Solids (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、良品の球体(真球)の中に混入している不良球体(変形球)を斜面上での転がり状況の違いを利用して選り分ける球体の選別装置に関する。
【0002】
【従来の技術】
アトマイズ法で製造される微小球体の中に含まれている変形球の主なものを図4に示す。同図の(a)は双子球、(b)は親子球と称されている。(c)も一種の双子球である。
【0003】
微小球体は、電子デバイスや光ファイバ関連製品などにも利用され、そのような用途では真球が要求されるので変形球の選別除去が不可欠となる。
【0004】
ところが、図4の如き変形球は、特定方向の外径が良品径と等しいものが多く、メッシュスクリーンを用いるふるい選別機や、ローラ間の隙間を利用して選り分けを行うローラ選別機では除去できないことがある。
【0005】
図5(a)に示すように、平板の傾斜板1上に球体Bを置くと真球は真っ直ぐに転がり落ちるのに対し、変形球は、傾斜板との接触部に周長差があったり、傾斜板上に斜めに置かれたりすると図5(b)のように斜めに転がる。この転がり方向の違いで選別する傾斜選別法もあるが、この方法は、図5(c)に示すように、双子球の直径が等しく、かつ傾斜板上での姿勢が傾いていなければ円筒を転がすのと同じ状況になって変形球が真っ直ぐに転がり落ち、真球の中に残る。
【0006】
そこで、本出願人は、球体の移動に方向性を与える縦溝を設け、その溝の中を転がり落ちる真球と、転がりが規制されて滑り落ちる変形球の飛距離差を利用して傾斜選別法で選別できなかった変形球も取り除けるようにした装置を開発して特願2000−121124号で提案している。
【0007】
その装置の開発により、ほぼ0.3mm程度までの球体は良好な選別が行えるようになったが、それよりも小さな球体については、一部の球体が傾斜板に付着し、球体同士が吸着し合う現象も生じて傾斜板上での動きが止まり、後続の球の流れが塞き止められてまともな選別が行えなかった。なお、傾斜板の傾斜を高角度にすると、真球と変形球の転がり方向や飛距離に明瞭な差が現れなくなり、選別が困難になるため、この方法で球体の流れを良くすることはできない。
【0008】
このため、300μm前後を境にしてそれよりも小径の球体の選別は依然として目視検査でなされている。
【0009】
【発明が解決しようとする課題】
この発明は、省力化のために、そのような微小球体の自動選別を可能ならしめることを課題としている。
【0010】
【課題を解決するための手段】
上記の課題を解決するため、この発明においては、微小球体を載せて転がす平板の傾斜板と、この傾斜板を振動させる起振源とを有し、傾斜板の傾斜角を3度〜10度、振動数を300Hz〜500Hzとし、さらに、傾斜板の上面を適度の面粗さを有し、縦方向に延びる無数の微細な条痕が観察される面にした微小球体の選別装置を提供する。
【0011】
この装置は、傾斜板を、選別される球体と同じ材質の材料で形成したもの、傾斜板の上面に接地処理する導電性膜を設けたもの、或いは起振源を電歪素子で形成し、傾斜板に正弦波の振動を与えるようにしたものにすると好ましい。
【0012】
また、傾斜板の先端側に微小球体を入り込ませて球体の移動に方向性を与える縦溝を設け、さらに、その縦溝に拘束されて滑動する変形球を傾斜板の先端から落下させる変形球回収部と、縦溝内を転がり下って変形球回収部の前方に落ちる真球を真球回収部に案内する分別板とを付加した構成にするのも好ましい。
【0013】
【作用】
直径が300μm前後、或いはそれ以下の微小球体が傾斜板上で滞留する原因は、専門家によると、
・静電気力
・ファンデルワールス力
・液架橋力
・傾斜板の面粗度
が考えられるとのことであった。
【0014】
原因が何であるにせよ、微小球体は傾斜板に付着し、或いは互いに吸着し合うことが球体の流れを滞らせている。そこで、この発明では、傾斜板に振動を与えて付着した微小球体を分離するようにした。
【0015】
傾斜板の傾斜角が小さすぎると振動させても微小球体はスムーズに流れず、一方、傾斜角が大きすぎると良品と不良球の転がり方向、飛距離に明確な差が現れなくなって選別に支障が出る。
【0016】
また、振動数が少なすぎる場合、多すぎる場合には振動印加の効果が充分に引き出されない。
【0017】
傾斜板の傾斜角3度〜10度、振動数300Hz〜500Hzは、実験を行って最良のところを選んだ。
【0018】
次に、傾斜板の上面は、球体の転がり抵抗を考えると鏡面が良いように思える。ところが、実際には鏡面よりも縦方向(傾斜板の前後方向)に延びる無数の微細な条痕が観察される面の方がよく、この面を形成したことによって直径が300μm以下の球体の選別が可能になった。その上面の粗さは条痕による凹凸で0.1mm〜0.4mmの範囲にあるのがよかった。
【0019】
なお、傾斜板を、選別される球体と同じ材質の材料で形成したもの、傾斜板の上面に接地処理する導電性膜を設けたものは、静電気の影響を除去できる。
【0020】
また、電歪素子を起振源として採用すると電磁力の影響が出ない。
【0021】
さらに、縦溝、変形球回収部、分別板を設けたものは、飛距離差による選別もなされ、選別の信頼性がより高まる。
【0022】
【発明の実施の形態】
図1乃至図3に、この発明の実施形態を示す。この選別装置は、傾斜角θを3度〜10度に設定した平板の傾斜板1と、その傾斜板を振動させる起振源2と、起振源の駆動制御部3と、傾斜板の先端を支えるホルダ4と、飛距離差選別を行うために傾斜板1の先端上面に設けた縦溝5(図2参照)、変形球を変形球回収部6に落下させる開口7、及び真球を真球回収部8に誘導する分別板9とから成る。
【0023】
傾斜板1は、選別対象の球体と同一材質で形成されたものが好ましい。この傾斜板1の上面は、無数の微細な条痕10が観察される面にしてある。条痕10は、0.1mm〜0.4mm程度の凹凸であり、微小間隔を保って傾斜板1の前後方向に延びている。
【0024】
起振源2は、磁気の影響を及ぼさない電歪素子を用いた。電歪素子の代表的なものにPZTアクチュエータ(商品名、鉛−ジルコン酸塩−チタン酸塩の組成)があり、それを使用した。
【0025】
駆動制御部3は、シーケンサから出力されるパルス信号を起振源2に与えたが思ったほど効果が得られなかったので、パーソナルコンピュータ3aからアンプ3b経由で信号を与えるものを用いた。
【0026】
縦溝5は、球体が必ずその溝に入り込んで流れるピッチで設けてある。また、この縦溝5に入り込んだ球体が振動で跳ねて溝から飛び出すのを防止するため、傾斜板1の先端部はホルダ4で保持して振動(振幅)を抑えるようにしてある。
【0027】
開口7は、傾斜板1の先端に沿って前方に設けてある。また、分別板9は加速されて転がり落ちる真球(良品)の落下点(開口7の前方)に設けてある。
【0028】
このように構成した選別装置は、選別する微小球体Bを供給し、起振源2により傾斜板1を振動させる。或いは振動している傾斜板上に球体を供給する。振動は、正弦波、三角波、矩形波、ノコギリ波、ホワイトノイズ、ピンクノイズについて試したが、正弦波が最も効果的であった。また、傾斜板1の傾斜角を1度きざみで1度〜10度まで変化させ、それぞの角度について振動数0、100Hz、200Hz、250Hz、300Hz、350Hz、400Hz、450Hz、500Hz、600Hzのときの効果を確認した結果、傾斜角が3度〜10度、振動数350Hz〜500Hz(中でも350Hz)のときに球体の流れが特にスムーズであった。
【0029】
この振動と、傾斜板の上面の微細な凹凸(条痕)が有効に作用して300μm以下の微小球体の選別で問題となっていた傾斜板に対する微小球体の付着が防止され、また、振動により球体同士の吸着も防止され、真球と一部の変形球(周長差が無く、姿勢の傾きも無い双子球)は真っ直ぐに転がり落ちる。一方、親子球などは斜めに転がって真球群から除かれる。
【0030】
次に、真っ直ぐに転がり落ちた球体Bは縦溝5に入り込む。良品の真球は溝に入っても加速されて転がり続け、傾斜板1の先端から飛び出して分別板9上に落ち、真球回収部8に誘導される。一方、双子球は溝5に拘束されて転がり難くなり、減速して開口7から変形球回収部6に落ちる。
【0031】
このように、例示の装置では転がり方向の違いによる傾斜選別に続いて、飛距離差選別がなされ、変形球が高確率で取り除かれる。
【0032】
以下に、本願発明の開発の経緯を述べる。
微小球体の傾斜板に対する付着、相互吸着の原因を、静電気力、ファンデルワールス力、液架橋力、傾斜板の面粗度の4つと推定し、それ等の影響を調べた。先ず、面粗度の良いガラス板を傾斜板として用いたところ、球体の流れは若干良くなったが充分ではなかった。
【0033】
次に、静電気を疑ってガラス面に導電性膜(ITO膜)を蒸着したところ、ITO膜無しのガラス面よりは良かったが、0.2mm径の球になると完全に付着した。なお、直径80μmの球は、ITO膜を形成したガラス面上では、ガラス板を裏返しにしても付着したままで落下しなかった。
【0034】
この現象から、ITO膜でもアースできない微小な静電気が関係しているのではないかと考え、市販の種々の静電除去器を使ってみたが全く効果がなかった。
【0035】
文献「静電気の基礎と帯電防止技術 村田雄司著」の接触帯電の項目にある「仕事関係W1およびW2(W1<W2)の2つの金属A、Bがあり、これらがお互いに接触すると、仕事関数の小さな金属Aからこれの大きな金属Bへ向かって電子が移動する。電子の移動は両金属の表面が極めて接近したときに起こる。これは、トンネル効果と言う現象である。」の説明から、80μmの球体は、接触帯電により接触面に電位差が生じ、+−が互いに引き合った結果、ガラス板を裏返しにしても落下しなかったのではないかと考えた。
【0036】
接触帯電では接触面の電位は外観で打ち消しあってゼロとなるため、イオンを送り込む静電除去器などでは静電除去が不可能と思われる。しかも、この帯電は、+−が互いに引き合い、導電体であっても電気がアースされない状況になる。
【0037】
また、球の直径が小さくなり、平面を転がる力よりも静電気力が大きくなると転がらないだけでなく、ガラス板を裏返しにしても落下しなくなる。これは、質量が寸法(半径r)の3乗に比例して小さくなる(体積V=4/3πr3 )のに対し、表面積は2乗に比例して小さくなる(表面積S=4πr2 )ため、相対的に表面の影響力が増大するためだと考えられる。球の半径が1/10になったときの数値を比較してみると、体積は1/1000になるのに対し、表面積は1/100となる。
【0038】
これ等のことから、傾斜板に対する微小球の付着は、静電気のせいと考えたが、不良選別後、トレー内の同一材質、同一サイズの良品球に双子球が見つかった。
【0039】
この球をよく観察すると、指などで軽く押えただけで簡単に分離する。良品球をトレーに入れて転がすと必ず双子球が発見され、全て分離した後トレーを揺するとまた双子球が現れる。先の文献の説明から、同じ材質でほぼ同じ体積の球同士では接触帯電は起こらないと考えてよく、他に引き合う力があると考える必要がある。
【0040】
その力として挙げられるのは、面粗度や静電気力でないとすれば、ファンデルワールス力と液架橋力となる。
【0041】
80μmの銅球を、銅板とステンレス板による傾斜選別が可能かをテストした。銅板、ステンレス板とも、傾斜角を7度にし、かつ、電位を帯びないようにアースし、アースされた箱に入っている80μm径の銅球をそれ等の板上に流した。これと並行してITO膜を設けたガラス板とITO膜の無い通常のソーダガラス板にも同じ条件で銅球を流した。この結果、同じ材質の銅板での流れがきわだって良かった。球体と傾斜板が同一素材であるため接触帯電は起こらない。また、テストは、気温25℃、湿度30%の雰囲気で行ったので、液架橋力の影響も小さいと考えてよい。それでも、銅板に対する球の付着、球体同士の吸着が起こった。この結果から、静電気以外にファンデルワールス力の影響もあると判断した。
【0042】
また、全ての球がファンデルワールス力の影響を受けると、多数の球体が吸着し合うはずであるが、数%が吸着する状況から、他に特殊な状況が関係していると思われた。
【0043】
そこで、もうひとつ実験を試みた。80μmの銅球について、表面をラッピングして鏡面にした銅板と、表面に無数の微細な凹凸(条痕)のある銅板を使って流れを比較した。銅板は同じ条件で洗浄、拭取り、乾燥を行っている。このテストでは、後者の銅板の方が球の流れがよく、表面粗さも影響を及ぼすことを確認した。双子球が数%発生するのは、面粗度の良い部分が偶然接近したためと考えれば合点がいく。
【0044】
2つの粒子がファンデルワールス力により近接すると、変形による弾性的反発力が作用し、両者の釣り合いにより、粒子は最も安定な位置(ポテンシャルエネルギーが最小の位置)に落ち着く。この位置は、図6の粒子間距離z=zoが空気中では約0.4nmになるところとされている。
【0045】
粒子を図6のように、中実のコア部Cと凹凸のあるシェル部Sに分けて積分し、粗さのある粒子の相手面への付着力Fvbを求める。
【0046】
Fvb={z/(z+b)}2 Fv
ここで、bは表面粗さ、Fvは間隔zの距離にあるときのファンデルワールス力である。
【0047】
表面粗さによって近似的には2球間がzからzbに遠くなったとみなせるわけで、その分付着力が弱くなる。例えば、10μm径の粒子同士が図6のz=0.4nmで付着するとき、0.1μmの表面粗さがあると付着力は約6万分の1に減少する。減少の割合は上式から判るように表面粗さと2者間の距離の比のみで決まり、粒径によらず、表面粗さが1μmであれば付着力は更に100倍小さくなり、600万分の1になる。
【0048】
球の直径が300μm前後或いはそれ以下になると半径の3乗に比例する質量は非常に小さくなるため、外的な力が球体に及ぼす影響が大きくなる。従って、振動を与えることのほかに、傾斜板の上面を微細な条痕が観察される面にしたことは、微小球体の流れの改善に大きく役立っている。
【0049】
【発明の効果】
以上述べたように、この発明の選別装置は、傾斜板を振動させて傾斜板に吸引付着した球体や互いに吸引付着した球体に分離力を与え、また、傾斜板の上面を適度に粗すことで傾斜板に対する微小球体の付着力そのものを弱めるようにしたので、直径が300μm以下の微小球体の選別が可能になり、産業上多大の恩恵をもたらす。
【図面の簡単な説明】
【図1】実施形態の装置の概要を示す側面図
【図2】同上の装置の要部の平面図
【図3】傾斜板の拡大正面図
【図4】変形球の主な形を示す図
【図5】傾斜選別法の原理を示す図
【図6】ファンデルワールス力の表面粗さの関係の説明図
【符号の説明】
1 傾斜板
2 起振源
3 駆動制御部
3a パーソナルコンピュータ
3b アンプ
4 ホルダ
5 縦溝
6 変形球回収部
7 開口
8 真球回収部
9 分別板
10 条痕
B 微小球体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sphere sorting device that sorts defective spheres (deformed spheres) mixed in non-defective spheres (true spheres) using the difference in rolling conditions on a slope.
[0002]
[Prior art]
FIG. 4 shows main deformed spheres included in the microspheres manufactured by the atomizing method. In the figure, (a) is called a twin sphere, and (b) is called a parent-child sphere. (C) is also a kind of twin sphere.
[0003]
Microspheres are also used in electronic devices, optical fiber related products, and the like, and in such applications, true spheres are required. Therefore, selective removal of deformed spheres is indispensable.
[0004]
However, many of the deformed spheres as shown in FIG. 4 have an outer diameter in a specific direction equal to the non-defective diameter, and cannot be removed by a sieve sorter using a mesh screen or a roller sorter that performs sorting using a gap between rollers. Sometimes.
[0005]
As shown in FIG. 5A, when the sphere B is placed on the flat inclined plate 1, the true sphere rolls straight, whereas the deformed sphere has a difference in circumference at the contact portion with the inclined plate. When it is placed diagonally on the inclined plate, it rolls diagonally as shown in FIG. There is a tilt sorting method that sorts by the difference in the rolling direction. However, as shown in FIG. 5 (c), this method uses a cylinder if the twin spheres have the same diameter and the posture on the tilt plate is not tilted. It becomes the same situation as rolling, the deformed sphere rolls down straight and remains in the sphere.
[0006]
Therefore, the present applicant has provided a vertical groove that gives direction to the movement of the sphere, and an inclination selection method using the difference in flight distance between a true sphere that rolls in the groove and a deformed sphere that slides while the rolling is restricted. A device capable of removing the deformed spheres that could not be sorted out in the above is developed and proposed in Japanese Patent Application No. 2000-121124.
[0007]
With the development of the device, spheres of up to about 0.3 mm can be selected well, but for spheres smaller than that, some spheres adhere to the inclined plate and the spheres adsorb each other. A matching phenomenon also occurred, and the movement on the inclined plate stopped, and the subsequent flow of the sphere was blocked, making it impossible to perform proper sorting. In addition, if the inclination of the inclined plate is set to a high angle, a clear difference does not appear in the rolling direction and the flight distance between the true sphere and the deformed sphere, and the selection becomes difficult. .
[0008]
For this reason, selection of spheres having a diameter smaller than about 300 μm is still performed by visual inspection.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to make it possible to automatically sort such microspheres in order to save labor.
[0010]
[Means for Solving the Problems]
In order to solve the above-described problems, in the present invention, a flat inclined plate on which microspheres are placed and rolled, and a vibration source that vibrates the inclined plate are provided, and the inclination angle of the inclined plate is 3 degrees to 10 degrees. The present invention provides a microsphere sorting device in which the frequency is 300 Hz to 500 Hz, and the upper surface of the inclined plate has an appropriate surface roughness and has a surface on which numerous fine streaks extending in the vertical direction are observed. .
[0011]
The apparatus of tilt swash plate, those formed of a material of the same material as the spheres are screened, those having a conductive film for grounding the processing on the upper surface of the inclined plate, or to form a excitation source electrostrictive element It is preferable to apply a sinusoidal vibration to the inclined plate.
[0012]
Also, a deformed sphere is provided which has a vertical groove that gives a direction to movement of the sphere by inserting a microsphere on the front end side of the inclined plate, and further drops a deformed sphere that slides restrained by the vertical groove from the front end of the inclined plate. It is also preferable to add a collection part and a sorting plate for guiding the true sphere rolling down in the longitudinal groove and falling in front of the deformed sphere collection part to the true sphere collection part.
[0013]
[Action]
According to experts, the reason why microspheres with a diameter of around 300 μm or less stay on the inclined plate is
・ Electrostatic force, van der Waals force, liquid bridging force, and surface roughness of inclined plate were considered.
[0014]
Whatever the cause, the microspheres are stuck to the inclined plate or adsorbed to each other, thereby slowing the flow of the spheres. Therefore, in the present invention, the attached microspheres are separated by applying vibration to the inclined plate.
[0015]
If the tilt angle of the tilt plate is too small, the microspheres will not flow smoothly even if it is vibrated. On the other hand, if the tilt angle is too large, there will be no clear difference between the rolling direction and the flying distance between the non-defective product and the defective ball, which will hinder the selection. coming out.
[0016]
In addition, when the frequency is too low or too high, the effect of applying the vibration is not sufficiently extracted.
[0017]
For the inclination angle of the inclined plate of 3 to 10 degrees and the frequency of 300 Hz to 500 Hz, the best place was selected through experiments.
[0018]
Next, the upper surface of the inclined plate seems to have a good mirror surface considering the rolling resistance of the sphere. However, in practice, the surface on which innumerable fine streaks extending in the vertical direction (front-rear direction of the inclined plate) are observed is better than the mirror surface. By forming this surface, a sphere having a diameter of 300 μm or less is selected. Became possible. The roughness of the upper surface should be in the range of 0.1 mm to 0.4 mm with irregularities due to streak.
[0019]
Note that the effect of static electricity can be eliminated by forming the inclined plate with the same material as the sphere to be selected, or providing the conductive film for grounding on the upper surface of the inclined plate.
[0020]
Further, when an electrostrictive element is used as a vibration source, the influence of electromagnetic force does not appear.
[0021]
Further, the one provided with the longitudinal groove, the deformed ball collecting portion, and the sorting plate is also sorted by a flight distance difference, and the sorting reliability is further increased.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
1 to 3 show an embodiment of the present invention. This sorting apparatus includes a flat inclined plate 1 having an inclination angle θ set to 3 ° to 10 °, an excitation source 2 that vibrates the inclined plate, a drive control unit 3 for the excitation source, and a tip of the inclined plate. A holder 4 for supporting the distance, a longitudinal groove 5 (see FIG. 2) provided on the top surface of the tip of the inclined plate 1 for performing the distance difference selection, an opening 7 for dropping the deformed sphere onto the deformed sphere collecting section 6, and a true sphere. It consists of a sorting plate 9 that leads to the true sphere collection unit 8.
[0023]
The inclined plate 1 is preferably made of the same material as the sphere to be selected. The upper surface of the inclined plate 1 is a surface on which countless fine streaks 10 are observed. The streak 10 is unevenness of about 0.1 mm to 0.4 mm, and extends in the front-rear direction of the inclined plate 1 with a minute interval.
[0024]
As the vibration source 2, an electrostrictive element that has no magnetic influence is used. A typical electrostrictive element is a PZT actuator (commercial name, composition of lead-zirconate-titanate), which was used.
[0025]
The drive controller 3 provided the pulse signal output from the sequencer to the excitation source 2 and was not as effective as expected. Therefore, the drive controller 3 provided the signal from the personal computer 3a via the amplifier 3b.
[0026]
The longitudinal grooves 5 are provided at a pitch at which the spheres always enter and flow into the grooves. Further, in order to prevent the sphere that has entered the vertical groove 5 from jumping out of the groove by vibration, the tip of the inclined plate 1 is held by the holder 4 to suppress vibration (amplitude).
[0027]
The opening 7 is provided forward along the tip of the inclined plate 1. Further, the separation plate 9 is provided at a drop point (in front of the opening 7) of a true sphere (good product) that is accelerated and rolls down.
[0028]
The sorting apparatus configured as described above supplies the microsphere B to be sorted, and vibrates the inclined plate 1 by the vibration source 2. Alternatively, a sphere is supplied on the vibrating inclined plate. For vibration, sine wave, triangle wave, rectangular wave, sawtooth wave, white noise, and pink noise were tested, but sine wave was most effective. Further, when the inclination angle of the inclined plate 1 is changed from 1 degree to 10 degrees in increments of 1 degree, and the frequency is 0, 100 Hz, 200 Hz, 250 Hz, 300 Hz, 350 Hz, 400 Hz, 450 Hz, 500 Hz, 600 Hz for each angle. As a result, the flow of the sphere was particularly smooth when the inclination angle was 3 to 10 degrees and the vibration frequency was 350 Hz to 500 Hz (in particular, 350 Hz).
[0029]
This vibration and the fine irregularities (streaks) on the upper surface of the inclined plate effectively act to prevent the adhesion of the microsphere to the inclined plate, which has been a problem in the selection of microspheres of 300 μm or less. Adsorption of spheres is also prevented, and the true sphere and some deformed spheres (a twin sphere with no circumference difference and no inclination of the posture) rolls down straight. On the other hand, the parent-child sphere rolls diagonally and is removed from the true sphere group.
[0030]
Next, the sphere B rolled down straight enters the longitudinal groove 5. Even if the good sphere enters the groove, it is accelerated and continues to roll, jumps out from the tip of the inclined plate 1, falls on the sorting plate 9, and is guided to the true sphere collection unit 8. On the other hand, the twin sphere is restrained by the groove 5 and hardly rolls, decelerates and falls from the opening 7 to the deformed sphere collecting part 6.
[0031]
As described above, in the illustrated apparatus, the distance selection is performed following the inclination selection based on the difference in the rolling direction, and the deformed sphere is removed with high probability.
[0032]
The background of the development of the present invention will be described below.
The causes of adhesion and mutual adsorption of the microspheres on the inclined plate were estimated as four factors: electrostatic force, van der Waals force, liquid bridging force, and surface roughness of the inclined plate, and their influence was investigated. First, when a glass plate having a good surface roughness was used as the inclined plate, the flow of the spheres was slightly improved but not sufficient.
[0033]
Next, when a conductive film (ITO film) was deposited on the glass surface in the suspicion of static electricity, it was better than the glass surface without the ITO film, but when it became a sphere with a diameter of 0.2 mm, it adhered completely. In addition, the sphere having a diameter of 80 μm did not fall on the glass surface on which the ITO film was formed even if the glass plate was turned over.
[0034]
From this phenomenon, I thought that it might be related to minute static electricity that could not be grounded even with an ITO film, and I tried using various commercially available static eliminators, but there was no effect.
[0035]
“There are two metals A and B of work relationship W1 and W2 (W1 <W2) in the item of contact charging in the document“ Basics of static electricity and antistatic technology written by Yuji Murata ”. Electrons move from the small metal A to the large metal B. The movement of the electrons occurs when the surfaces of the two metals are very close together. This is a phenomenon called the tunnel effect. It was considered that the 80 μm sphere did not fall even when the glass plate was turned upside down as a result of the potential difference occurring on the contact surface due to contact charging, and + − attracting each other.
[0036]
In contact charging, the potential of the contact surface cancels out and becomes zero, so that it is considered impossible to remove static electricity with an electrostatic remover that sends in ions. Moreover, this charging is such that +-is attracted to each other, and even if it is a conductor, electricity is not grounded.
[0037]
Further, when the diameter of the sphere becomes small and the electrostatic force becomes larger than the force of rolling on the plane, it not only rolls but also does not fall even if the glass plate is turned upside down. This is because the mass decreases in proportion to the cube of the dimension (radius r) (volume V = 4 / 3πr 3 ), whereas the surface area decreases in proportion to the square (surface area S = 4πr 2 ). This is probably because the influence of the surface is relatively increased. When the numerical values when the radius of the sphere becomes 1/10 are compared, the volume becomes 1/1000 while the surface area becomes 1/100.
[0038]
For these reasons, it was thought that the adhesion of the microspheres to the inclined plate was due to static electricity, but after sorting the defects, twin balls were found in the non-defective balls of the same material and size in the tray.
[0039]
If you look closely at this sphere, it can be easily separated by simply pressing it with your finger. When a good ball is placed in a tray and rolled, a twin ball is always found. When all the balls are separated and the tray is shaken, a twin ball appears again. From the description of the previous document, it may be considered that contact charging does not occur between spheres of the same material and substantially the same volume, and it is necessary to consider that there is another attractive force.
[0040]
If the force is not surface roughness or electrostatic force, van der Waals force and liquid bridging force are mentioned.
[0041]
A test was conducted to determine whether an 80 [mu] m copper ball can be subjected to tilt sorting using a copper plate and a stainless steel plate. Both the copper plate and the stainless steel plate were grounded so as to have an inclination angle of 7 degrees and not to have a potential, and an 80 μm diameter copper ball contained in a grounded box was allowed to flow on these plates. In parallel with this, copper balls were flowed under the same conditions on a glass plate provided with an ITO film and a normal soda glass plate without an ITO film. As a result, the flow with a copper plate of the same material was very good. Contact charging does not occur because the sphere and the inclined plate are made of the same material. Moreover, since the test was performed in an atmosphere at an air temperature of 25 ° C. and a humidity of 30%, it may be considered that the influence of the liquid crosslinking force is small. Nevertheless, adhesion of spheres to the copper plate and adsorption of spheres occurred. From this result, it was judged that there was an influence of van der Waals force in addition to static electricity.
[0042]
In addition, when all the spheres are affected by van der Waals forces, a large number of spheres should adsorb each other, but it seems that a special situation is involved because of the fact that several percent adsorb. .
[0043]
Therefore, another experiment was tried. The flow of 80 μm copper spheres was compared using a copper plate with a mirrored surface by lapping the surface and a copper plate with numerous fine irregularities (streaks) on the surface. The copper plate is cleaned, wiped and dried under the same conditions. In this test, it was confirmed that the latter copper plate had better sphere flow and the surface roughness also affected. If you think that a few percent of twin spheres are due to the fact that the surface with good surface roughness approached by chance, the congruity goes.
[0044]
When the two particles are brought closer to each other by van der Waals force, an elastic repulsion force due to deformation acts, and the balance between the two particles causes the particle to settle to the most stable position (position where the potential energy is minimum). This position is such that the interparticle distance z = zo in FIG. 6 is about 0.4 nm in the air.
[0045]
As shown in FIG. 6, the particles are divided into a solid core portion C and an uneven shell portion S and integrated, and the adhesion force Fvb of the rough particles to the mating surface is obtained.
[0046]
Fvb = {z / (z + b)} 2 Fv
Here, b is the surface roughness, and Fv is the van der Waals force at a distance z.
[0047]
Depending on the surface roughness, it can be considered that the distance between the two spheres is far from z to zb, and the adhesion force is weakened accordingly. For example, when particles having a diameter of 10 μm adhere to each other at z = 0.4 nm in FIG. 6, if the surface roughness is 0.1 μm, the adhesion is reduced to about 1 / 60,000. As can be seen from the above equation, the rate of decrease is determined only by the ratio of the surface roughness to the distance between the two. Regardless of the particle size, if the surface roughness is 1 μm, the adhesion is further reduced by a factor of 100, which is 6 million minutes 1
[0048]
When the diameter of the sphere is around 300 μm or less, the mass proportional to the cube of the radius becomes very small, so that the influence of external force on the sphere increases. Therefore, in addition to providing vibration, the use of the top surface of the inclined plate as a surface on which fine streaks are observed greatly helps to improve the flow of the microspheres.
[0049]
【The invention's effect】
As described above, the sorting apparatus according to the present invention vibrates the inclined plate to give a separation force to the spheres sucked and adhered to the inclined plates and the spheres sucked and attached to each other, and appropriately roughens the upper surface of the inclined plate. Since the adhesion force of the microspheres to the inclined plate itself is weakened, it becomes possible to select microspheres having a diameter of 300 μm or less, which brings a great industrial benefit.
[Brief description of the drawings]
FIG. 1 is a side view showing an outline of an apparatus according to an embodiment. FIG. 2 is a plan view of an essential part of the apparatus. FIG. 3 is an enlarged front view of an inclined plate. FIG. 5 is a diagram showing the principle of the gradient selection method. FIG. 6 is an explanatory diagram of the relationship between the surface roughness of van der Waals force.
DESCRIPTION OF SYMBOLS 1 Inclined plate 2 Excitation source 3 Drive control part 3a Personal computer 3b Amplifier 4 Holder 5 Longitudinal groove 6 Deformation ball | bowl collection | recovery part 7 Opening 8 True sphere collection | recovery part 9 Sorting plate 10 Streak B Microsphere

Claims (1)

直径が300μm以下の微小球体を載せて転がす平板の、上面に接地処理する導電性膜を設けた傾斜板と、この傾斜板を板厚方向に振動させる起震源とを有し、傾斜板の傾斜角を3度〜10度、振動数を300Hz〜500Hzとし、さらに、傾斜板の上面を、縦方向に延びる無数の微細な条痕が観察される面にし、その傾斜板の先端側に微小球体を入り込ませて球体の移動に方向性を与える縦溝を設け、さらに、その縦溝に拘束されて滑動する変形球を傾斜板の先端から落下させる変形球回収部と、前記縦溝内を転がり下って変形球回収部の前方に落ちる真球を真球回収部に案内する分別板とを付加して構成される微小球体の選別装置。 A flat plate that rolls with a microsphere having a diameter of 300 μm or less, an inclined plate provided with a conductive film to be grounded on the upper surface, and a vibration source that vibrates the inclined plate in the thickness direction. The angle is set to 3 to 10 degrees, the frequency is set to 300 Hz to 500 Hz, and the upper surface of the inclined plate is formed into a surface on which innumerable fine streaks extending in the vertical direction are observed, and a minute amount is formed on the tip side of the inclined plate. A vertical groove is provided to allow the sphere to enter and give directionality to the movement of the sphere, and further, a deformed sphere collecting part for dropping the slidable deformed sphere restrained by the vertical groove from the tip of the inclined plate, and the inside of the vertical groove An apparatus for sorting microspheres, which is configured by adding a separation plate that guides a true sphere that rolls down and falls in front of the deformed sphere collection unit to the true sphere collection unit .
JP2001357405A 2001-11-22 2001-11-22 Microsphere sorting device Expired - Fee Related JP3814718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001357405A JP3814718B2 (en) 2001-11-22 2001-11-22 Microsphere sorting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001357405A JP3814718B2 (en) 2001-11-22 2001-11-22 Microsphere sorting device

Publications (2)

Publication Number Publication Date
JP2003154317A JP2003154317A (en) 2003-05-27
JP3814718B2 true JP3814718B2 (en) 2006-08-30

Family

ID=19168755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001357405A Expired - Fee Related JP3814718B2 (en) 2001-11-22 2001-11-22 Microsphere sorting device

Country Status (1)

Country Link
JP (1) JP3814718B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062498A1 (en) 2016-09-30 2018-04-05 株式会社日本触媒 Sulfuric-acid-(salt)-ester-group-containing copolymer and method for producing same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4825226B2 (en) * 2008-01-18 2011-11-30 三菱電機株式会社 Electrostatic sorting device
JP5520541B2 (en) * 2009-08-11 2014-06-11 信越ポリマー株式会社 Spherical component sorting member and spherical component sorting device
CN113477526A (en) * 2021-06-03 2021-10-08 中国科学院福建物质结构研究所 Device and method for removing irregular particles in spherical powder
CN116236762B (en) * 2023-03-29 2024-09-10 淮阴工学院 Automatic screening and containing system for ball equipment and using method thereof
CN117101635B (en) * 2023-10-24 2024-02-09 江苏神鹤科技发展有限公司 Heating desorption recovery plant of nanometer microballon adsorbent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062498A1 (en) 2016-09-30 2018-04-05 株式会社日本触媒 Sulfuric-acid-(salt)-ester-group-containing copolymer and method for producing same

Also Published As

Publication number Publication date
JP2003154317A (en) 2003-05-27

Similar Documents

Publication Publication Date Title
Kim et al. Experimental study of electrostatic precipitator performance and comparison with existing theoretical prediction models
Dodd The statistics of liquid spray and dust electrification by the Hopper and Laby method
Bailey Electrostatic phenomena during powder handling
Mittal Particles on Surfaces: Detection, Adhesion and Removal, Volume 7
US6878192B2 (en) Electrostatic sieving precipitator
JP3814718B2 (en) Microsphere sorting device
JP6383872B2 (en) Cleaning device and cleaning method
JPS63316441A (en) Method of eliminating contaminant particles with micron and submicron dimensions from surface
CN102712017B (en) Apparatus and method for dry cleaning
JPH09152615A (en) Method for spraying spacer particle to liquid crystal display element substrate and jig plate for spraying and spraying device
WO2017155074A1 (en) Cleaning device
JP4725769B2 (en) Microsphere sorting method
JP4130936B2 (en) Sphere sorting device
Duarte Fo et al. Filtration of electrified solid particles
JP4697566B2 (en) Oval sphere sorting method and apparatus
JP2556766B2 (en) Electronic component chip sorter
JP2009189950A (en) Method and apparatus for sorting deformed ball
JPH11319722A (en) Single sphere sorting apparatus
JP6954560B2 (en) Electrostatic sorting method and equipment
JP3589195B2 (en) Sorting method for small metal balls
KR102514736B1 (en) Powder film forming method and powder film forming apparatus
US20220072466A1 (en) Separation of particles of different surface energies through control of humidity
JP2579659B2 (en) Method and apparatus for sorting fine spherical particles
Tippayawong et al. Modified kinetic model of particle detachment by aerodynamic drag and vibration
Freshwater et al. The retention of large particles in fibrous filters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060522

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150616

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees